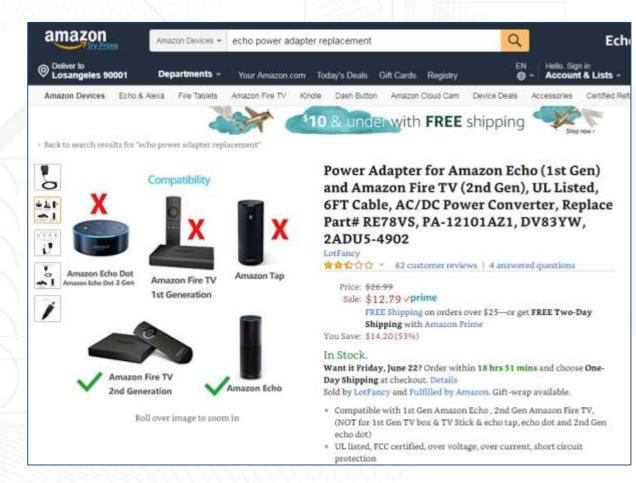


EZ-PD[™] Barrel Connector Replacement (BCR) Controller

Power Your Next Product With Any USB-C Power Adapter



The World Has Started Moving to a USB-C Power Source

USB-C Standardizes Power Adapters to a Common Connector

Eliminate Confusion

Carry Only One Charger With You

USB-C: Past, Present and Future

2015 to Today

Data, Video, Power Over USB-C

USB-C enables one-cable docking to ultra-sleek, ultra-mobile notebook and smart phones

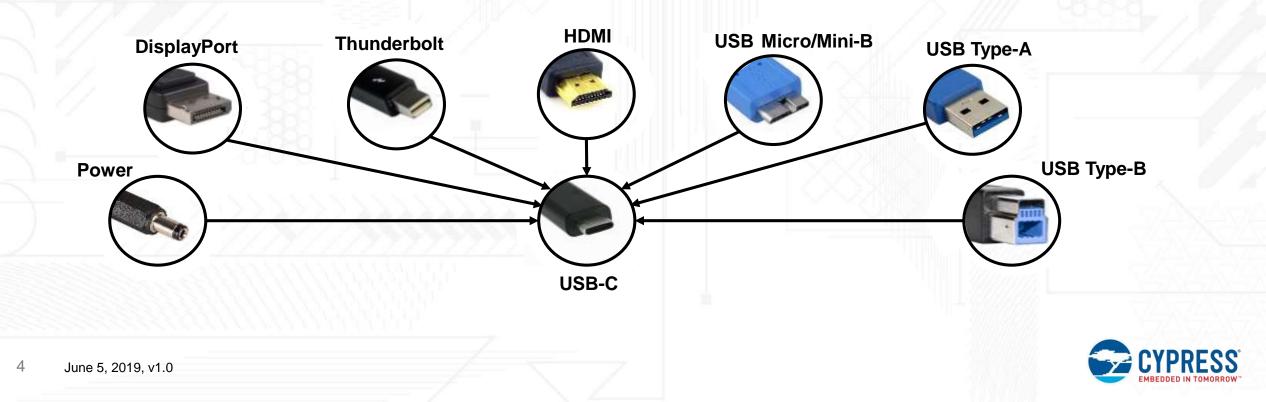
Next 10 Years

USB-C In Every Car

Abundance of USB-C ports in a car to fast-charge everyone's smart phone, tablet or notebook PC

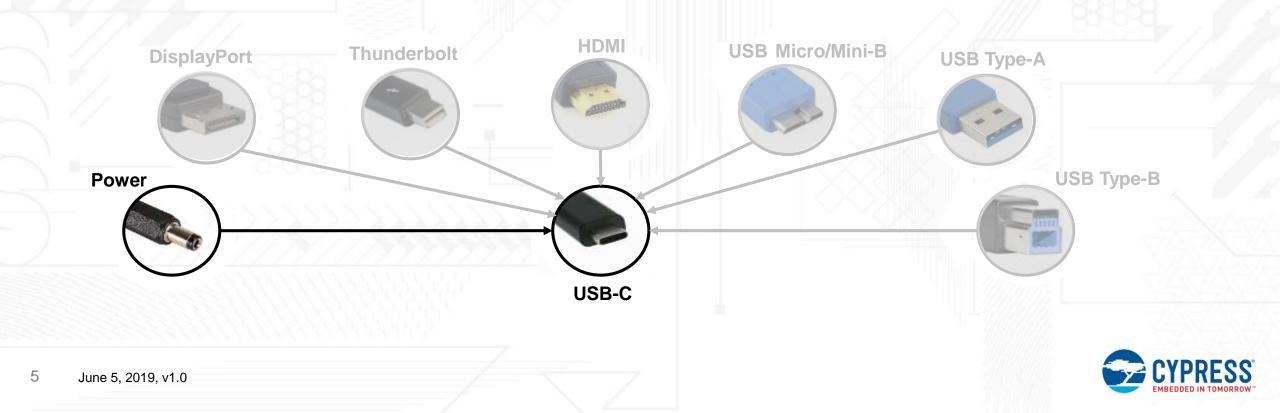
USB-C Powers Everything

USB-C chargers and power outlets replace all conventional power adapters


USB-C: The One Connector That Rules Them All

USB-C is the new USB standard that facilitates:

Slim industrial design with a 2.4-mm plug height


Reversible plug orientation and cable direction

Transport of USB data along with DisplayPort, HDMI, or Thunderbolt signals on the same connector Easy implementation of low-cost USB Power Delivery up to 100 Watts

USB-C: The One Connector That Rules Them All

USB-C is the new USB standard that facilitates: Slim industrial design with a 2.4-mm plug height Reversible plug orientation and cable direction Transport of USB data along with DisplayPort, HDMI, or Thunderbolt signals on the same connector Easy implementation of low-cost USB Power Delivery up to 100 Watts

Design Problems Engineers Face

- Converting a barrel connector to USB-C requires in-depth USB-C knowledge
 - Requires expert knowledge of the USB PD specification and hands-on experience in USB PD system design
 - Must meet USB-IF certification requirements to ensure spec compliance and interoperability
- Designing a product that can be powered by any USB-C power adapter is difficult
 - Different products require different voltage levels and current ratings in power supplies
 - Requires an MCU and firmware development to implement a full USB PD stack
- USB-C solutions are costly in comparison to legacy barrel connectors
 - The cost of a USB-C controller plus connector is greater than a legacy barrel connector
 - Additional power-related protection circuitry and components further increase overall BOM cost

Solution: Cypress' Barrel Connector Replacement (BCR) Controller

- USB-IF certified with market-proven USB PD stack, ensuring spec compliance and interoperability
- Supports all USB PD profiles commonly used in USB-C power adapters and requires no firmware development
- A highly integrated solution that minimizes the increase in BOM cost

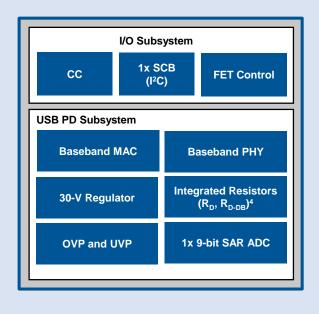
EZ-PD BCR

USB Type-C UFP Port Controller

Applications

Portable electronics – cameras, camcorders, smart speakers, toys, gaming, shavers, powered tools and any battery-powered devices. Industrial – LED lighting, scanner, printer, drones, IoT

Any electronics device consuming less than 100W


Features

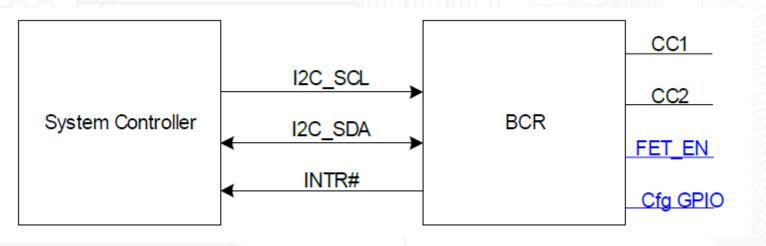
	Integrated Type-C and Power Delivery (PD) Transceiver
	 Integrated high-voltage 30-V-tolerant LDO to power the BCR controller
	 One serial communication blocks (SCB) for slave I²C
	Integrated Analog
	 V_{BUS} overvoltage (OVP) and undervoltage (UVP) protection
ė	 Fault detection for PDO mismatch
1	 Slew rate-controlled PMOS FET gate driver
ę	 Minimum 25-V-tolerant CC pins and FET control pins
1	Low-Power Operation
l	 High-voltage (5–30 V, 30 V maximum) V_{BUS} voltage inputs
1	 Sleep: ~3.5 mA; Deep Sleep: 50 μA with wake-on-I²C or CC
	System-Level ESD on CC, and V _{BUS}
1	$- \pm$ 8-kV Contact, ±15-kV Air Gap IEC61000-4-2 Level 4C
l	Package
	- 24-QFN (16 mm ²), supporting extended Industrial temp (-40 °C to 105 °C)
	Collateral
l	Datasheet: CY3177 Datasheet
	Evaluation Kit: <u>CY4533 Kit</u>
	Product Brochure: EZ-PD Barrel Connector Replacement Product Overview
	¹ Analog feedback voltage control circuit to control V _{BUS}
	² Circuit to measure the current flowing on the V _{BUS}

⁴ Termination resistors: R_D as a UFP, R_{D-DB} as a UFP supporting dead battery

7

EZ-PD BCR: USB Type-C UFP Port Controller

Availability


Production: Now

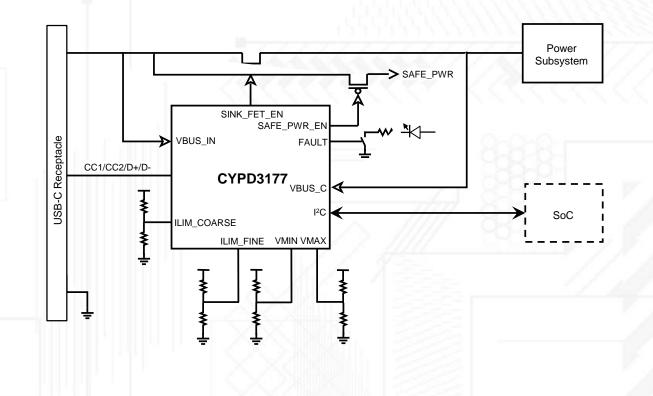
BCR Operational Modes

Two Modes

- The EZ-PD BCR can operate in one of two modes
 - Standalone mode
 - EZ-PD BCR uses the voltage and current setting specified using configuration pin resistor dividers
 - Host Processor Interface (HPI) mode
 - EZ-PD BCR is controlled by I2C to dynamically specify voltage and current setting with application note
 - HPI is active in both modes, but only certain registers can be written in HPI mode

BCR Functional Block Diagram

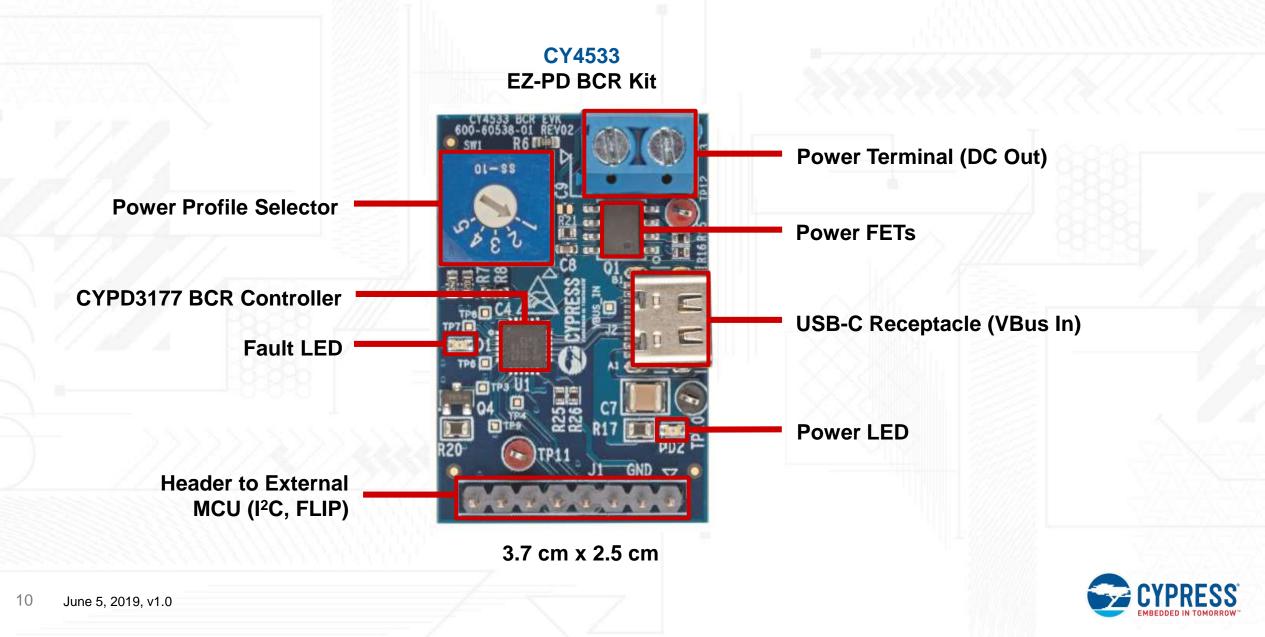
Use VMIN and VMAX to set the VBus voltage range to be provided by a USB-C power adapter


VBus	5V	9V	12V	15V	19V	20V
Pull-up	None	5.1KΩ	5.1KΩ	5.1KΩ	5.1KΩ	0ΚΩ
Pull-down	0ΚΩ	1ΚΩ	2.4KΩ	5.1KΩ	10KΩ	None

Use ILIM_COARSE and ILIM_FINE to set maximum current to be provided by a USB-C power adapter

	ILIM_COARSE	0A	1A	2A	ЗA	4A	5A
	Pull-up	None	5.1KΩ	5.1KΩ	5.1KΩ	5.1KΩ	0ΚΩ
i.	Pull-down	0ΚΩ	1ΚΩ	2.4KΩ	5.1KΩ	10KΩ	None

			prof. And the		1220	
	ILIM_FINE	0mA	250mA	500mA	750mA	900mA
ć	Pull-up	None	5.1KΩ	5.1KΩ	5.1KΩ	0ΚΩ
1	Pull-down	0ΚΩ	1ΚΩ	2.4KΩ	5.1KΩ	None


Maximum current = ILIM_COARSE + ILIM_FINE

Developers can use this reference design and the voltage divider guide on the left to quickly integrate BCR into their next design – **no firmware development required!**

Use EZ-PD BCR Kit to Quickly Prototype a USB-C Power Sink

3 Easy Steps to Jumpstart Your USB-C Conversion

11

1 Select a commercially available USB-C power adapter that supports the desired USB PD power profile

2 Set up the desired USB PD power profile with EZ-PD BCR Kit and quickly prototype by converting the USB-C power input to a barrel connector output to the product. No firmware development required

3 Embed CYPD3177 BCR Controller into your product and replace the barrel receptacle with a USB-C receptacle. Your product can now be powered by any USB-C power adapter supporting the required power profile. The USB-C power adapter can be shipped in-box with the product, sold separately or be left to the users to use their own

How To Get Started

- 1. Purchase an EZ-PD BCR Cypress Dev Kit (CY4533)
- 2. Join the Cypress Developer Community (CDC)
- 3. Start your BCR prototype using the BCR Kit User Guide and resources to the right

Resources

- Product Pages
 - <u>Cypress Barrel Connector Replacement BCR</u>)
 - Cypress USB Type-C and Power Delivery
- Cypress Developer Community (CDC)
 - Cypress EZ-PD USB Type-C Community Forum
- App Notes/Datasheets/ Technical Docs
 - <u>EZ-PD Barrel Connector Replacement (BCR) Datasheet</u>
 - EZ-PD Barrel Connector Replacement Product Overview
 - Cypress USB Roadmap
- Videos
 - Type-C 101 Training Video Series

CY4500 EZ-PD Protocol Analyzer (optional)

CY4500 EZ-PD[™] Protocol Analyzer

Last Updated: Sep 18, 2018

Version: *C

The CY4500 EZ-PD[™] Protocol Analyzer records traffic passively on the Configuration Channel (CC) and allows users to analyze and debug USB Power Delivery communication. The low-cost and compact CY4500 acts as a pass-through for V_{BUS}, V_{CONN}, USB 3.1, USB 2.0 and USB-PD traffic. The EZ-PD Protocol Analyzer Installer includes a free Windows-based GUI (EZ-PD Analyzer Utility) that can be used to decode the USB-PD messages.

Features:

- · Simple GUI for decoding USB Power Delivery packets in real-time on the CC lines
- V_{BUS} Voltage and Current monitoring
- Message ID based triggering
- Debug headers for CC, V_{BUS} and SBU
- Firmware upgradable for future updates

PRICE & AVAILABILITY

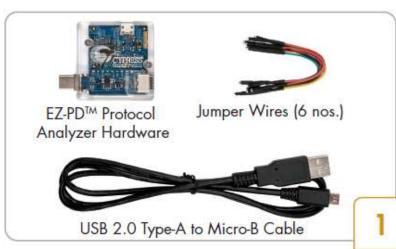
\$199.00 In Stock

🐺 Buy from Cypress

Buy from Distributor**

Check on Shipping and Import Costs **Pricing may vary.

Other Resources (1)



EZ-PD™ CCG1 Type-C Port Controller EZ-PD™ CCG2 Type-C Cable Controller EZ-PD™ CCG3 Type-C Port Controller EZ-PD™ CCG4: Two-Port Type-C Controller with Power Delivery EZ-PD™ CCG4M: Two Port USB Type-C Controller with PD and High-Speed Mux EZ-USB™ HX3C: USB Type-C Hub with Power Delivery USB-C and Power Delivery



CY4500 QUICK START GUIDE

CY4500 EZ-PD™ PROTOCOL ANALYZER

- Review the Analyzer Contents
- Download and install the latest Analyzer Setup CY4500 Setup.exe from www.cypress.com/CY4500

 Connect the CY4500 EZ-PD[™] Protocol Analyzer to your PC via the USB2.0 Type-A to Micro-B Cable provided with the Analyzer. Observe LED1 (white color) blink continuously

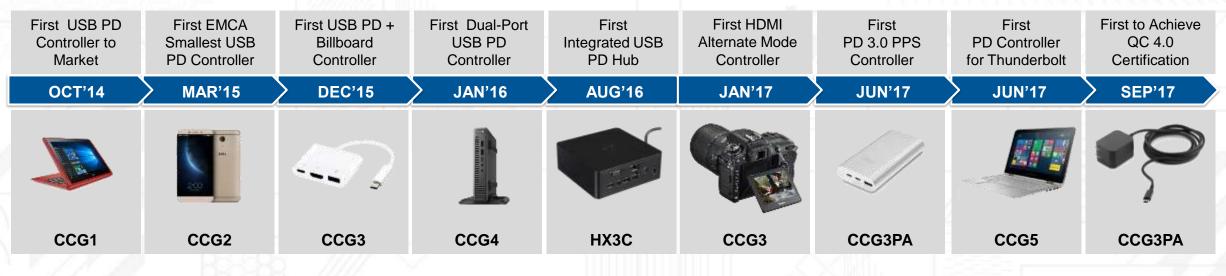
CY4500 EZ-PD Protocol Analyzer (optional)

		Ro R	010									VBUS Voltag	e: 4.99 V	VBUS Current:	0.02 A
-	tus: Non		SOP: Nom	0	-	Messager		Msg iD: Obj 0	Count:	D	ata Role:		Power Role:		
SL#	Status	SOP	Message	Mag	Data Role	Power Role	Obj Count	Data	Start Time	Duration (us)	Delta (us)	VBUS	VBUS Current (A)	Detailed View Tripger Description	
1	ок	SOP	Source_Cap	1.000	DFP	Source	4	0x41A1 0xA11912C 0x12D12C 0x14B12C	(US) 5,979,424		0	4,999	0.02	Description	
2	OK	SOP	Source_Cap		DFP	Source	4	0x41A1 0xA11912C 0x12D12C 0x14B12C	6.129.035		148,564	4.994	0.02		
3	OK	SOP	Source_Cap		DFP	Source	4	0x41A1 0xA11912C 0x12D12C 0x14B12C	6,278.890	1.047	148,808	4,988	0.05		
4	ОК	SOP	Pages and part works	0	UFP	Sink	0	0x41	6,280,083	499	146	4,994	0.03		
5	OK	SOP	Request	0	UFP	Sink	1	0x1082 0x1081685A	6,282,224	632	1,642	4,988	0.03		
6	ОК	SOP	GoodCRC	0	DFP	Source	0	0x121	6.282.992	508	135	4,994	0.03		
7	OK	SOP	Accept	1	DFP	Source	0	0x3A3	6,285,018	508	1,518	4,994	0.03		
8	OK	SOP	GoodCRC	1	UFP	Sink	0	0x241	6,285,673	499	147	4,988	0.03		
9	OK	SOP	PS_RDY	2	DFP	Source	0	0x5A6	6,394,660	508	108,488	4,988	0.03		
10	OK	SOP	GoodCRC	2	UFP	Sink	0	0x441	6,395,315	499	147	4.983	0.03		
11	OK	SOP	VDM	3	DFP	Source	1	0x17AF 0xFF00A002	6,396,825	642	1,011	4,988	0.02		
12	ОК	SOP	GoodCRC	3	UFP	Sink	0	0x641	6,397,615	499	148	4,983	0.02		
13	ОК	SOP	VDM	1	UFP	Sink	1	0x128F 0xFF00A082	6,399,418	631	1,304	4,988	0.03		
14	OK	SOP	GoodCRC	1	DFP	Source	0	0x321	6,400,181	508	132	4,988	0.02		
														¢	

June 5, 2019, v1.0

15

Demo



USB Roadmap

Cypress Is #1 In USB-C with 37% Market Share

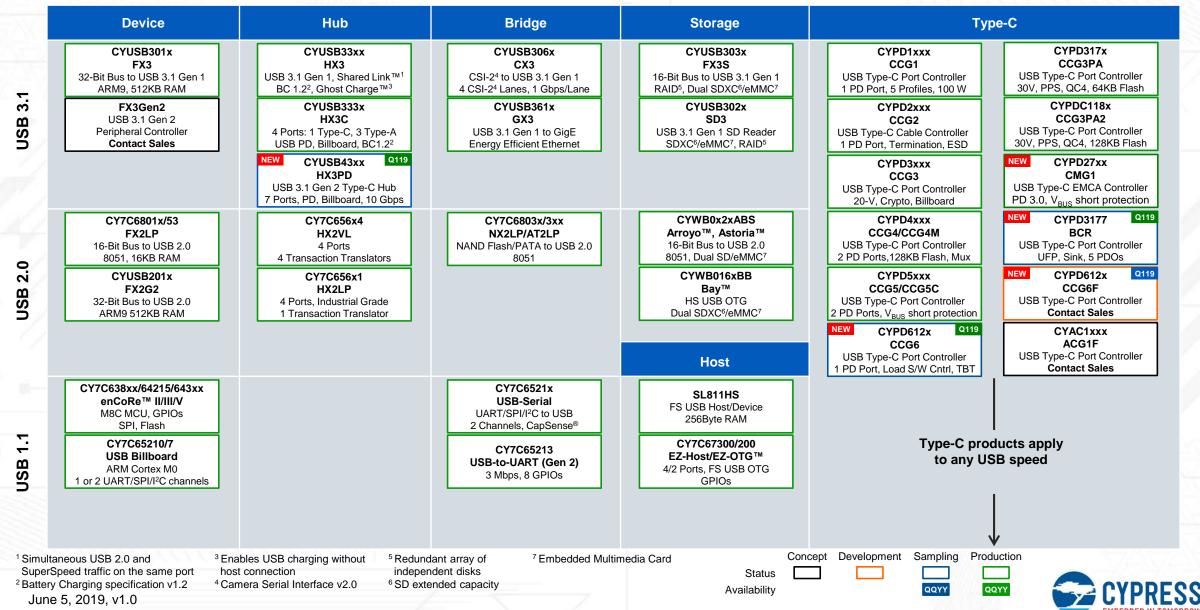
First-To-Market, Customer-Proven, Innovation Pace Setter

Data Source: Gartner 2017, IHS 2016 and Cypress estimates

Cypress USB-C Leadership:

Five generations of market-proven solutions

Largest number of devices (with Cypress USB-C Controllers) certified by USB-IF


Standalone operation – Highly integrated solution for automotive applications (Console and Rear Seat Chargers)

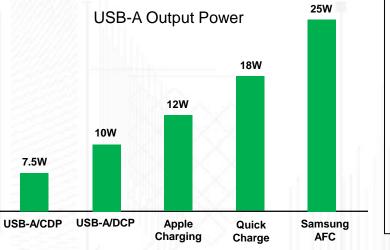
Programmability keeps pace with standard changes

100+ Man years of Mature Design Tools, Reference Designs and F/W Stack enables risk-free and faster designs Worldwide customer training workshops proliferate best design practices

Cypress USB Portfolio

USB-C Auto Solutions

Q2 2019



USB Charging Trends in Automotive – Now & Future

USB-A BC1.2 (CDP, DCP): Now

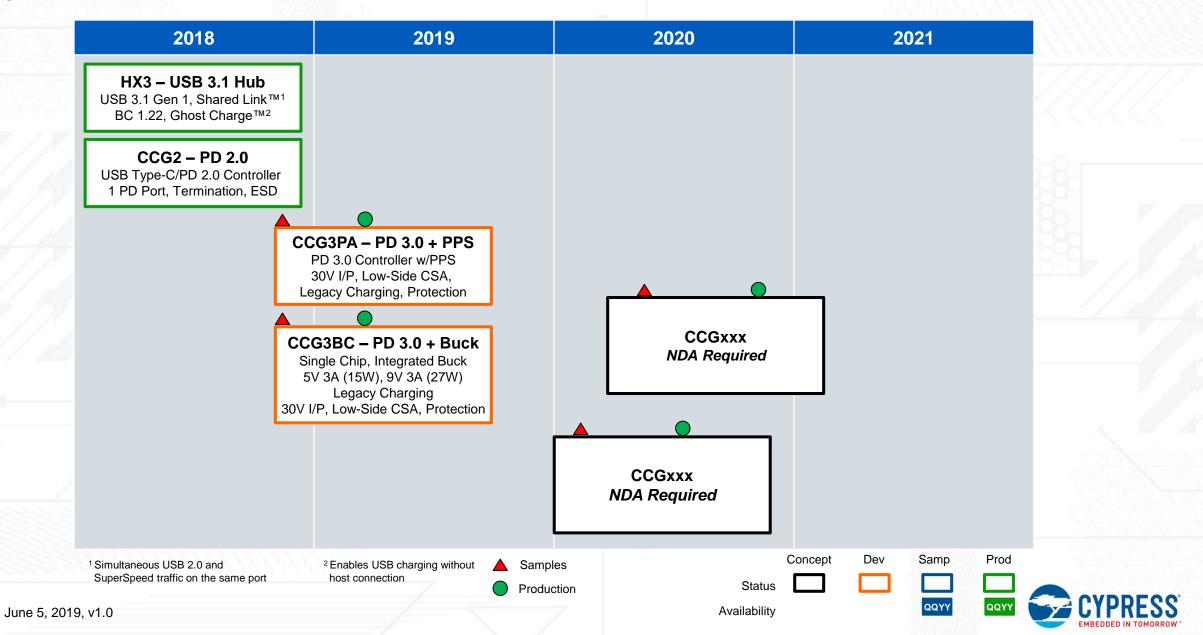
- Charging Downstream Port: 5V, 1.5A
- Dedicated Charing Port: 5V, ~2A

USB-A Legacy Charging: Now

- Apple Charging: 5V, ~ 2.4A
- Qualcomm's Quick Charge 3.0: up to 12V
- Samsung AFC: up to 12V

USB Type-C: Now

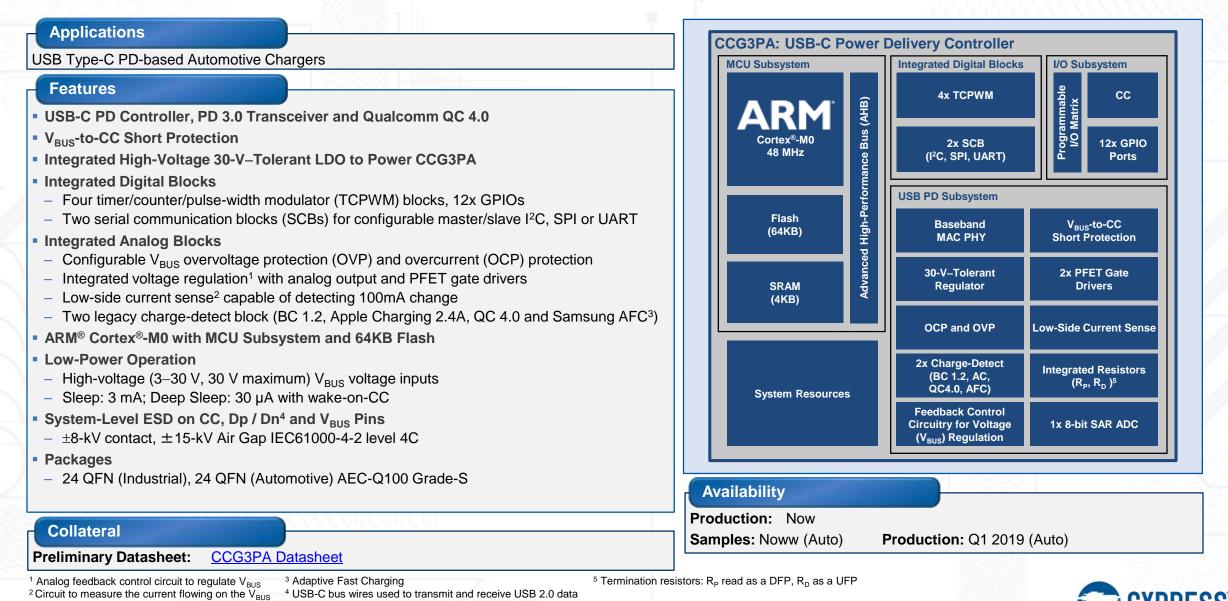
- Type-C Only Charging: 5V, 3A
- Optional: Legacy Charging (above)


USB Type-C PD: Future

- PD Charging: 15W ~ 100W (20V, 5A)
- Qualcomm's Quick Charge 4.0
- Optional: Legacy Charging (above)

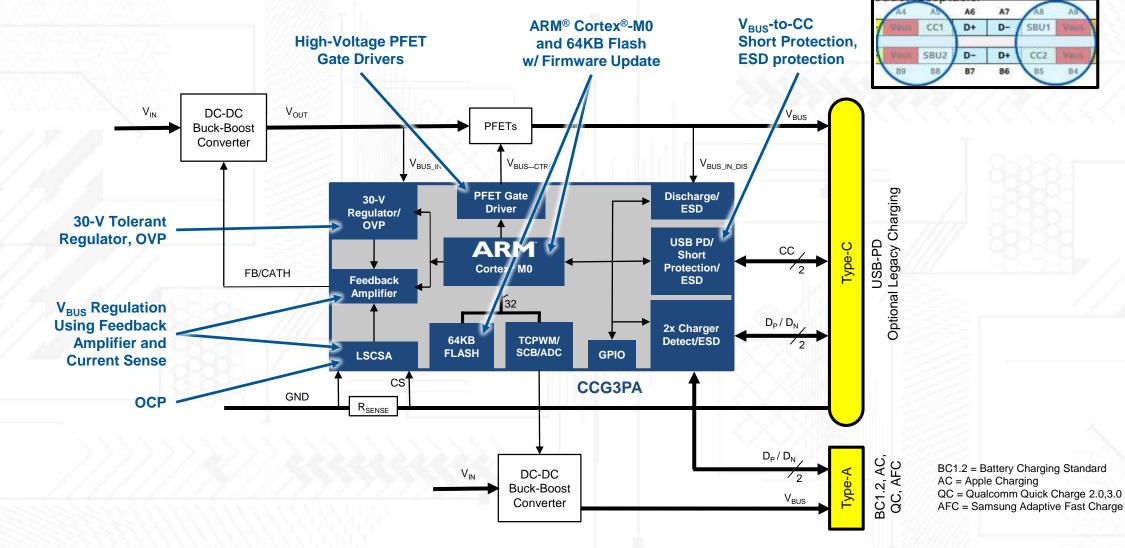
Cypress USB Auto Portfolio

22


EZ-PD USB-C CCG3PA

CCG3PA = Type-<u>C</u> Controller Gen3 for Power Adapter

Add PD 3.0 and QC 4.0 to Your Charger Ports

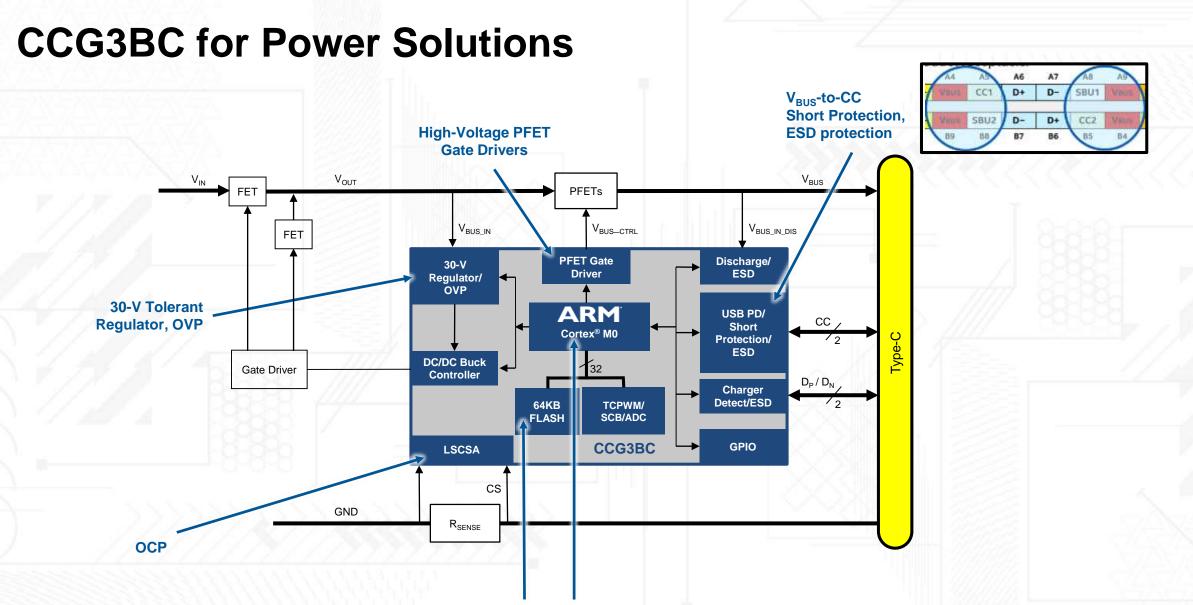

CCG3PA: USB-C and Power Delivery Port Controller

June 5, 2019, v1.0

24

CCG3PA for Power Solutions

B4

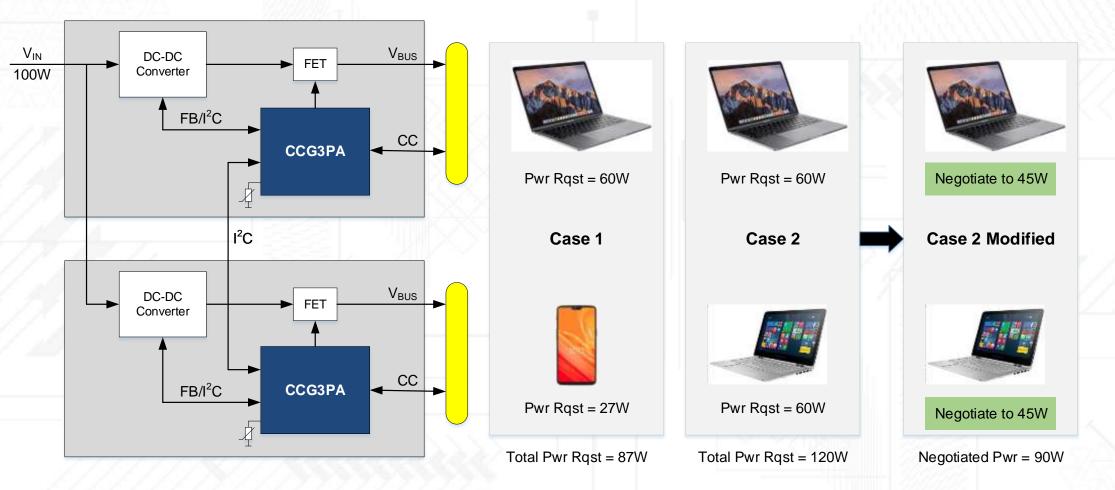


EZ-PD USB-C CCG3BC

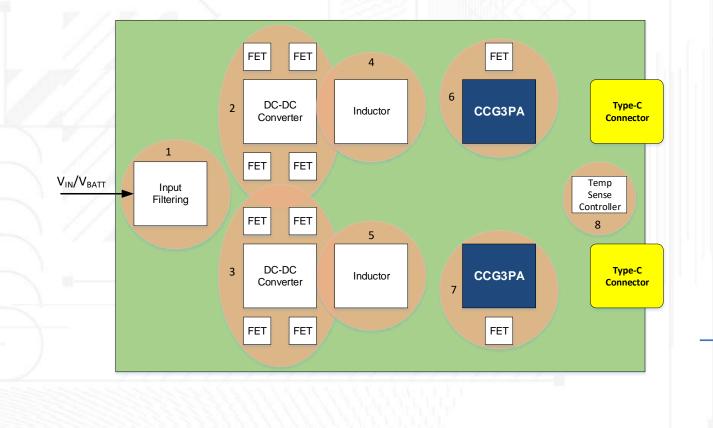
CCG3BC = Type-<u>C</u> Controller Gen3 w/ Buck Converter

Buck Converter with PD 3.0 and Legacy Charging

ARM[®] Cortex[®]-M0 and 64KB Flash Supports Firmware Update



EZ-PD Features for Automotive Applications


Dynamic Load-Sharing

- Two CCG3PA devices are inter-connected over I²C interface
- Power information shared between the two devices
- Source may request Sink's capabilities to determine the minimum power

Output Power Throttling

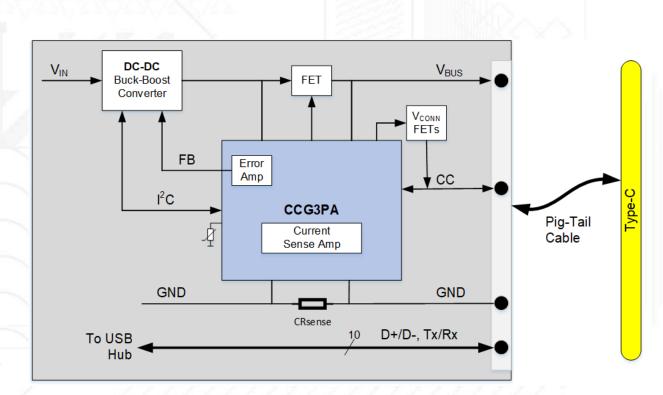
Temperature Sensing:

- Measure Temperature Using:
 - I²C based Temperature Sense Controller
 - <u>4 NTC Thermistors (2 per CCG3PA)</u>
 - Measure temp using CCG3PA's ADC

Measure temp of Hot-spots on the PCB

- Zone 1 Input filtering
- Zone 2/3 DC-DC Converter w/ FETs (if any)
- Zone 4/5 Inductor on V_{BUS} line
- Zone 6/7 PD controller and Power FET
- Zone 8 ambient temperature

- Control O/P Power:


- Reduce Power when ambient temp is high
- Go Min 5V, 3A (15W) when hot
- Shut Down when temp is critical
- Configurable Temp and Power O/P Levels !!

V_{IN}/V_{BATT} measurement:

- Define Input Voltage Thresholds
- Full O/P Power, if above Threshold
- Reduce O/P Power (ex. 15W), if below Threshold

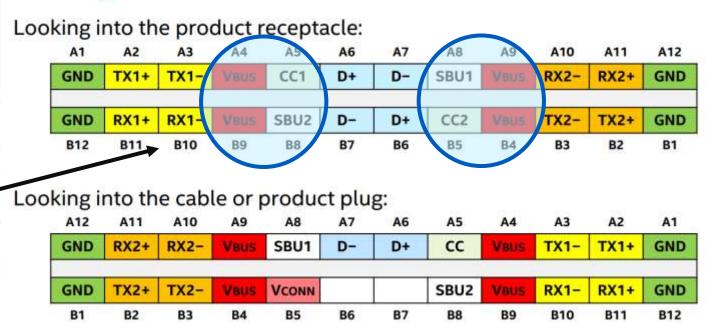
Cable Compensation – for Head Unit Application

USB PD has variable Voltages and Currents

- Voltages -5V to 20V, Currents -0-5A
- Voltage Drop across the Cable Harness varies
- Increase O/P of DC-DC Converter to meet the drop
- Current Sense Amplifier measures the O/P current
- Measure the output Voltage (V_{BUS})
- Modify the FB voltage based on these measurements, for O/P voltage compensation
- Create a look-up table with:
 - Step size for Current measurements (ex. 50 mA)
 - Impedance of the Cable Harness
 - FB correction value to compensate for the drop
 - <u>This is done once at Design Time</u>
- Interrupt is generated when current step is crossed,
 O/P voltage is measured and FB is corrected

USB PD and Programmable Power Supplies

	5V Fixed	9V Fixed	15V Fixed	20V Fixed	5V Prog (3 - 6 V)	9V Prog (3 - 11 V)	15V Prog (3 - 16 V)	20V Prog (3 - 21 V)
With 3 A cables			5 5			5 S	i.	
$0 < PDP \le 15 W$	PDP ÷ 5			-	PDP ÷ 5			
15 < PDP ≤ 27 W	3 A	PDP ÷ 9			3 A	PDP ÷ 9		
27 < PDP ≤ 45 W	3 A	3 A	PDP ÷ 15		3 A	3 A	PDP ÷ 15	
45 < PDP ≤ 60 W	3 A	3 A	3 A	PDP ÷ 20	3 A	3 A	3 A	PDP ÷ 20
Requires 5 A cables	5							
60 < PDP ≤ 100 W	3 A	3 A	3 A	PDP ÷ 20	3 A	3 A	3 A	PDP ÷ 20
	1			1	1			


- PPS is an optional feature in the USB PD 3.0 spec.
- Devices supporting PPS will request a variable voltage (20mV steps) and current (50mA steps) from the Power Source, for an efficient battery charging
- In Automotive Applications, this feature will eliminate Cable Compensation
- Mobile devices will support PPS by 2020; we should enable customers with a futuristic design

USB Type-C Connector and Short Protection (CCG3PA)

- Max voltage on V_{BUS} = 20V
- Proximity of CC and V_{BUS} pins increases the possibility of short due to poor quality cables
- A short between CC and V_{BUS} will destroy CCG3PA, disabling the port
- Protecting CC pins requires additional components: increasing BOM and PCB area
- <u>CCG3PA Integrates CC to V_{BUS}</u> <u>short-circuit protection –</u> <u>eliminates the need for external</u> <u>components</u>

USB Type-C Functional Pin-out

USB-C in Automotive Applications

USB-C and Power Delivery in Automotive

DC

Display SoC

USB-C ir

Rear-Seat-Entertainment

CCG

CCG


DC DC DC DC

DC DC CCG

CCG

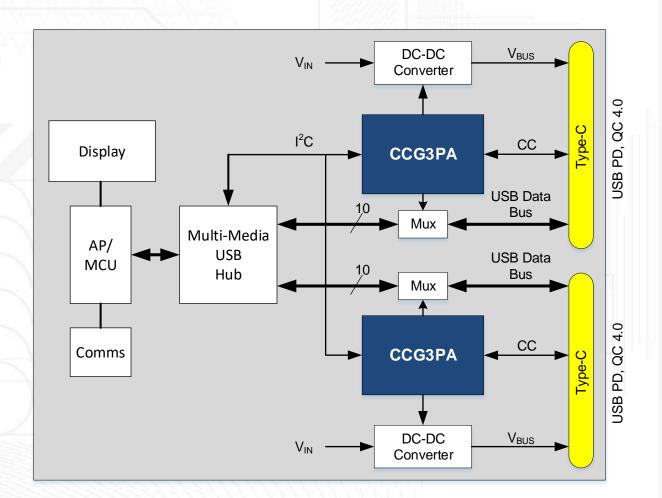
USB-C in

Rear-Seat-Chargers

- Interface to multi-Media Hubs
- Cable compensation for pig-tail cables

- Programmable PD Controller:

- Highly Integrated Standalone Controller
- Single-chip solution for Type-C and Type-A
- Dynamic Load Sharing between ports
- Cable Compensation
- Temperature-based power throttling
- Interface to Multi-Media USB Hubs
- Alternate Mode support for rear seat systems
- Support for Legacy Charging Standards
- Flash upgradability



CCG DC

USB-C in Headunits

DC DC

Head Unit: USB-C PD Features

Features:

- PD 3.0 with PPS
 - BC 1.2, QC 4.0, Apple VDMs

Cable Compensation:

- Compensate for voltage drop over Cable

Dynamic Load Sharing:

- Inter-Connect Two CCG3PA with I²C interface
- Power information shared between the two devices

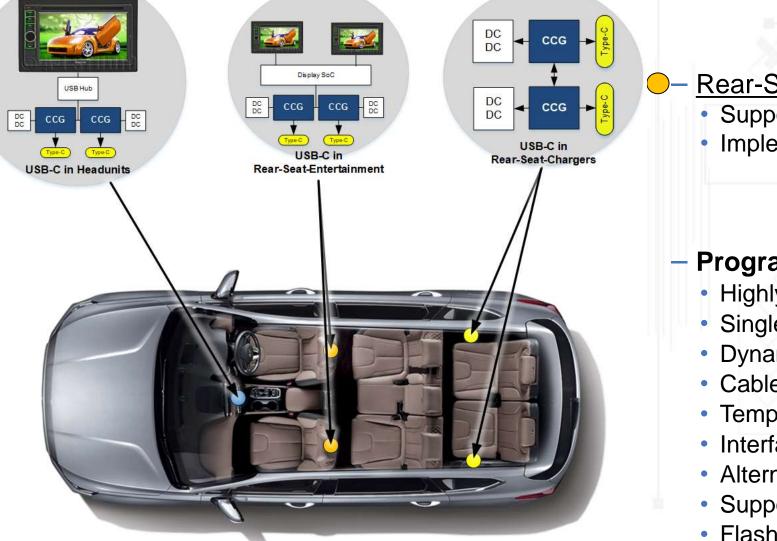
Interface to DC-DC Converters:

Analog Control (PPS), I²C, PWM, GPIO

Interface to USB Hub:

- I²C interface to USB Hub
- Share USB-C Port status
- FW Upgradability:
 - Future proof design with FW Upgradability
 - Over I²C Interface

Output Power Throttling:

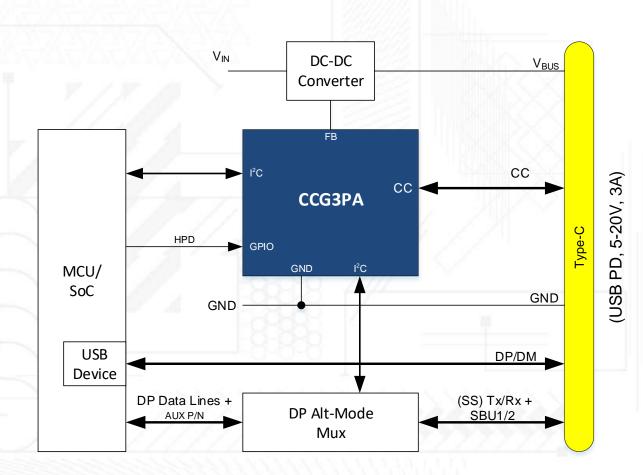

- Temperature sensing with thermistors on CCG3PA
- V_{IN} based output Power Throttling

Protection:

- $\,V_{BUS}$ to CC pins SCP up to 30V
- OCP/OVP/OTP/SCP

USB-C and Power Delivery in Automotive

Rear-Seat Entertainment Systems:

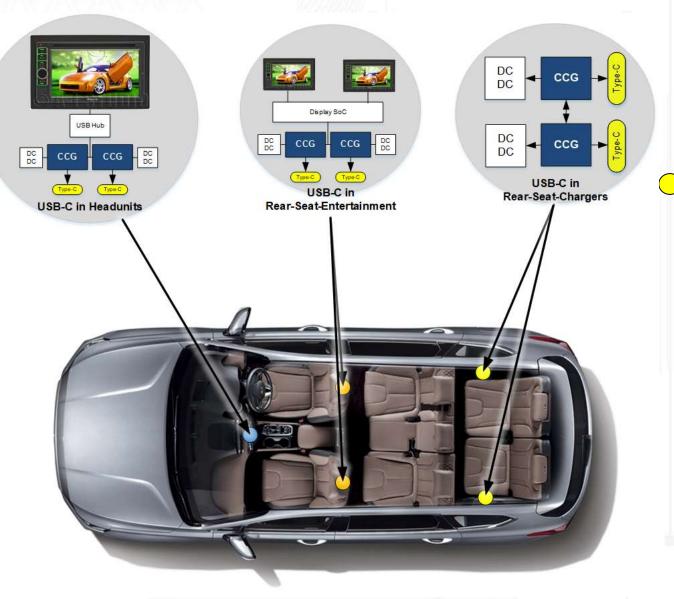

- Support Alternate Mode functionality
- Implement USB Billboard Device Class

– Programmable PD Controller:

- Highly Integrated Standalone Controller
- Single-chip solution for Type-C and Type-A
- Dynamic Load Sharing between ports
- Cable Compensation
- Temperature-based power throttling
- Interface to Multi-Media USB Hubs
- Alternate Mode support for rear seat systems
- Support for Legacy Charging Standards
- Flash upgradability

Rear-Seat Entertainment: USB-C PD Features

Features:

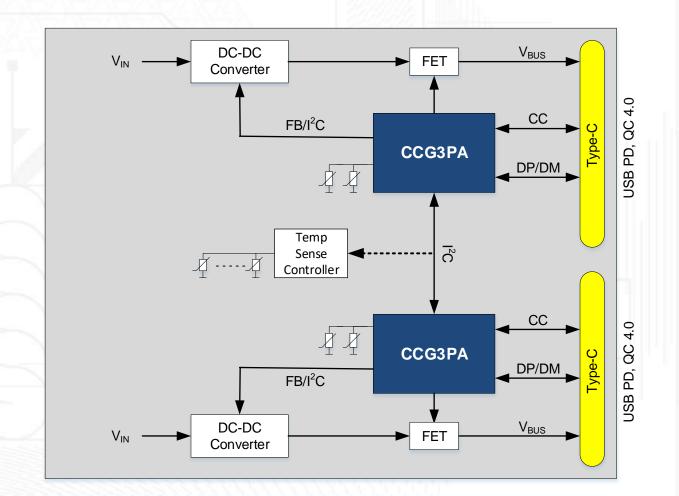

- PD 3.0 with PPS
 - BC 1.2 (CDP), QC 4.0, Apple VDMs
- Alternate Mode Support
 - USB Billboard Device Class, for error reporting
 - Generate HPD Signaling
 - Control DP Alt-Mode Mux
- Dynamic Load Sharing:
 - Inter-Connect Two CCG3 with I²C interface
 - Power information shared between the two devices

Interface to DC-DC Converters:

- Analog Control (PPS), PWM, I²C, GPIO
- FW Upgradability:
 - Future proof design with FW Upgradability
 - Over I²C Interface
- Output Power Throttling:
 - Temperature sensing with thermistors on CCG3PA
 - V_{IN} based output Power Throttling
- Protection:
 - OCP/OVP/SCP

USB-C and Power Delivery in Automotive

Output Provide the second strength in the second strength is a second strength is a second strength in the second strength in the second strength is a second strength in the second strength is a second strength in the second strength in the


- Standalone Operation
- Load-Sharing and Thermal Sensing

- Programmable PD Controller:

- Highly Integrated Standalone Controller
- Single-chip solution for Type-C and Type-A
- Dynamic Load Sharing between ports
- Cable Compensation
- Temperature-based power throttling
- Interface to Multi-Media USB Hubs
- Alternate Mode support for rear seat systems
- Support for Legacy Charging Standards
- Flash upgradability

Rear-Seat Chargers: USB-C PD Features

Features:

- PD 3.0 with PPS and Legacy Charging
 - BC 1.2, QC (2.0, 3.0, 4.0+), Apple, Samsung AFC
- Dynamic Load Sharing:
 - Inter-Connect Two CCG3PA with I²C interface
 - Power information shared between the two devices

Interface to DC-DC Converters:

- Analog Control (PPS), I²C, PWM, GPIO

• FW Upgradability:

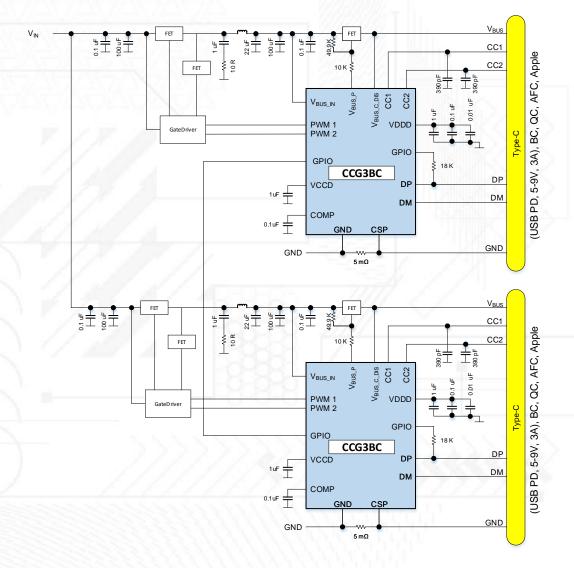
- Future proof design with FW Upgradability
- Over CC pins

Output Power Throttling:

- Temperature sensing with thermistors on CCG3PA
- (or) Use I²C based Temp Sense Controller
- V_{IN} based output Power Throttling

Protection:

- V_{BUS} to CC pins SCP up to 30V
- OCP/OVP/OTP/SCP

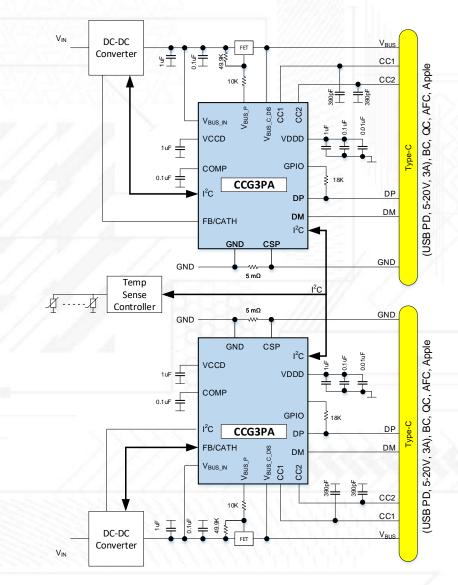


USB-C Reference Designs

15/27W, 60W and 100W – Charge Only Ports

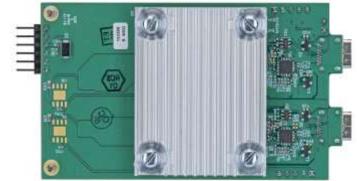
2x 27W USB-C PD Ports, with Integrated Buck Converter

- PD 3.0 with Legacy Charging
- PD Controller with DC-DC Buck Converter
 - External power NFETs and Gate Drivers
 - PWM Switching Frequency up to 600 kHz (configurable)
- USB-PD and Legacy Charging on Type-C Port:
 - 5V/3A and 9V/3A PD Profiles
 - Legacy Charging (optional) BC, AC, QC, AFC

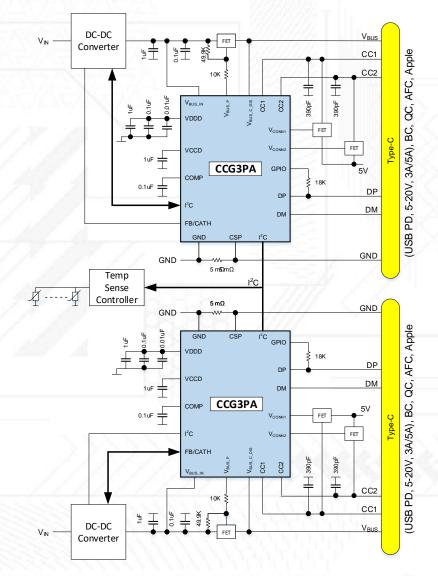

Top Side

Bottom Side

2x 60W USB-C PD Charge Only Ports

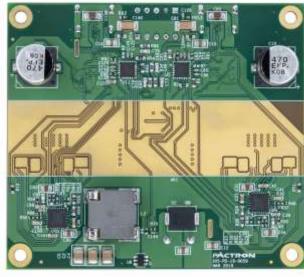


- PD 3.0 with PPS
- USB-PD Charging on Type-C Port:
 - 60W PD and QC 4.0
 - Optional Legacy Charging (BC/AC/QC/AFC) support


Top Side

Bottom Side

2x 100W USB-C PD Charge Only Ports



- PD 3.0 with PPS
- USB-PD Charging on Type-C Port:
 - 100W PD and QC 4.0
 - EMCA cable identification and negotiation
 - Optional Legacy Charging (BC/AC/QC/AFC) support

Top Side

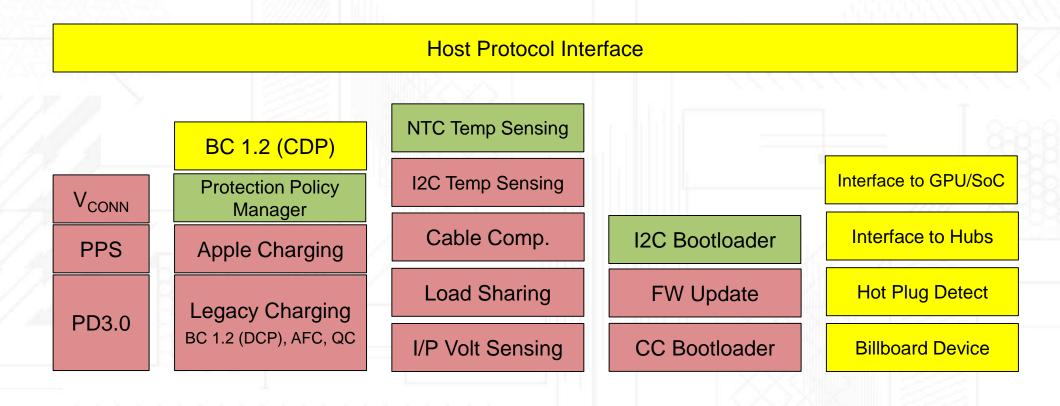
Bottom Side

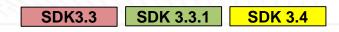
CCG3PA-Auto: MPNs, Features and Target Use-Cases

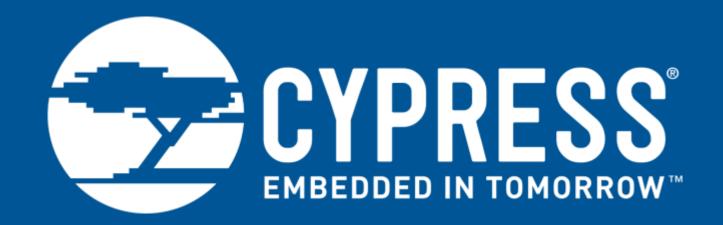
MPN	Feat	Applications		
	Common Features	Differences		
CYPD3195-24LDXS (CCG3PA)	 PD 3.0 w/ PPS Support 1x Type-C and 1x Type-A ports Works with external DC-DC Buck-Boost Converter Legacy Charging 	 I²C Bootloader FW Update over I²C bus (from external Hub or MCU) 	 Head Units Rear Seat Charge onl 	
CYPD3196-24LDXS (CCG3PA)	 (BC1.2, Apple Charging, QC, Samsung AFC) Input Voltage Detection Interface 2x NTC Thermistors to GPIOs 	 CC Bootloader FW Update over CC pins² 	ports	
CYPD3193-24LDXS (CCG3PA)	 (for Temperature sensing) Cable Compensation I²C Interface to Ext. Processor V_{CONN} FET control 	 I²C Bootloader FW Update over I²C bus (from external MCU) Alternate-Mode Support (control external mux) USB Bill-Board Device Class Support³ 	Rear Seat	
CYPD3194-24LDXS (CCG3PA)	 24-QFN, -40° to +105°C, AEC-Q100 Dynamic Load-Sharing O/P Power Control (Temperature and I/P Voltage) Host Protocol Interface¹ 	 CC Bootloader FW Update over CC pins² Alternate-Mode Support (control external mux) USB Bill-Board Device Class Support³ 	Entertainment System	
CYPD3197-24LDXS (CCG3BC)	 PD 3.0 supporting 15W (5V/3A) & 27W (9V/3A) Integrated DC-DC Buck Converter (100 kHz – 600 kHz) Legacy Charging (BC1.2, Apple Charging, QC, Samsung AFC) Input Voltage Detection Interface 2x NTC Thermistors to GPIOs 	 I²C Bootloader FW Update over I²C bus (from external Hub or MCU) 	 Head Units Rear Seat Charge only ports 	
CYPD3198-24LDXS (CCG3BC)	 Interface 2X NTC Thermistors to GPTOS (for Temperature sensing) I²C Interface to Ext. Processor V_{CONN} FET control 24-QFN, -40° to +105°C, AEC-Q100 O/P Power Control (Temperature and I/P Voltage) Host Protocol Interface¹ 	 CC Bootloader FW Update over CC pins (from PC connected to Type-C port) 		

¹ Interface exchange w/ embedded system controller

² FW downloaded from a PC connected to the Type-C port ³ Source code will be provided to execute on external USB Device




EZ-PD Auto SDK


EZ-PD SDK Building Blocks

Hardware Abstraction Layer

APPENDIX

EZ-PD BCR Product Selector Guide

Part Number	Application	Termination Resistor	VBUS-CC Role Short Proteins	OVC ection OCP		Package
CYPD3177-24LQXQ	BCR	R _d ¹ , R _{d-db} ²	UFP Yes	Yes	Yes	24-QFN
Part Numbering Decode						
			—— T = Tape and Reel			
			— Temperature Range		nded Industrial (-40 °	C to 105 °C)
	1		— Lead:	X = Lead	-Free	
	3633 ///	/	— Package Type:	LQ = QF	N	
			—— Number of Pins in the Package			
	6.66		—— Application and Feature Combination Designation			
	0-0-0		— Number of Type-C Ports: 1 = 1 Port			
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	— Product Type:	2 = Seco	ond Generation, 3 = T	hird Generation
	122222	addaddad -	— Marketing Code:	PD = Pov	wer Delivery Product	Family
	413 (41)	77777777	— Company ID:	CY = Cyr	press	- XGXGX

¹ Termination resistor denoting an upstream facing port (UFP) ² Termination resistor denoting a UFP supporting Dead Battery

# Glossary

#### USB Power Delivery (USB-PD, Power Delivery, PD, PD 3.0)

- A new USB standard that increases power delivery over  $V_{\text{BUS}}$  from 7.5 W to 100 W
- Both USB hosts (e.g., PCs) and USB devices (e.g., hard disk drives) can act as either a provider¹ (DFP Downstream Facing Port) or a consumer² (UFP Upstream Facing Port) of power
- USB-C (USB Type-C, Type-C)
  - A new standard with a slimmer and reversible USB plug, a reversible cable, multiple protocol support, and 100-W PD
- DisplayPort
  - A digital display interface standard developed by the Video Electronic Standards Association (VESA)
  - Used primarily to connect a video source to a display, such as a PC to a monitor

#### HDMI

- A digital display interface standard developed and licensed by HDMI Licensing, LLC
- Used primarily to connect a consumer electronics to a display, such as a game console to a TV

#### Thunderbolt

- An interface jointly defined by Intel and Apple that connects peripherals to a computer
- Uses the same connector as USB-C

¹ Provider: A Type-C port that sources power over V_{BUS} ² Consumer: A Type-C port that sinks power from V_{BUS}

USB-C Plug	
GND RX2p RX2n V _{BUS} SBU1 Dp Dn CC V _{BUS} TX1n TX1p GND	
GND TX2p TX2n V _{BUS} V _{CONN} SBU2 V _{BUS} RX1n RX1p GND	2.4



mm