

Ever Researching For A Brighter World

# - Nichia UV LED -The Time is Now

### **Corporate Information**



| Founded        | 1956                               |  |  |  |  |
|----------------|------------------------------------|--|--|--|--|
| HQ Location    | Anan-Shi, Tokushima, JAPAN         |  |  |  |  |
| President, CEO | Hiroyoshi Ogawa                    |  |  |  |  |
| Main Products  | Optical semiconductor (LED, Laser) |  |  |  |  |
|                | Chemicals / Phosphors              |  |  |  |  |
|                | Lithium Ion Battery Materials      |  |  |  |  |
| Employees      | ~ 9,400 globally and growing       |  |  |  |  |

### **LED's FOR EVERY APPLICATION**



Nichia remains the only <u>STABLE</u> LED Manufacturer with the <u>BALANCE</u> & <u>DIVERSITY</u> across <u>ALL</u> markets

### **Corporate Campuses**



#### Anan (HQ)

- •LED, Laser Diodes
- Phosphors Magnetic Materials
- Business & Administration, Engineering



Naruto • LED (Lighting and Backlighting)



#### <u>Tatsumi</u>

- •LED (Automotive, Display, Power LED for lighting)
- Phosphors
   Battery Materials
- Pharmaceutical Materials



# Nichia – The Most Sustainable LED Supplier & Partner

Own Die, Own Phosphor, Own Packaging & Own Processes

Recognized for leading quality & reliability via superior materials, products and process design.

Highest Quality Vertically Integrated

**STABILITY** 

Strongest IP portfolio since our invention of blue and white LED.

Strong IP Portfolio

Pure Play LED Mfgr.

50+ years of Phosphor expertise, Global Top 25 semiconductor Mfgr, No downstream plans

ΝΙCΗΙΛ



World's largest LED supplier, Shortest lead times, Very consistent yields

# Uncertainty in the LED Manufacturer Landscape





### **Corporate Information – Uncertainty in the LED Landscape**



WNICHIA Ever Researching For A Brighter World (http://www.nichia.com)

### **Corporate Information – Uncertainty in the LED Landscape**



CONFIDENTIAL

# UV HIGHLIGHTS

**Μ**ΝΙCΗΙΛ

# 2020 UV LED Lineup

| Radiant Flux          | Peak Wavelength (nm) |     |        |                   |                   |           |  |  |  |
|-----------------------|----------------------|-----|--------|-------------------|-------------------|-----------|--|--|--|
|                       | 280                  | 365 | 375    | 385               | 395               | 405       |  |  |  |
| 60W~                  |                      |     |        |                   |                   |           |  |  |  |
| 10W~                  |                      |     |        | Ĩ                 |                   |           |  |  |  |
| 3500mW~               |                      |     |        |                   |                   |           |  |  |  |
| 1000mW~               |                      | 😒 🦣 |        | 😒 🦣               | 😒 🦣               | <b>\$</b> |  |  |  |
|                       |                      |     |        |                   |                   |           |  |  |  |
|                       |                      |     | $\sim$ | $\langle \rangle$ | $\langle \rangle$ | $\sim$    |  |  |  |
| 500mW~                |                      |     |        |                   |                   |           |  |  |  |
| 70mW                  |                      |     |        |                   |                   |           |  |  |  |
| ~20mW                 | Under<br>Development |     | P >    |                   |                   |           |  |  |  |
|                       |                      |     |        |                   |                   |           |  |  |  |
| N: Narrow Directivity |                      |     |        |                   |                   |           |  |  |  |

UV-C DEEP DIVE



# Surface

- Most currently focused on by developers
- Scariest and perhaps most challenging
- Wide applicability, especially for LEDs

Bio

# HVAC

- Existing market with traditional technology
- Addressing air circulation brings varying dynamics
- Less safety concerns for human UVC exposure



- Global necessity
- High Power requirements
- Commercial and Consumer applicability
  - Lower volume, but high relevance

CONFIDENTIAL

- Long approval process (i.e. FDA)
- Reluctancy to change to LED



### 334 Deep Dive

Features

| <ul> <li>Leading efficiency UVC LED</li> <li>Hermetically sealed package for<br/>superior lifetime and reliability at high<br/>temperature / high humidity</li> <li>3<sup>rd</sup> Party disinfection testing data<br/>available upon request.</li> </ul> |                                                                    | igh          | Successor to NCSU334A                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------|------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                           | T <sub>A</sub> =25℃, I <sub>F</sub> =3<br>(Max. I <sub>F</sub> =50 | 50mA<br>0mA) | 6.8×6.8×2.1mm                                                          |
|                                                                                                                                                                                                                                                           | Peak Wavelength                                                    | nm           | 280                                                                    |
|                                                                                                                                                                                                                                                           | Radiant Flux                                                       | mW           | 70                                                                     |
|                                                                                                                                                                                                                                                           | Efficacy                                                           | %            | 3.6                                                                    |
|                                                                                                                                                                                                                                                           | Forward Voltage                                                    | V            | 5.5                                                                    |
|                                                                                                                                                                                                                                                           | Directivity                                                        | deg.         | 120                                                                    |
|                                                                                                                                                                                                                                                           | Absolute Maximum<br>Junction Temperature                           | °C           | 100                                                                    |
|                                                                                                                                                                                                                                                           | Feature                                                            | -            | Hermetically Sealed                                                    |
|                                                                                                                                                                                                                                                           | H                                                                  | -            | *Typical values estimated for Specification release in early September |

# Nichia's unique crystal growth and packaging technologies contribute to long lifetime.

CONFIDENTIAL



#### Driving Test under High Ta High RH condition



Hermetic Shield can keep flux intensity than Non-Hermetic under High Ta High RH condition.

Reference

### 334 Deep Dive – Why 280nm?

### **Sterilization Effect**



### Benchmark

| Part No.        | Nichia's<br>NCSU334x | Competitor <sup>1</sup> |  |  |
|-----------------|----------------------|-------------------------|--|--|
| Peak Wavelength | 280nm                | 265nm                   |  |  |
| I <sub>F</sub>  | 350mA                | 350mA                   |  |  |
| Radiant Flux    | 70mW                 | 40mW                    |  |  |
| VF              | 5.5V                 | 6.8V                    |  |  |
| Efficacy        | 3.6%                 | 1.7%                    |  |  |
| Reliability     | Major Advantage      |                         |  |  |

Note<sup>1</sup>: The value in right is based on a competitor's specification and adjusted to be the same conditions.



Note<sup>2</sup>: For the competitor LEDs, Nichia randomly selected and evaluated samples under Nichia's conditions/environments.

The sterilization effect of Nichia's 280nm is better than other commercially available 265nm LEDs. Additionally, the efficacy AND reliability are significantly better at 280nm vs. 265nm

#### UV Dose for 99.9% Sterilization







<sup>1</sup> UV Dose  $[mJ/cm^{2}]$  = Peak Irradiance  $[mW/cm^{2}] \times$  Irradiation Time [sec.]

Note: Inner Diameter of 35mm

#### Peak Irradiance Simulation Result (NCSU334A U280 1pc. @350mA)



#### Estimated Irradiation Time<sup>2</sup> for 99.9% Sterilization (NCSU334A U280 1pc. @350mA)

| Types of<br>Bacteria | Estimated Irradiation Time for 99.9% Sterilization [sec.]<br>(For each Working Distance) |         |          |          |          |          |           |            |
|----------------------|------------------------------------------------------------------------------------------|---------|----------|----------|----------|----------|-----------|------------|
|                      | 3<br>mm                                                                                  | 5<br>mm | 10<br>mm | 30<br>mm | 50<br>mm | 80<br>mm | 100<br>mm | 1000<br>mm |
| E. coli              | 0.1                                                                                      | 0.2     | 0.7      | 5        | 14       | 33       | 52        | 7,000      |
| P. aeruginosa        | 0.03                                                                                     | 0.1     | 0.3      | 2        | 6        | 14       | 22        | 3,000      |
| S. aureus            | 0.1                                                                                      | 0.2     | 0.6      | 4        | 11       | 26       | 41        | 5,500      |
| B. atrophaeus        | 0.2                                                                                      | 0.5     | 2        | 11       | 30       | 71       | 111       | 15,000     |
| A. brasiliensis      | 5                                                                                        | 15      | 45       | 325      | 900      | 2,133    | 3,333     | 450,000    |

<sup>2</sup> Irradiation time was estimated based on the sterilization test results of NCSU334A U280 1pc. and the peak irradiance simulation result.

Note: This data is a reference value, hence Nichia cannot make guarantee these results. Please treat this data the as reference.

# Call to Action

- 1. Take steps in designs to implement safety redundancy
- 2. Test, test and test again to ensure safety measures are functional
- 3. Do not cut corners to take advantage of a short-term opportunity
- 4. Consider all pieces of the puzzle irradiation, time, geometry, targeted organisms
- 5. Be engaged with, and aware of, developing standards (<u>www.iuva.org</u> & www.nist.gov)
- 6. Urgency with a sense of patience.

"Success requires both urgency and patience. Be urgent about making the effort, and patient about seeing the results."

-Ralph Marston





# Thank you for your time! ありがとう

For further information contact info@nichia.com

**WNICHIN** Ever Researching For A Brighter World (http://www.nichia.com)

# **Disinfection with VIOLET vs LED only**



RESULTS On workplane at 0.6 m

Average: 258 mW/m2 Min: 243 mW/m2 Max: 280 mW/m2 u0: 0.942

## LED only

RESULTS

On workplane at 0.6 m

 Average:
 119 mW/m2

 Min:
 116 mW/m2

 Max:
 121 mW/m2

 u0:
 0.977

### Irradiance

350 mW/m2

175 mW/m2

0 W/m2



### Upper-Room UV-C Air Purification Proven to be effective and safe for over 70 years



- UV-C fixtures that irradiate only the air above 2.1 meters (7 feet) constantly disinfect the upper air volume.
- Most effective when air is mixed by fans and HVAC ventilation, but air also constantly mixes by normal convective currents
- In-duct UV-C air purification is less effective than upper-room as it does little to prevent in-room person-to-person transmission
- Upper-room UV-C is proven to be safe when installed properly



# **Upper Room UV and LEDiL Violet-12-RS**



- Surface reflectance: 10 %
- Optics: LEDiL VIOLET-12-RS
- Total UVC output in the room 23.5 mW/m3







# **FLS UV Tools** UV Lighting Designer Lighting System Selector Usable Light Tool

All material, text, graphics, images, design, icons and other copyrightable elements are the copyrighted property of Future Electronics or the original creator and may not be copied, reproduced, republished, displayed or distributed by any means, including but not limited to electronic, mechanical, photocopying, recording or otherwise, without the express prior written permission Future Electronics or the original creator. All rights reserved. © Future Electronics Inc.

# **UV Lighting Designer – Main Worksheet**



- Calculate irradiance and dosage from radiometric flux
- Application specific worksheets (curing, surface, air, water)
- Eye and skin safety calculation worksheet
- Payback calculator worksheet with traditional light sources



## Lighting System Selector iOS and Android Mobile App





- Easily find and select UV LEDs, modules, and light engines
- Generate PDF report to send to customers for feedback



# **Usable Light Tool – Supporting UV LEDs**

#### **Required Inputs**



FUTURE

# **Resources to Accelerate UV Designs**

- Ask UV questions at <u>UVLEDs@FutureElectronics.com</u>
- Contact your local FLS salesperson and field engineer to organize a personalized UV Webinar
- UV Lighting Designer (Excel simulation tool):
  - Available under NDA for Future Electronics customers
  - Contact your local FLS or Future Electronics salesperson
- Publicly available tools:
  - Lighting System Selector: iOS App Store and Google Play
  - Usable Light Tool: <a href="http://www1.futurelightingsolutions.com/ult">http://www1.futurelightingsolutions.com/ult</a>



# Thank You UVLEDs@FutureElectronics.com

All material, text, graphics, images, design, icons and other copyrightable elements are the copyrighted property of Future Electronics or the original creator and may not be copied, reproduced, republished, displayed or distributed by any means, including but not limited to electronic, mechanical, photocopying, recording or otherwise, without the express prior written permission Future Electronics or the original creator. All rights reserved. © Future Electronics Inc.