

Product Change Notification / SYST-28QMQI688

Date:

29-Mar-2023

Product Category:

Linear Op Amps

PCN Type:

Document Change

Notification Subject:

Data Sheet - MCP6401 0.9uA, Rail-to-Rail Input/Output Op Amps

Affected CPNs:

SYST-28QMQI688_Affected_CPN_03292023.pdf SYST-28QMQI688_Affected_CPN_03292023.csv

Notification Text:

SYST-28QMQI688

Microchip has released a new Datasheet for the MCP6401 0.9uA, Rail-to-Rail Input/Output Op Amps of devices. If you are using one of these devices please read the document located at MCP6401 0.9uA, Rail-to-Rail Input/Output Op Amps.

Notification Status: Final

Description of Change:

- 1. Updated Section "Features" to specify AECQ100 qualifications.
- 2. Updated 1.2 "MCP6401/1R/1U/2/4 Electrical Specifications" table.
- 3. Updated Section 6.0 "Packaging Information".
- 4. Added Product Identification System (Automotive) section.

Impacts to Data Sheet: See above details.

Reason for Change: To Improve Productivity

Change Implementation Status: Complete

Date Document Changes Effective: 29 Mar 2023

NOTE: Please be advised that this is a change to the document only the product has not been changed.

Markings to Distinguish Revised from Unrevised Devices::N/A

Attachments:

MCP6401 0.9uA, Rail-to-Rail Input/Output Op Amps

Please contact your local Microchip sales office with questions or concerns regarding this notification.

Terms and Conditions:

If you wish to <u>receive Microchip PCNs via email</u> please register for our PCN email service at our PCN home page select register then fill in the required fields. You will find instructions about registering for Microchips PCN email service in the PCN FAQ section.

If you wish to <u>change your PCN profile</u>, <u>including opt out</u>, please go to the <u>PCN home page</u> select login and sign into your myMicrochip account. Select a profile option from the left navigation bar and make the applicable selections. Affected Catalog Part Numbers (CPN)

MCP6401T-H/OT MCP6406T-H/OT MCP6401T-H/OTV01 MCP6401T-H/OTV02 MCP6401T-H/OTV03 MCP6401T-H/OTVAO MCP6406T-H/OTVAO MCP6401T-H/OTVAO-GM MCP6401T-E/LT MCP6401T-E/OT MCP6401RT-E/OT MCP6401UT-E/OT MCP6401T-E/OTVAO MCP6402-E/SN MCP6402-H/SN MCP6402-H/SNVAO MCP6407T-H/SN MCP6402T-H/SNV01 MCP6407T-H/SNVAO MCP6407-H/SN MCP6407-H/SNVAO MCP6402T-H/SN MCP6402T-H/SNVAO MCP6402T-E/MNY MCP6402T-E/SN MCP6404-E/SL MCP6404-E/ST MCP6404-H/SL MCP6409T-H/SL MCP6409T-H/SLVAO MCP6409-H/SL MCP6404T-H/SL MCP6404T-H/SLVAO MCP6404T-E/SL MCP6404T-E/ST MCP6404T-E/STV01 MCP6404T-E/STVAO

MCP6401/1R/1U/2/4/6/7/9

1 MHz, 45 µA Op Amps

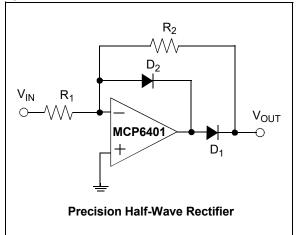
Features

- Low Quiescent Current: 45 µA (typical)
- · Gain Bandwidth Product: 1 MHz (typical)
- Rail-to-Rail Input and Output
- Supply Voltage Range: 1.8V to 6.0V
- Unity Gain Stable
- Extended Temperature Ranges:
- -40°C to +125°C (E temp)
- -40°C to +150°C (H temp)
- No Phase Reversal
- AEC-Q100 Qualified. See Product Identification System (Automotive).

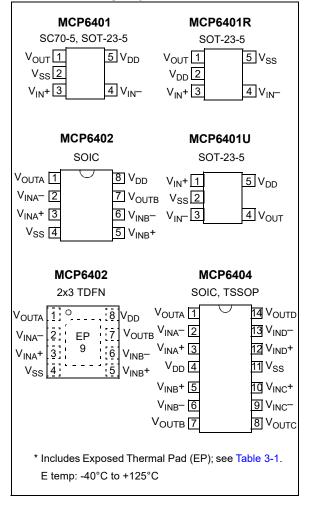
Applications

- Portable Equipment
- · Battery Powered System
- Medical Instrumentation
- Automotive Electronics
- Data Acquisition Equipment
- Sensor Conditioning
- Analog Active Filters

Design Aids

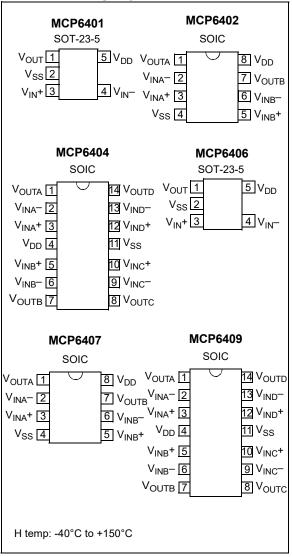

- SPICE Macro Models
- FilterLab[®] Software
- Microchip Advanced Part Selector (MAPS)
- · Analog Demonstration and Evaluation Boards
- Application Notes

Description


The Microchip Technology Inc. MCP6401/1R/1U/2/4/6/7/9 family of operational amplifiers (op amps) has low quiescent current (45 µA, typical) and rail-to-rail input and output operation. This family is unity gain stable and has a gain bandwidth product of 1 MHz (typical). These devices operate with a power supply voltage of 1.8V to 6.0V. These features make the family of op amps well suited for single-supply, battery-powered applications.

The MCP6401/1R/1U/2/4/6/7/9 family is designed with Microchip's advanced CMOS process and offered in single, dual and quad packages. The devices are available in two extended temperature ranges (E temp and H temp) with different package types, which makes them well-suited for automotive and industrial applications.

Typical Application



MCP6401/1R/1U/2/4/6/7/9

E Temp Package Types

H Temp Package Types

1.0 ELECTRICAL CHARACTERISTICS

1.1 Absolute Maximum Ratings †

V _{DD} – V _{SS}
Current at Input Pins±2 mA
Analog Inputs (V_{IN+}, V_{IN^{-}}) \uparrow \uparrow V_{SS} - 1.0V to V_{DD} + 1.0V
All Other Inputs and Outputs V_{SS} – 0.3V to V_{DD} + 0.3V
Difference Input Voltage $ V_{DD} - V_{SS} $
Output Short-Circuit CurrentContinuous
Current at Output and Supply Pins±30 mA
Storage Temperature65°C to +150°C
Maximum Junction Temperature (T _J)+155°C
ESD Protection on All Pins (HBM; MM; CDM)≥4 kV; 300V, 1500V

† Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

†† See Section 4.1.2 "Input Voltage Limits".

1.2 MCP6401/1R/1U/2/4 Electrical Specifications

DC ELECTRICAL SPECIFICATIONS

Electrical Characteristics: Unless otherwise indicated, $T_A = +25^{\circ}C$, $V_{DD} = +1.8v$ to +6.0v, $V_{SS} = GND$, $V_{CM} = V_{DD}/2$, $V_{OUT} \approx V_{DD}/2$, $V_L = V_{DD}/2$ and $R_L = 100 \text{ k}\Omega$ to V_L (Refer to Figure 1-1).

Parameters	Sym	Min	Тур	Мах	Units	Temp	Parts (Note 1)	Conditions
Input Offset								
Input Offset Voltage	V _{OS}	-4.5	±0.8	+4.5	mV		E, H	V _{CM} = V _{SS}
		—	±1.0	—	mV	+125°C	E	
		_	±1.5	_	mV	+150°C	Н	
Input Offset Drift with Temperature	$\Delta V_{OS} / \Delta T_A$	—	±2.0	_	µV/°C	-40°C to +125°C	E	V _{CM} = V _{SS}
		—	±2.5	_	µV/°C	-40°C to +150°C	Н	
Power Supply	PSRR	63	78	_	dB		E, H	V _{CM} = V _{SS}
Rejection Ratio		_	75	_	dB	+125°C	E	
		_	73		dB	+150°C	Н	
Input Bias Current ar	nd Impedan	се	_					
Input Bias Current	I _B	—	1	100	pА		E, H	
		—	30		pА	+85°C	E, H	
			800		pА	+125°C	E	
			7		nA	+150°C	Н	
Input Offset Current	I _{OS}	—	1		pА		E, H	
		—	5	—	pА	+85°C	E, H	
		_	20		pА	+125°C	E	
			45	_	pА	+150°C	Н	

Note 1: E part stands for the one whose operating temperature range is from -40°C to +125°C and H part stands for the one whose operating temperature range is from -40°C to +150°C.

2: Figure 2-14 shows how V_{CMR} changes across temperature.

DC ELECTRICAL SPECIFICATIONS (CONTINUED)

$V_{CM} = V_{DD}/2, V_{OUT} \approx V_{CM}$	v _{DD} /2, v <u>l</u> - I	v _{DD} /2 and	11 - 100	K3210 V[(I					
Parameters	Sym	Min	Тур	Max	Units	Temp	Parts (Note 1)	Conditions	
Common Mode Input Impedance	Z _{CM}		10 ¹³ 6	_	Ω∥pF		E, H		
Differential Input Impedance	Z _{DIFF}	_	10 ¹³ 6	_	Ω∥pF		E, H		
Common Mode									
Common Mode Input	V _{CMR}	V _{SS} -0.20	_	V _{DD} +0.20	V		E, H	V _{DD} = 1.8V	
Voltage Range		V _{SS} -0.05		V _{DD} +0.05	V	+125°C	E		
(Note 2)		V _{SS}		V _{DD}	V	+150°C	Н		
		V _{SS} -0.30	_	V _{DD} +0.30	V		Е, Н	V _{DD} = 6.0V	
		V _{SS} -0.15	_	V _{DD} +0.15	V	+125°C	E		
		V _{SS} -0.10	_	V _{DD} +0.10	V	+150°C	Н		
Common Mode Rejection Ratio	CMRR	56	71		dB		E, H	V _{CM} = -0.2V to 2.0V, V _{DD} = 1.8V	
		—	68	_	dB	+125°C	E	V _{CM} = -0.05V to 1.85V, V _{DD} = 1.8V	
		—	65	—	dB	+150°C	Н	V _{CM} = 0V to 1.8V, V _{DD} = 1.8V	
		63	78	—	dB		E, H	V _{CM} = -0.3V to 6.3V, V _{DD} = 6.0V	
			76	_	dB	+125°C	E	$V_{CM} = -0.15V \text{ to } 6.15V,$ $V_{DD} = 6.0V$	
			75		dB	+150°C	Н	V _{CM} = -0.1V to 6.1V, V _{DD} = 6.0V	
Open-Loop Gain									
DC Open-Loop Gain	A _{OL}	90	110	_	dB		E, H	V_{OUT} = 0.3V to	
(Large Signal)		_	105	—	dB	+125°C	E	V _{DD} -0.3V,	
			100	—	dB	+150°C	Н	V _{CM} = V _{SS}	
Output									
High-Level Output	V _{OH}	1.790	1.792	—	V		E, H	V _{DD} = 1.8V	
Voltage		_	1.788	—	V	+125°C	E	R _L = 10 kΩ 0.5V input overdrive	
		_	1.785	—	V	+150°C	Н		
		5.980	5.985	—	V		E, H	V _{DD} = 6.0V	
		—	5.980	—	V	+125°C	E	R _L = 10 kΩ 0.5V input overdrive	
			5.975	—	V	+150°C	Н		
Low-Level Output	V _{OL}		0.008	0.010	V		E, H	$V_{DD} = 1.8V$	
Voltage			0.012		V	+125°C	E	R _L = 10 kΩ 0.5V input overdrive	
			0.015		V	+150°C	Н		
			0.015	0.020	V		E, H	$V_{DD} = 6.0V$	
			0.020	—	V	+125°C	E	$R_{L} = 10 \text{ k}\Omega$	
			0.025	_	V	+150°C	Н	0.5V input overdrive	

Note 1: E part stands for the one whose operating temperature range is from -40°C to +125°C and H part stands for the one whose operating temperature range is from -40°C to +150°C.

2: Figure 2-14 shows how V_{CMR} changes across temperature.

DC ELECTRICAL SPECIFICATIONS (CONTINUED)

	Electrical Characteristics : Unless otherwise indicated, $T_A = +25^{\circ}C$, $V_{DD} = +1.8v$ to +6.0v, $V_{SS} = GND$, $V_{CM} = V_{DD}/2$, $V_{OUT} \approx V_{DD}/2$, $V_L = V_{DD}/2$ and $R_L = 100 \text{ k}\Omega$ to V_L (Refer to Figure 1-1).											
Parameters	Sym	Min	Тур	Мах	Units	Temp	Parts (<mark>Note 1</mark>)	Conditions				
Output Short-Circuit	I _{SC}	_	±5		mA		E, H	V _{DD} = 1.8V				
Current			±15	_	mA		E, H	V _{DD} = 6.0V				
Power Supply												
Supply Voltage	V _{DD}	1.8	—	6.0	V		E, H					
Quiescent Current	Ι _Q	20	45	70	μA		E, H	I _O = 0, V _{DD} = 5.0V				
per Amplifier		_	55		μA	+125°C	E	V _{CM} = 0.2V _{DD}				
		_	60		μA	+150°C	Н					

Note 1: E part stands for the one whose operating temperature range is from -40°C to +125°C and H part stands for the one whose operating temperature range is from -40°C to +150°C.

2: Figure 2-14 shows how V_{CMR} changes across temperature.

AC ELECTRICAL SPECIFICATIONS

Electrical Characteristics: Unless otherwise indicated, $T_A = +25^{\circ}C$, $V_{DD} = +1.8$ to +6.0V, $V_{SS} = GND$, $V_{CM} = V_{DD}/2$, $V_{OUT} \approx V_{DD}/2$, $V_L = V_{DD}/2$, $R_L = 100 \text{ k}\Omega$ to V_L and $C_L = 60 \text{ pF}$ (Refer to Figure 1-1).

Sym	Min	Тур	Max	Units	Parts	Conditions
					i ulta	Conditions
GBWP	_	1	_	MHz	E, H	
PM	_	65	_	٥	E, H	G = +1 V/V
SR		0.5		V/µs	E, H	
E _{ni}	_	3.6	_	µVp-p	E, H	f = 0.1 Hz to 10 Hz
e _{ni}	_	28	_	nV/√Hz	E, H	f = 1 kHz
i _{ni}	_	0.6		fA/√Hz	E, H	f = 1 kHz
	PM SR E _{ni} e _{ni}	PM — SR — E _{ni} — e _{ni} —	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	PM — 65 — SR — 0.5 — E _{ni} — 3.6 — e _{ni} — 28 —	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

TEMPERATURE SPECIFICATIONS

Electrical Characteristics: Unless ot	herwise ind	licated, V _D	_D = +1.8V	to +6.0V a	nd V _{SS} =	GND.
Parameters	Sym	Min	Тур	Max	Units	Conditions
Temperature Ranges						
Operating Temperature Range	T _A	-40	—	+125	°C	E temp parts (Note 1)
	T _A	-40	—	+150	°C	H temp parts (Note 1)
Storage Temperature Range	Τ _Α	-65	—	+155	°C	
Thermal Package Resistances						
Thermal Resistance, 5L-SC70	θ_{JA}	_	331	_	°C/W	
Thermal Resistance, 5L-SOT-23	θ _{JA}	_	220.7	_	°C/W	
Thermal Resistance, 8L-SOIC	θ_{JA}	_	149.5		°C/W	
Thermal Resistance, 8L-2x3 TDFN	θ_{JA}	_	52.5	_	°C/W	
Thermal Resistance, 14L-SOIC	θ_{JA}	_	95.3	_	°C/W	
Thermal Resistance, 14L-TSSOP	θ_{JA}	—	100	—	°C/W	

Note 1: The internal junction temperature (T_J) must not exceed the absolute maximum specification of +155°C.

1.3 MCP6406/7/9 Electrical Specifications

DC ELECTRICAL SPECIFICATIONS

Electrical Characteristics: Unless otherwise indicated, $T_A = +25^{\circ}C$, $V_{DD} = +1.8V$ to +6.0V, $V_{SS} = GND$, $V_{CM} = V_{DD}/2$, $V_{OUT} \gg V_{DD}/2$, $V_L = V_{DD}/2$ and $R_L = 100$ k Ω to V_L (Refer to Figure 1-1).

Parameters	Sym	Min	Тур	Мах	Units	Temp	Parts (<mark>Note 1</mark>)	Conditions
Input Offset								
Input Offset Voltage	V _{OS}	-4.5		+4.5	mV		E, H	$V_{CM} = V_{SS}$
		-5.0	±1.0	+5.0	mV	+125°C	E	
		-5.5	±1.5	+5.5	mV	+150°C	Н	
Input Offset Drift with Temperature	$\Delta V_{OS} / \Delta T_A$	_	±2.0	_	µV/°C	-40°C to +125°C	E	V _{CM} = V _{SS}
		_	±2.5	_	µV/°C	-40°C to +150°C	Н	
Power Supply	PSRR	63	78		dB		E, H	$V_{CM} = V_{SS}$
Rejection Ratio		60	75	_	dB	+125°C	E	
		58	73	_	dB	+150°C	Н	
Input Bias Current a	and Impedar	nce	•				•	
Input Bias Current	I _B	_	±1	100	pА		E, H	
		—	30	—	pА	+85°C	E, H	
		—	800	2000	pА	+125°C	E	
		—	7	12	nA	+150°C	Н	
Input Offset Current	I _{OS}	_	1	—	pА		E, H	
			5	—	pА	+85°C	E, H	
		—	20	—	pА	+125°C	E	
		—	45	—	pА	+150°C	Н	
Common Mode Input Impedance	Z _{CM}	—	10 ¹³ 6	—	Ω∥pF		E, H	
Differential Input Impedance	Z _{DIFF}	—	10 ¹³ 6	—	Ω∥pF		E, H	
Common Mode								
Common Mode	V _{CMR}	V _{SS} -0.20		V _{DD} +0.20	V		E, H	V _{DD} = 1.8V
Input Voltage Range		V _{SS} -0.05	—	V _{DD} +0.05	V	+125°C	E	
(Note 2)		V_{SS}		V _{DD}	V	+150°C	Н	
		V _{SS} -0.30	—	V _{DD} +0.30	V		E, H	V _{DD} = 6.0V
		V _{SS} -0.15	_	V _{DD} +0.15	V	+125°C	E	
		V _{SS} -0.10	_	V _{DD} +0.10	V	+150°C	Н	

Note 1: E part stands for the one whose operating temperature range is from -40°C to +125°C and H part stands for the one whose operating temperature range is from -40°C to +150°C.

2: Figure 2-14 shows how V_{CMR} changes across temperature.

DC ELECTRICAL SPECIFICATIONS (CONTINUED)

Electrical Character V _{CM} = V _{DD} /2, V _{OUT} »								Y _{SS} = GND,	
Parameters	Sym	Min	Тур	Max	Units	Temp	Parts (Note 1)	Conditions	
Common Mode Rejection Ratio	CMRR	56	71		dB		E, H	V _{CM} = -0.2V to 2.0V, V _{DD} = 1.8V	
		53	68	—	dB	+125°C	E	V _{CM} = -0.05V to 1.85V, V _{DD} = 1.8V	
		50	65	—	dB	+150°C	Н	V _{CM} = 0V to 1.8V, V _{DD} = 1.8V	
		63	78	_	dB		E, H	V _{CM} = -0.3V to 6.3V, V _{DD} = 6.0V	
		61	76	_	dB	+125°C	E	V _{CM} = -0.15V to 6.15V, V _{DD} = 6.0V	
		60	75	—	dB	+150°C	Н	V _{CM} = -0.1V to 6.1V, V _{DD} = 6.0V	
Open-Loop Gain									
DC Open-Loop Gain	A _{OL}	90	110	_	dB		E, H	$V_{OUT} = 0.3V$ to	
(Large Signal)		88	105	—	dB	+125°C	E	V_{DD} -0.3V, V_{CM} = V_{SS}	
		85	100		dB	+150°C	Н		
Output									
High-Level Output	V _{OH}	1.790	1.792		V		E, H	$V_{DD} = 1.8V$	
Voltage		1.785	1.788		V	+125°C	E	$R_{L} = 10 \text{ k}\Omega$	
		1.782	1.785		V	+150°C	Н	0.5V input overdrive	
		5.980	5.985		V		E, H	$V_{DD} = 6.0V$ $R_{L} = 10 k\Omega$	
		5.970	5.980		V	+125°C	E		
		5.965	5.975	—	V	+150°C	Н	0.5V input overdrive	
Low-Level Output	V _{OL}	_	0.008	0.010	V		Е, Н	V _{DD} = 1.8V	
Voltage			0.012	0.015	V	+125°C	E	$R_L = 10 k\Omega$	
			0.015	0.018	V	+150°C	Н	0.5V input overdrive	
			0.015	0.020	V		E, H	V _{DD} = 6.0V	
		_	0.020	0.030	V	+125°C	E	$R_L = 10 k\Omega$	
		_	0.025	0.035	V	+150°C	Н	0.5V input overdrive	
Output Short-Circuit	I _{SC}		±5		mA		E, H	V _{DD} = 1.8V	
Current			±15	_	mA		E, H	V _{DD} = 6.0V	
Power Supply									
Supply Voltage	V _{DD}	1.8		6.0	V		E, H		
Quiescent Current	Ι _Q	20	45	70	μA		E, H	I _O = 0, V _{DD} = 5.0V	
per Amplifier		30	55	80	μA	+125°C	E	$V_{CM} = 0.2V_{DD}$	
i i					μ.,	120 0	<u> </u>	1	

Note 1: E part stands for the one whose operating temperature range is from -40°C to +125°C and H part stands for the one whose operating temperature range is from -40°C to +150°C.

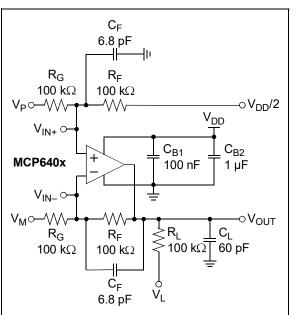
2: Figure 2-14 shows how V_{CMR} changes across temperature.

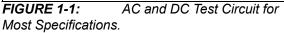
AC ELECTRICAL SPECIFICATIONS

Parameters	Sym	Min	Тур	Max	Units	Part	Conditions				
AC Response											
Gain Bandwidth Product	GBWP	_	1		MHz	E, H					
Phase Margin	PM	_	65	—	0	E, H	G = +1 V/V				
Slew Rate	SR	_	0.5		V/µs	E, H					
Noise											
Input Noise Voltage	E _{ni}	_	3.6		µVp-p	E, H	f = 0.1 Hz to 10 Hz				
Input Noise Voltage Density	e _{ni}	_	28		nV/√Hz	E, H	f = 1 kHz				
Input Noise Current Density	i _{ni}	_	0.6		fA/√Hz	E, H	f = 1 kHz				

TEMPERATURE SPECIFICATIONS

Electrical Characteristics: Unless otherwise indicated, V_{DD} = +1.8V to +6.0V and V_{SS} = GND.										
Parameters	Sym	Min	Тур	Мах	Units	Conditions				
Temperature Ranges										
Operating Temperature Range	T _A	-40	—	+125	°C	E temp parts (Note 1)				
	T _A	-40	—	+150	°C	H temp parts (Note 1)				
Storage Temperature Range	Τ _Α	-65	—	+155	°C					
Thermal Package Resistances			•			·				
Thermal Resistance, 5L-SOT-23	θ_{JA}	_	220.7		°C/W					
Thermal Resistance, 8L-SOIC	θ_{JA}	—	149.5	_	°C/W					
Thermal Resistance, 14L-SOIC	θ_{JA}	_	95.3	—	°C/W					
	· (T)									

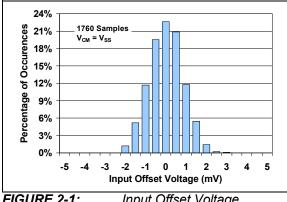

Note 1: The internal junction temperature (T_J) must not exceed the absolute maximum specification of +155°C.


1.4 Test Circuits

The circuit used for most DC and AC tests is shown in Figure 1-1. This circuit can independently set V_{CM} and V_{OUT}; see Equation 1-1. Note that V_{CM} is not the circuit's Common Mode voltage ($(V_P + V_M)/2$), and that V_{OST} includes V_{OS} plus the effects (on the input offset error, V_{OST}) of temperature, CMRR, PSRR and A_{OL}.

EQUATION 1-1:

$\begin{split} G_{DM} &= R_F / R_G \\ V_{CM} &= (V_P + V_{DD} / 2) / 2 \\ V_{OST} &= V_{IN-} - V_{IN+} \\ V_{OUT} &= (V_{DD} / 2) + (V_P - V_M) + V_{OST} (1 + 1) \\ \end{split}$	G _{DM})
Where:	
<i>G_{DM}</i> = Differential Mode Gain	(V/V)
V _{CM} = Op Amp's Common Mode Input Voltage	(V)
V _{OST} = Op Amp's Total Input Offset Voltage	(mV)



2.0 TYPICAL PERFORMANCE CURVES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

Note: Unless otherwise indicated, $T_A = +25^{\circ}$ C, $V_{DD} = +1.8$ V to +6.0V, $V_{SS} =$ GND, $V_{CM} = V_{DD}/2$, $V_{OUT} \approx V_{DD}/2$, $V_L = V_{DD}/2$, $R_L = 100 \text{ k}\Omega$ to V_L and $C_L = 60 \text{ pF}$.

Input Offset Voltage.

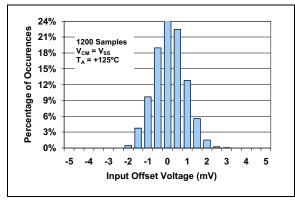
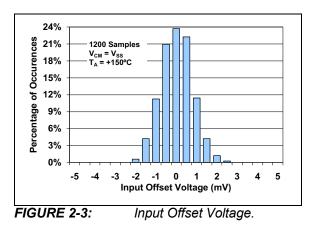
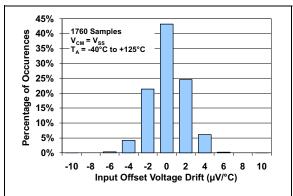




FIGURE 2-2: Input Offset Voltage.

Input Offset Voltage Drift.

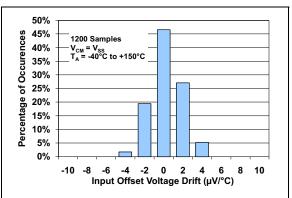


FIGURE 2-5: Input Offset Voltage Drift.

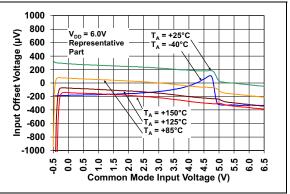
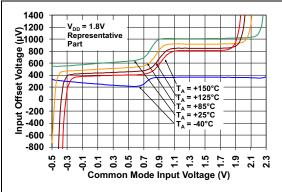



FIGURE 2-6: Input Offset Voltage vs. Common Mode Input Voltage with $V_{DD} = 6.0V$.

MCP6401/1R/1U/2/4/6/7/9

Note: Unless otherwise indicated, $T_A = +25^{\circ}C$, $V_{DD} = +1.8V$ to +6.0V, $V_{SS} = GND$, $V_{CM} = V_{DD}/2$, $V_{OUT} \approx V_{DD}/2$, $V_L = V_{DD}/2$, $R_L = 100 \text{ k}\Omega$ to V_L and $C_L = 60 \text{ pF}$.

FIGURE 2-7: Input Offset Voltage vs. Common Mode Input Voltage with $V_{DD} = 1.8V$.

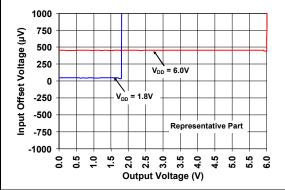


FIGURE 2-8:Input Offset Voltage vs.Output Voltage.

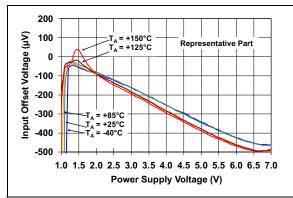
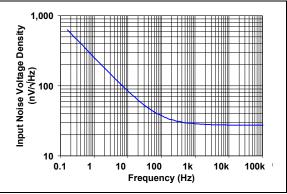
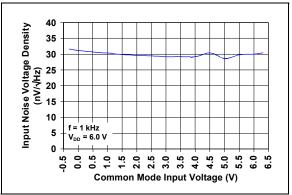




FIGURE 2-9: Input Offset Voltage vs. Power Supply Voltage.

FIGURE 2-10: Input Noise Voltage Density vs. Frequency.

FIGURE 2-11: Input Noise Voltage Density vs. Common Mode Input Voltage.

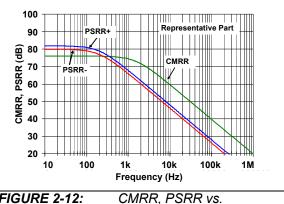
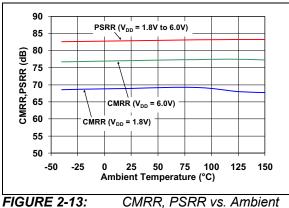



FIGURE 2-12: CMRR, PS Frequency.

Note: Unless otherwise indicated, $T_A = +25^{\circ}C$, $V_{DD} = +1.8V$ to +6.0V, $V_{SS} = GND$, $V_{CM} = V_{DD}/2$, $V_{OUT} \approx V_{DD}/2$, $V_L = V_{DD}/2$, $R_L = 100 \text{ k}\Omega$ to V_L and $C_L = 60 \text{ pF}$.

Temperature.

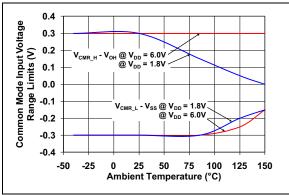
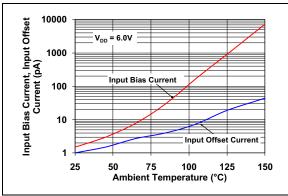



FIGURE 2-14: Common Mode Input Voltage Range Limits vs. Ambient Temperature.

FIGURE 2-15: Input Bias, Offset Current vs. Ambient Temperature.

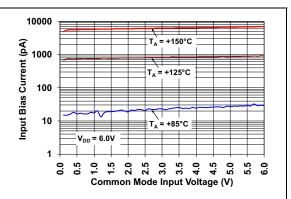
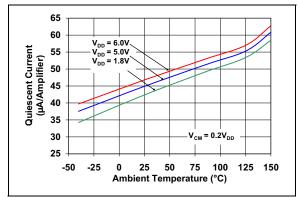
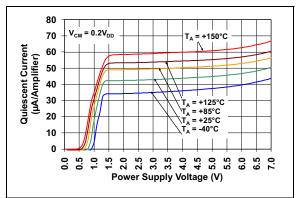




FIGURE 2-16: Input Bias Current vs. Common Mode Input Voltage.

FIGURE 2-17: Quiescent Current vs. Ambient Temperature.

FIGURE 2-18: Quiescent Current vs. Power Supply Voltage.

MCP6401/1R/1U/2/4/6/7/9

Note: Unless otherwise indicated, $T_A = +25^{\circ}$ C, $V_{DD} = +1.8$ V to +6.0V, $V_{SS} = GND$, $V_{CM} = V_{DD}/2$, $V_{OUT} \approx V_{DD}/2$, $V_L = V_{DD}/2$, $R_L = 100 \text{ k}\Omega$ to V_L and $C_L = 60 \text{ pF}$.

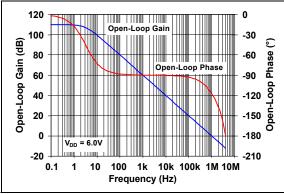
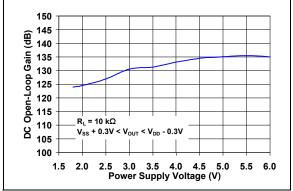
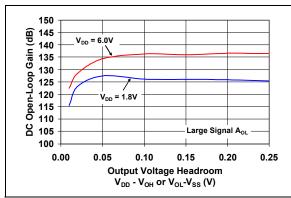
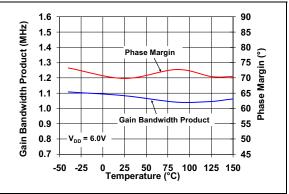
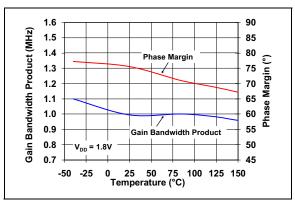



FIGURE 2-19: Open-Loop Gain, Phase vs. Frequency.

FIGURE 2-20: DC Open-Loop Gain vs. Power Supply Voltage.

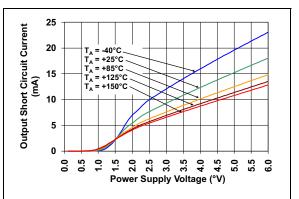

FIGURE 2-21: DC Open-Loop Gain vs. Output Voltage Headroom.

FIGURE 2-22: Gain Bandwidth Product, Phase Margin vs. Ambient Temperature.

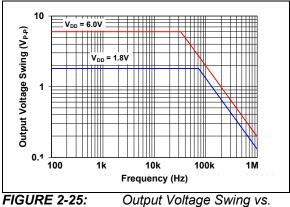


FIGURE 2-23: Gain Bandwidth Product, Phase Margin vs. Ambient Temperature.

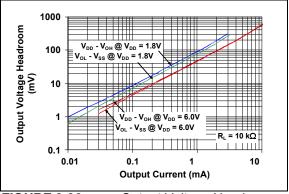
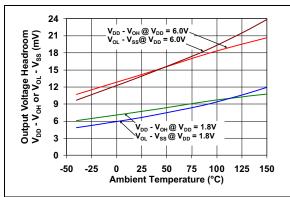


FIGURE 2-24: Output Short Circuit Current vs. Power Supply Voltage.


Note: Unless otherwise indicated, T_A = +25°C, V_{DD} = +1.8V to +6.0V, V_{SS} = GND, V_{CM} = V_{DD}/2, V_{OUT} \approx V_{DD}/2, $V_L = V_{DD}/2$, $R_L = 100 \text{ k}\Omega$ to V_L and $C_L = 60 \text{ pF}$.

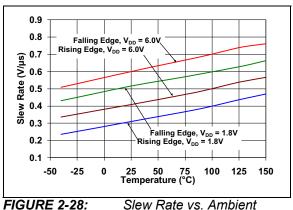

Frequency.

FIGURE 2-26: Output Voltage Headroom vs. Output Current.

FIGURE 2-27: Output Voltage Headroom vs. Ambient Temperature.

Temperature.

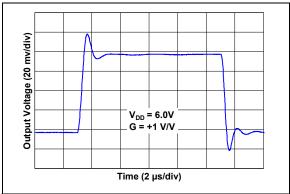
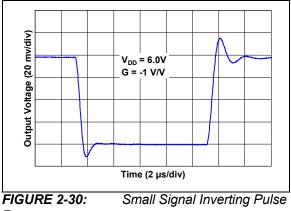



FIGURE 2-29: Small Signal Non-Inverting Pulse Response.

Response.

MCP6401/1R/1U/2/4/6/7/9

Note: Unless otherwise indicated, $T_A = +25^{\circ}$ C, $V_{DD} = +1.8$ V to +6.0V, $V_{SS} = GND$, $V_{CM} = V_{DD}/2$, $V_{OUT} \approx V_{DD}/2$, $V_L = V_{DD}/2$, $R_L = 100 \text{ k}\Omega$ to V_L and $C_L = 60 \text{ pF}$.

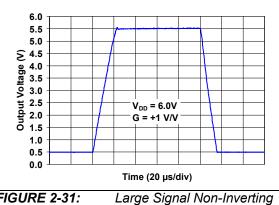
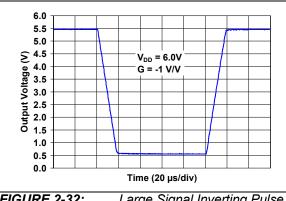



FIGURE 2-31: Pulse Response.

FIGURE 2-32: Large Signal Inverting Pulse Response.

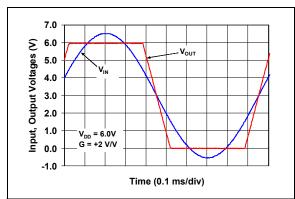


FIGURE 2-33: The MCP6401/1R/1U/2/4/6/7/9 Shows No Phase Reversal.

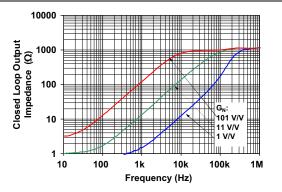
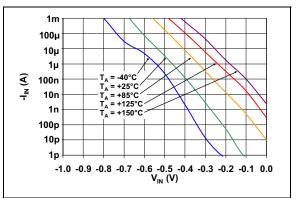



FIGURE 2-34: Closed Loop Output Impedance vs. Frequency.

FIGURE 2-35: Measured Input Current vs. Input Voltage (below V_{SS}).

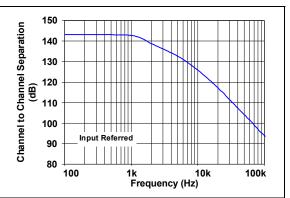


FIGURE 2-36: Channel-to-Channel Separation vs. Frequency (MCP6402/4/7/9 only).

3.0 PIN DESCRIPTIONS

Descriptions of the pins are listed in Table 3-1.

TABLE 3-1: PIN FUNCTION TABLE 1

-												
MCP6401	MCP6401R	MCP6401U	MCF	6402	MCP6404	MCP6406	MCP6407	MCP6409				
SC70-5, SOT-23-5	SOT-23-5	SOT-23-5	SOIC	2x3 TDFN	SOIC, TSSOP	SOT-23-5	SOIC	SOIC	Symbol	Description		
1	1	4	1	1	1	1	1	1	V _{OUT} , V _{OUTA}	Analog Output (op amp A)		
4	4	3	2	2	2	4	2	2	V _{IN} -, V _{INA} -	Inverting Input (op amp A)		
3	3	1	3	3	3	3	3	3	V _{IN} +, V _{INA} +	Non-inverting Input (op amp A)		
5	2	5	8	8	4	5	8	4	V _{DD}	Positive Power Supply		
—	_	I	5	5	5	I	5	5	V _{INB} +	Non-inverting Input (op amp B)		
—	-		6	6	6		6	6	V _{INB} -	Inverting Input (op amp B)		
—	_	—	7	7	7	_	7	7	V _{OUTB}	Analog Output (op amp B)		
—	_	—	_	_	8	_	—	8	V _{OUTC}	Analog Output (op amp C)		
—	—	—	_	—	9	—	—	9	V _{INC} -	Inverting Input (op amp C)		
—	—	_			10		-	10	V _{INC} +	Non-inverting Input (op amp C)		
2	5	2	4	4	11	2	4	11	V _{SS}	Negative Power Supply		
_	—	—	_	_	12	_	-	12	V _{IND} +	Non-inverting Input (op amp D)		
_	_	_			13	_	_	13	V _{IND} -	Inverting Input (op amp D)		
_	_	_		_	14	_	_	14	V _{OUTD}	Analog Output (op amp D)		
_	_	_	-	9	_	_	_	—	EP	Exposed Thermal Pad (EP); must be connected to V _{SS} .		

MCP6401/1R/1U/2/4/6/7/9

3.1 Analog Output (V_{OUT})

The output pin is low-impedance voltage source.

3.2 Analog Inputs (V_{IN}+, V_{IN}-)

The non-inverting and inverting inputs are high-impedance CMOS inputs with low bias currents.

3.3 Power Supply Pin (V_{DD}, V_{SS})

The positive power supply (V_{DD}) is 1.8V to 6.0V higher than the negative power supply (V_{SS}). For normal operation, the other pins are at voltages between V_{SS} and V_{DD}.

Typically, these parts are used in a single (positive) supply configuration. In this case, V_{SS} is connected to ground and V_{DD} is connected to the supply. V_{DD} will need bypass capacitors.

4.0 APPLICATION INFORMATION

The MCP6401/1R/1U/2/4/6/7/9 family of op amps is manufactured using Microchip's state-of-the-art CMOS process and is specifically designed for low-power, high-precision applications.

4.1 Rail-to-Rail Input

4.1.1 PHASE REVERSAL

The MCP6401/1R/1U/2/4/6/7/9 op amps are designed to prevent phase reversal when the input pins exceed the supply voltages. Figure 2-33 shows the input voltage exceeding the supply voltage with no phase reversal.

4.1.2 INPUT VOLTAGE LIMITS

In order to prevent damage and/or improper operation of these amplifiers, the circuit must limit the voltages at the input pins (see Section 1.1 "Absolute Maximum Ratings †").

The ESD protection on the inputs can be depicted as shown in Figure 4-1. This structure was chosen to protect the input transistors against many (but not all) over-voltage conditions, and to minimize the input bias current (I_B).

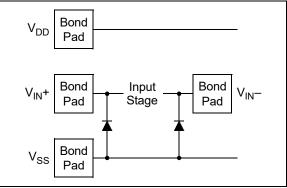
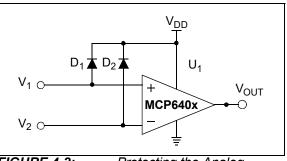



FIGURE 4-1: Simplified Analog Input ESD Structures.

The input ESD diodes clamp the inputs when they try to go more than one diode drop below V_{SS} . They also clamp any voltages that go well above V_{DD} ; their

breakdown voltage is high enough to allow normal operation, but not low enough to protect against slow over-voltage (beyond V_{DD}) events. Very fast ESD events (that meet the spec) are limited so that damage does not occur.

In some applications, it may be necessary to prevent excessive voltages from reaching the op amp inputs; Figure 4-2 shows one approach to protecting these inputs.

FIGURE 4-2: Protecting the Analog Inputs.

A significant amount of current can flow out of the inputs when the Common Mode voltage (V_{CM}) is below ground (V_{SS}); See Figure 2-35.

4.1.3 INPUT CURRENT LIMITS

In order to prevent damage and/or improper operation of these amplifiers, the circuit must limit the currents into the input pins (see Section 1.1 "Absolute Maximum Ratings †").

Figure 4-3 shows one approach to protecting these inputs. The resistors R_1 and R_2 limit the possible currents in or out of the input pins (and the ESD diodes, D_1 and D_2). The diode currents will go through either V_{DD} or V_{SS} .

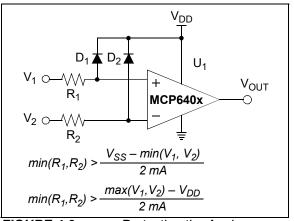
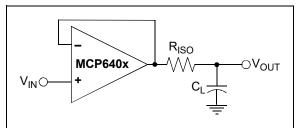


FIGURE 4-3: Protecting the Analog Inputs.

4.1.4 NORMAL OPERATION

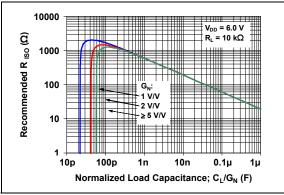
The input stage of the MCP6401/1R/1U/2/4/6/7/9 op amps use two differential input stages in parallel. One operates at a low Common Mode input voltage (V_{CM}), while the other operates at a high V_{CM}. With this topology, the device operates with a V_{CM} up to 300 mV above V_{DD} and 300 mV below V_{SS} (see Figure 2-14). The input offset voltage is measured at V_{CM} = V_{SS} – 0.3V and V_{DD} + 0.3V to ensure proper operation. The transition between the input stages occurs when V_{CM} is near V_{DD} – 1.1V (see Figures 2-6 and 2-7). For the best distortion performance and gain linearity, with non-inverting gains, avoid this region of operation.

4.2 Rail-to-Rail Output


The output voltage range of the MCP6401/1R/1U/2/4/6/7/9 op amps is V_{SS} + 20 mV (minimum) and V_{DD} - 20 mV (maximum) when $R_L = 10 \ k\Omega$ is connected to V_{DD}/2 and V_{DD} = 6.0V. Refer to Figures 2-26 and 2-27 for more information.

4.3 Capacitive Loads

Driving large capacitive loads can cause stability problems for voltage feedback op amps. As the load capacitance increases, the feedback loop's phase margin decreases and the closed-loop bandwidth is reduced. This produces gain peaking in the frequency response, with overshoot and ringing in the step response. While a unity-gain buffer (G = +1 V/V) is the most sensitive to capacitive loads, all gains show the same general behavior.


When driving large capacitive loads with these op amps (e.g., > 100 pF when G = +1 V/V), a small series resistor at the output (R_{ISO} in Figure 4-4) improves the feedback loop's phase margin (stability) by making the output load resistive at higher frequencies. The

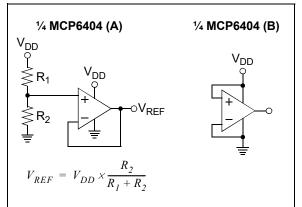
bandwidth will be generally lower than the bandwidth with no capacitance load.

FIGURE 4-4: Output Resistor, R_{ISO} Stabilizes Large Capacitive Loads.

Figure 4-5 gives recommended R_{ISO} values for different capacitive loads and gains. The x-axis is the normalized load capacitance (C_L/G_N), where G_N is the circuit's noise gain. For non-inverting gains, G_N and the Signal Gain are equal. For inverting gains, G_N is 1+|Signal Gain| (e.g., -1 V/V gives $G_N = +2$ V/V).

FIGURE 4-5: Recommended R_{ISO} Values for Capacitive Loads.

After selecting R_{ISO} for your circuit, double-check the resulting frequency response peaking and step response overshoot. Modify R_{ISO} 's value until the response is reasonable. Bench evaluation and simulations with the MCP6401/1R/1U/2/4/6/7/9 SPICE macro model are very helpful.

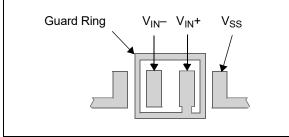

4.4 Supply Bypass

With this family of operational amplifiers, the power supply pin (V_{DD} for single-supply) should have a local bypass capacitor (i.e., 0.01 µF to 0.1 µF) within 2 mm for good high frequency performance. It can use a bulk capacitor (i.e., 1 µF or larger) within 100 mm to provide large, slow currents. This bulk capacitor can be shared with other analog parts.

4.5 Unused Op Amps

An unused op amp in quad packages (MCP6404 or MCP6409) should be configured as shown in

Figure 4-6. These circuits prevent the output from toggling and causing crosstalk. Circuit A sets the op amp at its minimum noise gain. The resistor divider produces any desired reference voltage within the output voltage range of the op amp, which buffers that reference voltage. Circuit B uses the minimum number of components and operates as a comparator, but it may draw more current.



4.6 PCB Surface Leakage

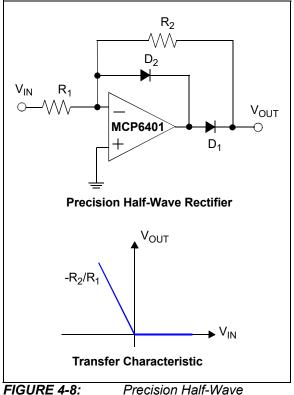
In applications where low input bias current is critical, Printed Circuit Board (PCB) surface leakage effects need to be considered. Surface leakage is caused by humidity, dust or other contamination on the board. Under low humidity conditions, a typical resistance between nearby traces is $10^{12}\Omega$. A 5V difference would cause 5 pA of current to flow; which is greater than the MCP6401/1R/1U/2/4/6/7/9 family's bias current at +25°C (±1.0 pA, typical).

The easiest way to reduce surface leakage is to use a guard ring around sensitive pins (or traces). The guard ring is biased at the same voltage as the sensitive pin. An example of this type of layout is shown in Figure 4-7.

FIGURE 4-7: Example Guard Ring Layout for Inverting Gain.

- 1. Non-inverting Gain and Unity-Gain Buffer:
 - a) Connect the non-inverting pin (V_{IN}+) to the input with a wire that does not touch the PCB surface.
 - b) Connect the guard ring to the inverting input pin (V_{IN}–). This biases the guard ring to the Common Mode input voltage.
- 2. Inverting Gain and Transimpedance Gain Amplifiers (convert current to voltage, such as photo detectors):
 - a) Connect the guard ring to the non-inverting input pin (V_{IN}+). This biases the guard ring to the same reference voltage as the op amp (e.g., V_{DD}/2 or ground).
 - b) Connect the inverting pin (V_{IN}–) to the input with a wire that does not touch the PCB surface.

4.7 Application Circuits


4.7.1 PRECISION HALF-WAVE RECTIFIER

The precision half-wave rectifier, which is also known as a super diode, is a configuration obtained with an operational amplifier in order to have a circuit behave like an ideal diode and rectifier. It effectively cancels the forward voltage drop of the diode so that very low level signals can still be rectified with minimal error. This can be useful for high-precision signal processing. The MCP6401/1R/1U/2/4/6/7/9 op amps have high input impedance, low input bias current and rail-to-rail input/output, which makes this device suitable for precision rectifier applications.

Figure 4-8 shows a precision half-wave rectifier and its transfer characteristic. The rectifier's input impedance is determined by the input resistor R_1 . To avoid loading effect, it must be driven from a low-impedance source.

When V_{IN} is greater than zero, D_1 is OFF, D_2 is ON, and V_{OUT} is zero. When V_{IN} is less than zero, D_1 is ON, D_2 is OFF, and V_{OUT} is the V_{IN} with an amplification of $-R_2/R_1$.

The rectifier circuit shown in Figure 4-8 has the benefit that the op amp never goes in saturation, so the only thing affecting its frequency response is the amplification and the gain bandwidth product.

Rectifier.

Precision Half-Wave

4.7.2 BATTERY CURRENT SENSING

The MCP6401/1R/1U/2/4/6/7/9 op amps' Common Mode Input Range, which goes 0.3V beyond both supply rails, supports their use in high-side and low-side battery current sensing applications. The low quiescent current (45 μ A, typical) helps prolong battery life, and the rail-to-rail output supports detection of low currents.

Figure 4-9 shows a high-side battery current sensor circuit. The 10Ω resistor is sized to minimize power losses. The battery current (I_{DD}) through the 10Ω resistor causes its top terminal to be more negative than the bottom terminal. This keeps the Common Mode input voltage of the op amp below V_{DD} , which is within its allowed range. The output of the op amp will also be below V_{DD} , which is within its Maximum Output Voltage Swing specification.

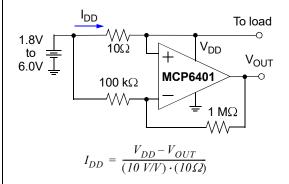


FIGURE 4-9: Supply Cu

Supply Current Sensing.

4.7.3 INSTRUMENTATION AMPLIFIER

The MCP6401/1R/1U/2/4/6/7/9 op amps are well suited for conditioning sensor signals in battery-powered applications. Figure 4-10 shows a two op amp instrumentation amplifier, using the MCP6402, that works well for applications requiring rejection of Common Mode noise at higher gains. The reference voltage (V_{REF}) is supplied by a low impedance source. In single supply applications, V_{REF} is typically $V_{DD}/2$.

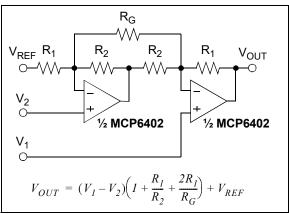


FIGURE 4-10: Two Op Amp Instrumentation Amplifier.

5.0 DESIGN AIDS

Microchip provides the basic design tools needed for the MCP6401/1R/1U/2/4/6/7/9 family of op amps.

5.1 SPICE Macro Model

The latest SPICE macro model for the MCP6401/1R/1U/2/4/6/7/9 op amp is available on the Microchip web site at www.microchip.com. The model was written and tested in official Orcad (Cadence) owned PSPICE. For other simulators, translation may be required.

The model covers a wide aspect of the op amp's electrical specifications. Not only does the model cover voltage, current, and resistance of the op amp, but it also covers the temperature and noise effects on the behavior of the op amp. The model has not been verified outside of the specification range listed in the op amp data sheet. The model behaviors under these conditions cannot be guaranteed to match the actual op amp performance.

Moreover, the model is intended to be an initial design tool. Bench testing is a very important part of any design and cannot be replaced with simulations. Also, simulation results using this macro model need to be validated by comparing them to the data sheet specifications and characteristic curves.

5.2 FilterLab[®] Software

Microchip's FilterLab[®] software is an innovative software tool that simplifies analog active filter (using op amps) design. Available at no cost from the Microchip web site at www.microchip.com/filterlab, the FilterLab design tool provides full schematic diagrams of the filter circuit with component values. It also outputs the filter circuit in SPICE format, which can be used with the macro model to simulate actual filter performance.

5.3 Microchip Advanced Part Selector (MAPS)

MAPS is a software tool that helps semiconductor professionals efficiently identify Microchip devices that fit a particular design requirement. Available at no cost from the Microchip website at www.microchip.com/maps, the MAPS is an overall selection tool for Microchip's product portfolio that includes Analog, Memory, MCUs and DSCs. Using this tool, you can define a filter to sort features for a parametric search of devices and export side-by-side technical comparison reports. Helpful links are also provided for Datasheets, Purchase, and Sampling of Microchip parts.

5.4 Analog Demonstration and Evaluation Boards

Microchip offers a broad spectrum of Analog Demonstration and Evaluation Boards that are designed to help you achieve faster time to market. For a complete listing of these boards and their corresponding user's guides and technical information, visit www.microchip.com/analogtools, the Microchip web site.

Some boards that are especially useful are:

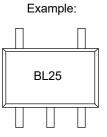
- MCP6XXX Amplifier Evaluation Board 1
- MCP6XXX Amplifier Evaluation Board 2
- MCP6XXX Amplifier Evaluation Board 3
- MCP6XXX Amplifier Evaluation Board 4
- · Active Filter Demo Board Kit
- 5/6-Pin SOT-23 Evaluation Board, P/N VSUPEV2
- 8-Pin SOIC/MSOP/TSSOP/DIP Evaluation Board, P/N SOIC8EV
- 14-Pin SOIC/TSSOP/DIP Evaluation Board, P/N SOIC14EV

5.5 Application Notes

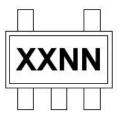
The following Microchip Analog Design Note and Application Notes are available on the Microchip web site at www.microchip.com/appnotes and are recommended as supplemental reference resources.

- ADN003: "Select the Right Operational Amplifier for your Filtering Circuits", DS21821
- AN722: "Operational Amplifier Topologies and DC Specifications", DS00722
- AN723: "Operational Amplifier AC Specifications and Applications", DS00723
- AN884: "Driving Capacitive Loads With Op Amps", DS00884
- AN990: "Analog Sensor Conditioning Circuits – An Overview", DS00990
- AN1177: "Op Amp Precision Design: DC Errors", DS01177
- AN1228: "Op Amp Precision Design: Random Noise", DS01228
- AN1297: "Microchip's Op Amp SPICE Macro Models", DS01297
- AN1332: "Current Sensing Circuit Concepts and Fundamentals", DS01332


These application notes and others are listed in the design guide:


• "Signal Chain Design Guide", DS21825

6.0 PACKAGING INFORMATION


6.1 Package Marking Information

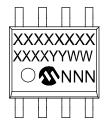
5-Lead SC70 (MCP6401 only)

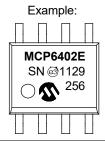
5-Lead SOT-23 (MCP6401/1R/1U, MCP6406)

Part Number	Code
MCP6401T-E/OT	NLNN
MCP6401T-H/OT	U8NN
MCP6401RT-E/OT	NMNN
MCP6401RT-H/OT	U9NN
MCP6401UT-E/OT	NPNN
MCP6401UT-H/OT	V8NN
MCP6406T-E/OT	ZXNN
MCP6406T-H/OT	ZYNN

Example:

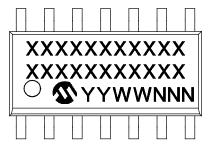
8-Lead TDFN (2 x 3)(MCP6402 only)

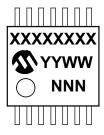


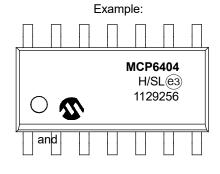

Part Number	Code
MCP6402T-E/MNY	AAW

Example:

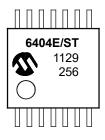
8-Lead SOIC (150 mil)(MCP6401, MCP6402, MCP6407)



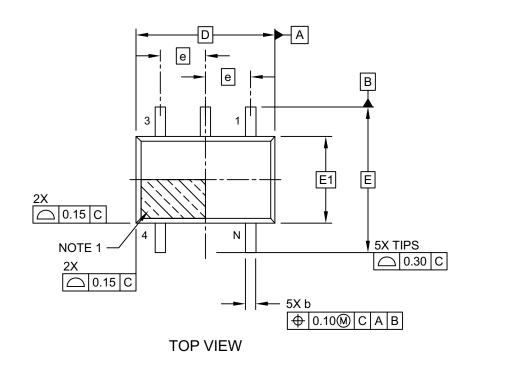

Legend	: XXX Y YY WW NNN (e3) *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator (e3) can be found on the outer packaging for this package.
	be carrie	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available s for customer-specific information.

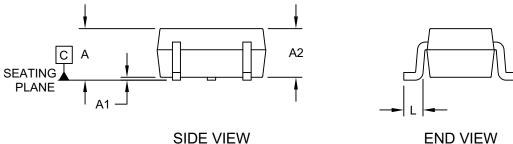

Package Marking Information (Continued)

14-Lead SOIC (150 mil) (MCP6404, MCP6409)



14-Lead TSSOP (MCP6404 only)

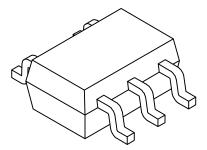

Example:



Legenc	I: XXX Y YY WW NNN @3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator (e3) can be found on the outer packaging for this package.
Note:	be carrie	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available s for customer-specific information.

5-Lead Plastic Small Outline Transistor (LT) [SC70]

For the most current package drawings, please see the Microchip Packaging Specification located at Note: http://www.microchip.com/packaging

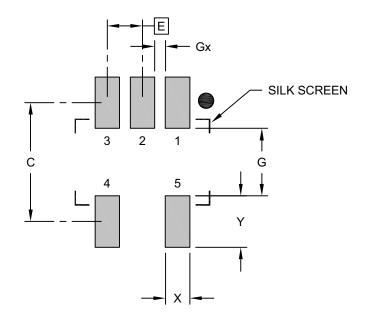

END VIEW

С

Microchip Technology Drawing C04-061-LT Rev E Sheet 1 of 2

5-Lead Plastic Small Outline Transistor (LT) [SC70]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging


	MILLIMETERS				
Dimension Limits		MIN	NOM	MAX	
Number of Pins	N		5		
Pitch	е	0.65 BSC			
Overall Height	А	0.80 - 1.10			
Standoff	A1	0.00 - 0.10			
Molded Package Thickness	A2	0.80 - 1.00			
Overall Length	D	2.00 BSC			
Overall Width	E	2.10 BSC			
Molded Package Width	E1	1.25 BSC			
Terminal Width	b	0.15	-	0.40	
Terminal Length	L	0.10	0.20	0.46	
Lead Thickness	С	0.08 - 0.26			

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15mm per side.
- 3. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

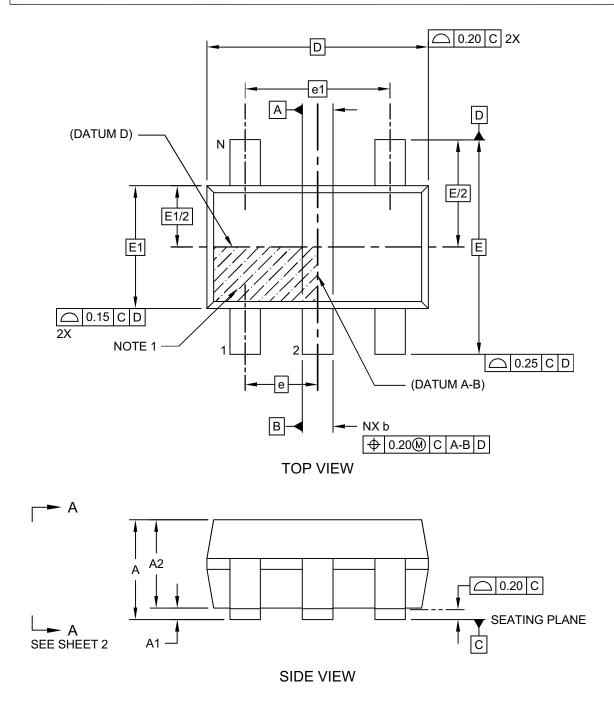
5-Lead Plastic Small Outline Transistor (LT) [SC70]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimension	Dimension Limits		NOM	MAX
Contact Pitch	E	E 0.65 BSC		
Contact Pad Spacing	С	2.20		
Contact Pad Width X				0.45
Contact Pad Length Y				0.95
Distance Between Pads	G	1.25		
Distance Between Pads Gx		0.20		

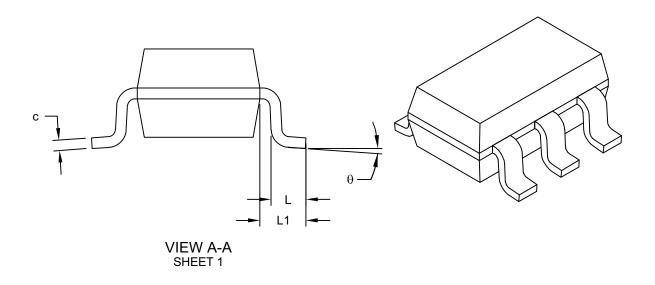
Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2061-LT Rev E

5-Lead Plastic Small Outline Transistor (OT) [SOT-23]


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-091-OT Rev H Sheet 1 of 2

5-Lead Plastic Small Outline Transistor (OT) [SOT-23]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

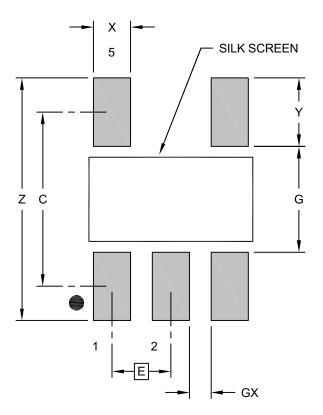
	MILLIMETERS					
Dimension	Limits	MIN	NOM	MAX		
Number of Pins	N		5			
Pitch	е		0.95 BSC			
Outside lead pitch	e1		1.90 BSC			
Overall Height	Α	0.90	-	1.45		
Molded Package Thickness	A2	0.89	-	1.30		
Standoff	A1	-	-	0.15		
Overall Width	E	2.80 BSC				
Molded Package Width	E1	1.60 BSC				
Overall Length	D	2.90 BSC				
Foot Length	L	0.30	-	0.60		
Footprint	L1	0.60 REF				
Foot Angle	θ	0°	-	10°		
Lead Thickness	С	0.08	-	0.26		
Lead Width	b	0.20	-	0.51		

Notes:

1. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or

protrusions shall not exceed 0.25mm per side.

2. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-091-OT Rev H Sheet 2 of 2

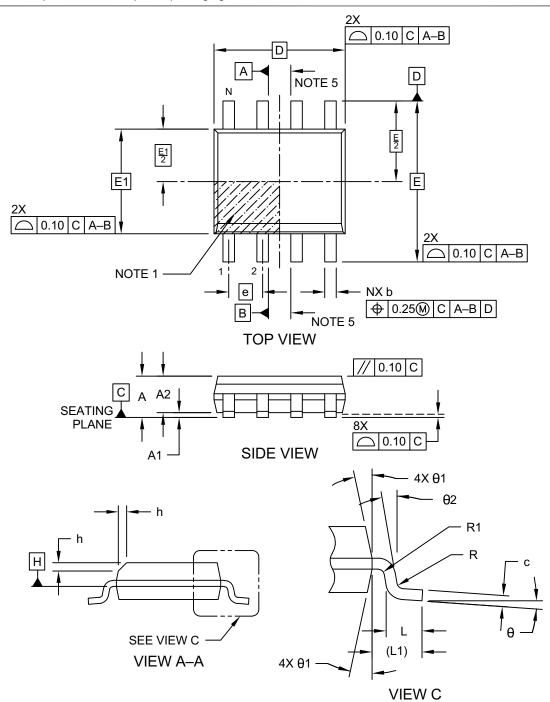
5-Lead Plastic Small Outline Transistor (OT) [SOT-23]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS				
Dimension	Dimension Limits		NOM	MAX	
Contact Pitch	E		0.95 BSC		
Contact Pad Spacing	С	2.80			
Contact Pad Width (X5)	h (X5) X			0.60	
Contact Pad Length (X5)	act Pad Length (X5) Y			1.10	
Distance Between Pads	G	1.70			
Distance Between Pads	GX	0.35			
verall Width Z				3.90	

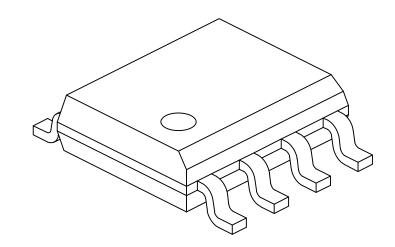
Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2091-OT Rev H

8-Lead Plastic Small Outline (SN) - Narrow, 3.90 mm (.150 In.) Body [SOIC]


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing No. C04-057-SN Rev K Sheet 1 of 2

8-Lead Plastic Small Outline (SN) - Narrow, 3.90 mm (.150 In.) Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimension	MIN	NOM	MAX	
Number of Pins	Ν		8	
Pitch	е		1.27 BSC	
Overall Height	Α	-	-	1.75
Molded Package Thickness	A2	1.25	-	-
Standoff §	A1	0.10	-	0.25
Overall Width	E	6.00 BSC		
Molded Package Width	E1	3.90 BSC		
Overall Length	D	4.90 BSC		
Chamfer (Optional)	h	0.25 – 0.50		
Foot Length	L	0.40	-	1.27
Footprint	L1	1.04 REF		
Lead Thickness	С	0.17	-	0.25
Lead Width	b	0.31	-	0.51
Lead Bend Radius	R	0.07	-	-
Lead Bend Radius	R1	0.07	_	_
Foot Angle	θ	0°	_	8°
Mold Draft Angle	θ1	5°	-	15°
Lead Angle	θ2	0°	_	-

Notes:

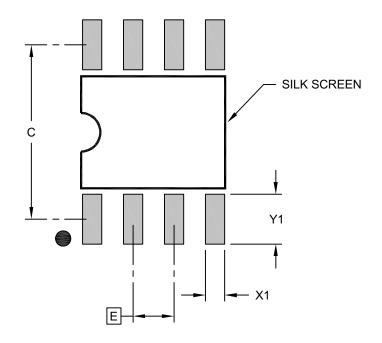
1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15mm per side.

4. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.


REF: Reference Dimension, usually without tolerance, for information purposes only.

5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing No. C04-057-SN Rev K Sheet 2 of 2

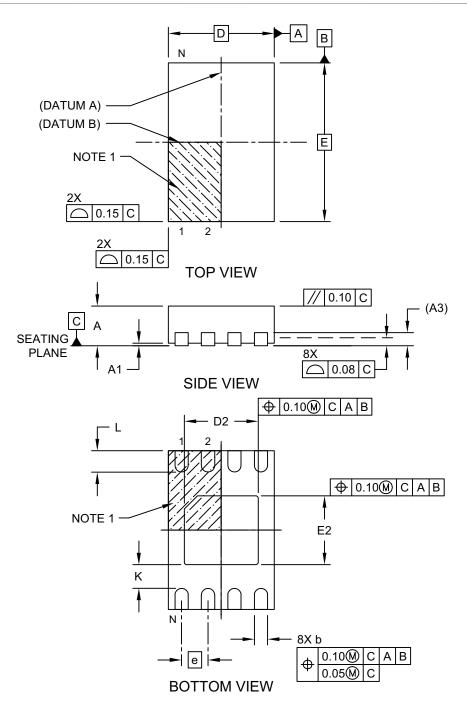
8-Lead Plastic Small Outline (SN) - Narrow, 3.90 mm (.150 In.) Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	1.27 BSC		
Contact Pad Spacing	С		5.40	
Contact Pad Width (X8)	X1			0.60
Contact Pad Length (X8)	Y1			1.55

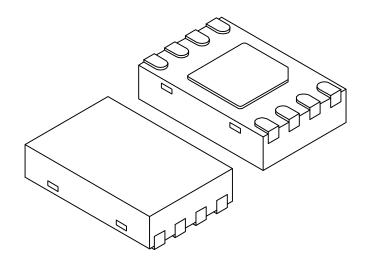
Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-2057-SN Rev K

8-Lead Plastic Dual Flat, No Lead Package (MN) – 2x3x0.8 mm Body [TDFN] With 1.4x1.3 mm Exposed Pad (JEDEC Package type WDFN)


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing No. C04-129-MN Rev E Sheet 1 of 2

8-Lead Plastic Dual Flat, No Lead Package (MN) – 2x3x0.8 mm Body [TDFN] With 1.4x1.3 mm Exposed Pad (JEDEC Package type WDFN)

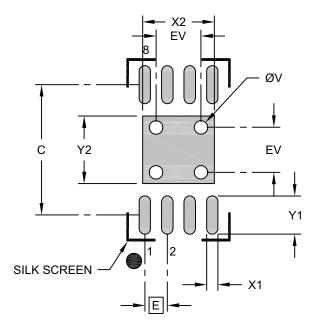
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	N	MILLIMETERS			
Dimensior	MIN	NOM	MAX		
Number of Pins	Ν	8			
Pitch	е				
Overall Height	Α	0.70	0.75	0.80	
Standoff	A1	0.00	0.02	0.05	
Contact Thickness	A3	0.20 REF			
Overall Length	D	2.00 BSC			
Overall Width	E	3.00 BSC			
Exposed Pad Length	D2	1.35	1.40	1.45	
Exposed Pad Width	E2	1.25	1.30	1.35	
Contact Width	b	0.20	0.25	0.30	
Contact Length	L	0.25 0.30 0			
Contact-to-Exposed Pad	K	0.20	-	-	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

- 2. Package may have one or more exposed tie bars at ends.
- 3. Package is saw singulated
- 4. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing No. C04-129-MN Rev E Sheet 2 of 2

8-Lead Plastic Dual Flat, No Lead Package (MN) – 2x3x0.8 mm Body [TDFN] With 1.4x1.3 mm Exposed Pad (JEDEC Package type WDFN)

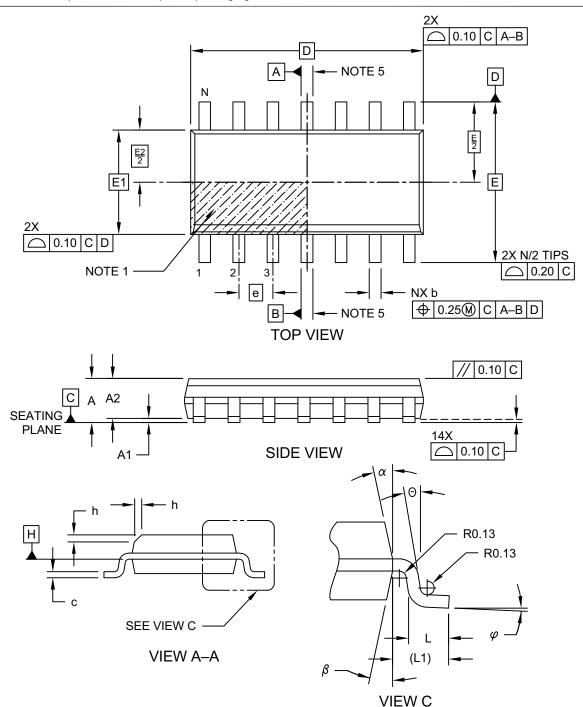
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimensi	Dimension Limits			MAX
Contact Pitch	E		0.50 BSC	
Optional Center Pad Width	X2			1.60
Optional Center Pad Length	Y2	2		
Contact Pad Spacing	С	C 2.90		
Contact Pad Width (X8)	X1			0.25
Contact Pad Length (X8)	Y1			0.85
Thermal Via Diameter	V		0.30	
Thermal Via Pitch	EV	1.00		

Notes:

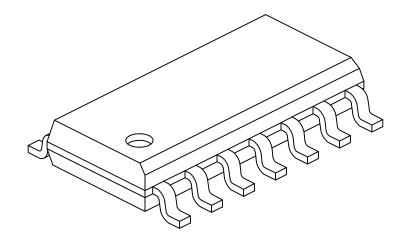
1. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing No. C04-129-MN Rev. B

14-Lead Plastic Small Outline (SL) - Narrow, 3.90 mm Body [SOIC]

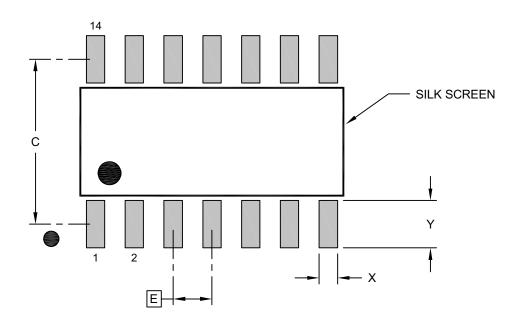

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing No. C04-065-SL Rev D Sheet 1 of 2

14-Lead Plastic Small Outline (SL) - Narrow, 3.90 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	N	MILLIMETERS			
Dimension	Limits	MIN	NOM	MAX	
Number of Pins	N				
Pitch	е		1.27 BSC		
Overall Height	Α	-	-	1.75	
Molded Package Thickness	A2	1.25	-	-	
Standoff §	A1	0.10	-	0.25	
Overall Width	E		6.00 BSC		
Molded Package Width	E1	3.90 BSC			
Overall Length	D	8.65 BSC			
Chamfer (Optional)	h	0.25	-	0.50	
Foot Length	L	0.40	-	1.27	
Footprint	L1	1.04 REF			
Lead Angle	Θ	0°	-	-	
Foot Angle	φ	0°	-	8°	
Lead Thickness	С	0.10 -		0.25	
Lead Width	b	0.31	-	0.51	
Mold Draft Angle Top	α	5°	-	15°	
Mold Draft Angle Bottom	β	5°	-	15°	


Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 DEE: Deferance Dimension, usually without tolerance, for information purposes of
 - REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing No. C04-065-SL Rev D Sheet 2 of 2

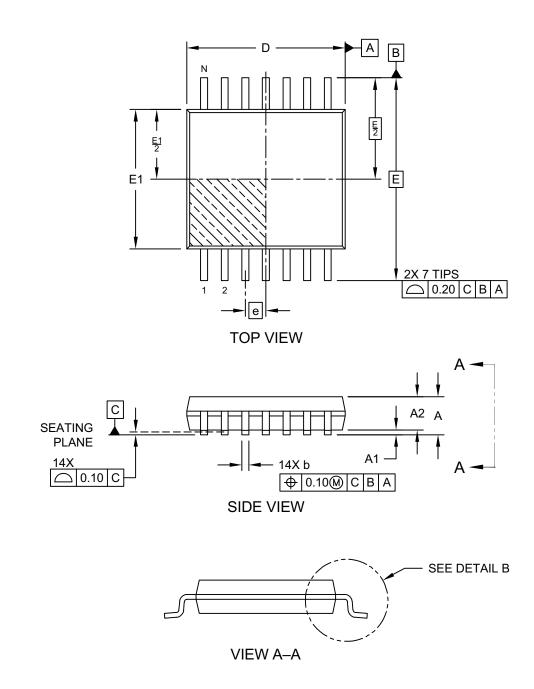
14-Lead Plastic Small Outline (SL) - Narrow, 3.90 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Ν	MILLIMETERS			
Dimension	Limits	MIN	NOM	MAX	
Contact Pitch	E		1.27 BSC		
Contact Pad Spacing	С		5.40		
Contact Pad Width (X14)	Х			0.60	
Contact Pad Length (X14)	Y			1.55	

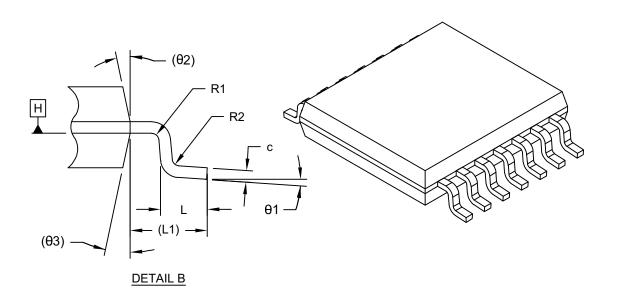
Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2065-SL Rev D

14-Lead Thin Shrink Small Outline Package [ST] – 4.4 mm Body [TSSOP]


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-087 Rev E Sheet 1 of 2

14-Lead Thin Shrink Small Outline Package [ST] – 4.4 mm Body [TSSOP]

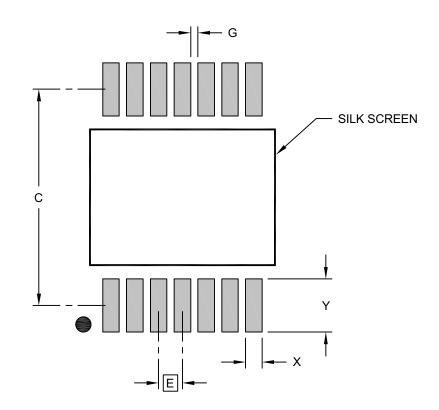
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			MILLIMETERS			
[[Dimension Limits	MIN	NOM	MAX			
Number of Terminals	N	14					
Pitch	е		0.65 BSC				
Overall Height	A	-	-	1.20			
Standoff	A1	0.05	-	0.15			
Molded Package Thickness	A2	0.80	1.00	1.05			
Overall Length	D	4.90	5.00	5.10			
Overall Width	E	6.40 BSC					
Molded Package Width	E1	4.30	4.40	4.50			
Terminal Width	b	0.19	-	0.30			
Terminal Thickness	С	0.09	-	0.20			
Terminal Length	L	0.45	0.60	0.75			
Footprint	L1		1.00 REF				
Lead Bend Radius	R1	0.09	-	-			
Lead Bend Radius	R2	0.09	-	-			
Foot Angle	θ1	0°	-	8°			
Mold Draft Angle	θ2	_	12° REF	_			
Mold Draft Angle	θ3	_	12° REF	_			

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-087 Rev E Sheet 2 of 2

14-Lead Thin Shrink Small Outline Package [ST] – 4.4 mm Body [TSSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimension	Dimension Limits			MAX
Contact Pitch	E		0.65 BSC	-
Contact Pad Spacing	С			
Contact Pad Width (Xnn)	Х			0.45
Contact Pad Length (Xnn)	Y			1.45
Contact Pad to Contact Pad (Xnn)	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-2087 Rev E

APPENDIX A: REVISION HISTORY

Revision E (March 2023)

The following is the list of modifications:

- 1. Updated **Section "Features"** to specify AEC-Q100 qualifications.
- 2. Updated 1.2 "MCP6401/1R/1U/2/4 Electrical Specifications" table.
- 3. Updated Section 6.0 "Packaging Information".
- 4. Added Product Identification System (Automotive) section.

Revision D (September 2011)

The following is the list of modifications:

 Section 1.0 "Electrical Characteristics": Updated minor typographical corrections in both1.2 "MCP6401/1R/1U/2/4 Electrical Specifications" tables to show the correct unit for R_L (kΩ instead of kW).

Revision C (August 2011)

The following is the list of modifications:

- 1. Added new MCP6406, MCP6407 and MCP6409 devices and the related information throughout the document.
- Created two package type drawings based on the temperature characterization (see E Temp Package Types and H Temp Package Types).
- Added MCP6406/7/9 specification tables in Section 1.3 "MCP6406/7/9 Electrical Specifications".
- 4. Updated characterization graphics in **Section 2.0 "Typical Performance Curves"**.
- 5. Updated **Table 3-1** in **Section 3.0** "**Pin Descriptions**" to show all the devices.
- 6. Updated markings examples in Section 6.1 "Package Marking Information".
- Updated the package markings information to show all drawings available for each type of package.
- 8. Updated the **Product Identification System** page with the new devices and temperature specifications.

Revision B (June 2010)

The following is the list of modifications:

- 1. Added the MCP6402 and MCP6404 package information.
- 2. Updated the ESD protection value on all pins in Section 1.1 "Absolute Maximum Ratings †".
- 3. Added Figure 2-36.
- 4. Updated Table 3-1.
- 5. Updated Section 4.1.3 "Input Current Limits".
- 6. Added Section 4.1.3 "Input Current Limits".
- 7. Added Section 4.5 "Unused Op Amps".
- 8. Updated Section 5.4 "Analog Demonstration and Evaluation Boards".
- 9. Updated the package markings information and drawings.
- 10. Updated the **Product Identification System** page.

Revision A (December 2009)

Original data sheet for the MCP6401/1R/1U/2/4/6/7/9 family of devices.

MCP6401/1R/1U/2/4/6/7/9

NOTES:

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

<u>PART NO.</u>	<u>×</u> ⁽¹⁾	<u>-x</u>	<u>/XX</u>	<u>XXX⁽²⁾</u>	Exa	amples:			
Device	 Tape and Reel Option	 Temperature Range	Package	Class	a)	MCP6401T-E/LT:	Tape and Reel, Extended Temperature, 5LD SC70 Package.		
Device:	MCP6401T:	Single Op Am	p (Tape and Ree	el)	b)	MCP6401T-E/OT:	Tape and Reel, Extended Temperature, 5LD SOT-23 Package.		
	MCP6401R1		3) p (Tape and Ree	el)	c)	MCP6401RT-E/OT:	Tape and Reel, 5LD SOT-23 Package.		
	MCP6401U1	(SOT-23) Dual Op Amp Dual Op Amp (Tape and Reel)				MCP6401UT-E/OT:	Tape and Reel, Extended Temperature, 5LD SOT-23 Package.		
	MCP6402: MCP6402T:					MCP6402-E/SN:	Extended Temperature, 8LD SOIC Package.		
	MCP6404: MCP6404T:	(SOIC, 2x3 TDFN) Quad Op Amp Quad Op Amp (Tape and Reel) (SOIC, TSSOP) Single Op Amp (Tape and Reel) (SOT-23)			f)	MCP6402T-E/SN:	Tape and Reel, Extended Temperature, 8LD SOIC Package.		
	MCP6406T:				g)	MCP6402T-E/MNY:	Tape and Reel, Extended Temperature, 8LD 2x3 TDFN Package.		
	MCP6407: MCP6407T:	(SOIC) Quad Op Amp	1	h)	MCP6404-E/SL:	Extended Temperature, 14LD SOIC Package.			
	MCP6409: MCP6409T:		I)	i)	MCP6404T-E/SL:	Tape and Reel, Extended Temperature, 14LD SOIC Package.			
	()			j)	MCP6404-E/ST:	Extended Temperature, 14LD TSSOP Package.			
Temperature F		C to +125°C (Exte C to +150°C (High		ure)	k)	MCP6404T-E/ST:	Tape and Reel, Extended Temperature, 14LD TSSOP Package.		
Package:	OT = Plas SN = Plas	stic Package (SC70), 5-lead stic Small Outline Transistor (SOT-23), 5-lead stic SOIC, (3.90 mm body), 8-lead	a)	MCP6401T-H/OT:	Tape and Reel, High Temperature, 5LD SOT-23 Package.				
	SL = Plas	MNY* = Plastic Dual Flat, No Lead, (2x3 TDFN), 8-lead SL = Plastic SOIC (3.90 mm body), 14-lead			b)	MCP6402-H/SN:	High Temperature, 8LD SOIC Package.		
	*Y = Nick	 ST = Plastic TSSOP (4.4mm body), 14-lead * Y = Nickel palladium gold manufacturing designator. Only available on the TDFN package. 	c)	MCP6402T-H/SN:	Tape and Reel, High Temperature, 8LD SOIC Package.				
	Unly availab		d)	MCP6404-H/SL:	High Temperature, 14LD SOIC Package.				
Class:		n-Automotive tomotive			e)	MCP6404T-H/SL:	Tape and Reel, High Temperature, 14LD SOIC Package.		
	The Tape and Reel id description. This iden					MCP6406T-H/OT:	Tape and Reel, High Temperature, 5LD SOT-23 Package.		
	printed on the device p	oackage. Check wi	th your Microch			MCP6407-H/SN:	High Temperature, 8LD SOIC Package.		
2:	or package availability with the Tape and Reel option. utomotive parts are AEC-Q100 qualified. E-temp: Grade 1, and I-Temp: Grade 0.	h)	MCP6407T-H/SN:	Tape and Reel, High Temperature, 8LD SOIC Package.					
					i)	MCP6409-H/SL:	High Temperature, 14LD SOIC Package.		
					j)	MCP6409T-H/SL:	Tape and Reel, High Temperature, 14LD SOIC Package.		

MCP6401/1R/1U/2/4/6/7/9

PRODUCT IDENTIFICATION SYSTEM (AUTOMOTIVE)

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	<u>لا(1)</u>	_ Y	/8.8	<u>XXX⁽²⁾</u>	Exar	nples:	
	Tape and Reel	- <u>X</u> Temperature	/ <u>XX</u> Package	Class	a)	MCP6401T-E/LTVAO:	Tape and Reel, Automotive, Extended Temperature, 5LD SC70 Package.
	Option	Range			b)	MCP6401T-E/OTVAO:	Tape and Reel, Automotive, Extended Temperature, 5LD SOT-23 Package.
Device:	MCP6401T:	(SC70, SOT-2		,	c)	MCP6401RT-E/OTVAO	Extended Temperature,
	MCP6401RT	(SOT-23) Single Op Amp (Tape and Reel) (SOT-23) Dual Op Amp			d)	MCP6401UT-E/OTVAO	5LD SOT-23 Package. Tape and Reel, Automotive,
	MCP6402:				e)	MCP6402-E/SNVAO:	Extended Temperature, 5LD SOT-23 Package. Automotive,
	MCP6402T: MCP6404:	Dual Op Amp ((SOIC, 2x3 TD Quad Op Amp	(Tape and Reel) FN)		0)	1001 0402-2,010770.	Extended Temperature, 8LD SOIC Package.
	MCP6404T:	Quad Op Amp (SOIC, TSSOF			f)	MCP6402T-E/SNVAO:	Tape and Reel, Automotive, Extended Temperature, 8LD SOIC Package.
	MCP6406T: MCP6407:	(SOT-23) Dual Op Amp	o (Tape and Ree	,	g)	MCP6402T-E/MNYVAO	: Tape and Reel, Automotive, Extended Temperature,
	MCP6407T: MCP6409:	(SOIC) Quad Op Amp			h)	MCP6404-E/SLVAO:	8LD 2x3 TDFN Package. Automotive, Extended Temperature,
	MCP6409T:	Quad Op Amp (SOIC)	(Tape and Reel)	i)	MCP6404T-E/SLVAO:	14LD SOIC Package. Tape and Reel, Automotive, Extended Temperature, 14LD SOIC Package.
Temperature Rai		C to +125°C (Exte C to +150°C (High		ıre)	j)	MCP6404-E/STVAO:	Automotive, Extended Temperature, 14LD TSSOP Package.
Package:	OT = Plas SN = Plas	 Plastic Package (SC70), 5-lead Plastic Small Outline Transistor (SOT-23), 5-lead Plastic SOIC, (3.90 mm body), 8-lead Plastic Dual Flat, No Lead, (2x3 TDFN), 8-lead Plastic SOIC (3.90 mm body), 14-lead Plastic TSSOP (4.4mm body), 14-lead 		k)	MCP6404T-E/STVAO:	Tape and Reel, Automotive, Extended Temperature, 14LD TSSOP Package	
	SL = Plas			a)	MCP6401T-H/OTVAO:	Tape and Reel, Automotive, High Temperature, 5LD SOT-23 Package.	
		el palladium gold r e on the TDFN pac		esignator.	b)	MCP6402-H/SNVAO:	Automotive, High Temperature, 8LD SOIC Package.
Class:	Blank = Nor				c)	MCP6402T-H/SNVAO:	Tape and Reel, Automotive, High Temperature, 8LD SOIC Package.
Note 4. Th	-	omotive			d)	MCP6404-H/SLVAO:	Automotive, High Temperature, 14LD SOIC Package.
de pri	escription. This identi inted on the device	I Reel identifier only appears in the catalog part nu This identifier is used for ordering purposes and i te device package. Check with your Microchip \$ kage availability with the Tape and Reel option.	and is not ochip Sales	e)	MCP6404T-H/SLVAO:	Tape and Reel, Automotive, High Temperature, 14LD SOIC Package.	
2: Au	utomotive parts are Temp: Grade 0.	,			f)	MCP6406T-H/OTVAO:	Tape and Reel, Automotive, High Temperature, 5LD SOT-23 Package.
					g)	MCP6407-H/SNVAO:	Automotive, High Temperature, 8LD SOIC Package.
					h)	MCP6407T-H/SNVAO:	Tape and Reel, Automotive, High Temperature, 8LD SOIC Package.
					i)	MCP6409-H/SLVAO:	Automotive, High Temperature, 14LD SOIC Package.
					j)	MCP6409T-H/SLVAO:	Tape and Reel, Automotive, High Temperature, 14LD SOIC Package.

Note the following details of the code protection feature on Microchip products:

- Microchip products meet the specifications contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is secure when used in the intended manner, within operating specifications, and under normal conditions.
- Microchip values and aggressively protects its intellectual property rights. Attempts to breach the code protection features of Microchip product is strictly prohibited and may violate the Digital Millennium Copyright Act.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not
 mean that we are guaranteeing the product is "unbreakable" Code protection is constantly evolving. Microchip is committed to
 continuously improving the code protection features of our products.

This publication and the information herein may be used only with Microchip products, including to design, test, and integrate Microchip products with your application. Use of this information in any other manner violates these terms. Information regarding device applications is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. Contact your local Microchip sales office for additional support or, obtain additional support at https:// www.microchip.com/en-us/support/design-help/client-supportservices.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WAR-RANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE, OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDI-RECT, SPECIAL, PUNITIVE, INCIDENTAL, OR CONSE-QUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION.

Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, CryptoMemory, CryptoRF, dsPIC, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, Flashtec, Hyper Speed Control, HyperLight Load, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, TrueTime, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, Augmented Switching, BlueSky, BodyCom, Clockstudio, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, GridTime, IdealBridge, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, IntelliMOS, Inter-Chip Connectivity, JitterBlocker, Knob-on-Display, KoD, maxCrypto, maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SmartHLS, SMART-I.S., storClad, SQI, SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, Trusted Time, TSHARC, USBCheck, VariSense, VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

 $\ensuremath{\textcircled{\sc 0}}$ 2009-2023, Microchip Technology Incorporated and its subsidiaries.

All Rights Reserved.

ISBN: 978-1-6683-2246-8

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 **Technical Support:** http://www.microchip.com/support Web Address:

www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733

China - Beijing Tel: 86-10-8569-7000 China - Chengdu

Tel: 86-28-8665-5511 China - Chongqing Tel: 86-23-8980-9588

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460

China - Qingdao Tel: 86-532-8502-7355

China - Shanghai Tel: 86-21-3326-8000

China - Shenyang Tel: 86-24-2334-2829

China - Shenzhen Tel: 86-755-8864-2200

China - Suzhou Tel: 86-186-6233-1526

China - Wuhan Tel: 86-27-5980-5300

China - Xian Tel: 86-29-8833-7252

China - Xiamen Tel: 86-592-2388138 China - Zhuhai

Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444

India - New Delhi Tel: 91-11-4160-8631 India - Pune

Tel: 91-20-4121-0141 Japan - Osaka

Tel: 81-6-6152-7160 Japan - Tokyo

Tel: 81-3-6880- 3770 Korea - Daegu

Tel: 82-53-744-4301 Korea - Seoul

Tel: 82-2-554-7200

Malaysia - Kuala Lumpur Tel: 60-3-7651-7906

Malaysia - Penang Tel: 60-4-227-8870

Tel: 63-2-634-9065

Singapore

Taiwan - Hsin Chu

Taiwan - Kaohsiung

Tel: 886-2-2508-8600

Thailand - Bangkok

Vietnam - Ho Chi Minh Tel: 84-28-5448-2100

Tel: 31-416-690399 Fax: 31-416-690340

EUROPE

Austria - Wels

Tel: 43-7242-2244-39

Tel: 45-4485-5910

Fax: 45-4485-2829

Tel: 358-9-4520-820

Tel: 33-1-69-53-63-20

Fax: 33-1-69-30-90-79

Germany - Garching

Tel: 49-2129-3766400

Germany - Heilbronn

Germany - Karlsruhe

Tel: 49-7131-72400

Tel: 49-721-625370

Germany - Munich

Tel: 49-89-627-144-0

Fax: 49-89-627-144-44

Germany - Rosenheim

Tel: 49-8031-354-560

Israel - Ra'anana

Italy - Milan

Italy - Padova

Tel: 972-9-744-7705

Tel: 39-0331-742611

Fax: 39-0331-466781

Tel: 39-049-7625286

Netherlands - Drunen

Tel: 49-8931-9700

Germany - Haan

Finland - Espoo

France - Paris

Fax: 43-7242-2244-393

Denmark - Copenhagen

Norway - Trondheim Tel: 47-7288-4388

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

Philippines - Manila

Tel: 65-6334-8870

Tel: 886-3-577-8366

Tel: 886-7-213-7830

Taiwan - Taipei

Tel: 66-2-694-1351