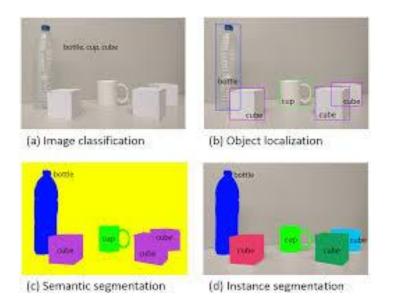

Melexis Optical Sensors

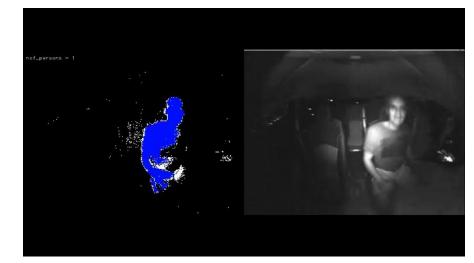
3D Time of Flight technology overview Anuj Patel – Future Grand Rapids Tech Day – June 2019

2D vs 3D sensing: what's the task?

✓ 2D image processing

- Suitable whenever the application offers high contrast or if the structure and colour of the object are decisive for the end result.
- ⊗ 3D image processing
 - Required whenever volumes, shapes or the absolute position to the object in the space is required.


Task	2D	3D
Analysis of volumes and shapes		√
Recognize structure and color	\checkmark	
Good contrast information	\checkmark	
Contrast information poor or missing		\checkmark
Positioning/detects objects in the third dimension		~

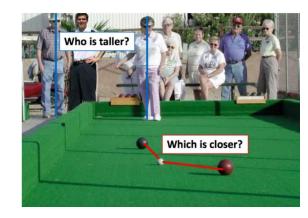


3D sensing – key advantages

- Semantic segmentation: dividing a picture into multiple meaningful parts
 - ✓ Partition of an image into several "coherent" parts
 - Solution 3D depth data enables to easily distinguish foreground and background, or volume of interest (threshold algorithm)
 - Solution Basic area-growing algorithm or clustering algorithm can then be used with lower computation load

QVGA TOF Sensor: example of simple pixel clustering

3D sensing – key advantages



⊘ Absolute position

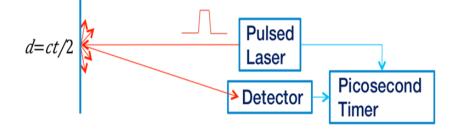
Computer vision based on 2D sensor cannot easily resolve the position of <u>similar objects</u> in the space

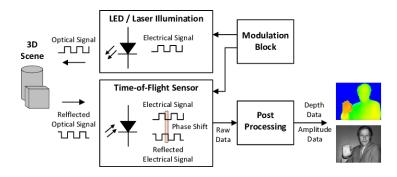
- ✓ Example:
 - Passenger classification can be carried out with 2D sensor and CV (*), using the shape of the seat as reference
 - Seat position sensor is needed to estimate the absolute position
 - ✓ Thickness of the passenger is not available
 - 3D sensor gives the absolute position of the passenger
 - Seat position sensor is not needed

(*) Computer Vision

2 or 3 people?

Position and size of objects

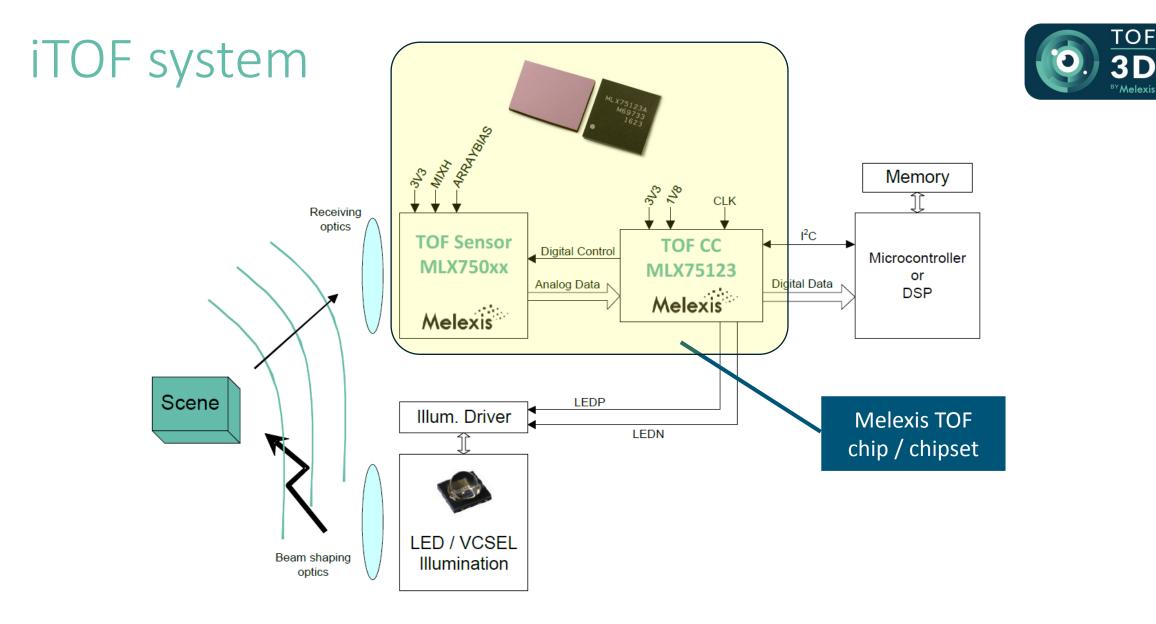

Face recognition


The content of this presentation is CONFIDENTIAL & PROPRIETARY. ALL Rights Reserved.

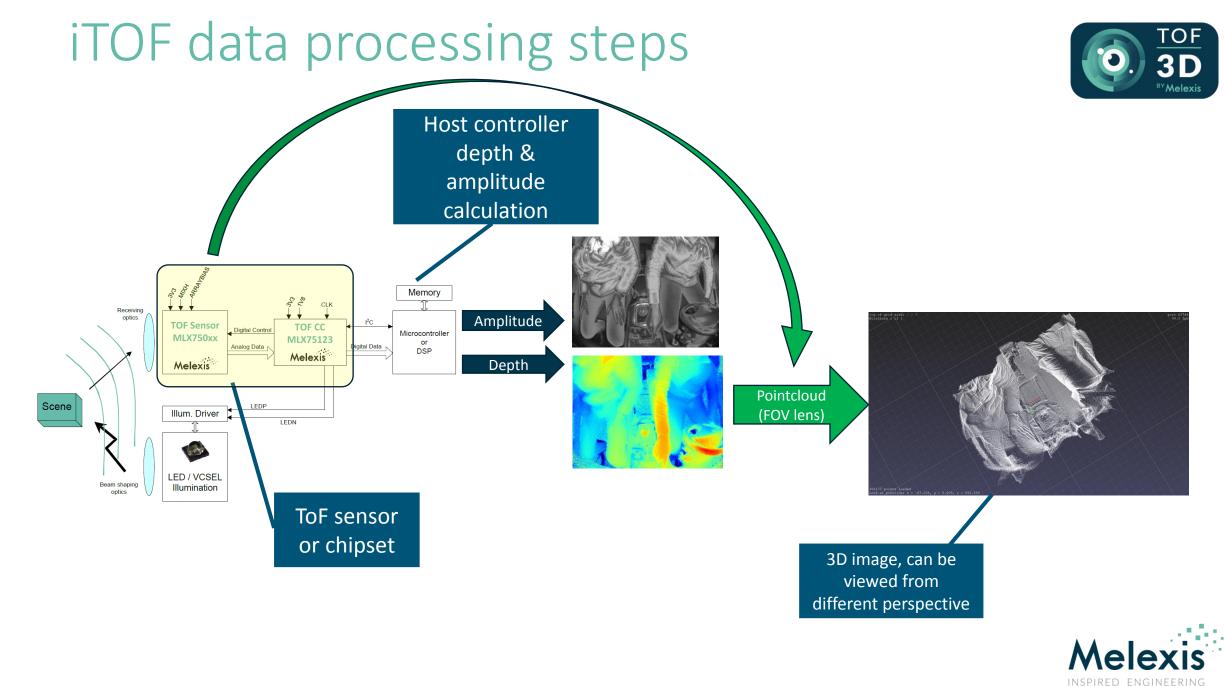
Time of Flight for 3D Sensing

- ✓ Reliable operation in sunlight
- ✓ Direct TOF (LIDAR) = time sensing
 - ✓ Complex electronics!
 - ✓ Ideal for long range 50-250m, <u>low</u> pixel count
- ✓ Indirect TOF (iTOF) = phase sensing
 - CMOS compatible
 - Scompact
 - ✓ Cost effective
 - Ideal for short range, <u>high</u> pixel count, wide FOV,
 @video frame rate

Source: SensL, http://sensl.com/applications/lidar1/adas/


Source: ResearchGate,

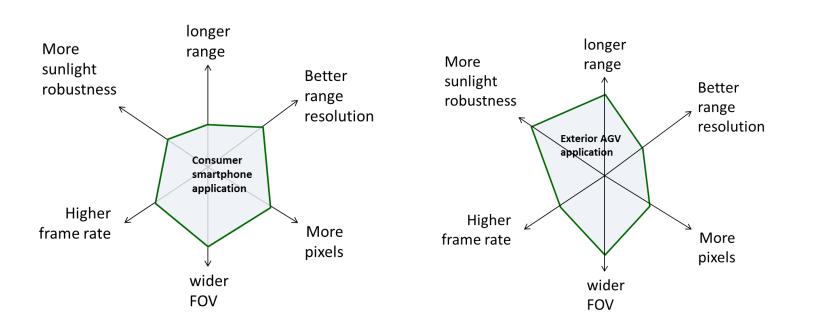
https://www.researchgate.net/figure/302302710_fig1_Fig-1-Theworking-principle-of-an-indirect-PMD-based-Time-of-Flight-depthsensing



Products and System

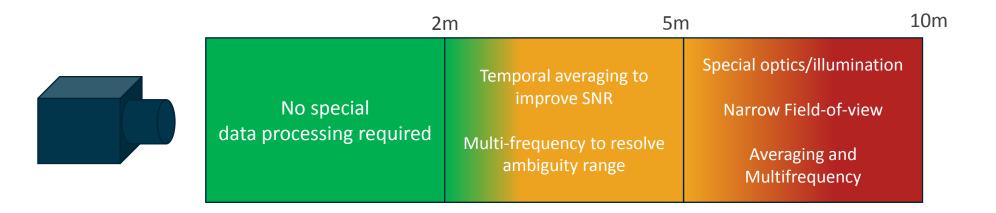
ToF sensor portfolio - overview

Feature	Gen 1 QVGA chipset MLX75023+MLX75123	Gen 2 QVGA chipset MLX75024+MLX75123	Gen 3 VGA Single chip MLX75027	
Resolution	320 x	640 x 480		
Pixel size	15x1	10x10um		
External quantum efficiency (Typ)	10% @ 850 nm	23% @ 850 nm 13% @ 940 nm	44% @ 850 nm 25% @ 940 nm	
Full Well Capacity	240 ke-	450 ke-	160 ke-	
Integrated optical filter or ARC	850nm BP filter	RC, No BP filter		
Sensor format	1/	1/2"		
Pixel gain	fixed	x1x3 selectable	fixed	
Built-in temp. sensor	N/A Tj accuracy +/-5		5 °C absolute	
Max modulation Frequency	40 1	100 MHz		
Data interface	Parallel V	CSI-2 D-Phy 2 or 4-Lane		


Applications

✓ Range accuracy

- Sunlight
- ✓ Frame rate
- ✓ Temperature
- ✓ Calibration
- Size
- ✓ Cost


Trade off examples

iToF technology typical range

- ✓ Achievable distance range depends on several factors
 - Seflectivity of the target (10%..90%)
 - ✓ Illumination power on the scene
 - ✓ Field of view: less useful signal with larger FOV and same illumination power

iTOF sensor – Typical Use Cases

2m 5m 10m Temporal averaging to improve SNR Special optics/Illumination Narrow Field-of-view						
Multi-frequency to resolve Averaging and ambiguity range Multifrequency	range	Gen 1 QVGA chipset MLX75023	Gen 2 QVGA chipset MLX75024	Gen 3 VGA Single chip MLX75027		
Object Identification & Tracking		✓	\checkmark	✓	Gen1 has 850nm integrated IR BP filter	
Object Sizing & damage control			\checkmark	✓	Depending on the size of the object and required spatial resolution	
Obstacle detection & collision avoidance		\checkmark	\checkmark			
Approach & Docking			\checkmark	✓	Depending on Field of View and required spatial resolution	
Dynamic safety perimeter			\checkmark	\checkmark	Depending on Field of View and required spatial resolution	
Gesture control & behavioural prediction		\checkmark	\checkmark		High resolution it is usually not necessary	
Robotics mapping and navigation (SLAM)			\checkmark		Cost sensitive application	
People counting (shops ,public transportation)			\checkmark	✓		
Smart lighting			\checkmark	✓	High spatial resolution and depth accuracy to carry-out accurate object classification	

iTOF sensor – Automotive Use Cases

Automotive : comparison 2D vs 3D sensor

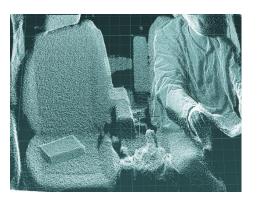
2m No special data processing			
		TOF 3D	Key differentiator or reason
Gesture recognition	×	\checkmark	Reliable detection in volume of interest and dynamic light/shadow conditions
Head pose & tracking – small angles & movements	\checkmark	\checkmark	
Head pose & tracking – nodding, large angles & movements	×	\checkmark	Salient points can be tracked in 3D
Face recognition	\checkmark	\checkmark	
Face recognition for authentication	×	\checkmark	Anti-spoof thanks to depth data
Eye opening & blinking	\checkmark	\checkmark	
Eye gaze	✓	\checkmark	
Hands-on-wheel	\checkmark	\checkmark	Resolve occlusions thanks to depth information
Hands-on-wheel – approaching & leaving	?	✓	Absolute hand position thanks to depth data
Occupancy detection – front & rear seats	\checkmark	\checkmark	
Passenger classification (adult, a front/rear-faced child seat)	?	✓	Body volume & height
Passenger position – for control of airbag deployment	?	\checkmark	Real time absolute body position thanks to depth data
Arm & body tracking	×	\checkmark	Reliable detection in volume of interest and dynamic light/shadow conditions
Seat position & orientation	×	\checkmark	Absolute position & angle thanks to depth data
Object position & orientation (e.g. smartphone)	×	\checkmark	Absolute position & angle thanks to depth data

ToF sensor evaluation kit

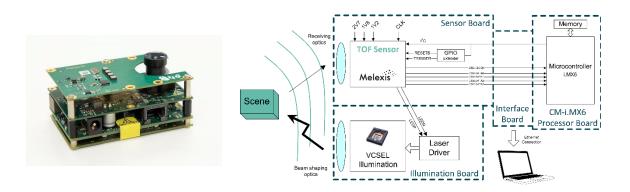
Evaluation Kit

Key Features

- Section Exchangeable sensor optics (standard S mount)
- Solution Distance & confidence data at max. 60 FPS
- Service Raw data mode(s)
- ✓ Visualizer, C API & Matlab SDK
- Solutions: 80 x 50 x 35mm (full module)


Modular concept

- ✓ four stacked PCBs (from top to bottom)


 - ✓ ToF sensor board
 - ✓ interface board

It is possible to detach the top two PCBs from the bottom two PCBs by bypassing the board to board connection with an external cable suitable for FPD-Link III communication

TOF 3D ^{BY}Melexis

Evaluation Kit – available versions

Feature	Part number	FOV	Wavelenght	Illlumination
Gen 1 QVGA	EVK75123-110-850-1	110°	850nm	VCSEL
	EVK75123-60-850-1	60°	850nm	VCSEL
Gen 2 QVGA	EVK75024-80-940-1	80°	940nm	LED
	EVK75024-110-940-1	110°	940nm	VCSEL
Gen 3 VGA	EVK75027-110-940-1	110°	940nm	VCSEL

Thank you

Melexis Optical Sensors

