

David Heindryckx, Field application engineer

Sense & Drive

Triaxis Gen III introduction

2019-June 8th

Content

• Triaxis position sensors

- Triaxis explained
- Introducing Melexis Triaxis Gen III
- Features and benefits
- Magnetometers
- Current Sensors

Triaxis explained

Hall effect basic

Melexis magnetic sensors utilize the Hall effect

- Discovered in 1879 by Edwin Herbert Hall (1855 1938)
- Effect results in a measured voltage proportional to the applied magnetic field
- Magnetic field (flux density) measured in Tesla or Gauss

What is Triaxis

IMC(Integrated Magneto Concentrator)

Thanks to the IMC, the flux density parallel(horizontal) to the IC surface is converted into orthogonal(vertical) components suitable for the planar Hall plate

Triaxis working principle

HP1 =>	$B1 = B \bot - Bz$
HP2 =>	B2 = -B⊥ - Bz

Differential "-" => B1 - B2 B1 - B2 = B \perp - Bz - (-B \perp - Bz) = 2B \perp Direct "+" => B1 + B2 B1 + B2 = B \perp - Bz + (-B \perp - Bz) = -2Bz

What is Triaxis

Triaxis benefits

- High accuracy
 - Division of flux strength components
 - $\alpha = ATAN(B1/B2)$
 - Less sensitivity to the flux density strength variations:
 - Temperature
 - Lifetime
 - Air gap

Introducing Melexis Triaxis Gen III

Triaxis position sensor

Sensing modes

Linear position

Angular position

3D joystick position

Automotive Magnetic Sensors

Applications Landscape

Non-automotive Magnetic sensors

Applications

Non-automotive Magnetic sensors

Smart appliances

Energy

The content of this presentation is CONFIDENTIAL & PROPRIETARY. ALL Rights Reserved.

Introduction of Gen 3

New requirements drive new developments Gen 3

Features and Benefits

Features and benefits

MLX90374: Input Pin for Expansion Capabilities

 Input pin allows for reduction in wire count and harness complexity -> further integration & weight savings

• PWM In

Features and benefits

Input supply voltage & output mode

- Input voltage:
 - For voltage regulated mode
 - 4.5V --- 5.5V
 - For battery usage
 - 6V --- 18V
- Output mode:
 - MLX90371: Analog
 - MLX90372/4: PWM & SENT

High working temperature

Higher ambient temperature

 160°C ambient with low degradation of performance to allow customers to target high temp applications (e.g. engine compartment)

Stray field immunity

Immunity to external field (stray field robustness)

- less constraint on the sensor location vs. disturbing sources
 - ISO11452-8:2007-7: External magnetic field immunity
 - ISO will become the standard for the German OEMS/VDA
 - Based on ISO(4000A/m = 5mT) and current carrying conductor tests (400A@25mm = 3.2mT) to meet next-gen OEM requirements

Legacy mode

- X/Y intrinsic linearity error +-1 deg
- Max X/Y thermal drift is 0.45 deg (relative to 35 degC)
- IC Noise max 0.1deg w/o filter under 40mT
- 32points calibration

Design focus

 Gen III: EMC GM 85V DCC requirement pass @150degC with limited external components

Package lists overview

Package in Gen3

Magnetic working principle

Motion mode --- 2 pole

- End of shaft
 α = ATAN(By/Bx)
- Through shaft α = ATAN(K*By/Bx) α = ATAN(K*Bz/Bx)
- Linear $\alpha = ATAN(K*Bz/Bx)$ $\beta = ATAN(K*Bz/By)$

• Joystick

 $\alpha = \text{AT}_{\text{AIN}}\left(\frac{\sqrt{(k_Z V_Z)^2 + (k_t (V_Y - ORTH_{ZY} * V_Z))^2}}{V_X - ORTH_{ZX} * V_Z}\right)$ $\beta = \text{ATAN}\left(\frac{\sqrt{(k_Z V_Z)^2 + (k_t (V_X - ORTH_{ZX} * V_Z))^2}}{V_Y - ORTH_{ZY} * V_Z}\right)$

Bonus: The Triaxis Advantage Longer stroke length (x3)

MLX90393 Magnotometer MLX90395 Magnetometer

MLX90395 Triaxis[®] Magnetic Node What Is It?

- Solution of the State of the Automotive Qualified version of the MLX90393 released for consumer markets
- Series For all sensing motion: rotary, linear, joystick/3D
- Solution The MLX90395 is a sensor designed to be embedded in a customers application
 - ✓ Low voltage supply only: typically 3.3V
 - I2C or SPI bus (selectable) is not for transmission over a long harness

MLX90395 Triaxis[®] Magnetic Node

Delta vs MLX90393

	MLX90393	MLX90395
Market	Consumer/Industrial	Automotive Consumer/Industrial
Example Applications	HMI, White goods, multimarket	Joystick, Stalk, Shifter, HMI
Package	QFN-16 WLCSP	QFN-16 SOIC-8
Dual die	N/A	TSSOP-16
Supply	2.2 – 3.6V	2.2-3.6V
Speed (XYZ)	~1kHz	2kHz
Measures	XYZ & T	XYZ & T & V
On-chip trimming	Offset SensDrift	Offset & Offdrift Sens & Sensdrift
ASIL	N/A	N/A (Safety Integration Manual available)
Temperature	-40-85°C	-40-125°C

INSPIRED ENGINI

Melexis Confidential and Proprietary. Do not disclose or distribute.

MLX90395 Triaxis[®] Magnetic Node MLX90395: I2C or SPI Enables Embedded Operation

- ✓ The SPI or I2C output allows for using just about any microcontroller to interface to the sensor
 - Primary application is varied: shifters, turn signal stalks, steering angle,

Current sensors

2019-June 8th

Product Families

3 Families

Conventional Hall

⊘ IMC-Hall

✓ Plug & Power

Non Intrusive current sensing

Conventional Hall

Pros

- Strong magnetic gain from the core
- Very robust against cross-talk
- Suitable for medium to very high currents

Cons

- Performance limited by the core
- Bigger footprint (size, weight) than Triaxis solutions

Planar Hall (Triaxis)

Pros

- Simple assembly and low footprint
- IMC features very high permeability and low hysteresis

Cons

Requires magnetic shield or specific design to avoid cross-talk and/or impact from external fields

Triaxis Advantage

IMC makes a parallel magnetic field locally perpendicular to the chip surface

Key benefits

- Sensitive to magnetic fields parallel to the chip surface
- Locally increased flux density (magnetic gain)
 - Higher sensitivity
 - Higher signal-to-noise ratio
- Mechanical alignments and distances are crucial – Melexis will simulate and suggest shielding and physical layouts

IMC = Integrated Magnetic Concentrator

Typical Implementation

On PCB trace

Typical range: 5-50A

On cable

1

Typical range 10-100A

Typical range: 50-1000A

On bus bar

Application – Multiple Phase

✓ Vertical Stacking – Sensor directly on control PCB

✓ Simple mechanical construction

Intrusive Current Sense - Plug and Power MLX91210 – Industrial or Consumer

- ✓ No shields Differential measure
- Sectory calibrated integrated current sensor
- Solution Low resistance conductive path $(0.7-0.8m\Omega)$
- Solution Robust to external magnetic fields via differential measurement
- ✓ Industry standard SOIC footprint
- ⊘ DC-100kHz bandwidth
- 2.1kV_{RMS} (SOIC8) and 2.5kV_{RMS} (SOIC16) isolation

Focus product

"Plug & Power" Isolated current measurement

MLX91210	QFN	SO-8	SOIC-16
Nominal current range [A]	±40	±20	±20
Overcurrent @25°C [A]	±50	±35	±45
Sensitivity (max) [mV/A]	50	80	80
Resolution @1kHz [A]	0.04	0.02	0.02
Voltage isolation [kV]	1	2.1	2.5
Creepage distance [mm]	0.3	4	7
Response time [µs]	5	5	5
Resistance [mΩ]	0.2	0.8	0.7
Temperature range [°C]	-40 to 125°C	-40 to 125°C	-40 to 125°C

Applications

Smart appliances

E-bikes, E-vehicles, ...

Industrial

TP-LINK

n

Quick Summary

	Conventional Hall	IMC-Hall	Integrated Primary
Sensing Concept		B	
Sensing Technology			•
Mounting	Through-Hole Non-intrusive	Surface-Mount Non-intrusive	Surface-Mount Intrusive
Ferromagnetic Concentrator	Core-type External	Integrated Magnetic Concentrator (IMC)	N/A
Factory Calibration	mV/mT	mV/mT	mV/A
EOL Reprogramming	Correction field fact On-Chip/Micro or Degrade	N/A	
Current Sensing Range	10-5000A	30-1000A	10-50A
Cross-talk Immunity	Core	Shield	Differential

Thank you

