# **Product Change Notification / SYST-23GHRC126** Date: 28-Mar-2023 # **Product Category:** **Linear Regulators** # **PCN Type:** Document Change # **Notification Subject:** Data Sheet - MIC5233 Data Sheet ## **Affected CPNs:** SYST-23GHRC126\_Affected\_CPN\_03282023.pdf SYST-23GHRC126\_Affected\_CPN\_03282023.csv # **Notification Text:** SYST-23GHRC126 Microchip has released a new Datasheet for the MIC5233 Data Sheet of devices. If you are using one of these devices please read the document located at MIC5233 Data Sheet. **Notification Status: Final** Description of Change: • Minor layout changes. - Updated Section 5.0, Packaging Information. - Added automotive information and examples to Product Identification System. - Corrected Revision History error: Revision C did not change anything in the Features and Product Identification System sections. Impacts to Data Sheet: See above details. Reason for Change: To Improve Productivity Change Implementation Status: Complete Date Document Changes Effective: 28 March 2023 NOTE: Please be advised that this is a change to the document only the product has not been changed. | Markings to Distinguish Revised from Unrevised Devices::N/A | |-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Attachments: | | MIC5233 Data Sheet | | | | lease contact your local Microchip sales office with questions or concerns regarding this notification. | | erms and Conditions: | | you wish to <u>receive Microchip PCNs via email</u> please register for our PCN email service at our <u>PCN</u> ome page select register then fill in the required fields. You will find instructions about registering for <i>l</i> icrochips PCN email service in the <u>PCN FAQ</u> section. | | you wish to <u>change your PCN profile, including opt out,</u> please go to the <u>PCN home page</u> select login nd sign into your myMicrochip account. Select a profile option from the left navigation bar and make ne applicable selections. | | | | | | | | | | | | | | | | | | | | | | | | | | | #### SYST-23GHRC126 - Data Sheet - MIC5233 Data Sheet ## Affected Catalog Part Numbers (CPN) MIC5233-3.3YS MIC5233-1.8YM5-TR MIC5233-2.5YM5-TR MIC5233-3.0YM5-TR MIC5233-3.3YM5-TR MIC5233-5.0YM5-TR MIC5233YM5-TR MIC5233-3.3YS-TR MIC5233-5.0YS MIC5233-5.0YS-TR MIC5233-5.0YM5-TRV01 MIC5233YM5-TRVAO MIC5233-1.8YM5-TRVAO MIC5233-5.0YM5-TRVAO MIC5233-5.0YM5-TRVAO-BW MIC5233-3.3YM5-TRVAO # **MIC5233** # High Input Voltage, Low $I_Q \mu Cap LDO$ Regulator #### **Features** - AEC-Q100 Qualified and PPAP Capable; Available for 5-Lead SOT23 Package Only - Wide Input Voltage Range: 2.3V to 36V - Ultra-Low Ground Current: 18 μA - · Low Dropout Voltage of 270 mV at 100 mA - · High Output Accuracy of ±2.0% Overtemperature - µCap: Stable with Ceramic or Tantalum Capacitors - · Excellent Line and Load Regulation Specifications - Near Zero Shutdown Current: Typical 0.1 µA - · Reverse Battery Protection - · Reverse Leakage Protection - · Thermal Shutdown and Current Limit Protection - · 5-Lead SOT23 and 3-Lead SOT223 Packages #### **Applications** - Keep-Alive Supply in Notebook and Portable Computers - · USB Power Supply - · Logic Supply for High-Voltage Batteries - · Automotive Electronics - Battery-Powered Systems - · 3-4 Cell Li-Ion Battery Input Range #### **General Description** The MIC5233 is a 100 mA, highly accurate, low dropout regulator with high input voltage and ultra-low ground current. This combination of high voltage and low ground current makes the MIC5233 ideal for multicell Li-lon battery systems. A $\mu$ Cap LDO design, the MIC5233 is stable with either ceramic or tantalum output capacitors. It only requires a 2.2 $\mu$ F output capacitor for stability. Features of the MIC5233 include enable input, thermal shutdown, current limit and reverse battery protection, and reverse leakage protection. Available in fixed and adjustable output voltage versions, the MIC5233 is offered in the 5-lead SOT23 and 3-lead SOT223 packages with a junction temperature range of -40°C to +125°C. ## **Typical Application Circuit** #### **Package Types** # **Functional Block Diagrams** #### 1.0 **ELECTRICAL CHARACTERISTICS** ## Absolute Maximum Ratings<sup>†</sup> | Input Supply Voltage (V <sub>IN</sub> ) | –20V to +38V | |-----------------------------------------|--------------| | Enable Input Voltage (V <sub>FN</sub> ) | | | Power Dissipation (P <sub>DIS</sub> ) | | | ESD Rating (Note 1) | - | ## Operating Ratings<sup>‡</sup> | Input Supply Voltage (V <sub>IN</sub> ) | +2.3V to +36V | |-----------------------------------------|---------------| | Enable Input Voltage (V <sub>FN</sub> ) | 0V to +36V | Note 1: Devices are ESD sensitive. Handling precautions are recommended. - † Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational sections of this specification is not intended. Exposure to maximum rating conditions for extended periods may affect device reliability. Specifications are for packaged product only. - **‡** The device is not ensured to function outside its operating ratings. #### **TABLE 1-1: ELECTRICAL CHARACTERISTICS** Electrical Characteristics: $T_J = +25^{\circ}C$ with $V_{IN} = V_{OUT} + 1V$ ; $I_{OUT} = 100 \mu A$ ; Bold values indicate -40°C $\leq T_J \leq +125^{\circ}C$ , unless otherwise specified. Specifications for packaged product only. **Parameter** Symbol Min. Typ. Max. Units **Conditions Output Voltage Accuracy** -1.01.0 $V_{OUT}$ % Variation from nominal V<sub>OUT</sub> -2.0 2.0 $\Delta V_{OUT}/\Delta V_{IN}$ 0.5 % Line Regulation 0.04 $V_{IN} = V_{OUT} + 1V \text{ to } 36V$ Load Regulation $\Delta V_{OUT}/V_{OUT}$ 0.25 1 % $I_{OUT} = 100 \, \mu A \text{ to } 100 \, \text{mA}$ $I_{OUT} = 100 \mu A$ **Dropout Voltage** $V_{DO}$ 50 230 300 $I_{OUT} = 50 \text{ mA}$ 400 mV 270 400 $I_{OUT} = 100 \text{ mA}$ 450 **Ground Current** 30 **IGND** 18 μΑ $I_{OUT} = 100 \mu A$ 35 0.25 0.70 $I_{OUT} = 50 \text{ mA}$ mΑ $I_{OUT} = 100 \overline{mA}$ 2 1 $V_{FN} \le 0.6V$ ; $V_{IN} = 36V$ (SOT23) Ground Current in Shutdown 0.1 1 μΑ $I_{SHDN}$ package only) **Short-Circuit Current** 190 350 mΑ $V_{OUT} = 0V$ Isc Output Leakage, Reverse -0.1 ٧ $V_{OUT}$ Load = $500\Omega$ ; $V_{IN} = -15V$ Polarity Input (Note 2) **Enable Input (SOT23 Package Only)** Input Low Voltage 0.6 Regulator off $V_{EN}$ Note 1: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature and the thermal resistance from junction to air (i.e., $T_A$ , $T_J$ , $\theta_{JA}$ ). Exceeding the maximum allowable power dissipation will cause the device operating junction temperature to exceed the maximum +125°C rating. Sustained junction temperatures above +125°C can impact the device reliability. V Regulator on 2.0 2: Design guidance only, not production tested. Input High Voltage #### TABLE 1-1: ELECTRICAL CHARACTERISTICS (CONTINUED) **Electrical Characteristics:** $T_J = +25^{\circ}\text{C}$ with $V_{IN} = V_{OUT} + 1\text{V}$ ; $I_{OUT} = 100 \,\mu\text{A}$ ; **Bold** values indicate $-40^{\circ}\text{C} \le T_J \le +125^{\circ}\text{C}$ , unless otherwise specified. Specifications for packaged product only. | Parameter | Symbol | Min. | Тур. | Max. | Units | Conditions | |----------------------|--------------------|------|------|------|-------|------------------------------------------| | Enable Input Current | I <sub>EN</sub> | -1.0 | 0.01 | 1.0 | | V <sub>EN</sub> = 0.6V; regulator off | | | | _ | 0.1 | 1.0 | μA | V <sub>EN</sub> = 2.0V; regulator on | | | | _ | 0.5 | 2.5 | | V <sub>EN</sub> = 36V; regulator on | | Start-up Time | t <sub>start</sub> | _ | 1.7 | 7 | ms | V <sub>IN</sub> applied before EN signal | - Note 1: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature and the thermal resistance from junction to air (i.e., $T_A$ , $T_J$ , $\theta_{JA}$ ). Exceeding the maximum allowable power dissipation will cause the device operating junction temperature to exceed the maximum +125°C rating. Sustained junction temperatures above +125°C can impact the device reliability. - 2: Design guidance only, not production tested. ## TEMPERATURE SPECIFICATIONS(1) | Parameters | Sym. | Min. | Тур. | Max. | Units | Conditions | |--------------------------------------|----------------|------|------|------|-------|------------| | Temperature Ranges | | | | | | | | Junction Operating Temperature Range | TJ | -40 | _ | +125 | °C | _ | | Storage Temperature Range | T <sub>S</sub> | -65 | _ | +150 | °C | _ | | Package Thermal Resistances | | | | | | | | Thermal Resistance 5-Lead SOT23 | $\theta_{JA}$ | _ | 235 | _ | °C/W | _ | | Thermal Resistance 3-Lead SOT223 | $\theta_{JA}$ | _ | 50 | _ | °C/W | | - Note 1: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature and the thermal resistance from junction to air (i.e., T<sub>A</sub>, T<sub>J</sub>, θ<sub>JA</sub>). Exceeding the maximum allowable power dissipation will cause the device operating junction temperature to exceed the maximum +125°C rating. Sustained junction temperatures above +125°C can impact the device reliability. - 2: Design guidance only, not production tested. #### 2.0 TYPICAL PERFORMANCE CURVES Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range. FIGURE 2-1: Power Supply Rejection Ratio. FIGURE 2-2: Dropout Voltage vs. Output Current. FIGURE 2-5: Ground Pin Current vs. Output Current. FIGURE 2-3: Dropout Voltage vs. Temperature. FIGURE 2-6: Ground Pin Current vs. Output Current. FIGURE 2-7: Temperature. Ground Pin Current vs. FIGURE 2-8: Temperature. Ground Pin Current vs. FIGURE 2-9: Temperature. Ground Pin Current vs. FIGURE 2-10: Input Voltage. Ground Pin Current vs. FIGURE 2-11: Input Voltage. Ground Pin Current vs. FIGURE 2-12: Input Voltage. Ground Pin Current vs. FIGURE 2-13: Voltage. Input Current vs. Supply **FIGURE 2-16:** Load Transient Response. **FIGURE 2-14:** Output Voltage vs. Temperature. FIGURE 2-15: Short-Circuit Current vs. Temperature. ## 3.0 PIN DESCRIPTIONS The descriptions of the pins are listed in Table 3-1. TABLE 3-1: PIN FUNCTION TABLE | Pin Number<br>SOT223 | Pin Number<br>SOT23 | Pin<br>Name | Description | | |----------------------|---------------------|-------------|-----------------------------------------------------------------------------------|--| | 1 | 1 | IN | Supply Input. | | | 2 | 2 | GND | Ground. | | | _ | 3 | EN | Enable (Input). Logic Low = Shutdown; Logic High = Enable. | | | _ | 4 | NC | No Connect. | | | | | ADJ | Adjustable (Input). Feedback Input; Connect to Resistive Voltage Divider Network. | | | 3 | 5 | OUT | Regulator Output. | | | 4 | _ | EP | Exposed Pad. Internally Connected to Ground. | | #### 4.0 APPLICATION INFORMATION #### 4.1 Enable/Shutdown The MIC5233 comes with an active-high enable pin that allows the regulator to be disabled. Forcing the enable pin low disables the regulator and sends it into a "Zero" Off mode current state, consuming a typical 0.1 $\mu$ A. Forcing the enable pin high enables the output voltage. #### 4.2 Input Capacitor The MIC5233 has a high input voltage capability, up to 36V. The input capacitor must be rated to sustain voltages that may be used on the input. An input capacitor may be required when the device is not near the source power supply or when supplied by a battery. Small surface mount, ceramic capacitors can be used for bypassing. A larger value may be required if the source supply has high ripple. #### 4.3 Output Capacitor The MIC5233 requires an output capacitor for stability. The design requires 2.2 $\mu\text{F}$ or greater on the output to maintain stability. The design is optimized for use with low-ESR ceramic chip capacitors. High-ESR capacitors may cause high-frequency oscillation. The maximum recommended ESR is $3\Omega.$ The output capacitor can be increased without limit. Larger valued capacitors help to improve transient response. X7R/X5R dielectric-type ceramic capacitors are recommended because of their temperature performance. X7R-type capacitors change capacitance by 15% over their operating temperature range and are the most stable type of ceramic capacitors. Z5U and Y5V dielectric capacitors change value by as much as 50% and 60%, respectively, over their operating temperature ranges. To use a ceramic chip capacitor with Y5V dielectric, the value must be much higher than an X7R ceramic capacitor to ensure the same minimum capacitance over the equivalent operating temperature range. ## 4.4 No-Load Stability The MIC5233 will remain stable and in regulation with no load unlike many other voltage regulators. This is especially important in CMOS RAM keep-alive applications. #### 4.5 Thermal Consideration The MIC5233 is designed to provide 100 mA of continuous current in a very small package. Maximum power dissipation can be calculated based on the output current and the voltage drop across the part. To determine the maximum power dissipation of the package, use the junction-to-ambient thermal resistance of the device and Equation 4-1: #### **EQUATION 4-1:** $$P_{D(MAX)} = \left(\frac{T_{J(MAX)} - T_A}{\Theta_{IA}}\right)$$ Where: $T_{J(MAX)}$ = Maximum junction temperature of the die at +125°C T<sub>A</sub> = The ambient operating temperature $\theta_{JA}$ = Layout dependent Table 4-1 shows examples of the junction-to-ambient thermal resistance for the MIC5233: TABLE 4-1: 5-LEAD SOT23 AND SOT-223 THERMAL RESISTANCE | Package | θ <sub>JA</sub> Recommended<br>Minimum Footprint | |---------|--------------------------------------------------| | SOT23-5 | 235°C/W | | SOT223 | 50°C/W | The actual power dissipation of the regulator circuit can be determined using Equation 4-2: #### **EQUATION 4-2:** $$P_D = (V_{IN} - V_{OUT})I_{OUT} + V_{IN} \times I_{GND}$$ Substituting $P_{D(MAX)}$ for $P_D$ and solving for the operating conditions that are critical to the application will give the maximum operating conditions for the regulator circuit. For example, when operating the MIC5233-3.0YM5 at +50°C, with a minimum footprint layout, the maximum input voltage for a set output current can be determined as follows: #### **EQUATION 4-3:** $$P_{D(MAX)} = \left(\frac{125^{\circ}C - 50^{\circ}C}{235^{\circ}C/W}\right)$$ Where: $P_{D(max)} = 319 \text{ mW}$ The junction-to-ambient ( $\theta_{JA}$ ) thermal resistance for the minimum footprint is +235°C/W from Table 4-1. It is important that the maximum power dissipation not be exceeded to ensure proper operation. Because the MIC5233 was designed to operate with high input voltages, careful consideration must be given so as not to overheat the device. With very high input-to-output voltage differentials, the output current is limited by the total power dissipation. Total power dissipation is calculated using the following equation: #### **EQUATION 4-4:** $$P_D = (V_{IN} - V_{OUT})I_{OUT} + V_{IN} \times I_{GND}$$ Due to the potential for input voltages up to 36V, ground current must be taken into consideration. If we know the maximum load current, we can solve for the maximum input voltage using the maximum power dissipation calculated for a +50°C ambient, 319 mW. #### **EQUATION 4-5:** $$P_{D(MAX)} = (V_{IN} - V_{OUT})I_{OUT} + V_{IN} \times I_{GND}$$ $$319mW = (V_{IN} - 3V)100mA + V_{IN} \times 2.8mA$$ Ground pin current is estimated using the typical characteristics of the device. #### **EQUATION 4-6:** $$619mW = V_{IN}(102.8mA)$$ Where: $$V_{IN} = 6.02V$$ For higher current outputs, only a lower input voltage will work for higher ambient temperatures. Assuming a lower output current of 10 mA, the maximum input voltage can be recalculated: #### **EQUATION 4-7:** Where: $$319mW = (V_{IN} - 3V)10mA + V_{IN} \times 0.1mA$$ $349mW = V_{IN} \times 10.1mA$ • $V_{IN} = 34.55V$ Maximum input voltage for a 10 mA load current at 50°C ambient temperature is 34.55V, utilizing virtually the entire operating voltage range of the device. ## 4.6 Adjustable Regulator Application The MIC5233M5 can be adjusted from 1.24V to 20V by using two external resistors (Figure 4-1). The resistors set the output voltage based on the following equation: #### **EQUATION 4-8:** $$V_{OUT} = V_{REF} \left( 1 + \left( \frac{R1}{R2} \right) \right)$$ Where $$V_{REF} = 1.24V$$ Feedback resistor R2 should be no larger than 300 k $\Omega$ . **FIGURE 4-1:** Adjustable Voltage Application. #### 5.0 PACKAGING INFORMATION ## 5.1 Package Marking Information Legend: XX...XProduct code or customer-specific information Υ Year code (last digit of calendar year) ΥY Year code (last 2 digits of calendar year) WW Week code (week of January 1 is week '01') Alphanumeric traceability code NNN Pb-free JEDEC® designator for Matte Tin (Sn) (e3) This package is Pb-free. The Pb-free JEDEC designator (@3) can be found on the outer packaging for this package. •, ▲, ▼ Pin one index is identified by a dot, delta up, or delta down (triangle mark). Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information. Package may or may not include the corporate logo. Underbar ( ) and/or Overbar ( ) symbol may not be to scale. # 3-Lead Plastic Small Outline Transistor (DB) [SOT-223] **Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging Microchip Technology Drawing C04-032 Rev D Sheet 1 of 2 # 3-Lead Plastic Small Outline Transistor (DB) [SOT-223] For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging | | MILLIMETERS | | | | |-----------------------|-------------|----------------|----------|------| | Dimension | MIN | NOM | MAX | | | Number of Leads | N | | 3 | | | Lead Pitch | е | | 2.30 BSC | | | Outside lead pitch | e1 | | 4.60 BSC | | | Overall Height | Α | - | - | 1.80 | | Standoff | A1 | 0.02 | - | 0.10 | | Molded Package Height | A2 | 1.50 | 1.60 | 1.70 | | Overall Width | Е | 6.70 | 7.00 | 7.30 | | Molded Package Width | E1 | 3.30 3.50 3.70 | | | | Overall Length | D | 6.30 6.50 6.70 | | | | Lead Thickness | С | 0.23 | 0.30 | 0.35 | | Lead Width | b1 | 0.60 | 0.76 | 0.84 | | Tab Lead Width | b2 | 2.90 | 3.00 | 3.10 | | Foot Length | Ĺ | 0.75 | | | | Lead Angle | ф | 0° | - | 10° | #### Notes: Note: - 1. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.127mm per side. - 2. Dimensioning and tolerancing per ASME Y14.5M $\,$ BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only. Microchip Technology Drawing C04-032 Rev D Sheet 2 of 2 # 3-Lead Plastic Small Outline Transistor (DB) [SOT-223] **Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging #### RECOMMENDED LAND PATTERN | | N | IILLIMETER | S | | |-------------------------|------------------|------------|-----|------| | Dimens | Dimension Limits | | NOM | MAX | | Contact Pitch | E | 2.30 BSC | | | | Contact Pitch | E1 | 4.60 BSC | | | | Contact Pad Spacing | С | 5.90 | | | | Contact Pad Width (X3) | X1 | | | 0.95 | | Contact Pad Width | X2 | | | 3.25 | | Contact Pad Length (X4) | Y1 | 2.15 | | | #### Notes: 1. Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. Microchip Technology Drawing C04-2032 Rev D # 5-Lead Plastic Small Outline Transistor (6BX) [SOT23] **Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging Microchip Technology Drawing C04-091-6BX Rev G Sheet 1 of 2 # 5-Lead Plastic Small Outline Transistor (6BX) [SOT23] Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging | | Units | MILLIMETERS | | | | |--------------------------|--------|-------------|----------|------|--| | Dimension | Limits | MIN | NOM | MAX | | | Number of Pins | Ν | | 5 | | | | Pitch | е | | 0.95 BSC | | | | Outside lead pitch | e1 | | 1.90 BSC | | | | Overall Height | Α | 0.90 | - | 1.45 | | | Molded Package Thickness | A2 | 0.89 | - | 1.30 | | | Standoff | A1 | - | - | 0.15 | | | Overall Width | Е | 2.80 BSC | | | | | Molded Package Width | E1 | 1.60 BSC | | | | | Overall Length | D | | 2.90 BSC | | | | Foot Length | L | 0.30 | - | 0.60 | | | Footprint | L1 | 0.60 REF | | | | | Foot Angle | ф | 0° | - | 10° | | | Lead Thickness | С | 0.08 - 0.26 | | | | | Lead Width | b | 0.20 | - | 0.51 | | #### Notes: - 1. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25mm per side. Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only. Microchip Technology Drawing C04-091-6BX Rev G Sheet 2 of 2 # 5-Lead Plastic Small Outline Transistor (6BX) [SOT23] **Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging RECOMMENDED LAND PATTERN | | Units | | | S | |---------------------------|------------|------|------|------| | Dimension Limits | | MIN | NOM | MAX | | Contact Pitch | E 0.95 BSC | | | | | Contact Pad Spacing | С | | 2.80 | | | Contact Pad Width (X5) | Х | 0.6 | | 0.60 | | Contact Pad Length (X5) Y | | | | 1.10 | | Distance Between Pads | G | 1.70 | | | | Distance Between Pads | GX | 0.35 | | | | Overall Width | Z | | | 3.90 | #### Notes: 1. Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. Microchip Technology Drawing No. C04-2091-6BX Rev G #### APPENDIX A: REVISION HISTORY #### **Revision E (October 2022)** - · Minor layout changes. - Updated Section 5.0, Packaging Information. - Added automotive information and examples to Product Identification System. - Corrected Revision History error: Revision C did not change anything in the Features and Product Identification System sections. #### Revision D (July 2019) • Updated the Features section. ## Revision C (February 2019) - Removed "5-Pin SOT23 (Automotive Specific)" drawing from Package Types. - Updated the Typical Application Circuit schematic. ## Revision B (June 2018) - Unbolded values for V<sub>FN</sub> in Table 1-1. - The condition for Start-Up Time in the Electrical Characteristics table is updated. ## Revision A (May 2018) - Converted Micrel document MIC5233 to Microchip data sheet DS20006033A. - · Minor text changes throughout. - Information about the Automotive Grade option added in Features, Package Types, and the Product Identification System sections of the data sheet. NOTES: # PRODUCT IDENTIFICATION SYSTEM To order or obtain information, e.g., on pricing or delivery, contact your local Microchip representative or sales office. | PART NOX.X | X | <u>xxx –xx </u> | Examples: | | |--------------------------------|---------------------|-----------------------------------------------------------------------------------|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Device Output<br>Voltage 1 | Junction | Package Media Type Qualification | a) MIC5233-1.8YM5-TR: | High Input Voltage, Low I <sub>Q</sub> μCap<br>LDO Regulator, 1.8V,<br>-40°C to +125°C,<br>5-Lead SOT23, 3000/Reel | | Device: | MIC5233 | 3: High Input Voltage, Low I <sub>Q</sub> μCap<br>LDO Regulator | b) MIC5233-2.5YM5-TR: | High Input Voltage, Low I <sub>Q</sub> μCap<br>LDO Regulator, 2.5V,<br>-40°C to +125°C,<br>5-Lead SOT23, 3000/Reel | | Output Voltage: | 1.8<br>2.5 | = 1.8V<br>= 2.5V | c) MIC5233-3.0YM5-TR: | High Input Voltage, Low I <sub>Q</sub> μCap<br>LDO Regulator, 3.0V,<br>-40°C to +125°C,<br>5-Lead SOT23, 3000/Reel | | | 3.0<br>3.3<br>5.0 | = 3.0V<br>= 3.3V<br>= 5.0V | d) MIC5233-3.3YM5-TR: | High Input Voltage, Low I <sub>Q</sub> μCap<br>LDO Regulator, 3.3V,<br>-40°C to +125°C,<br>5-Lead SOT23, 3000/Reel | | Junction<br>Temperature Range: | (Blank)<br>Y | = Adjustable<br>= -40°C to +125°C | e) MIC5233-5.0YM5-TR: | High Input Voltage, Low I <sub>Q</sub> μCap<br>LDO Regulator, 5.0V,<br>-40°C to +125°C,<br>5-Lead SOT23, 3000/Reel | | Package: | M5<br>S | = 5-Lead SOT23<br>= 3-Lead SOT223 | f) MIC5233YM5-TR: | High Input Voltage, Low I <sub>Q</sub> μCap LDC<br>Regulator, Adjustable,<br>-40°C to +125°C,<br>5-Lead SOT23, 3000/Reel | | Media Type: | (Blank)<br>TR<br>TR | = 78/Tube (SOT223 Only)<br>= 2,500/Reel (SOT223 Only)<br>= 3000/Reel (SOT23 Only) | g) MIC5233-3.3YS: | High Input Voltage, Low I <sub>Q</sub> μCap<br>LDO Regulator, 3.3V,<br>-40°C to +125°C,<br>3-Lead SOT223, 78/Tube | | Qualification: | (Blank)<br>VAO | = Standard Part<br>= Automotive AEC-Q100 Qualified | h) MIC5233-5.0YS: | High Input Voltage, Low I <sub>Q</sub> μCap<br>LDO Regulator, 5.0V,<br>-40°C to+125°C,<br>3-Lead SOT223, 78/Tube | | | | | i) MIC5233-5.0YS-TR: | High Input Voltage, Low I <sub>Q</sub> μCap<br>LDO Regulator, 5.0V,<br>-40°C to+125°C,<br>3-Lead SOT223, 2500/Reel | | | | | j) MIC5233-YM5-TRVAO: | High Input Voltage, Low I <sub>Q</sub> μCap<br>LDO Regulator, Adjustable,<br>-40°C to +125°C,<br>5-Lead SOT23, 3000/Reel,<br>Automotive Qualified | | | | | k) MIC5233-1.8YM5-TRVAO: | High Input Voltage, Low I <sub>Q</sub> μCap<br>LDO Regulator, 1.8V,<br>-40°C to+125°C,<br>5-Lead SOT223, 3000/Reel<br>Automotive Qualified | | | | | I) MIC5233-3.3YM5-TRVAO: | High Input Voltage, Low IQ μCap<br>LDO Regulator, 3.3V,<br>-40°C to+125°C,<br>5-Lead SOT223, 3000/Reel<br>Automotive Qualified | | | | | m) MIC5233-5.0YM5-TRVAO: | High Input Voltage, Low IQ μCap<br>LDO Regulator, 5.0V,<br>-40°C to +125°C,<br>5-Lead SOT23, 3000/Reel,<br>Automotive Qualified | | | | | number description. T purposes and is not pri | er only appears in the catalog par<br>his identifier is used for ordering<br>nted on the device package. Checl<br>ales Office for package availability<br>option. | | MIC5233 | |---------| |---------| NOTES: #### Note the following details of the code protection feature on Microchip products: - Microchip products meet the specifications contained in their particular Microchip Data Sheet. - Microchip believes that its family of products is secure when used in the intended manner, within operating specifications, and under normal conditions. - Microchip values and aggressively protects its intellectual property rights. Attempts to breach the code protection features of Microchip product is strictly prohibited and may violate the Digital Millennium Copyright Act. - Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not mean that we are guaranteeing the product is "unbreakable" Code protection is constantly evolving. Microchip is committed to continuously improving the code protection features of our products. This publication and the information herein may be used only with Microchip products, including to design, test, and integrate Microchip products with your application. Use of this information in any other manner violates these terms. Information regarding device applications is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. Contact your local Microchip sales office for additional support or, obtain additional support at https://www.microchip.com/en-us/support/design-help/client-support-services. THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE, OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE. IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL, OR CONSEQUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated. For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality. #### **Trademarks** The Microchip name and logo, the Microchip logo, Adaptec, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, CryptoMemory, CryptoRF, dsPIC, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. AgileSwitch, APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, Flashtec, Hyper Speed Control, HyperLight Load, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, TrueTime, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A. Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, Augmented Switching, BlueSky, BodyCom, Clockstudio, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, GridTime, IdealBridge, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, IntelliMOS, Inter-Chip Connectivity, JitterBlocker, Knob-on-Display, KoD, maxCrypto, maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach. Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SmartHLS, SMART-I.S., storClad, SQI, SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, Trusted Time, TSHARC, USBCheck, VariSense, VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries SQTP is a service mark of Microchip Technology Incorporated in the U.S.A. The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries. GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries. All other trademarks mentioned herein are property of their respective companies. © 2018-2022, Microchip Technology Incorporated and its subsidiaries. All Rights Reserved. ISBN: 978-1-6683-1344-2 # Worldwide Sales and Service #### **AMERICAS** Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455 **Austin, TX** Tel: 512-257-3370 Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088 Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075 **Dallas** Addison, TX Tel: 972-818-7423 Fax: 972-818-2924 **Detroit** Novi. MI Tel: 248-848-4000 Houston, TX Tel: 281-894-5983 Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380 **Los Angeles** Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800 **Raleigh, NC** Tel: 919-844-7510 New York, NY Tel: 631-435-6000 **San Jose, CA** Tel: 408-735-9110 Tel: 408-436-4270 **Canada - Toronto** Tel: 905-695-1980 Fax: 905-695-2078 #### ASIA/PACIFIC Australia - Sydney Tel: 61-2-9868-6733 **China - Beijing** Tel: 86-10-8569-7000 China - Chengdu Tel: 86-28-8665-5511 **China - Chongqing** Tel: 86-23-8980-9588 **China - Dongguan** Tel: 86-769-8702-9880 **China - Guangzhou** Tel: 86-20-8755-8029 **China - Hangzhou** Tel: 86-571-8792-8115 China - Hong Kong SAR Tel: 852-2943-5100 **China - Nanjing** Tel: 86-25-8473-2460 China - Qingdao Tel: 86-532-8502-7355 **China - Shanghai** Tel: 86-21-3326-8000 **China - Shenyang** Tel: 86-24-2334-2829 **China - Shenzhen** Tel: 86-755-8864-2200 China - Suzhou Tel: 86-186-6233-1526 **China - Wuhan** Tel: 86-27-5980-5300 China - Xian Tel: 86-29-8833-7252 China - Xiamen Tel: 86-592-2388138 **China - Zhuhai** Tel: 86-756-3210040 #### ASIA/PACIFIC India - Bangalore Tel: 91-80-3090-4444 India - New Delhi Tel: 91-11-4160-8631 India - Pune Tel: 91-20-4121-0141 **Japan - Osaka** Tel: 81-6-6152-7160 **Japan - Tokyo** Tel: 81-3-6880- 3770 Korea - Daegu Tel: 82-53-744-4301 Korea - Seoul Tel: 82-2-554-7200 Malaysia - Kuala Lumpur Tel: 60-3-7651-7906 Malaysia - Penang Tel: 60-4-227-8870 Philippines - Manila Tel: 63-2-634-9065 **Singapore** Tel: 65-6334-8870 **Taiwan - Hsin Chu** Tel: 886-3-577-8366 Taiwan - Kaohsiung Tel: 886-7-213-7830 **Taiwan - Taipei** Tel: 886-2-2508-8600 Thailand - Bangkok Tel: 66-2-694-1351 Vietnam - Ho Chi Minh Tel: 84-28-5448-2100 #### **EUROPE** Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 **Denmark - Copenhagen** Tel: 45-4485-5910 Fax: 45-4485-2829 Finland - Espoo Tel: 358-9-4520-820 France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79 **Germany - Garching** **Germany - Haan** Tel: 49-2129-3766400 Tel: 49-8931-9700 Germany - Heilbronn Tel: 49-7131-72400 **Germany - Karlsruhe** Tel: 49-721-625370 **Germany - Munich** Tel: 49-89-627-144-0 Fax: 49-89-627-144-44 Germany - Rosenheim Tel: 49-8031-354-560 Israel - Ra'anana Tel: 972-9-744-7705 Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781 Italy - Padova Tel: 39-049-7625286 **Netherlands - Drunen** Tel: 31-416-690399 Fax: 31-416-690340 Norway - Trondheim Tel: 47-7288-4388 **Poland - Warsaw** Tel: 48-22-3325737 Romania - Bucharest Tel: 40-21-407-87-50 **Spain - Madrid** Tel: 34-91-708-08-90 Fax: 34-91-708-08-91 **Sweden - Gothenberg** Tel: 46-31-704-60-40 Sweden - Stockholm Tel: 46-8-5090-4654 **UK - Wokingham** Tel: 44-118-921-5800 Fax: 44-118-921-5820