@ MICROCHIP

Product Change Notification / SYST-02D0ZZ491

Date:

10-Mar-2023

Product Category:

General Purpose FPGAs, System On Chip FPGAs

PCN Type:

Document Change

Notification Subject:

Data Sheet - SmartFusion2 Microcontroller Subsystem User Guide

Affected CPNs:

SYST-02D0ZZ491 Affected CPN_03102023.pdf
SYST-02D0ZZ491 _Affected CPN_03102023.csv

Notification Text:

SYST-02D0Zz491

Microchip has released a new Datasheet for the SmartFusion2 Microcontroller Subsystem User Guide of devices. If you are using one of
these devices please read the document located at SmartFusion2 Microcontroller Subsystem User Guide.

Notification Status: Final

Description of Change:

* Remapping eNVM data from eNVM_1 memory block to Cortex®-M3 Code space is not permitted for SmartFusion® 2 M25S090/150 and
IGLOO® 2 M2GL090/150 devices. For information about eNVM remapping and limitation, see the note under Figure 4-28.

¢ Timing models for Fabric to MSS interrupts have been updated with additional time delay. This changes the timing arcs of nets and
interface between Fabric to MSS interrupts. For more information about the updated timing arcs, see PCN 17005A.

e Updated 1.5.2.3. Embedded Trace Macrocell to include information about timing arcs update from Fabric to Embedded Trace Macrocell.
e Updated 10.5.1. SGMII Interface Configuration to include information about timing arcs update from SerDes to Fabric.

e Updated 22.3.1. Configuring the FIIC Using the Libero SoC to include information about timing arcs update from Fabric to MSS
interrupts.

¢ The document was converted to Microchip template.

¢ The document number was changed to DS50003495 from UG0331.

Impacts to Data Sheet: See above details.

Reason for Change: To Improve Productivity

Page 1 of 2

Change Implementation Status: Complete
Date Document Changes Effective: 10 Mar 2023
NOTE: Please be advised that this is a change to the document only the product has not been changed.

Markings to Distinguish Revised from Unrevised Devices: N/A

Attachments:

SmartFusion2 Microcontroller Subsystem User Guide

Please contact your local Microchip sales office with questions or concerns regarding this notification.
Terms and Conditions:
If you wish to receive Microchip PCNs via email please register for our PCN email service at our PCN

home page select register then fill in the required fields. You will find instructions about registering for
Microchips PCN email service in the PCN FAQ section.

If you wish to change your PCN profile, including opt out, please go to the PCN home page select login
and sign into your myMicrochip account. Select a profile option from the left navigation bar and make
the applicable selections.

SYST-02D0ZZ491 - Data Sheet - SmartFusion2 Microcontroller Subsystem User Guide

Affected Catalog Part Numbers (CPN)

M2S090T-1FGG676S0027
M2S090T-1FGG676S0028
M2S090T-1FGG676S0030
M2S090T-1FGG676S0032
M2S090T-1FGG676X416
M2S090T-1FGG676Z246
M2GL150TS-FCV G484l
M2S090TS-1FG484M X3
M2S090TS-1FG484M X399
M2S090TS-1FG484M X471
M2S090TS-1FG676
M2S090TS-1FG676l
M2S090TS-1FG6761 X417
M2S090TS-1FGG484
M2S090TS-1FGG484l
M2S090TS-1FG(GA4841X416
M2S090TS-1FGG4841X418
M2S090TS-1FGG484M
M2S090TS-1FGG484T2
M2S090TS-1FGG484X 416
M2S090TS-1FGG484X418
M2S090TS-1FGG676
M2S090TS-1FGG676H0017
M2S090TS-1FGG676H0044
M2S090TS-1FGG676H0046
M2S090TS-1FGG676H0071
M2S090TS-1FGG676H0090
M2S090TS-1FGG676H0132
M2S090TS-1FGG676H0144
M2S090TS-1FGG676H0223
M2S150-1FCV 484l
M2S150-1FCV G484
M2S150-1FCV G484l
M2S5150-FC1152
M2S150-FC1152I
M2S5150-FCG1152
M2S150-FCG1152
M2S5150-FCG1152X 486
M2S150-FCS536
M2S150-FCS536I
M2S150-FCSG536
M2S150-FCSG536l
M2S150-FCV 484
M2S150-FCV 484l
M2S150-FCV G484
M2S5150-FCV G484l

Date: Thursday, March 09, 2023

SYST-02D0ZZ491 - Data Sheet - SmartFusion2 Microcontroller Subsystem User Guide

M2S5150T-1FC1152
M2S150T-1FC1152]
M2S150T-1FC11521 X3
M2S150T-1FC1152M
M2S150T-1FC1152M X259
M2S150T-1FCG1152
M2S5150T-1FCG1152I
M2S150T-1FCG11521X417
M2S150T-1FCG1152M
M2S150T-1FCG1152X416
M2S150T-1FCS536
M2S150T-1FCS536I
M2S150T-1FCSG536
M2S150T-1FCSG536l
M2S150T-1FCV 484
M2S150T-1FCV 484l
M2S150T-1FCV 4841 X259
M2S150T-1FCV4841X3
M2S150T-1FCV 484M
M2S150T-1FCV484M X259
M2S150T-1FCV G484
M2S150T-1FCV G484l
M2S5150T-FC1152
M2S150T-FC1152]
M2S5150T-FC1152X416
M2S150T-FCG1152
M2S5150T-FCG1152|
M2S150T-FCG1152X 416
M2S5150T-FCG1152X 417
M2S150T-FCS536
M2S5150T-FCS536l
M2S150T-FCSG536
M2S150T-FCSG536I
M2S150T-FCV484
M2S150T-FCV 484l
M2S150T-FCV G484
M2S150T-FCV G484l
M2S150T-FCV G4841X94
M2S150TS-1FC1152
M2S150TS-1FC1152]
M2S150TS-1FC11521X130
M2S150TS-1FC11521 X167
M2S150TS-1FC11521X3
M2S150TS-1FC1152M
M2S5150TS-1FC1152M X259
M2S150TS-1FC1152M X417
M2S150TS-1FCG1152
M2S150TS-1FCG1152H0012
M2S5150TS-1FCG1152H0038

Date: Thursday, March 09, 2023

SYST-02D0ZZ491 - Data Sheet - SmartFusion2 Microcontroller Subsystem User Guide

M2S150TS-1FCG1152H0061
M2S150TS-1FCG1152H0084
M2S5150TS-1FCG1152H0105
M2S150TS-1FCG1152H0121
M2S5150TS-1FCG1152H0163
M2S150TS-1FCG1152H0186
M2S5150TS-1FCG1152H0195
M2S150TS-1FCG1152H0261
M2S5150TS-1FCG1152H0313
M2S150TS-1FCG1152H0327
M2S150TS-1FCG1152H0338
M2S150TS-1FCG1152H0342
M2S150TS-1FCG1152H0343
M2S150TS-1FCG1152H0354
M2S150TS-1FCG1152H0363
M2S150TS-1FCG1152]
M2S150TS-1FCG11521 X417
M2S150TS-1FCG1152M
M2S5150TS-1FCG1152X416
M2S150TS-1FCG1152X 417
M2S5150TS-1FCS536
M2S150TS-1FCS536I
M2S150TS-1FCSG536
M2S150TS-1FCSG536l
M2S150TS-1FCV 484
M2S150TS-1FCV 484l
M2S150TS-1FCV 484M
M2S150TS-1FCV G484
M2S150TS-1FCV G484l
M2S150TS-DIELOTW
M2S150TS-FC1152
M2S150TS-FC11521
M2S150TS-FC1152X 416
M2S150TS-FCG1152
M2S5150TS-FCG1152H0012
M2S150TS-FCG1152H0138
M2S150TS-FCG1152]
M2S150TS-FCG1152X416
M2S150TS-FCS536
M2S150TS-FCS536l
M2S150TS-FCSG536
M2S150TS-FCSG536l
M2S150TS-FCSG536X416
M2S150TS-FCV 484
M2S150TS-FCV 484l
M2S150TS-FCV G484
M2S150TS-FCV G484l
M2GL090-1FCS325
M2GL090-1FCS325I

Date: Thursday, March 09, 2023

SYST-02D0ZZ491 - Data Sheet - SmartFusion2 Microcontroller Subsystem User Guide

M2GL090-1FCSG325
M2GL090-1FCSG325I
M2GL090-1FG484
M2GL090-1FG484l
M2GL090-1FG4841X417
M2GL090-1FG676
M2GL090-1FG676l
M2S090TS-1FGG676H0280
M2S090TS-1FGG676H0374
M2S090TS-1FGG676I
M2S090TS-1FGG6761X418
M2S090TS-1FGG676T2
M2S090TS-1FGG676X416
M2S090TS-DIELOTW
M2S090TS-FCS325
M2S090T S-FCS325I
M2S090TS-FCS3251 X416
M2S090TS-FCS3251 X417
M2S090TS-FCSG325
M2S090TS-FCSG325I
M2S090T S-FCSG3251X418
M2S090TS-FG484
M2S090TS-FG484l
M2S090TS-FGA4841X416
M2S090T S-FG4841 X456
M2S090TS-FG484X 416
M2S090TS-FG676
M2S090T S-FG676I
M2S090TS-FGG484
M2S090TS-FGG484l
M2S090T S-FGG4841HO365
M2S090TS-FGG4841H0382
M2S090TS-FGG4841X416
M2S090TS-FGG4841X418
M2S090TS-FGG484X416
M2S090TS-FGG676
M2S090TS-FGG676H0137
M2S090TS-FGG676H0309
M2S090TS-FGG676H0376
M2S090TS-FGG676H0379
M2S090TS-FGG676I
M2S090TS-FGG6761H0053
M2S090T S-FGG6761H0076
M2S090TS-FGG6761H0107
M2S090TS-FGG6761H0122
M2S090TS-FGG6761H0145
M2S090T S-FGG6761H0231
M2S090TS-FGG6761H0258
M2S090TS-FGG6761H0275

Date: Thursday, March 09, 2023

SYST-02D0ZZ491 - Data Sheet - SmartFusion2 Microcontroller Subsystem User Guide

M2S090T S-FGG6761H0279
M2S090TS-FGG6761H0334
M2S090T S-FGG6761H0370
M2S090T S-FGG6761S0004
M2S090TS-FGG6761X416
M2S090TS-FGG676X416
M2S150-1FC1152
M2S150-1FC1152I
M2S5150-1FCG1152
M2S150-1FCG1152]
M2S5150-1FCS536
M2S150-1FCS536l
M2GL090T-1FG676I
M2GL090T-1FGG484
M2GL090T-1FGG484I
M2GL090T-1FGG484M
M2GL090T-1FGG676
M2S090-FGG676X425
M2S090T-1FCS325
M2S090T-1FCS325I
M2S090T-1FCSG325
M2S090T-1FCSG325I
M2S090T-1FCSG325Q183
M2S090T-1FG484
M2S090T-1FG484l
M2S090T-1FGA4841 X399
M2S090T-1FG4841X416
M2S090T-1FG4841 X538
M2S090T-1FG484M
M2S090T-1FG676
M2S090T-1FG676l
M2S090T-1FGG484
M2S090T-1FGG484]
M2S090T-1FGG4841 X417
M2S090T-1FGG4841X418
M2S090T-1FGGA4841 X538
M2S090T-1FGG484M
M2S090T-1FGG484M X 399
M2S090T-1FGG484M X416
M2S090T-1FGG484M X417
M2S090T-1FGG484X538
M2S090T-1FGG676
M2S090T-1FGG676H0316
M2S090T-1FGG676!
M2S090T-1FGG676Q149
M2S090T-1FGG676Q326
M2S090T-1FGG676Q353
M2S090T-1FGG676Q355
M2S090T-1FGG676S0001

Date: Thursday, March 09, 2023

SYST-02D0ZZ491 - Data Sheet - SmartFusion2 Microcontroller Subsystem User Guide

M2S090T-1FGG676S0002
M2S090T-1FGG676S0003
M2S090T-1FGG676S0006
M2S090T-1FGG676S0007
M2S090T-1FGG676S0012
M2S090T-1FGG676S0016
M2GL090T-FCSG325
M2GL090T-FCSG325I
M2GL090T-FG484
M2GL090T-FG484I
M2GL090T-FG676
M2GL090T-FG676I
M2GL090T-FGG484
M2GL090T-FGG484l
M2GL090T-FGG4841X416
M2GL090T-FGG676
M2GL090T-FGG676I
M2GL090T-FGG6761 X416
M2GL090TS-1FCS325
M2GL090TS-1FCS325I
M2GL090TS-1FCSG325
M2GL090TS-1FCSG325I
M2GL090TS-1FG484
M2GL090TS-1FG484I
M2GL090TS-1FG484M
M2GL090TS-1FG676
M2GL090TS-1FG676I
M2GL090TS-1FGG484
M2GL090TS-1FGG484l
M2GL090TS-1FGG4841X416
M2GL090TS-1FGG484M
M2GL090TS-1FGG484T2
M2GL090TS-1FGG676
M2GL090T S-1FGG676I
M2GL0O90TS-1FGG676T2
M2GL090TS-FCS325
M2GL090TS-FCS325I
M2GL090TS-FCSG325
M2GL090TS-FCSG325I
M2GL090TS-FG484
M2GL090TS-FG484l
M2GL090TS-FG676
M2GL090TS-FG676l
M2GL090TS-FGG484
M2GL090TS-FGG484l
M2GL090TS-FGG676
M2GL090TS-FGG676I
M2GL150-1FC1152
M2GL 150-1FC1152I

Date: Thursday, March 09, 2023

SYST-02D0ZZ491 - Data Sheet - SmartFusion2 Microcontroller Subsystem User Guide

M2GL 150-1FC11521X259
M2GL150-1FC11521 X441
M2GL 150-1FC11521X520
M2GL150-1FCG1152
M2GL 150-1FCG1152I
M2GL150-1FCG11521X417
M2GL 150-1FCG11521 X538
M2GL150-1FCG1152X417
M2GL 150-1FCS536

M2GL 150-1FCS536l

M2GL 150-1FCSG536
M2GL 150-1FCSG536l
M2GL 150-1FCV 484
M2GL150-1FCV 484l

M2GL 150-1FCV G484
M2GL150-1FCV G484l
M2GL 150-FC1152
M2GL150-FC1152

M2GL 150-FC1152X 417
M2GL 150-FCG1152

M2GL 150-FCG1152

M2GL 150-FCS536

M2GL 150-FCS536l

M2GL 150-FCS5361 X3
M2GL 150-FCSG536

M2GL 150-FCSG536I

M2GL 150-FCV484
M2GL150-FCV 484l

M2GL 150-FCV G484

M2GL 150-FCV G484I
M2GL 150-FCV G4841 X475
M2GL150T-1FC1152
M2GL150T-1FC1152]
M2GL150T-1FC11521X417
M2GL 150T-1FC1152M
M2GL150T-1FC1152M X3
M2GL150T-1FC1152M X441
M2GL150T-1FC1152M X520
M2GL150T-1FCG1152
M2GL150T-1FCG1152
M2GL150T-1FCG11521X417
M2GL150T-1FCG11521X538
M2GL150T-1FCG1152M
M2GL150T-1FCS536
M2GL 150T-1FCS536I
M2S090-1FCS325
M2S090-1FCS325I
M2S090-1FCSG325
M2S090-1FCSG325I

Date: Thursday, March 09, 2023

SYST-02D0ZZ491 - Data Sheet - SmartFusion2 Microcontroller Subsystem User Guide

M2S090-1FG484
M2S090-1FG484l
M2S090-1FG4841X6
M2S090-1FG676
M2S090-1FG676I
M2S090-1FG6761 X417
M2S090-1FGG484
M2S090-1FGG484l
M2S090-1FGG4841X418
M2S090-1FGG484X418
M2S090-1FGG676
M2S090-1FGG676I
M2S090-1FGG6761 X538
M2S090-FCS325
M2S090-FCS325I
M2S090-FCS325X 339
M2S090-FCSG325
M2S090-FCSG325I
M2S090-FG484
M2S090-FG484l
M2S090-FG4841X416
M2S090-FG4841 X538
M2S090-FG484X 416
M2S090-FG484X 456
M2S090-FG676
M2S090-FG676l
M2S090-FG6761 X416
M2S090-FG676X416
M2S090-FGG484
M2S090-FGG484I
M2S090-FGG4841 X416
M2S090-FGGA4841 X417
M2S090-FGG4841X418
M2S090-FGG484X 416
M2S090-FGG484X417
M2S090-FGG484X 418
M2S090-FGG484X 456
M2S090-FGG676
M2S090-FGG676l
M2S090-FGG6760RT
M2S090-FGG676X416
M2GL 150T S-FCSG536l
M2GL150TS-FCV484
M2GL150TS-FCV 484l
M2GL150TS-FCV G484
M2S090T-FCS325
M2S090T-FCS325I
M2S090T-FCSG325
M2S090T-FCSG325I

Date: Thursday, March 09, 2023

SYST-02D0ZZ491 - Data Sheet - SmartFusion2 Microcontroller Subsystem User Guide

M2S090T-FG484
M2S090T-FG484l
M2S090T-FG484X538
M2S090T-FG676
M2S090T-FG676I
M2S090T-FG6761X417
M2S090T-FGG484
M2S090T-FGG484l
M2S090T-FGGA4841X417
M2S090T-FGG4841X418
M2S090T-FGG484X416
M2S090T-FGG484X417
M2S090T-FGG676
M2S090T-FGG676I
M2S090T-FGG676Q189
M2S090T-FGG676S0006
M2S090T-FGG676S0029
M2S090T-FGG676X416
M2S090TS-1FCS325
M2S090TS-1FCS325I
M2S090TS-1FCS3251 X417
M2S090TS-1FCS3251 X418
M2S090TS-1FCSG325
M2S090TS-1FCSG325I
M2S090TS-1FCSG3251 X416
M2S090TS-1FCSG3251 X418
M2S090TS-1FG484
M2S090TS-1FGA484l
M2S090TS-1FG4841X3
M2S090TS-1FGA4841X416
M2S090TS-1FG4841X418
M2S090TS-1FG484M
M2GL 150T-1FCSG536
M2GL 150T-1FCSG536I
M2GL150T-1FCV484
M2GL150T-1FCV 484l
M2GL150T-1FCV484M
M2GL150T-1FCV G484
M2GL150T-1FCV G484l
M2GL150T-FC1152
M2GL150T-FC1152
M2GL150T-FCG1152
M2GL150T-FCG1152I
M2GL150T-FCG11521 X417
M2GL 150T-FCS536

M2GL 150T-FCS536I
M2GL 150T-FCSG536
M2GL 150T-FCSG536l
M2GL150T-FCV484

Date: Thursday, March 09, 2023

SYST-02D0ZZ491 - Data Sheet - SmartFusion2 Microcontroller Subsystem User Guide

M2GL 150T-FCV484|
M2GL150T-FCV G484
M2GL 150T-FCV G484l
M2GL150TS-1FC1152
M2GL150TS-1FC1152]
M2GL150TS-1FC1152M
M2GL150TS-1FCG1152
M2GL150TS-1FCG1152]
M2GL150TS-1FCG1152M
M2GL150TS-1FCS536
M2GL 150TS-1FCS536I
M2GL150TS-1FCSG536
M2GL 150TS-1FCSG536l
M2GL150TS-1FCV484
M2GL150TS-1FCV 484l
M2GL150TS-1FCV484M
M2GL150TS-1FCV G484
M2GL150TS-1FCV G484l
M2GL150TS-1FCV G4841 X323
M2GL150TS-FC1152
M2GL150TS-FC11521
M2GL150TS-FCG1152
M2GL150TS-FCG1152]
M2GL150TS-FCS536
M2GL 150TS-FCS536l
M2GL150TS-FCSG536
M2GL090T-1FGG676I
M2GL090T-1FGG6761X418
M2GL090T-FCS325
M2GL090T-FCS325I
M2GL090-1FG6761X259
M2GL090-1FG6761X417
M2GL090-1FG6761X441
M2GL090-1FGG484
M2GL090-1FGGA484l
M2GL090-1FGG4841X417
M2GL090-1FGG484T1
M2GL090-1FGG676
M2GL090-1FGG676I
M2GL090-1FGG6761 X259
M2GL090-1FGG6761 X417
M2GL090-1FGG6761 X441
M2GL090-FCS325

M2GL 090-FCS325I
M2GL090-FCSG325
M2GL090-FCSG325I
M2GL090-FG484
M2GL090-FG484l
M2GL090-FG4841X3

Date: Thursday, March 09, 2023

SYST-02D0ZZ491 - Data Sheet - SmartFusion2 Microcontroller Subsystem User Guide

M2GL090-FG4841X417
M2GL090-FG484X416
M2GL090-FG484X 456
M2GL090-FG676
M2GL090-FG676I
M2GL090-FG676X416
M2GL090-FGG484
M2GL090-FGG484I
M2GL090-FGG4841X417
M2GL090-FGG4841X418
M2GL090-FGG484X 416
M2GL090-FGG484X418
M2GL090-FGG484X 456
M2GL 090-FGG484X505
M2GL090-FGG676
M2GL090-FGG676I
M2GL090-FGG676X416
M2GL090-FGG676X456
M2GL090T-1FCS325
M2GL090T-1FCS325I
M2GL090T-1FCSG325
M2GL090T-1FCSG325I
M2GL090T-1FG484
M2GL090T-1FG484l
M2GL090T-1FG4841X417
M2GL090T-1FG484M
M2GL090T-1FG484M X418
M2GL090T-1FG484M X6
M2GL090T-1FG676
M2S150-1FCSG536
M2S150-1FCSG536!
M2S150-1FCV 484

Date: Thursday, March 09, 2023

MICROCHIP

SmartFusion 2 Microcontroller Subsystem

Introduction

This user guide describes the SmartFusion® 2 system-on-chip (SoC) field programmable gate array (FPGA)
devices hard peripheral interfaces and the Arm® Cortex®-M3 processor which are together called as Microcontroller
Subsystem (MSS) and their use models.

The MSS includes Cortex-M3 processor, cache controller, embedded NVM (eNVM), embedded SRAM (eSRAM),
AHB bus matrix, high performance DMA (HPDMA), peripheral DMA (PDMA), Universal Serial Bus On-The-Go
(USB OTG) controller, Triple Speed Ethernet MAC (EMAC), CAN controller, multi-mode universal asynchronous/
synchronous receiver/transmitter (MMUART), serial peripheral interface (SPI) controller, inter-integrated circuit
controller (I2C), MSS general purpose input/output (GPIO), communications block, real-time counter (RTC) system,
system timer, watchdog timer, reset controller, system register block, fabric interface interrupt controller (FIIC), fabric
interface controller (FIC), and APB configuration interface.

This user guide describes features, functional description, configuration parameters, configuration options through
the Libero® System-on-Chip (SoC) software and through Firmware, Firmware APIs, use models for the interfaces,
links to the useful information/resources like application notes and other relevant documentations.

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 1
and its subsidiaries

Table of Contents

a1 0T [8 o3 1] o RS ER 1
1. Cortex-M3 Processor Overview and Debug Features............ooceviiiiiiiii e 6
R B = | (F =S SSPRRRIN 6
1.2, FUNCHONAI DESCIIPON.eeiiiiiiee ettt et eat e e abe e e ente e e naneas 7
1.3, CortexX-M3 ProCesSOr NVIC.......coo ettt et e e e e et e e s st e e e snteeeeneeeennneas 7
1.4. Cortex-M3 Processor SYSTICK TIMer......couuiiiiiiiiiee e e 11
1.5. Cortex-M3 Processor Debug SUbSYSIEM.........cooiiiiiiiiiii e 11
1.6. Cortex-M3 Processor Port DESCIIPHONS.iiiiuiiiiiiiee it 14
1.7. How to Use the Cortex-M3 Processor and the Debug Subsystem............cccoooviiiiiiiiiineniinene 15
2. Cortex-M3 Processor (Reference Material).............oooiuiiiiiiiiiiiiiiie e 17
2.1, System LeVEl INtEITACE.ci et e et e et e e ennes 18
2.2. Integrated Configurable DEDUQ..........c.eiiiiiiiiiiii s 18
2.3. Cortex-M3 Processor Features and Benefits Summary...........ccccooiiiiii e, 18
2.4. Cortex-M3 Processor Core Peripherals...............coooiuiiiiiiiiiiiiie e 18
2.5. Cortex-M3 Processor DeSCHPLON...........ccoiiiiiiiiie ettt 19
2.6. Cortex-M3 Processor INStruction Set...........cuiiiiiiiiie e 42
2.7. Cortex-M3 Processor PeripheralS. 86
B T 07 Tor o =T 7] a1 1 (o] | 1= PP 122
R O (0] Y PP R 122
3.2, FUNCLONAl DESCIIPION.uuttieiiiiiiiiee seeasessannnnnnnnrnree 122
3.3, HOW to Use Cache CONtrOllEr...........ooi ettt e e et e e e e e e e e e enees 131
4. Embedded NVM (ENVM) CONIOIIEIS........c..uviiiieeiieiiie ettt a e e e a e e e e aaaeeeaeean 133
Q1. FRAIUIES. ..ottt e e e e oo oo e e e e et et —————————etaeataaaaaeaaaaeaeaaaaaaaaaanaaarararaaaa 133
4.2, FUNCHONAI DESCIIPTON. ... ettt ettt ettt e bt e et e e sne e e e saneeeanteeenans 133
R S T Yo U) 2SS 148
4.4, HOW IO USE ENVIM. ...t e e et e e e e ettt e e e e e anaeee e e e s nnaeeeaeean 153
4.5. SYSREG CONtrol REGISIEIS.eiiiiiiieiiiee et 162
4.6. eNVM CONrol REGISIEIS.eiiiiiiiiiiii ettt neee s 168
5. Embedded SRAM (€SRAM) CONIIOIIErS..........eiiiiiiiiii e e e e e e e e eeaeeeas 174
N T == (0] = TR P PP PUUPPRRN 174
5.2, FUNCtioNal DESCIIPION.uiiiiiiiiiiiiee e e e e e e e e ae e e e e e e e e aese s e e e s annenennnrnnee 175
5.3, HOW 0 USE @SRAM. ...ttt e ettt e e e e e e e e e e neneaaaeean 179
5.4. SYSREG CONtrol REGISIEIS.ueiiiiiiiiiiii ittt 183
LT N o 1= 3 = T TS 1Y =) GRS EP 196
6.1. FUNCLIONAl DESCIIPHION.ciiiiiiiiee ettt e e e e e e e e e e e e sanre e e e e e snsreeeeeean 196
6.2. HOW 10 USE AHB BUS MatriX....coeoiiiiiiiiee et e e e e e 215
LR S =T 1] (=Tl 1Y =T o TSP 218
7. High Performance DMA CONIrOIIET..........coouuiiiiee ettt e e e e e et e e e e s esaaeaaa s 220
A% T =T (0 (- TSR OUUPRRRN 220
7.2, FUNCHONAI DESCIIPHION.ciitiiiiitiie ettt ettt ettt e st e b e e ebeeesanes 221
© 2023 Microchip Technology Inc. User Guide DS50003495A-page 2

and its subsidiaries

7.3, HOW IO USE HPDIMAottt e e e e e e ettt e e e e e e e e e e e eeeat e e eeeeeaeeeenanes 225

7.4. HPDMA Controller RegiSter Map..........ooiuiiiiiiiieiiiie ettt 228
7.5. SYSREG CONrol REGISTEN......ciiiiiiieiiiie ettt e e e e e e sneeeesnneeennee 246
S T oY g To o T=T = 1 DRSPS 248
S TRt T == (0 = PR PRRRN 248
8.2. FUNCHONAI DESCIIPHION.eiitieiiitiie ettt ettt e e e 249
8.3, HOW IO USE The PDIMAL.ttt e et e e e e ettt e e e s ennea e e e e e asnneaeeaeeaan 254
S e B 1Y N = To 1S3 (=Y 1Y = T o USRS RRRT 260
8.5. SYSREG CONtrol REGISIEIS.eiiiiiieeiiiie et e e e e et e e st eeenae e e sneeeeneee s 268
9. Universal Serial Bus On-The-GO CONrOllEN...........cooiiiiiiiiiie ettt e e e enreee e e 269
S TR B =T (0] (- TSR UPRRTN 269
9.2, FUNCHONAI DESCIIPHION.iiiiiiiiitie ettt et e e 270
9.3. How to US€ USB OTG CONIOIIEN......c.uuiiiiiiie ettt sneeeeenes 283
LT = g =Y =Y Y USRS 358
(TR B =T | (0= PO PEPP RPN 358
10.2. FUNCioNal DESCIIPLION.o e e e e e e e e aeaaeeeeeeaeaeaaaaan 359
10.3. TSEMAQC PHY INtEIACES.cueiiiieiieiiiie ettt ettt e e e sste e e e nee e sneeeesnneeeenns 362
KO Y X O @ o =T - | {[o] o FE S UPSUP PRSP 366
10.5. HOW 10 USE TSEMAC...... oottt et e e et e e et e e e at e e e snee e e st e e anneeesnneeeanseeennns 369
10.6. SYSREG Control Register for EMAC......... .. it e e 380
10.7. EMAC Configuration Register SUMMArY..........cccooiiiiiiiiiiiiie e 380
10.8. EMAC Register Bit Definitions..........cccoiiiiiiiiiii e e 386
10.9. COreMACFIREr OVEIVIEW.eeiiiiie ettt ettt et e e ettt e e et e e snee e e sneeeeanneeesnnees 421
L 7N (N I 7] 11 o] | 1= USSR 423
R O = (= U 423
11.2. FUNCHONAl DESCIIPLION. ... eeiiiiiii ittt e e e e e e 424
11.3. CAN Controller Configuration............coouiiiiiiiiiiii e 429
11.4. How to Use the MSS CAN CONIOIIEN.........eiiiiiiiiiiie et 432
T U T TSP 433
11.6. CAN Controller REGIStEr Map.......c.ceiiiiiiiiiiie ittt 437
12. MMUART PEIPREIAIS......uuuitiiiiieieiiiet ittt e e et e aaaeaaeeeeeeaeseaaaannnsnssnsnessnenneeeeeeeees 457
L2 B =Y | (F TSRS 457
12.2. FUNCiONAl DESCHIPTION.cciiiiiiiiie et e e e e e et e e e e e santa e e e e e snsraeaeeean 458
12.3. HOW 10 USE MMUART ...ttt e et e e et e e et e e st e e e anee e e smneeesseeeeanteeeenneeeenneeean 474
12.4. MMUART ReGIiSIEr IMap. ittt e et e e e e e e e e e e anreeeaaeeanees 479
13. Serial Peripheral Interface CONtrOlEr............ooiiiiiiiiie e e e e e e araee e 496
S TR B = | (F TSR 496
13.2. FUNCHONAI DESCIIPLON. ... tieiiiiie ettt ettt e bt esnte e e snne e e sbeeenans 496
13.3. HOW £0 USE SP ..ttt et et e e et e e e ent e e s e e e nneeeeaneeeeennes 513
LS T T o B = To 153 (T ol /= T o J U 518
14. Inter-Integrated Circuit Peripherals.............ooiiiiiiiiiiiiiiiee et e e e e 530
g B Y (USRI 530

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 3

and its subsidiaries

14.2. FUNCONAl DESCIIPLON. ... eiiiiiiii ittt e e e s e e naes 531

14.3. HOW 0 USE I2C......ooeeceeeeceeeeeeeeee ettt e et ee s eee e nnenans 536
14.4. 12C REQGISIEN MBP.....cooeeeeeeeee ettt ettt e et s et es e e et et sesete s s s e e aennnnn 542
15, IMSS GPIO ...ttt e e ettt e et e e et e e e ba e e e abe e e ebe e e et beeeaaseeeateeeeanbeeeareeearaeean 555
(R TR B =Y | (F =PRI 555
15.2. MSS GPIO Functional DeSCrIPHON.cuuiiiiiiiiiiie e s 555
15.3. MSS GPIO USAQE.......eiiiiiieiiiiieetiee ettt et e ettt e e et e st e e e sbe e e eataeesaaeeessbeeeesaeesasseeeanseeennns 560
15.4. GPIO REGISIEr MAP......ci i iiiiiei ettt et e e e e s e e e e st e e e e e s e esaaeeaaeeasanreeaeeesnnes 567
16. CommUNICALION BIOCK....... ..ottt e et e e e ettt e e e e e et e eae e e annneeeaaeannes 583
(LT B == | (F =PRI 583
16.2. FUunCtional DESCIIPLION.o e aaaan 584
16.3. How to Use the Communication BIOCK............cccuiiiiiiiiiiiiie et 586
16.4. COMM_BLK Configuration REgISIEIS..........cooiiiiiiiiiiei et 588
16.5. COMM_BLK Register Interface Details...........ccceeeiuiriiiiiiiiiie et 588
L S L 2153 Y o PRSP ST 592
0 T =Y | (F =R 592
17.2. FUNCHONAl DESCIIPLON. ... eeiiiiie ittt e e e e 592
17.3. HOW O USE RTC....eiiiiie ettt ettt ettt e e e st e e e e e snsae e e e e e snntaeeeeesnnsbaeaaeean 595
LA S o O (=T =1 (=Y /- T o SR 599
17.5. SYSREG CONtrol REGISTEIS. ...ttt e e e e e e e e e e e e e e ennes 604
(RS TS)53) 0 0 T 4T OSSPSR 605
R TR B =Y | (0SSR 605
18.2. FUNCHONAI DESCIIPLON. ... eiiiiiiie ittt ettt st e e nane e e st e e nae 606
T8.3. HOW t0 USE TIME ...ttt e e s e e e e et ees 610
18.4. TImMer REGISIEI IMAP......c ittt e e et e e e et e e e e s e e e e e e e anneee 614
LS A= (o g To oo N T3 =Y PSRRI UOPPRPR 622
(S TR B =Y | (H PR 622
19.2. FUNCHONAI DESCIIPLON. ... eiiiiiiie ittt e et sat e e et e e e 623
19.3. How to Use the Watchdog TiMET...........uviiiiiiieiie ettt e a e e 626
19.4. Watchdog Timer Register Map....... ..ot e e 631
19.5. SYSREG CONtrol REGISTEIS.cc ittt e e e e e te e e e e e eneeeeaaeeennes 633
20. RESEE CONMIOIIETttt ettt e bt e e ettt e s ae e e e enb e e e anteeesneeeeambeeeenneeeennees 635
20.1. FUNCLONAI DESCHIPLION.ttt ettt e s e e e e abeee e 635
20.2. Power-Up to Functional Time Data..........ccoiuiiiiiiiiiiiie e 640
20.3. CoreResetP Soft Reset CONMIOIIET..........oooiiiiie e 654
20.4. How to Use the Reset CONtrOIIEN..........oooo e 659
20.5. SYSREG CONtrol REGISTEIS. ...ttt et e e e e e e e e e sneeeeaaeaenees 662
21. System REGISTEI BIOCK.......cii ittt e st e e et e e enee e e sneeeeaneeeeenneeeenneeenn 664
21.1. SYSREG Block Register Write Protection............ccoocuiiiiiiiiiiiiicc e 664
2 I = To 111 (=T 1Y o= TP PUPRRN 665
21.3. Register Lock Bits Configuration.............cooociieiiiio e 668
214, ReEGISIEI IMAP... ettt n 670

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 4

and its subsidiaries

21.5. ReGIStEr DEtalS.coi it 676

22. Fabric Interface Interrupt CONrOIIET..........oo i i s e e 735
220, FAMUIES. ...ttt ettt e e e e ettt e e e e ta e e e e e e e abe et e e e aatateeaeeaantaeeaeeaanbeneaeeaanne 735
22.2. FUNCHONAI DESCHIPLON.ueiiiiiiiiiiiiiiieie e e e e e e e e e aeaeaeeeeeeeeessanannnnennnennees 736
D242 T T 1TV (o T LT | S 738
22.4. FIIC Controller REGISIEIS.uviiiiiiieeii et e e 746
22.5. FIIC Controller Register Bit DefinitioNS.ooioiiiiiiiiiiiiee e 746

23. Fabric INterface CONMIOIIEN....... .o et e e e et e e e e et e e e e e enaeneaaean 755
23.1. FUNCLIONAl DESCIIPHION.ciiiiiiiiee et et e et e e e e et e e e e e eanre e e e e e s nsreeeeeean 757
23.2. Advanced AHB-Lite OPtioNS............ciii i 758
23.3. FIC INterface POrt LiSt..... .o ittt ettt e e e e e e e e e meeeeeas 759
23.4. TIMING DIAGIAMS.coiuiiiiitiie ettt et e b e e e et e e sbe e e nbb e e ebe e nne e e e eas 762
23.5. Implementation CONSIAErationS............cccoiiiiiiiieiiiiiee et e e e e e e areeeeeean 765
23.6. Fabric INterface ClOCKS.eei ittt e et e st e e e e snte e e eneeeenneee s 765
23.7. HOW IO USE FIC.. ..ottt ettt e e ettt e e e e e e e e e e nee e e e e e e annneeean 765
23.8. ReferenCe DOCUMENLS.ooiiiiiiiiiiie ettt e et e e e e et e e e e s et ee e e e e s e nnseeeeeesnsaeeeaeaannes 781
23.9. SYSREG Control Registers for FIC_0and FIC _1..........ccoiiiiiiiiiieee e 781

24. APB Configuration INtErfacCe.oiiiiiiiii e 783
24.1. Functional Block Diagram DesSCriPtiON.c.uuiiiiiiiiiiiiee e 783
24.2. HOW 10 USE.. .ttt ettt e e ettt e e e e ettt e e e e e nbe et e e e e e anneeeaaeeaannreeeaaean 787

25. Error Detection and Correction CONMrOlIErS.oocuuiiiiiiiiie e 793
25.1. FUNCLONAI DESCIIPLION.eiiieiii ittt e et e sne e san e e e aneee e 793
25.2. CONTIGUIRALION.coiiiiii et e ettt ettt s 794
25.3. HOW 10 USE EDAC.......ooiie ettt ettt e et e e bt e e en e e snte e e snneeeanbeeenans 794

26. REVISION HISIOMY......eiiieii ettt e et e e e e e ete e e 797

MiICTOCHIP FPGA SUPPOI.....ciieiiiitiie ettt e e e et e e e e e e e e e e e e sat s e e e e e eesbaeeeeesasaseeaeeeanraeseaeaan 804

MiCroChip INFOMMALION.ooiii e et e e e st e e e e e sttt e e e s e saeeeaeeeansaeeaeeeannes 804
The MiICroChip WEDSIEE........cco it e e e e e e aaaaaeeeeaeeeseaaeannannes 804
Product Change Notification SErviCe.ooiiiiiiiiiii e 804
(O101] (0] 4 [T GRS U] o] o]« S SRR URPPRR 804
Microchip Devices Code Protection Feature..........cc.ueeeiiiiiiiiiii i 804
(Yo = T\ o] (o= TSR RRI 805
Q=10 (] 00 F= T G PRSPPI 805
Quality Management SYSTEM..........uiiiieiiieie e e e e e e e e s et e e e e e s ssb e e e e e e snraeeeaeaannes 806
Worldwide Sales and SEIVICE.cocuuiiiiiiieei ettt ee e s e e et e e e e e e e e enne e e nnneas 807

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 5

and its subsidiaries

1.1

Cortex-M3 Processor Overview and Debug Featu...

Cortex-M3 Processor Overview and Debug Features

The Arm® Cortex®-M3 processor is a low power consumption processor that features low gate count, low interrupt
latency, and low-cost debug. It is intended for deeply embedded applications that require optimal interrupt response
features. This processor implements the Arm v7-M architecture and is shown in Figure 1-1. The SmartFusion® 2 SoC
FPGA device uses the R2P1 version of the Cortex-M3 core. This chapter highlights the Cortex-M3 processor and
debug subsystem customizations made specific to SmartFusion 2.

For more details on the internals like programming model, exception model, instruction set, the
Cortex-M3 specific peripherals such as SysTick timer, memory protection unit, and others, refer to the 2. Cortex-M3
Processor (Reference Material). The following manuals are available at the ARM Info center:

» Cortex-M3 Technical Reference Manual

* ARM v7-M Architecture Reference Manual

* ARM v7-M Architecture Application Level Reference Manual

The Definitive Guide to the Arm Cortex-M3 by Joseph Yiu is recommended as additional reading (ISBN:
978-0-7506-8534-4).

Features
The Arm Cortex-M3 processor supports the following features:

» A 32-bit processor core with low gate count and low latency interrupt processing

» ARISC processor, with 3-stage pipeline Harvard architecture, pipeline core incorporating branch speculation,
single cycle multiplication, and hardware division, giving a Dhrystone benchmark of 1.25 DMIPS/MHz.

* A Nested Vectored Interrupt Controller (NVIC) that closely integrates with the processor core to achieve low
latency interrupt processing.

* A memory protection unit (MPU) is included. This facilitates the protected memory regions creation and setting
access rights for the protected regions.

» A Cortex-M3 processor, which is configured for SmartFusion 2 MSS, and uses only little-endian.
» An auxiliary control register is included

» Multiple high-performance bus interfaces that are connected through an advanced
high-performance bus (AHB)

* A debug solution with the optional ability to:

Implement breakpoints and code patches
Implement watchpoints, tracing, and system profiling
Support print style debugging

Bridge to a trace port analyzer

Manufacturers of the Cortex-M3 processor integrated circuits are permitted some latitude in configuring a particular
implementation of the Cortex-M3 processor delivered by Arm. The following features are implementation specifics in
the SmartFusion 2 device:

» MPU: This helps in creating protected and protected regions of memory
* Flash patch break point (FPB)

» Data watchpoint and trace (DWT) unit

» Instrumental trace macrocell (ITM)

» Embedded trace macrocell (ETM)

* Power-mode saving:

— HCLK is gated off when in SLEEPING or SLEEPDEEP mode
SLEEPING and SLEEPDEEP signals are available at the FPGA fabric interface sleep mode extension
handshake signals are available at the FPGA fabric interface.

* Not all registers in the register bank are reset
* Endianness: little endian only
» Auxiliary control register is included

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 6
and its subsidiaries

1.2

1.3

Cortex-M3 Processor Overview and Debug Featu...

» Wake-up interrupt controller (WIC) is not included
For more details of these configurations and optional features, see 2. Cortex-M3 Processor (Reference Material).

Functional Description
The following figure shows the Cortex-M3 processor, core peripherals, and debug subsystem implementations used
in SmartFusion 2.

Figure 1-1. Cortex-M3 Processor R2P1 Block Diagram as Implemented in the SmartFusion 2 SoC FPGA

Cortex-M3 Microcontroller

Interrupts and
Power Control

=

Nested Vector

Cortex-M3
Debug
(Serial
Wire or
JTAG)

Interrupt
Controller (NVIC)

CPU I/F

~

Cortex-M3
Core

Instruction Data

y

i

Trigger

ETM

Flash Patch Break Point
(FPB)

[

Memory Protection Unit
(MPU)

Data Watchpoint
Trace
(DWT)

!

i

I A
A

AHB Bus Matrix

AHB
Access Port
(AHB-AP)

A 4

I A
A A

¢

APBIIE) Instrumentation
Trace Macrocell

(IT™)

A
A 4

Trace Port

Interface Unit
(TPIU)

v v v
I-Code D-Code System
Bus Bus Bus

Private

Peripheral
CoreSight Bus Trace Port
ROM Table Interface

The following topics are covered in detail in the sub-sections:

» Cortex-M3 Processor NVIC

» Cortex-M3 Processor SysTick Timer

» Cortex-M3 Processor Debug Subsystem
» Data Watch Point (DWP) and Trace

* Instrumentation Trace Macrocell

* Embedded Trace Macrocell

Important: The Cortex-M3 operating frequency is dependent on device speed grade (up to 166
MHz). See the SmartFusion 2 Specifications-MSS Clock Frequency section from IGLOO 2 FPGA and
SmartFusion 2 SoC FPGA Datasheet for more information.

Cortex-M3 Processor NVIC

The Cortex-M3 processor contains an NVIC, which is responsible for:

» Facilitating low-latency exception and interrupt handling

» Controlling power management
The following table lists the 11 exceptions that NVIC supports. The NVIC also supports up to 83 dynamically re-
prioritizable external interrupts, each with up to 16 levels of priority (see Table 1-2). The NVIC maintains knowledge

of stacked (nested) interrupts to enable tail-chaining of interrupts. In MSS, the NVIC is configured to have 16 levels of
priority (4 msb in BASEPRI register) are implemented, so BASEPRI register [7-4] are used for the priority setting and

[3-0] are read as zeros.

User Guide DS50003495A-page 7

© 2023 Microchip Technology Inc.
and its subsidiaries

Cortex-M3 Processor Overview and Debug Featu...

The following table lists exceptions. The detailed description of these exceptions can be found in the ARM Cortex-M3
Technical Reference Manual.

Table 1-1. Cortex-M3 Processor Exceptions

Cortex-M3

Exceptions

Position in
Interrupt Vector
Table

Priority Description

Reset

1 (zero position is | —3
stack pointer)

Invoked on power-up and reset

Non-maskable 2 -2 Non-maskable interrupt (NMI)—watchdog timeout
exception interrupt
HardFault 3 -1 Hard fault interrupt: all fault conditions if the

Memory management 4

exception

Bus fault exception 5

UsageFault 6

SVCall 11
Debug monitor 12
PendSV 14
SysTick 15

corresponding fault handler is not enabled

Configurable Memory management interrupt: memory management

fault; MPU violation or access to illegal locations.

Configurable | Bus fault interrupt: bus error; occurs when the AHB

interface receives an error response from a bus slave
(also called prefetch abort if it is an instruction fetch or
data abort if it is a data access).

Configurable Usage fault interrupt: exceptions resulting from a program

error or trying to access a coprocessor (the Cortex-M3
does not support a coprocessor).

Configurable | Supervisory call interrupt

Configurable Debug monitor interrupt: breakpoints, watchpoints, or

external debug requests

Configurable | Pend supervisory interrupt

Configurable System tick timer interrupt

The interrupt sources listed in the following table are connected to the NVIC of the Cortex-M3 processor in the MSS.

Table 1-2. Cortex-M3 Processor Interrupts

Cortex-M3 Description
Interrupt

INTNMI

INTISR[O]

INTISR[1]
INTISR[2]
INTISR[3]
INTISR[4]
INTISR[5]
INTISR[6]
INTISR[7]
INTISR[S]
INTISR[9]
INTISR[10]
INTISR[11]
INTISR[12]

WDOGTIMEOUTINT

WDOGWAKEUPINT

RTC_WAKEUP_INTR
SPIINTO

SPIINT1
12C_INTO
12C_SMBALERTO
12C_SMBSUS0
12C_INT1
[2C_SMBALERT1
12C_SMBSUS1
MMUARTO_INTR
MMUART1_INTR
MAC_INT

WATCHDOG

WATCHDOG

RTC
SPI0
SPI_1
12C_0
12C_0
12C_0
12C_1

12C_1

12C_1
MMUART _0
MMUART _1
MAC

This interrupt is asserted (if enabled) if the counter reaches zero and
interrupt rather than reset generation has been selected on counter timeout.

This interrupt is asserted (if enabled) on crossing the WDOGMVRP level
when the SLEEPING input is asserted.

RTC match/wake up interrupt from RTC block
Interrupt from SPI 0
Interrupt from SPI 1
Interrupt from 12C O
Interrupt from 12C 0
Interrupt from 12C 0
Interrupt from 12C 1
Interrupt from 12C 1
Interrupt from 12C 1
Interrupt from MMUART 0
Interrupt from MMUART 1
Interrupt from Ethernet MAC

© 2023 Microchip Technology Inc.
and its subsidiaries

User Guide DS50003495A-page 8

Cortex-M3 Processor Overview and Debug Featu...

...continued

INTISR[13]
INTISR[14]
INTISR[15]
INTISR[16]
INTISR[17]

INTISR[18]

INTISR[19]
INTISR[20]
INTISR[21]

INTISR[22]
INTISR[23]
INTISR[24]

INTISR[25]

INTISR[26]

INTISR[27]

INTISR[28]

INTISR[29]

PDMAINTERRUPT
TIMER1_INTR
TIMER2_INTR
CAN_INTR
ENVM_INTO

ENVM_INT1

COMM_BLK_INTR
USB_MC_INT
USB_DMA_INT

MSSDDR_PLL_LOCK_INT

PDMA
TIMER
TIMER
CAN

Cortex-M3 Description
Interrupt

Interrupt from peripheral DMA block
Timer1 interrupt
Timer2 interrupt

Interrupt from CAN

ENVMTOAHBO Asserted on an eNVM_0 basis at the completion of PROGRAM, ECC

ENVMTOAHB1

COMBLK
uSB
UsSB

SYSREG

MSSDDR_PLL_LOCKLOST_INT|SYSREG

SW_ERRORINTERRUPT

CACHE_ERRINTR

DDRB_INTR

HPD_XFR_CMP_INT

HPD_XFR_ERR_INT

ECCINTR

SYSREG

SYSREG

SYSREG

HPDMA

HPDMA

SYSREG

ERROR, etc.

Asserted on an eNVM_1 basis at the completion of PROGRAM, ECC
ERROR, etc.

Communication block interrupt
CPU interrupts

Core’s DMA engine performs data transfer between endpoint memories and
system memory via AHB master port. DMA controller-interrupt.

Interrupt indicating that MSSDDR PLL has achieved lock.
Interrupt indicating that MSSDDR PLL has lost lock.

If set, it indicates to the Cortex-M3 processor that:
— One of the masters of the switch attempted an access that resulted in
either an error termination by the slave (or possibly the switch itself) or

— Was decoded as an access to unimplemented address space or o. If the
master attempted an access while disabled or

— In the case of the fabric master, attempted to access the protected region
of memory space

This signal is set by ORing the fields of SW_ERRORSTATUS. It is cleared by
writing 1 to the SW_CLEARSTATUS bit.

If asserted, indicates that the interrupt is coming from CACHE. This
interrupt is generated in the SysReg by ORing of the various interrupts
from the CACHE block: CC_HRESPERRINTO0, CC_HRESPERRINT1,
CC_HRESPERRINT2, CC_HRESPERRINTS3.

If asserted, indicates that the interrupt is coming from DDRBRDIGE module.
Interrupts from MSS DDR Bridge module: DDRB_ERROR and
DDRB_LOCKTIMEOUT.

These interrupts are ORed in the SysReg and fed to the Cortex-M3
processor.

It is asserted when any HPDMA completes a descriptor transfer. Once
asserted, it remains asserted until cleared by means of writing 1 to the
bit in the control register of the Descriptor-N (0, 1, 2, 3). If HPDMA
completes more than one descriptor transfers before the interrupt is
serviced then this bit remains asserted until all the descriptors have had
Clr_D<N>_Xfr_cmp_int written to 1.

It is asserted when any HPDMA completes a descriptor transfer with error.
Once asserted, it remains asserted until cleared by means of writing 1 to the
bit in the control register of the Descriptor-N (0, 1, 2, 3). If HPDMA completes
more than one descriptor with errors before the interrupt is serviced then this
bit remains asserted until all the descriptors have had Clr_D<N>_Xfr_err_int
written to 1.

It is asserted when an ECC error has been detected in ESRAMO, ESRAM1,

MAC, CAN, MDDR, and USB. This is generated by ORing ECC interrupts
from these modules.

© 2023 Microchip Technology Inc.
and its subsidiaries

User Guide DS50003495A-page 9

Cortex-M3 Processor Overview and Debug Featu...

....continued

INTISR[30]

INTISR[31]
INTISR[32]
INTISR[33]

INTISR[34]
INTISR[35]
INTISR[36]
INTISR[37]
INTISR[38]
INTISR[39]
INTISR[40]
INTISR[41]
INTISR[42]
INTISR[43]
INTISR[44]
INTISR[45]
INTISR[46]
INTISR[47]
INTISR[48]
INTISR[49]
INTISR[50]
INTISR[51]
INTISR[52]
INTISR[53]
INTISR[54]
INTISR[55]
INTISR[56]
INTISR[57]
INTISR[58]
INTISR[59]
INTISR[60]
INTISR[61]
INTISR[62]
INTISR[63]
INTISR[64]
INTISR[65]
INTISR[66]

MDDR_IO_CALIB_INT

FAB_PLL_LOCK_INT
FAB_PLL_LOCKLOST_INT
FIC64_INT

F2H_INTERRUPTI[0]
F2H_INTERRUPTI[1]
F2H_INTERRUPT[2]
F2H_INTERRUPTI[3]
F2H_INTERRUPT[4]
F2H_INTERRUPTI[5]
F2H_INTERRUPTI[6]
F2H_INTERRUPTI[7]
F2H_INTERRUPTI[8]
F2H_INTERRUPTI[9]
F2H_INTERRUPT[10]
F2H_INTERRUPT[11]
F2H_INTERRUPT[12]
F2H_INTERRUPT[13]
F2H_INTERRUPT[14]
F2H_INTERRUPTI[15]
GPIO_INT[0]
GPIO_INT[1]
GPIO_INT[2]
GPIO_INT[3]
GPIO_INT[4]
GPIO_INT[5]
GPIO_INT[6]
GPIO_INT[7]
GPIO_INTI[8]
GPIO_INT[9]
GPIO_INT[10]
GPIO_INT[11]
GPIO_INT[12]
GPIO_INT[13]
GPIO_INT[14]
GPIO_INT[15]
GPIO_INT[16]

SYSREG

SYSREG
SYSREG
SYSREG

FPGA fabric
FPGA fabric
FPGA fabric
FPGA fabric
FPGA fabric
FPGA fabric
FPGA fabric
FPGA fabric
FPGA fabric
FPGA fabric
FPGA fabric
FPGA fabric
FPGA fabric
FPGA fabric
FPGA fabric
FPGA fabric
GPIO
GPIO
GPIO
GPIO
GPIO
GPIO
GPIO
GPIO
GPIO
GPIO
GPIO
GPIO
GPIO
GPIO
GPIO
GPIO
GPIO

Cortex-M3 Description
Interrupt

The interrupt is generated when MDDR calibration is finished. For the
calibration after reset, this would be followed by locking the codes directly.
However, for in-between runs during functional DDR operation, the assertion
of interrupt does not guarantee lock as the state machine would wait for the
ideal time (DRAM self-refresh) for locking. This can be used by the firmware
to insert an ideal time, and provides an indication of availability of locked

codes.

Interrupt indicating that MSSDDR PLL has achieved lock

Interrupt indicating that MSSDDR PLL has lost lock

This interrupt will be generated by FIC64 when one of the following

conditions is true:

Write error for HPDMA or switch WCBs (from DDR_AXI_INTF)

Simultaneous read and write accesses by HPDMA and switch for same

address

Lock time out condition

Interrupt from the FPGA fabric
Interrupt from the FPGA fabric
Interrupt from the FPGA fabric
Interrupt from the FPGA fabric
Interrupt from the FPGA fabric
Interrupt from the FPGA fabric
Interrupt from the FPGA fabric
Interrupt from the FPGA fabric
Interrupt from the FPGA fabric
Interrupt from the FPGA fabric
Interrupt from the FPGA fabric
Interrupt from the FPGA fabric
Interrupt from the FPGA fabric
Interrupt from the FPGA fabric
Interrupt from the FPGA fabric
Interrupt from the FPGA fabric
Interrupt from GPIO
Interrupt from GPIO
Interrupt from GPIO
Interrupt from GPIO
Interrupt from GPIO
Interrupt from GPIO
Interrupt from GPIO
Interrupt from GPIO
Interrupt from GPIO
Interrupt from GPIO
Interrupt from GPIO
Interrupt from GPIO
Interrupt from GPIO
Interrupt from GPIO
Interrupt from GPIO
Interrupt from GPIO
Interrupt from GPIO

© 2023 Microchip Technology Inc.
and its subsidiaries

User Guide

DS50003495A-page 10

1.4

1.5

1.5.1

Cortex-M3 Processor Overview and Debug Featu...

........... continued

e e
Interrupt

INTISR[67] GPIO_INT[17] GPIO Interrupt from GPIO
INTISR[68] GPIO_INT[18] GPIO Interrupt from GPIO
INTISR[69] GPIO_INT[19] GPIO Interrupt from GPIO
INTISR[70] GPIO_INT[20] GPIO Interrupt from GPIO
INTISR[71] GPIO_INT[21] GPIO Interrupt from GPIO
INTISR[72] GPIO_INT[22] GPIO Interrupt from GPIO
INTISR[73] GPIO_INT[23] GPIO Interrupt from GPIO
INTISR[74] GPIO_INT[24] GPIO Interrupt from GPIO
INTISR[75] GPIO_INT[25] GPIO Interrupt from GPIO
INTISR[76] GPIO_INT[26] GPIO Interrupt from GPIO
INTISR[77] GPIO_INT[27] GPIO Interrupt from GPIO
INTISR[78] GPIO_INT[28] GPIO Interrupt from GPIO
INTISR[79] GPIO_INT[29] GPIO Interrupt from GPIO
INTISR[80] GPIO_INT[30] GPIO Interrupt from GPIO
INTISR[81] GPIO_INT[31] GPIO Interrupt from GPIO

Cortex-M3 Processor SysTick Timer

The processor has a 24-bit system timer, SysTick, that counts down from the reload value to zero, reloads, that is,
wraps to the value in the SYST_RVR register on the next clock edge, and then counts down on subsequent clocks.
The SysTick timer is used to generate a periodic interrupt to the Cortex-M3 processor. The SysTick can be polled by
the software or it can be configured to generate an interrupt. The SysTick interrupt has its own entry in the vector
table and therefore its own handler.

Cortex-M3 Processor Debug Subsystem

Cortex-M3 Processor Debug Port

The debug port uses a serial wire (SW) JTAG debug port (SWJ-DP). This enables either the JTAG or the SW protocol
to be used for debugging. The SWJ-DP defaults to JTAG mode at power-up and can be switched to SW by applying
a specific sequence to the debug pins.

The trace port interface unit (TPIU) is configured to support ITM debug trace and ETM debug trace. Serial wire
mode is used for the TPIU output data and this is overlaid on the JTAG TDO port. One implication of this is that
instrumentation trace cannot be used along with JTAG-based debugging. SW debugging and ITM can be used
together.

The Cortex-M3 processor provides the following debug Interfaces:

* SWJ-DP: JTAG is the industry-standard interface used to download and debug programs on a target processor,
as well as for other functions. It offers access to all of the Cortex-M3 processor CoreS|ght debug capabilities.
* SW-DP: The serial wire debug (SWD) mode is an alternative to the standard JTAG interface. SWD uses two
pins to provide the same debug functionality as JTAG with no performance penalty, and introduces data trace
capabilities with the serial wire viewer (SWV). The SWD interface pins are overlaid with the JTAG signals,
allowing standard target connectors to be used.
— TCLK: SWCLK (serial wire clock)
— TMS: SWDIO (serial wire debug data input/output)
— DO: SWO (output pin for SWV, refer to the next section).
* SWV. It provides real-time data trace information from various sources within the Cortex-M3 processor device.
This is output via the single serial wire output (SWO) pin while your system processor continues running at full
speed. SWV can only be used with the SWD interface.

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 11
and its subsidiaries

Cortex-M3 Processor Overview and Debug Featu...

« ETM: The embedded trace macrocell provides high bandwidth instruction trace via four dedicated trace pins.

1.5.2 Cortex-M3 Processor Trace System

The debug system of the Cortex-M3 processor is based on the CoreSight architecture. The
CoreSight-based designs enable the memory and peripheral registers to be examined even when the CPU is
running. It also includes the following trace capabilities:

» Data trace, generating events to record data reads/writes, exceptions/interrupts, and PC (program counter)
sampling information.
» Software trace, supporting output of debug messages (for example, printf) to the host.
» Instruction trace, collecting a sequence of every executed instruction continuously for a selected portion of your
application.
Trace data can be useful for debugging issues and collecting statistics:

* Locating errors that have irregular symptoms
* Analyzing dynamic system behavior
* Optimizing performance bottlenecks
» Counting code coverage statistics
Trace results are generated in the form of packets, which can be of various lengths. The trace components transfer

the packets using the advanced trace bus (ATB) to the TPIU, which formats the packets into the trace interface
protocol (TIP). The data is then captured by an external trace capture device such as a trace port analyzer (TPA).

The main components of the Cortex-M3 processor that can be a trace source:

« DWT, for data trace
* |ITM, for software trace
« ETM, for full instruction trace

DWT, ITM, and ETM generate trace data in the form of packets and transfer them through the ATB to the TPIU.
The TPIU has two operation modes:

* Clocked mode, using up to 4-bit (1-, 2- or 4-bit) parallel data outputs

* SWV mode, using the single-bit SWO format. Instruction trace from ETM must use the parallel trace port, while
packets of data trace and software trace normally use SWO (called SWO trace) but can also be multiplexed with
the ETM trace stream through the parallel trace port.

The following figure shows the diagram of a Cortex-M3 processor trace system. JTAG/SWD, SWO, and the 4-bit
parallel trace port can be deployed into a 20-pin Cortex Debug + ETM connector on the target.

Important: The TDO signal of JTAG is multiplexed with SWO, so that SWO trace is not accessible when
the DP is in a JTAG configuration. Only the SWD interface can be used together with SWO.

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 12
and its subsidiaries

1.5.21

1.5.2.2

Cortex-M3 Processor Overview and Debug Featu...

Figure 1-2. Trace System Block Diagram

ATB

CPUIF

A
DWT ™
Cortex-M3
Processor Core ETM Trigger Software Trace
EGiSampiec Trace Port
ATB AlB Interface Unit
»
AHB Bus ATB Interrupt Trace LA\ L (TPIV)
Matrix I
A 4 Watch points Time Stamp
System
AHB-AP swo
Cortex-M3 Microcon troller

JTAG/ 4-Bit
swp Trace

To Standard JTAG

Connector via 10
pads

To Trace for Cortex-M3 <
Connector via Cortex-M3 Debug +
FPGA Fabric ETM "~

<

The following table shows pin multiplexing details for JTAG, SWD, and ETM modes of the debug section. For more
details on pin information, refer to the DS0115: SmartFusion2 Pin Descriptions Datasheet.

Table 1-3. Signal Multiplexing

TMS

JTAG_TMS/ SWDIO SWDIO
M3_TMS/

M3_SWDIO

JTAG_TCK/ TCK SWCLK SWCLK
M3_TCK

JTAG_TDO/ TDO SWO Swo
M3_TDO/

M3_SWO

JTAG_TDI/ DI TRACECLK
M3_TDI

_ TRACEDATA[3:0]

Data Watch Point (DWP) and Trace
The DWT unit is able to provide either focused data trace or global data trace. It has four comparators used to
compare the following conditions:

* Hardware watch point: generates a watch point event to the processor to invoke debug modes such as halt or

debug monitor.

« ETM trigger: causes the ETM to emit a trigger packet in the instruction trace stream.

* PC sampler event trigger

« Data address sample trigger

Instrumentation Trace Macrocell

ITM provides the support for the debug message output, such as printf, and feeds output to the TPIU. ITM uses a
FIFO to buffer the output messages and outputs are not delayed as UART transfers. The output messages can be

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 13
and its subsidiaries

1.5.23

1.6

Cortex-M3 Processor Overview and Debug Featu...

collected at the TPI or the SWV interface on TPIU. ITM timestamps the outputs and it outputs the messages from the
DWT unit.

Embedded Trace Macrocell

The ETM block is a high speed, low power-consumption debugging tool that provides instruction trace only, and
which feeds output to the TPIU. The ETM has a FIFO queue of 24 bytes, and ETM outputs 8 bits of data at a time at
the core clock speed. This output is compatible with the AMBA trace bus (ATB). The ETM trace is supported by tools
like Keil Trace, IAR Trace, Greenhills software trace, and others. The ETM provides the following features:

» Tracing of 16-bit and 32-bit thumb instructions

* Four EmbeddedICE watchpoint inputs

* A Trace Start/Stop block with EmbeddedICE inputs
» Two external inputs

* Global time-stamping

Important: Timing model for Fabric to Embedded Trace Macrocell has been updated with additional time
delay. This changes the timing arcs of nets between Fabric to Embedded Trace Macrocell. To meet timing
accuracy, open all Libero v11.7 SP3 designs and re-run Timing Analysis. If you get new timing violations,
do the following:

1. Re-run place-and-route.

2. Re-run place-and-route with high effort.
3. Run place-and-route with multi-pass.
4

Adjust timing constraints or use chip planner to floorplan the affected interfaces.
For more information about the updated timing arcs, see PCN 17005A.

Cortex-M3 Processor Port Descriptions

The following table lists all the ports related to the Cortex-M3 subsystem, their direction, and a description of the
ports.

Table 1-4. Port Details of the Cortex-M3-Subsystem

T e e e

RXEV Causes the Cortex-M3 to wake up from a wait for event (WFE) instruction.
The event input, RXEV, is registered even when not waiting for an event,
and so affects the next WFE.

TXEV Out No Event transmitted as a result of a Cortex-M3 SEV (send event) instruction.
This is a single-cycle pulse equal to 1 M3_CLK period.

SLEEP Out No Signal is asserted when the Cortex-M3 processor is in sleep now or
sleep-on-exit mode, and indicates that the clock to the processor can be
stopped.

DEEPSLEEP Out No Signal is asserted when the Cortex-M3 processor is in sleep now or

sleep-on-exit mode when the SLEEPDEEP bit of the system control
register is set.

SLEEPHOLDREQnN | In No Request to extend Cortex-M3 processor sleep state. Signal is asserted
when SLEEPING signal is High.
SLEEPHOLDACKn Out No Signal is asserted to confirm the Cortex-M3 processor sleep state
extension request.
TRACECLK Out No | TRACETRACEDATA changes on both the edges of TRACECLK.
TRACEDATA[3:0] Out No Output data for clocked modes.
© 2023 Microchip Technology Inc. User Guide DS50003495A-page 14

and its subsidiaries

1.7

1.71

1.7.11

Cortex-M3 Processor Overview and Debug Featu...

How to Use the Cortex-M3 Processor and the Debug Subsystem

Configuration Through Libero Software and Firmware

The Cortex-M3 processor and debug subsystem can be configured using the Libero® SoC design software. Using the
MSS Cortex-M3 (CM3) configurator macro, various options can be selected, as shown in the following figure.

Figure 1-3. CM3 Configurator

8 Configuring CM3 (MSS_CM3 - 0... [|[B][X)

Configuration

Use Memary Protection Unik

Sws Tick Timer

Calibration Register | 0:x2000000

STCLK =M3_ClK) |32 »
4

a8
Events 16

Expose RAXEY port to bhe FPGA Fabric ||
Expose TXEW port ko the FPGA Fabric [

Syskem Power Managemenk

Expose SLEEPING port to the FPaA Fabric [F]
Expose SLEEFDEEP port ko the FPGA Fabric [
Expose SLEEPHOLD* ports ko the FPEA Fabric [

Trace Port Inkerface Linit

TRACECLE is M3_CLK divided by 4 IFI

Expose TRACE* ports ko the FPGA Fabric [

——

The timing arcs for interrupts to the Cortex-M3 sourced from the FPGA fabric have been updated in Libero SoC. In
addition, timing arcs for the Cortex-M3 Embedded Trace Macrocell (ETM) have been added.
Memory Protection Unit

The MPU can be enabled by the selection option provided, as shown in the preceding figure. The following table lists
all the registers that can be used to configure the MPU for the creation of the protected memory regions and setting
the privileges for the created memory region in the firmware.

Table 1-5. MPU Configuration Register

Name of Register Access Type Reset Value

MPU type register Read Only 0xEOO0ED90 0x800
MPU control register Read/Write OxEOOOEDY94 0x0
© 2023 Microchip Technology Inc. User Guide DS50003495A-page 15

and its subsidiaries

Cortex-M3 Processor Overview and Debug Featu...

........... continued

MPU region number Read/Write O0xEOOOED98

MPU region base address Read/Write O0xEOOOED9C NA
MPU region attribute and size Read/Write OxEOOOEDAO NA

1.7.1.2 SysTick Timer Configuration
The SysTick timer can be configured using the Libero software, as shown in Figure 1-3, for the SysTick calibration
value; which is the rollover value of the internal SysTick timer, and SysTick clock frequency as the division (4, 8, 16,
or 32) of Cortex-M3 clock. This value is loaded into the STCLK_DIVISOR register and it has to be configured to make
sure that the SysTick clock frequency is less than half of the frequency of Cortex-M3. SysTick also can be configured
using the firmware by using the following register, as depicted in the following table

Table 1-6. SysTick Configuration Register

SysTick Control & Status Read/Write 0xEOOOEOQ10

SysTick Reload value Read/Write 0xEOO0OEO14 Unpredictable

SysTick Current Value Read/Write clear 0xEOOOE018 Unpredictable

SysTick Calibration value Read-only 0xEOOOEO1C STCALIB set through the Libero® software

1.7.1.3 Events Configuration
TXEV and RXEV event signals of the Cortex-M3 processor can be exposed to the FPGA fabric. This can be
configured using the Libero software, as shown in Figure 1-3.

1.7.1.4 System Power Management Configuration
The Cortex-M3 processor provides various power modes. M3_CLK is gated off when in SLEEPING or SLEEPDEEP
mode. SLEEPING and SLEEPDEEP signals are available at the FPGA fabric interface. Sleep mode extension
handshake signals are available at the FPGA fabric interface. System power management options can be configured
as shown in Figure 1-3.

1.7.1.5 Trace Port Interface Unit (TPIU) Configuration

TRACECLK & TRACEDATA[3:0] can be exposed to the FPGA fabric. TACECLK can be configured for these signals
by using the Libero software, as shown in Figure 1-3.

Important: If the user design is using the FPGA fabric based master, the Cortex-M3 processor requires a
valid program in eNVM (from eNVM start address 0x60000000) to execute at power-up or power-on reset.
The valid program can be a simple user boot code or a simple loop program. You can select a . hex file of
a valid program for eNVM data client using the SystemBuilder.

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 16
and its subsidiaries

Cortex-M3 Processor (Reference Material)

Cortex-M3 Processor (Reference Material)

The Cortex-M3 processor is a high performance 32-bit processor designed for the microcontroller market. It offers the
following significant benefits to developers:

» Outstanding processing performance combined with fast interrupt handling

« Enhanced system debug with extensive breakpoint and trace capabilities

» Efficient processor core, system, and memories

» Ultra-low power consumption with integrated Sleep modes

* Robust platform security, with optional integrated memory protection unit (MPU)

Figure 2-1. Cortex-M3 Processor Implementation

Cortex-M3
processor

. Processor Embedded
_» NVIC Core Trace Macrocell “«>

Debug Memory Serial
a Access Protection Unit W|re >
Port Viewer
Flash Data
Patch Watchpoints
Bus Matrix
Code SRAM and
Interface Peripheral Interface
¢ ¢

The Cortex-M3 processor is built on a high-performance processor core, with a 3-stage pipeline Harvard architecture,
making it ideal for demanding embedded applications. The processor delivers exceptional power efficiency through
an efficient instruction set and extensively optimized design, providing high-end processing hardware including a
range of single-cycle and SIMD multiplication and multiply-with-accumulate capabilities, saturating arithmetic and
dedicated hardware division.

To facilitate the design of cost-sensitive devices, the Cortex-M3 processor implements tightly-coupled system
components that reduce processor area while significantly improving interrupt handling and system debug
capabilities. The Cortex-M3 processor implements a version of the Thumb® instruction set based on Thumb-2
technology, ensuring high code density and reduced program memory requirements. The Cortex-M3 processor
instruction set provides the exceptional performance expected of a modern 32-bit architecture, with the high code
density of 8-bit and 16-bit microcontrollers.

The Cortex-M3 processor closely integrates a configurable nested interrupt controller (NVIC), to deliver industry-
leading interrupt performance. The NVIC includes a non-maskable interrupt (NMI), and provides up to 256 interrupt
priority levels. NVIC in SmartFusion 2 SoC FPGA MSS is set to have 83 interrupts (including non-maskable
interrupt). The tight integration of the processor core and NVIC provides fast execution of interrupt service routines
(ISRs), dramatically reducing the interrupt latency.

This is achieved through the hardware stacking of registers, and the ability to suspend load-multiple and store-
multiple operations. Interrupt handlers do not require wrapping in assembly code, removing any code overhead from
the ISRs. A Tail-chain optimization also significantly reduces the overhead when switching from one ISR to another.

To optimize low-power designs, the NVIC integrates with the sleep modes, that include a deep sleep function that
enables the entire device to be rapidly powered down while still retaining program state.

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 17
and its subsidiaries

21

2.2

2.3

2.4

Cortex-M3 Processor (Reference Material)

System Level Interface

The Cortex-M3 processor provides multiple interfaces using AMBA® technology to provide high speed, low latency
memory accesses. It supports unaligned data accesses and implements atomic bit manipulation that enables faster
peripheral controls, system spinlocks, and thread-safe Boolean data handling.

The Cortex-M3 processor has an optional memory protection unit (MPU) that provides fine grain memory control,
enabling applications to utilize multiple privilege levels, separating and protecting code, data and stack on a task-by-
task basis. Such requirements are becoming critical in many embedded applications such as automotive systems.

Integrated Configurable Debug

The Cortex-M3 processor implements a complete hardware debug solution. This provides high system visibility of the
processor and memory through either a traditional JTAG port or a 2-pin Serial Wire Debug (SWD) port that is ideal for
microcontrollers and other small package devices. The MCU vendor determines the debug feature configuration and
therefore this can differ across different devices and families.

For system trace the processor integrates an Instrumentation Trace Macrocell™ (ITM) alongside data watchpoints
and a profiling unit. To enable simple and cost-effective profiling of the system events these generate, a Serial Wire
Viewer (SWV) can export a stream of software-generated messages, data trace, and profiling information through a
single pin.

The optional Embedded Trace Macrocell (ETM) delivers unrivaled instruction trace capture in an area far smaller than
traditional trace units, enabling many low cost MCUs to implement full instruction trace for the first time.

The optional Flash Patch and Breakpoint Unit (FPB) provides up to eight hardware breakpoint comparators that
debuggers can use. The comparators in the FPB also provide remap functions of up to eight words in the program
code in the CODE memory region. This enables applications stored on a non-erasable, ROM-based microcontroller
to be patched if a small programmable memory, for example flash, is available in the device. During initialization, the
application in ROM detects, from the programmable memory, whether a patch is required. If a patch is required, the
application programs the FPB to remap a number of addresses. When those addresses are accessed, the accesses
are redirected to a remap table specified in the FPB configuration, which means the program in the non-modifiable
ROM can be patched.

Cortex-M3 Processor Features and Benefits Summary
Cortex-M3 has the following features and benefits.

+ Tight integration of system peripherals reduces area and development costs

» Thumb instruction set combines high code density with 32-bit performance

» Code-patch ability for ROM system updates

» Power control optimization of system components

» Integrated Sleep modes for low power consumption

* Fast code execution permits slower processor clock or increases sleep mode time
» Hardware division and fast multiplier

» Deterministic, high-performance interrupt handling for time-critical applications

» Optional Memory Protection Unit (MPU) for safety-critical applications

+ Extensive debug and trace capabilities—Serial Wire Debug and Serial Wire Trace reduce the number of pins
required for debugging, tracing and code profiling.

Cortex-M3 Processor Core Peripherals

This section discusses the following topics:
* 2.4.1. Nested Vectored Interrupt Controller
* 2.4.2. System Control Block

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 18
and its subsidiaries

2.41

2.4.2

243

244

2.5

2.5.1

2511

2.51.2

Cortex-M3 Processor (Reference Material)

* 2.4.3. System Timer
e 2.4.4. Memory Protection Unit

Nested Vectored Interrupt Controller

The Nested Vectored Interrupt Controller (NVIC) is an embedded interrupt controller that supports low latency
interrupt processing.

System Control Block

The System control block (SCB) is the programmers model interface to the processor. It provides system
implementation information and system control, including configuration, control, and reporting of system exceptions.

System Timer

The system timer, SysTick, is a 24-bit count-down timer. Use this as a Real Time Operating System (RTOS) tick timer
or as a simple counter.

Memory Protection Unit

The Memory protection unit (MPU) improves system reliability by defining the memory attributes for different memory
regions. It provides up to eight different regions, and an optional predefined background region.

Cortex-M3 Processor Description

This section discusses the programmers model, memory model, exception model, fault handling, and power
management.

Programmers Model

This section describes the Cortex-M3 processor programmers model. In addition to the individual core register
descriptions, it contains information about the processor modes and privilege levels for software execution and
stacks.

Processor Mode and Privilege Levels for Software Execution
The following is a list of processor modes for software execution:
» Thread mode: Used to execute application software. The processor enters Thread mode when it comes out of
reset.
» Handler mode: Used to handle exceptions. The processor returns to Thread mode when it has finished all
exception processing.
The following is a list of privilege levels for software execution:
* Unprivileged:
— has limited access to the MSR and MRS instructions, and cannot use the CPS instruction
— cannot access the system timer, NVIC, or system control block
— might have restricted access to memory or peripherals.
Unprivileged software executes at the unprivileged level.
» Privileged: The software can use all the instructions and has access to all resources.
Privileged software executes at the privileged level.

In Thread mode, the CONTROL register controls whether software execution is privileged or unprivileged, see
2.5.1.3.10. CONTROL Register. In Handler mode, software execution is always privileged.

Only privileged software can write to the CONTROL register to change the privilege level for software execution in
Thread mode. Unprivileged software can use the SVC instruction to make a supervisor call to transfer control to
privileged software.

Stacks

The processor uses a full descending stack. This means the stack pointer holds the address of the last stacked item
in the stack memory. When the processor pushes a new item onto the stack, it decrements the stack pointer and then

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 19
and its subsidiaries

2513

Cortex-M3 Processor (Reference Material)

writes the item to the new memory location. The processor implements two stacks, the main stack and the process
stack, held in independent registers, see 2.5.1.3.2. Stack Pointer.

In Thread mode, the CONTROL register controls whether the processor uses the main stack or the process stack,
see 2.5.1.3.10. CONTROL Register. In Handler mode, the processor always uses the main stack. The options for
processor operations are:

Table 2-1. Summary of Processor Mode, Execution Privilege Level, and Stack Use Options

Processor Mode Used to Execute Privilege Level for
Software Execution

Thread Applications Privileged or unprivileged | Main stack or process stack

Handler Exception handlers Always privileged Main stack
Core Registers

The following figure shows the processor core registers.

Figure 2-2. Core Register Set

R1
R2
Low Registers RS
R4
R5
R6 General-purpose Registers
R7
~ R8
R9
High Registers R10
R11
R12)
Stack Pointer SP (R13) [pspt || wmsp *Banked version of SP
Link Register LR (R14)
Program Counter PC (R15)
PSR Program Status Register
PRIMASK
FAULTMASK Exception Mask Registers Special Registers
BASEPRI
CONTROL CONTROL Register

Table 2-2. Core Register Set Summary

Type! Required Reset Value Description
Privilege?

R0O-R12 Either Unknown General-Purpose Registers
MSP RW Privileged See description Stack Pointer
PSP RW Either Unknown Stack Pointer
LR RW Either OxFFFFFFFF Link Register
PC RW Either See description | Program Counter
PSR RW Privileged Unknown Program Status Register
ASPR RW Either Unknown Application Program Status Register
IPSR RO Privileged 0x00000000 Interrupt Program Status Register
EPSR RO Privileged 0x01000000 Execution Program Status Register
PRIMASK RW Privileged 0x00000000 Priority Mask Register
© 2023 Microchip Technology Inc. User Guide DS50003495A-page 20

and its subsidiaries

2.5.1.31

2.5.1.3.2

2.51.33

2.51.3.4

2.51.3.5

Cortex-M3 Processor (Reference Material)

........... continued
Type' Required Reset Value Description
Privilege?
FAULTMASK ' RW Privileged 0x00000000 Fault Mask Register
BASEPRI RW Privileged 0x00000000 Base Priority Mask Register
CONTROL RW Privileged 0x00000000 CONTROL Register

Notes:
1. Describes access type during program execution in Thread mode and Handler mode. Debug access can differ.
2. An entry of Either means privileged and unprivileged software can access the register.

The following sections describe these registers in detail.

General-Purpose Registers
R0-R12 are 32-bit general-purpose registers for data operations.

Stack Pointer
The Stack Pointer (SP) is register R13. In Thread mode, bit[1] of the CONTROL register indicates the stack pointer to
use:

* 0: Main Stack Pointer (MSP). This is the reset value

* 1: Process Stack Pointer (PSP)

On reset, the processor loads the MSP with the value from address 0x00000000.

Link Register
The Link Register (LR) is register R14. It stores the return information for subroutines, function calls, and exceptions.
On reset, the processor sets the LR value to OxFFFFFFFF.

Program Counter

The Program Counter (PC) is register R15. It contains the current program address. On reset, the processor loads
the PC with the value of the reset vector, which is at address 0x00000004. Bit[0] of the value is loaded into the EPSR
T-bit and must be 1.

Program Status Register
The Program Status Register (PSR) combines:

» Application Program Status Register (APSR)
* Interrupt Program Status Register (IPSR)
» Execution Program Status Register (EPSR)

These registers are mutually exclusive bitfields in the 32-bit PSR. The bit assignments are shown in the following
figure.

Figure 2-3. Program Status Register

31 30 29 28[27 26 25 24 23 } 16]15 | 109 8] } 0
APSR|N|[Z|C V| Q Reserved
IPSR Reserved ISR_NUMBER
EPSR| Reserved [ICI/IT|T Reserved ICINT Reserved

Access these registers individually or as a combination of any two or all three registers, using the register name as an
argument to the MSR or MRS instructions. For example:

* Read all of the registers using PSR with the MRS instruction.

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 21
and its subsidiaries

2.51.3.6

2.51.3.7

Cortex-M3 Processor (Reference Material)

* Write to the APSR using APSR with the MSR instruction.
The following table shows the PSR combinations and attributes.
Table 2-3. PSR Combinations and Attributes

PSR Rw1.2 APSR, EPSR, and IPSR
IEPSR RO EPSR and IPSR

IAPSR RwW! APSR and IPSR
EAPSR RW2 APSR and EPSR
Notes:

1. The processor ignores writes to the IPSR bits.
2. Reads of the EPSR bits return zero, and the processor ignores writes to the these bits.

See the instruction descriptions in 2.6.10.6. MRS and 2.6.10.7. MSR for more information about how to access the
program status registers.

Application Program Status Register
The APSR contains the current state of the condition flags from previous instruction executions. See the register
summary in the following table for its attributes. The following table lists the bit assignments.

Table 2-4. Application Program Status Register

[31] N Negative flag

[30] VA Zero flag

[29] C Carry or borrow flag
[28] V Overflow flag

[27] Q Saturation flag
[27:0] — Reserved

Interrupt Program Status Register
The IPSR contains the exception type number of the current Interrupt Service Routine (ISR). See the register
summary in Table 2-2 for its attributes. The following table lists the bit assignments.

Table 2-5. IPSR Bit Assignments

[31:9] Reserved

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 22
and its subsidiaries

Cortex-M3 Processor (Reference Material)

........... continued
Bfts _ [Name __ JFunctn |
[8:0] ISR_NUMBER This is the number of the current exception:
0 = Thread mode
1 = Reserved
2 = NMI
3 = HardFault
4 = MemManage
5 = BusFault

6 = UsageFault

7-10 = Reserved

11 = SVCall

12 = Reserved for Debug

13 = Reserved

14 = PendSV
15 = SysTick
16 = IRQO.
255 = IRQ239

For more information, see 2.5.3.2. Exception Types.

2.5.1.3.8 Execution Program Status Register
The EPSR contains the Thumb state bit, and the execution state bits for either the:

* If-Then (IT) instruction
» Interruptible-Continuable Instruction (ICI) field for an interrupted load multiple or store multiple instruction

For the EPSR attributes, see the register summary in Table 2-2. The following table lists the bit assignments.

Table 2-6. EPSR Bit Assignments

[31:27] — Reserved

[26:25], [15:10] ICIIT Indicates the interrupted position of a continuable instruction, or the execution
state of an IT instruction (see 2.6.9.3. IT).

[24] T Thumb state bit

[23:16] — Reserved

[9:0] — Reserved

Attempts to read the EPSR directly using the MRS instruction always return zero. Attempts to write the EPSR using
the MSR instruction are ignored.

Interruptible-continuable Instructions

When an interrupt occurs during the execution of an LDM, STM, PUSH, or POP instruction, the processor:

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 23
and its subsidiaries

Cortex-M3 Processor (Reference Material)

Stops the load multiple or store multiple instruction operation temporarily
Stores the next register operand in the multiple operation to EPSR bits[15:12]

After servicing the interrupt, the processor:

Continues loading the register pointed to by bits[15:12]
Resumes execution of the multiple load or store instruction

When the EPSR holds ICI execution state, bits[26:25,11:10] are zero.

If-Then Block

The If-Then block contains up to four instructions following an IT instruction. Each instruction in the block is
conditional. The conditions for the instructions are either all the same, or some can be the inverse of others. For
more information, see 2.6.9.3. IT.

Thumb State
The Cortex-M3 processor only supports execution of instructions in Thumb state. The following can clear the T
bit to O:

+ Instructions BLX, BX and POP{PC}
* Restoration from the stacked xPSR value on an exception return
+ Bit[0] of the vector value on an exception entry or reset

Attempting to execute instructions when the T bit is 0 results in a fault or lockup. For more information, see
2.5.4.4. Lockup.

The T bit can be modified both by software, using the mechanisms described in this section, and directly by the
debugger.

2.5.1.3.9 Exception Mask Registers
The exception mask registers disable the handling of exceptions by the processor. Disable exceptions where they
might impact on timing critical tasks.

To access the exception mask registers use the MSR and MRS instructions, or the CPS instruction to change the
value of PRIMASK or FAULTMASK. For more information, see 2.6.10.6. MRS, 2.6.10.7. MSR, and 2.6.10.2. CPS.

Priority Mask Register

The PRIMASK register prevents activation of all exceptions with configurable priority. For information about its
attributes, see the register summary in Table 2-2. The following figure for bit assignments for MSR or MRS access.

Figure 2-4. Priority Mask Register

31

Reserved

PRIMASK—]

Table 2-7. PRIMASK Register Bit Assignments

[31:1] — Reserved

0]

PRIMASK 0: no effect
1: prevents the activation of all exceptions with configurable priority.

Fault Mask Register

The FAULTMASK register prevents activation of all exceptions except for Non-Maskable Interrupt (NMI). For
information about its attributes, see the register summary in Table 2-2.

The following table lists the big assignments for MSR or MRS access.

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 24

and its subsidiaries

Cortex-M3 Processor (Reference Material)

Table 2-8. FAULT Register Bit Assignments

[31:1] — Reserved

[0] FAULTMASK 0: no effect
1: prevents the activation of all exceptions except for NMI.

The processor clears the FAULTMASK bit to 0 on exit from any exception handler except the NMI handler.
Base Priority Mask Register

The BASEPRI register defines the minimum priority for exception processing. When BASEPRI is set to a nonzero
value, it prevents the activation of all exceptions with the same or lower priority level as the BASEPRI value. For
information about its attributes, see the register summary in Table 2-2.

Figure 2-5. Base Priority Mask Register
131 g i i i i 817 i 0

Reserved BASEPRI

The following table lists the big assignments for MSR or MRS access.

Table 2-9. BASEPRI Register Bit Assignments

S

[31:8] — Reserved

[7:0] BASEPRI' Priority mask bits:
0x00: no effect

Nonzero: defines the base priority for exception processing.

The processor does not process any exception with a priority value greater than or
equal to BASEPRI.

Note: (V) This field is similar to the priority fields in the interrupt priority registers. The device implements only
bits[7:M] of this field, bits [M-1:0] read as zero and ignore writes. For more information, see 2.7.1.8. Interrupt Priority
Registers. Remember that higher priority field values correspond to lower exception priorities.

2.5.1.3.10 CONTROL Register
The CONTROL register controls the stack used and the privilege level for software execution when the processor
is in Thread mode. For information about its attributes, see the register summary in Table 2-2. The following figure
shows the bit assignments for MSR or MRS access.

Figure 2-6. Control Register
31 | | | | | | 210

Reserved

Active Stake Pointer—|
Thread Mode Privilege Level
Table 2-10. Control Register Bit Assignments

[31:2] — Reserved

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 25
and its subsidiaries

Cortex-M3 Processor (Reference Material)

........... continued
[1] Active stack pointer Defines the currently active stack pointer:
* 0: MSP is the current stack pointer
» 1: PSP is the current stack pointer
In Handler mode this bit reads as zero and ignores writes.
[0] Thread mode privilege level | Defines the Thread mode privilege level:

e 0: Privileged
* 1: Unprivileged

Handler mode always uses the MSP, so the processor ignores explicit writes to the active stack pointer bit of the
CONTROL register when in Handler mode. The exception entry and return mechanisms automatically update the
CONTROL register based on the EXC_RETURN value, see Table 2-17.

In an OS environment, Arm recommends that threads running in Thread mode use the process stack and the kernel
and exception handlers use the main stack.

By default, Thread mode uses the MSP. To switch the stack pointer used in Thread mode to the PSP, either:

» Use the MSR instruction to set the Active stack pointer bit to 1, see 2.6.10.7. MSR

» Perform an exception return to Thread mode with the appropriate EXC_RETURN value. For more information,
see Table 2-17

Important: When changing the stack pointer, software must use an ISB instruction immediately after
the MSR instruction. This ensures that instructions after the ISB instruction execute using the new
stack pointer. For more information, see 2.6.10.5. ISB.

2.5.1.4 Exceptions and Interrupts
The Cortex-M3 processor supports interrupts and system exceptions. The processor and the Nested Vectored
Interrupt Controller (NVIC) prioritize and handle all exceptions. An exception changes the normal flow of software
control. The processor uses Handler mode to handle all exceptions except for reset. For more information, see
2.5.3.7.1. Exception Entry and 2.5.3.7.2. Exception Return.

The NVIC registers control interrupt handling. For more information, see 2.4.1. Nested Vectored Interrupt Controller.
The following sections provide more information about the CMSIS.

+ 2.5.5.5. Power Management Programming Hints

* 2.6.2. CMSIS Functions

» 2.7.1.2. Accessing the Cortex-M3 Processor NVIC Registers Using CMSIS
* 2.7.1.11.1. NVIC programming hints

2.51.5 Datatypes
The processor:

» Supports the following data types:
— 32-bit words
— 16-bit halfwords
— 8-bit bytes.

* Manages all data memory accesses as little-endian or big-endian. Instruction memory and Private Peripheral
Bus (PPB) accesses are always performed as little-endian. The Cortex-M3 processor configured for
SmartFusion 2 SoC FPGA MSS uses only little-endian. For more information, see 2.5.2.1. Memory Regions,
Types and Attributes.

2.5.1.6 The Cortex Microcontroller Software Interface Standard
For a Cortex-M3 processor system, the Cortex Microcontroller Software Interface Standard (CMSIS) defines:

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 26
and its subsidiaries

Cortex-M3 Processor (Reference Material)

* acommon way to:
— access peripheral registers
— define exception vectors
» the names of:
— the registers of the core peripherals
— the core exception vectors
» adevice-independent interface for RTOS kernels, including a debug channel.

The CMSIS includes address definitions and data structures for the core peripherals in the Cortex-M3 processor. It
also includes optional interfaces for middleware components comprising a TCP/IP stack and a Flash file system.

CMSIS simplifies software development by enabling the reuse of template code and the combination of CMSIS-
compliant software components from various middleware vendors. Software vendors can expand the CMSIS to
include their peripheral definitions and access functions for those peripherals.

This document includes the register names defined by the CMSIS, and gives short descriptions of the CMSIS
functions that address the processor core and the core peripherals.

Note: This document uses the register short names defined by the CMSIS. In a few cases these differ from the
architectural short names that might be used in other documents.

2.5.2 Memory Model

This section describes the processor memory map, the behavior of memory accesses, and the
bit-banding features. The processor has a fixed memory map that provides up to 4GB of addressable memory. The
following illustration shows the processor memory map.

Figure 2-7. Processor Memory Map

OxFFFFFFFF

Vendor-specific
memory

511MB
0xE0100000
Private peripheral OxEOOFFFFF

o 1.0MB
0XE0000000
OXDFFFFFFF

External device 1.0GB

0xA0000000
OX9FFFFFFF

External RAM 1.0GB

0x43FFFFFF

32MB Bit band alias

0x60000000
0x42000000 OXSFFFFFFF

Peripheral 0.5GB

x40 0F PP e b and region
0x40000000 0x40000000
0x23FFFFFF Ox3FFFFFFF
32MB Bit band alias SRAM 0.568
0x20000000
0x22000000 OX1FFFFFFF
Code 0.5GB
0x200FFFFF
TMB_ Bit band regi
0x20000000 ! Jand region 0x00000000

The regions for SRAM and peripherals include bit-band regions. Bit-banding provides atomic operations to bit data,
see 2.5.2.5. Bit-Banding.

The processor reserves regions of the Private peripheral bus (PPB) address range for core peripheral registers, see
2.7. Cortex-M3 Processor Peripherals.

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 27
and its subsidiaries

2521

2.5.2.2

2523

Cortex-M3 Processor (Reference Material)

Memory Regions, Types and Attributes

The memory map and the programming of the MPU splits the memory map into regions. Each region has a defined
memory type, and some regions have additional memory attributes. The memory type and attributes determine the
behavior of accesses to the region.

The memory types are:
Normal: The processor can re-order transactions for efficiency, or perform speculative reads.

Device: The processor preserves transaction order relative to other transactions to Device or Strongly-ordered
memory.

Strongly-ordered: The processor preserves transaction order relative to all other transactions Strongly-Ordered or
Device.

The different ordering requirements for Device and Strongly-ordered memory mean that the memory system can
buffer a write to Device memory, but must not buffer a write to Strongly-ordered memory.

The additional memory attributes include:

Shareable: For a shareable memory region, the memory system provides data synchronization between bus masters
in a system with multiple bus masters, for example, a processor with a DMA controller.

Strongly-ordered memory is always shareable.

If multiple bus masters can access a non-shareable memory region, software must ensure data coherency between
the bus masters.

Execute Never (XN): Means the processor prevents instruction accesses. A fault exception is generated only on
execution of an instruction executed from an XN region.

Memory System Ordering of Memory Accesses

For most memory accesses caused by explicit memory access instructions, the memory system does not ensure
that the order in which the accesses complete matches the program order of the instructions, providing this does
not affect the behavior of the instruction sequence. Normally, if correct program execution depends on two memory
accesses completing in program order, software must insert a memory barrier instruction between the memory
access instructions.

However, the memory system does ensure some ordering of accesses to Device and Strongly-ordered memory. The
following figure shows the ordering of the memory accesses caused by two instructions A1 and A2 if A1 occurs
before A2 in program order.

Figure 2-8. Memory Ordering Restrictions

A2 Normal Device access Strongly-
A1 access ordered
Non-shareable| Shareable access
Normal access
Device access, non-shareable - < - <
Device access, shareable - - < <
Strongly-ordered access - < < <

Where:

* - Means that the memory system does not ensure the ordering of the accesses.
* < Means that accesses are observed in program order, that is, A1 is always observed before A2.

Behavior of Memory Accesses
The following table provides information about the behavior of accesses to each region in the memory map.

Table 2-11. Memory Access Behavior

Address range | Memory region | Memory Description
Type'

0x00000000- Code Normal Executable region for program code. You can also
Ox1FFFFFFF put data here.
© 2023 Microchip Technology Inc. User Guide DS50003495A-page 28

and its subsidiaries

2.5.2.31

25.23.2

Cortex-M3 Processor (Reference Material)

........... continued

Address range | Memory region | Memory Description
Type'

0x20000000- Normal Executable region for data. You can also put code
Ox3FFFFFFF here. This region includes bit band and bit band
alias areas, see Table 2-13.

0x40000000- Peripheral Device XN This region includes bit band and bit band alias
Ox5FFFFFFF areas, see Table 2-14.

0x60000000- External RAM Normal — Executable region for data.

Ox9FFFFFFF

0xA0000000- External device Device XN External Device memory.

OxDFFFFFFF

0xE0000000- Private Strongly- XN This region includes the NVIC, System timer, and
OXEOOFFFFF Peripheral Bus ordered system control block.

0xE0100000- Vendor specific Device XN Accesses to this region are to vendor-specific
OxFFFFFFFF peripherals.
Note:

1. See 2.5.2.1. Memory Regions, Types and Attributes for more information.

The Code, SRAM, and external RAM regions can hold programs. However, Arm recommends that programs always
use the Code region. This is because the processor has separate buses that enable instruction fetches and data
accesses to occur simultaneously.

The MPU can override the default memory access behavior described in this section. For more information, see
2.4.4. Memory Protection Unit.

Additional memory access constraints for caches and shared memory
When a system includes caches or shared memory, some memory regions have additional access constraints, and

some regions are subdivided, as detailed in the following table.

Table 2-12. Memory Region Shareability and Cache Policies

Address range Memory type'! Shareability
policy?

0x00000000- Ox1FFFFFFF Code Normal

0x20000000- Ox3FFFFFFF SRAM Normal — WBWA
0x40000000- OX5FFFFFFF Peripheral Device — —
0x60000000- Ox7FFFFFFF External RAM Normal — WBWA
0x80000000- Ox9FFFFFFF WT
0xA0000000- OXBFFFFFFF External device Device Shareable —

0xC0000000- OXDFFFFFFF
0xE0000000- OXEOOFFFFF
0xE0100000- OXFFFFFFFF

Non-shareable

Private Peripheral Bus Strongly- ordered Shareable —

Vendor-specific device Device — —

Notes:
1. See 2.5.2.1. Memory Regions, Types and Attributes for more information.
2. WT = Write through, no write allocate. WBWA = Write back, write allocate.

Instruction Prefetch and Branch Prediction
The Cortex-M3 processor:

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 29

and its subsidiaries

2524

2.5.2.5

Cortex-M3 Processor (Reference Material)

» Prefetches instructions ahead of execution
» Speculatively prefetches from branch target addresses.

Software Ordering of Memory Accesses
The order of instructions in the program flow does not always guarantee the order of the corresponding memory
transactions. This is because:
» the processor can reorder some memory accesses to improve efficiency, providing this does not affect the
behavior of the instruction sequence.
» the processor has multiple bus interfaces
* memory or devices in the memory map have different wait states
* some memory accesses are buffered or speculative.
2.5.2.2. Memory System Ordering of Memory Accesses describes the cases where the memory system guarantees

the order of memory accesses. Otherwise, if the order of memory accesses is critical, software must include memory
barrier instructions to force that ordering. The processor provides the following memory barrier instructions:

DMB: The Data Memory Barrier (DMB) instruction ensures that outstanding memory transactions complete before
subsequent memory transactions. See 2.6.10.3. DMB.

DSB: The Data Synchronization Barrier (DSB) instruction ensures that outstanding memory transactions complete
before subsequent instructions execute. See 2.6.10.4. DSB.

ISB: The Instruction Synchronization Barrier (ISB) ensures that the effect of all completed memory transactions is
recognizable by subsequent instructions. See 2.6.10.5. ISB.

MPU programming

Use a DSB followed by an ISB instruction or exception return to ensure that the new MPU configuration is used by
subsequent instructions.

Bit-Banding

A bit-band region maps each word in a bit-band alias region to a single bit in the bit-band region. The bit-band
regions occupy the lowest 1MB of the SRAM and peripheral memory regions.

Important: The Cortex-M3 processor does not support exclusive accesses to bit-band regions.

The memory map has two 32MB alias regions that map to two 1MB bit-band regions:

» accesses to the 32MB SRAM alias region map to the 1MB SRAM bit-band region, as detailed in Table 2-13.

» accesses to the 32MB peripheral alias region map to the 1MB peripheral bit-band region, as detailed in Table
2-14.

Table 2-13. SRAM Memory Bit-banding Regions

Address Range Memory SRAM Region | Instruction and Data Accesses

0x20000000-0x200FFFFF | Bit-band region Direct accesses to this memory range behave as SRAM
memory accesses, but this region is also bit addressable
through bit-band alias.

0x22000000-0x23FFFFFF | Bit-band alias Data accesses to this region are remapped to bit band
region. A write operation is performed as read-modify-write.
Instruction accesses are not remapped.

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 30
and its subsidiaries

Cortex-M3 Processor (Reference Material)

Table 2-14. Peripheral Memory Bit-banding Regions

Address range Memory SRAM Region | Instruction and Data Accesses

0x40000000-0x400FFFFF | Bit-band alias Direct accesses to this memory range behave as peripheral
memory accesses, but this region is also bit addressable
through bit-band alias.

0x42000000-0x43FFFFFF | Bit-band region Data accesses to this region are remapped to bit band
region. A write operation is performed as read-modify-write.
Instruction accesses are not permitted.

Important:

» A word access to the SRAM or peripheral bit-band alias regions maps to a single bit in the SRAM or
peripheral bit-band region.

» Bit band accesses can use byte, halfword, or word transfers. The bit band transfer size matches the
transfer size of the instruction making the bit band access.

The following formula shows how the alias region maps onto the bit-band region:

« bit_word_offset = (byte_offset x 32) + (bit_number x 4)
» bit_word_addr = bit_band_base + bit_word_offset

where:

» Bit_word_offset is the position of the target bit in the bit-band memory region.

» Bit_word_addr is the address of the word in the alias memory region that maps to the targeted bit.
» Bit_band_base is the starting address of the alias region.

» Byte_offset is the number of the byte in the bit-band region that contains the targeted bit.

* Bit_number is the bit position, 0-7, of the targeted bit.

The following illustration shows examples of bit-band mapping between the SRAM bit-band alias region and the
SRAM bit-band region.

» The alias word at Ox23FFFFEQ maps to bit[0] of the bit-band byte at 0x200FFFFF:
0x23FFFFEOQ = 0x22000000 + (OXFFFFF*32) + (0*4).

* The alias word at Ox23FFFFFC maps to bit[7] of the bit-band byte at 0Ox200FFFFF:
0x23FFFFFC = 0x22000000 + (OXFFFFF*32) + (7*4).

» The alias word at 0x22000000 maps to bit[0] of the bit-band byte at 0x20000000:
0x22000000 = 0x22000000 + (0*32) + (0 *4).

« The alias word at 0x2200001C maps to bit[7] of the bit-band byte at 0x20000000:
0x2200001C = 0x22000000+ (0*32) + (7*4).

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 31
and its subsidiaries

2.5.2.5.1

2.5.2.5.2

2.5.2.6

2.5.2.6.1

2.5.2.6.2

Cortex-M3 Processor (Reference Material)

Figure 2-9. Bit-band Mapping
32MB Alias Region

I O0x23FFFFFC I Ox23FFFFF O0x23FFFFF4 | Ox23FFFFFO | Ox23FFFFEC I 0x23FFFFE8 FFFFE4 I 0x23FFFFEO I

/I 0x2200001C I 0x22000018 0x22000014 0x22000010 l 0x22000(\ 0x22000008 I 0x22000004 I 0x22000000 I

K 1MB SRAM Bit-band Region

76543210%%4\32107654321076543210

| ‘ OXZOOFFFFF‘ ‘ | ‘ 0x200FFFFC ‘ |

7 6 5 4 3 2 1 07 6 5 4 3 2 107 6 5 4 3 21 7 6 5 4 3 2 1 0

| ‘ OXZOOOOOOS‘ ‘ | ‘ 0x20000000 ‘ |

OXZOOFFFFE 0x200FFFFD

Ox20000002 0x20000001

Directly Accessing an Alias Region
Writing to a word in the alias region updates a single bit in the bit-band region.
Bit[0] of the value written to a word in the alias region determines the value written to the targeted bit in the bit-band
region. Writing a value with bit[0] set to 1 writes a 1 to the bit-band bit, and writing a value with bit[0] set to 0 writes a
0 to the bit-band bit.
Bits[31:1] of the alias word have no effect on the bit-band bit. Writing 0x01 has the same effect as writing OxFF.
Writing 0x00 has the same effect as writing OxOE.
Reading a word in the alias region:
» 0x00000000 indicates that the targeted bit in the bit-band region is set to zero
» 0x00000001 indicates that the targeted bit in the bit-band region is set to 1.
Directly accessing a bit-band region
2.5.2.3. Behavior of Memory Accesses describes the behavior of direct byte, halfword, or word accesses to the
bit-band regions.
Memory Endianness
The processor views memory as a linear collection of bytes numbered in ascending order from zero. For example,
bytes 0-3 hold the first stored word, and bytes 4-7 hold the second stored word. Byte-invariant big-endian format or
Little-endian format describes how words of data are stored in memory.
Byte-invariant Big-endian Format
In byte-invariant big-endian format, the processor stores the most significant byte of a word at the lowest-numbered
byte, and the least significant byte at the highest-numbered byte. The following illustration shows the byte-invariant
big-endian format.
Figure 2-10. Byte-Invariant Big-Endian Format
Memory Register
7 0
31 0 2423 | 1615 | 87 O
Address A BO msbyte BO B1 B2 B3

A+1| B1

A+2| B2

A+3 B3 Isbyte
Little-Endian format
In little-endian format, the processor stores the least significant byte of a word at the lowest-numbered byte, and the
most significant byte at the highest-numbered byte. Cortex-M3 processor configured for SmartFusion 2 SoC FPGA
MSS uses only little endian. The following figure illustrates the little-endian format.
© 2023 Microchip Technology Inc. User Guide DS50003495A-page 32

and its subsidiaries

Cortex-M3 Processor (Reference Material)

Figure 2-11. Little Endian Format
Memory Register
7 0

31 2423 1615 87 0

Address A BO Isbyte B3 B2 B1 BO
A+1 B1
A+2| B2

A+3 B3 msbyte

2.5.2.7 Synchronization Primitives

The Cortex-M3 processor instruction set includes pairs of synchronization primitives. These provide a non-blocking
mechanism that a thread or process can use to obtain exclusive access to a memory location. Software can use
them to perform a guaranteed read-modify-write memory update sequence, or for a semaphore mechanism.

A pair of synchronization primitives comprises.

2.5.2.7.1 A Load-Exclusive Instruction
Used to read the value of a memory location, requesting exclusive access to that location.

2.5.2.7.2 A Store-Exclusive Instruction
Used to attempt to write to the same memory location, returning a status bit to a register. If this bit is:

« 0:itindicates that the thread or process gained exclusive access to the memory, and the write succeeds.
» 1:itindicates that the thread or process did not gain exclusive access to the memory, and no write is performed.

The pairs of Load-Exclusive and Store-Exclusive instructions are:

* the word instructions LDREX and STREX
* the halfword instructions LDREXH and STREXH
» the byte instructions LDREXB and STREXB.

Software must use a Load-Exclusive instruction with the corresponding Store-Exclusive instruction.
To perform a guaranteed read-modify-write of a memory location, software must:

1. Use a Load-Exclusive instruction to read the value of the location.
2. Update the value, as required.

3. Use a Store-Exclusive instruction to attempt to write the new value back to the memory location, and tests the
returned status bit. If this bit is:

— 0: The read-modify-write completed successfully.

— 1: No write was performed. This indicates that the value returned at step 1 might be out of date. The
software must retry the read-modify-write sequence.

Software can use the synchronization primitives to implement a semaphores as follows:
1. Use a Load-Exclusive instruction to read from the semaphore address to check whether the semaphore is
free.
2. If the semaphore is free, use a Store-Exclusive to write the claim value to the semaphore address.

3. Ifthe returned status bit from step2 indicates that the Store-Exclusive succeeded then the software has
claimed the semaphore. However, if the Store-Exclusive failed, another process might have claimed the
semaphore after the software performed step 1.

The Cortex-M3 processor includes an exclusive access monitor, that tags the fact that the processor has executed
a Load-Exclusive instruction. If the processor is part of a multiprocessor system, the system also globally tags the
memory locations addressed by exclusive accesses by each processor.

The processor removes its exclusive access tag if:

» It executes a CLREX instruction
» It executes a Store-Exclusive instruction, regardless of whether the write succeeds.
» An exception occurs. This means the processor can resolve semaphore conflicts between different threads.

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 33
and its subsidiaries

25238

253

2.5.31

2.53.2

Cortex-M3 Processor (Reference Material)

In a multiprocessor implementation:

» By executing a CLREX instruction removes only the local exclusive access tag for the processor
» By executing a Store-Exclusive instruction, or an exception, removes the local exclusive access tags, and all
global exclusive access tags for the processor.

For more information about the synchronization primitive instructions, see 2.6.4.8. LDREX and STREX and
2.6.4.9. CLREX.

Programming Hints for the Synchronization Primitives

ISO/IEC C cannot directly generate the exclusive access instructions. Some CMSIS provides intrinsic functions for
generation of these instructions. The following table lists the functions that CMSIS provides.

Table 2-15. CMSIS Functions for Exclusive Access Instructions

LDREX, LDREXH, or LDREXB unsigned char__ LDREXB(volatile char *ptr)
unsigned short __ LDREXH(volatile short *ptr)

unsigned int __ LDREXB(volatile int *ptr)

STREX, STREXH, or STREXB int_ STREXB(unsigned char val, volatile char *ptr)
int__ STREXB(unsigned short val, volatile short *ptr)

int_ STREXB(unsigned int val, volatile int *ptr)

CLREX void _ CLREX(void)

The actual exclusive access instruction generated depends on the data type of the pointer passed to the intrinsic
function.

Exception Model
This section describes the exception model.

Exception States
Each exception is in one of the following states:
» Inactive: The exception is not active and not pending.
» Pending: The exception is waiting to be serviced by the processor. An interrupt request from a peripheral or from
software can change the state of the corresponding interrupt to pending.
» Active: An exception that is being serviced by the processor but has not completed. An exception handler can
interrupt the execution of another exception handler. In this case both exceptions are in the active state.
» Active and pending: The exception is being serviced by the processor and there is a pending exception from the
same source.

Exception Types
The exception types are:

* Reset: Reset is invoked on power-up or a warm reset. The exception model treats reset as a special form of
exception. When reset is asserted, the operation of the processor stops, potentially at any point in an instruction.
When reset is deasserted, execution restarts from the address provided by the reset entry in the vector table.
Execution restarts as privileged execution in Thread mode.

* NMI: A Non-Maskable Interrupt (NMI) can be signaled by a peripheral or triggered by software. This is the
highest priority exception other than reset. It is permanently enabled and has a fixed priority of -2. NMIs cannot
be:

— Masked or prevented from activation by any other exception
— Preempted by any exception other than Reset

» HardFault: A HardFault is an exception that occurs because of an error during exception processing, or because
an exception cannot be managed by any other exception mechanism. HardFaults have a fixed priority of -1,
meaning they have higher priority than any exception with configurable priority.

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 34

and its subsidiaries

Cortex-M3 Processor (Reference Material)

MemManage: A MemManage fault is an exception that occurs because of a memory protection related fault.
The MPU or the fixed memory protection constraints determines this fault, for both instruction and data memory
transactions. This fault is always used to abort instruction accesses to Execute Never (XN) memory regions.

BusFault: A BusFault is an exception that occurs because of a memory related fault for an instruction or data
memory transaction. This might be from an error detected on a bus in the memory system.

UsageFault: A UsageFault is an exception that occurs because of a fault related to instruction execution.
This includes:

* An undefined instruction

* Anillegal unaligned access

+ Invalid state on instruction execution
* An error on exception return

The following can cause a UsageFault when the core is configured to report them:
* An unaligned address on word and halfword memory access
« Division by zero
SVCall: A supervisor call (SVC) is an exception that is triggered by the SVC instruction. In an OS environment,
applications can use SVC instructions to access OS kernel functions and device drivers.
PendSV: PendSV is an interrupt-driven request for system-level service. In an OS environment, use PendSV for

context switching when no other exception is active.
» SysTick: A SysTick exception is an exception the system timer generates when it reaches zero. Software can
also generate a SysTick exception. In an OS environment, the processor can use this exception as system tick.
« Interrupt (IRQ): A interrupt, or IRQ, is an exception signaled by a peripheral, or generated by a software
request. All interrupts are asynchronous to instruction execution. In the system, peripherals use interrupts to
communicate with the processor.

For an asynchronous exception, other than reset, the processor can execute another instruction between when the
exception is triggered and when the processor enters the exception handler.

Table 2-16. Properties of the Different Exception Types

Exception |IRQ number! |Exception type |Priority Vector address or | Activation
number? offset?

Reset -3, the highest 0x00000004 Asynchronous

2 -14 NMI -2 0x00000008 Asynchronous

3 -13 HardFault -1 0x0000000C

4 -12 MemManage Configurable 0x00000010 Synchronous

5 -1 BusFault Configurable® 0x00000014 Synchronous when
precise, asynchronous
when imprecise

6 -10 UsageFault Configurabled 0x00000018 Synchronous

7-10 Reserved — — —

11 -5 SVCall Configurabled 0x0000002C Synchronous

12-13 Reserved — — —

14 -2 PendSV Configurabled 0x00000038 Asynchronous

15 -1 SysTick Configurabled 0x0000003C Asynchronous

16 and 0 and above Interrupt (IRQ) Configurable* 0x00000040 and Asynchronous

above above®

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 35

and its subsidiaries

2533

2534

2.5.3.5

Cortex-M3 Processor (Reference Material)

Notes:

1. To simplify the software layer, the CMSIS only uses IRQ numbers and therefore uses negative values for
exceptions other than interrupts. The IPSR returns the Exception number, see 2.5.1.3.7. Interrupt Program
Status Register.

2. See 2.5.3.4. Vector Table for more information.
3. See 2.7.2.8. System Handler Priority Registers.
4. See 2.7.1.8. Interrupt Priority Registers.

5. Increasing in steps of 4.

Privileged software can disable the exceptions that Table 2-16 shows as having configurable priority. See
2.7.2.9. System Handler Control and State Register and 2.7.1.4. Interrupt Clear-enable Registers.

For more information about HardFaults, MemManage faults, BusFaults, and UsageFaults, see 2.5.4. Fault Handling.

Exception Handlers
The processor handles exceptions using:

» Interrupt Service Routines (ISRs): Interrupts IRQO to IRQ239 are the exceptions handled by ISRs.

» Fault handlers: HardFault, MemManage, UsageFault and BusFault are fault exceptions handled by the fault
handlers.

» System handlers: NMI, PendSV, SVCall SysTick, and the fault exceptions are all system exceptions that are
handled by system handlers.

Vector Table

The vector table contains the reset value of the stack pointer, and the start addresses, also called exception
vectors, for all exception handlers. Figure 2-2 shows the order of the exception vectors in the vector table. The
least-significant bit of each vector must be 1, indicating that the exception handler is Thumb code.

Figure 2-12. Vector Table

Exception number IRQ number Offset Vector
255 239 IRQ239
0x03FC
0x004C
18 2 IRQ2
0x0048
17 1 IRQ1
0x0044
16 0 IRQO
0x0040 -
15 -1 Systick
0x003C
14 -2 PendSV
0x0038
13 Reserved
12 Reserved for Debug
11 -5 SVCall
0x002C
10
9
Reserved
8
7
6 -10 Usage fault
0x0018
5 11 Bus fault
0x0014
4 -12 Memory management fault
0x0010
3 -13 Hard fault
0x000C
2 -14 NMI
0x0008
1 Reset
0x0004
Initial SP value
0x0000

On system reset, the vector table is fixed at address 0x00000000. Privileged software can write to the VTOR to
relocate the vector table start address to a different memory location, in the range 0x00000080 to Ox3FFFFF80, see
2.7.2.4. Vector Table Offset Register.

Exception Priorities
As Table 2-16 shows, all exceptions have an associated priority, with:

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 36
and its subsidiaries

2.5.3.6

2.5.3.7

Cortex-M3 Processor (Reference Material)

* Alower priority value indicating a higher priority
» Configurable priorities for all exceptions except Reset, HardFault, and NMI

If software does not configure any priorities, then all exceptions with a configurable priority have a priority of
0. For information about configuring exception priorities see 2.7.2.8. System Handler Priority Registers and
2.7.1.8. Interrupt Priority Registers.

Important: Configurable priority values are in the range 0-255. This means that the Reset, HardFault,
and NMI exceptions, with fixed negative priority values, always have higher priority than any other
exception.

For example, assigning a higher priority value to IRQ[0] and a lower priority value to IRQ[1] means that IRQ[1] has
higher priority than IRQ[0]. If both IRQ[1] and IRQ[0] are asserted, IRQ[1] is processed before IRQ[0].

If multiple pending exceptions have the same priority, the pending exception with the lowest exception number
takes precedence. For example, if both IRQ[0] and IRQ[1] are pending and have the same priority, then IRQ[O0] is
processed before IRQ[1].

When the processor is executing an exception handler, the exception handler is preempted if a higher priority
exception occurs. If an exception occurs with the same priority as the exception being handled, the handler is not
preempted, irrespective of the exception number. However, the status of the new interrupt changes to pending.

Interrupt Priority Grouping

To increase priority control in systems with interrupts, the NVIC supports priority grouping. This divides each interrupt
priority register entry into two fields:

» An upper field that defines the group priority
* Alower field that defines a subpriority within the group.

Only the group priority determines preemption of interrupt exceptions. When the processor is executing an interrupt
exception handler, another interrupt with the same group priority as the interrupt being handled does not preempt the
handler,

If multiple pending interrupts have the same group priority, the subpriority field determines the order in which they are
processed. If multiple pending interrupts have the same group priority and subpriority, the interrupt with the lowest
IRQ number is processed first.

For information about splitting the interrupt priority fields into group priority and subpriority, see 2.7.2.5. Application
Interrupt and Reset Control Register.

Exception Entry and Return
Descriptions of exception handling use the following terms:

* Preemption: When the processor is executing an exception handler, an exception can preempt the exception
handler if its priority is higher than the priority of the exception being handled. See 2.5.3.6. Interrupt Priority
Grouping for more information about preemption by an interrupt.

When one exception preempts another, the exceptions are called nested exceptions. See 2.5.3.7.1. Exception
Entry more information.
* Return: This occurs when the exception handler is completed, and:
— There is no pending exception with sufficient priority to be serviced
— The completed exception handler was not handling a late-arriving exception.

The processor pops the stack and restores the processor state to the state it had before the interrupt occurred.
See 2.5.3.7.2. Exception Return for more information.

» Tail-chaining: This mechanism speeds up exception servicing. On completion of an exception handler, if there
is a pending exception that meets the requirements for exception entry, the stack pop is skipped and control
transfers to the new exception handler.

« Late-arriving: This mechanism speeds up preemption. If a higher priority exception occurs during state saving
for a previous exception, the processor switches to handle the higher priority exception and initiates the vector
fetch for that exception. State saving is not affected by late arrival because the state saved is the same for
both exceptions. Therefore the state saving continues uninterrupted. The processor can accept a late arriving

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 37
and its subsidiaries

2.5.3.71

2.5.3.7.2

Cortex-M3 Processor (Reference Material)

exception until the first instruction of the exception handler of the original exception enters the execute stage of
the processor. On return from the exception handler of the late-arriving exception, the normal tail-chaining rules

apply.
Exception Entry
Exception entry occurs when there is a pending exception with sufficient priority and either:
» The processor is in Thread mode
» The new exception is of higher priority than the exception being handled, in which case the new exception
preempts the exception being handled.
When one exception preempts another, the exceptions are nested.
Sufficient priority means the exception has greater priority than any limit set by the mask register, see
2.5.1.3.9. Exception Mask Registers. An exception with less priority than this is pending but is not handled by
the processor.
When the processor takes an exception, unless the exception is a tail-chained or a late-arriving exception, the
processor pushes information onto the current stack. This operation is referred to as stacking and the structure of
eight data words is referred as a stack frame. The following figure illustrates the information contained in the stack
frame.
Figure 2-13. Exception Entry Stack Contents
<previous> l«—SP points here before interrupt
SP + 0x1C xPSR
SP + 0x18 PC
Decreasing SP + 0x14 LR
memory SP + 0x10 R12
address | SP + 0x0C R3
SP + 0x08 R2
SP + 0x04 R1
v SP + 0x00 RO [«—SP points here after interrupt
Immediately after stacking, the stack pointer indicates the lowest address in the stack frame. The alignment of the
stack frame is controlled via the STKALIGN bit of the Configuration Control Register (CCR).
The stack frame includes the return address. This is the address of the next instruction in the interrupted program.
This value is restored to the PC at exception return so that the interrupted program resumes.
The processor performs a vector fetch that reads the exception handler start address from the vector table. When
stacking is complete, the processor starts executing the exception handler. At the same time, the processor writes
an EXC_RETURN value to the LR. This indicates which stack pointer corresponds to the stack frame and what
operation mode the processor was in before the entry occurred.
If no higher priority exception occurs during exception entry, the processor starts executing the exception handler and
automatically changes the status of the corresponding pending interrupt to active.
If another higher priority exception occurs during exception entry, the processor starts executing the exception
handler for this exception and does not change the pending status of the earlier exception. This is the late arrival
case.
Exception Return
Exception return occurs when the processor is in Handler mode and execution of one of the following instructions
attempts to set the PC to an EXC_RETURN value:
* An LDM or POP instruction that loads the PC
* An LDR instruction with PC as the destination
» A BXnstruction using any register
The processor saves an EXC_RETURN value to the LR on exception entry. The exception mechanism relies on this
value to detect when the processor has completed an exception handler. Bits[31:4] of an EXC_RETURN value are
OxFFFFFFF.
When the processor loads a value matching this pattern to the PC it detects that the operation is a not a normal
branch operation and, instead, that the exception is complete. Therefore, it starts the exception return sequence.
Bits[3:0] of the EXC_RETURN value indicate the required return stack and processor mode, as noted in the following
table.
© 2023 Microchip Technology Inc. User Guide DS50003495A-page 38

and its subsidiaries

254

2541

Cortex-M3 Processor (Reference Material)

Table 2-17. Exception Return Behavior

OxFFFFFFF1 * Return to Handler mode
» Exception return gets state from the main stack
» Execution uses MSP after return

OxFFFFFFF9 * Return to Thread mode
» Exception Return get state from the main stack
« Execution uses MSP after return

OxFFFFFFFD * Return to Thread mode
» Exception return gets state from the process stack
» Execution uses PSP after return

All other values Reserved

Fault Handling
Faults are a subset of the exceptions, see 2.5.3. Exception Model. The following generates a fault:

* abus error on:
— an instruction fetch or vector table load
— adata access
» an internally-detected error such as an undefined instruction
» attempting to execute an instruction from a memory region marked as Non-Executable (XN).

» attempting to execute an instruction while the EPSR T-bit is clear. For example, as the result of an erroneous BX
instruction, or a vector fetch from a vector table entry with bit[0] clear.

» an MPU fault because of a privilege violation or an attempt to access an unmanaged region.

Fault Types

The following table shows the types of fault, the handler used for the fault, the corresponding fault status register, and
the register bit that indicates that the fault has occurred. For more information about the fault status registers, see
2.7.2.10. Configurable Fault Status Register.

Table 2-18. Faults

Bus error on a vector read HardFault VECTTBL HardFault Status Register
Fault escalated to a FORCED
HardFault
MPU or default memory MemManage —
map mismatch:
on instruction access IACCVIOL MemManage Fault Status Register
on data access DACCVIOL
during exception stacking MSTKERR
during exception unstacking MUNSKERR
Bus error: BusFault —
© 2023 Microchip Technology Inc. User Guide DS50003495A-page 39

and its subsidiaries

2542

2543

Cortex-M3 Processor (Reference Material)

........... continued
S TS e
during exception stacking STKERR BusFault Status Register
during exception unstacking — UNSTKERR

during instruction prefetch — IBUSERR

Precise data bus error — PRECISERR

Imprecise data bus error — IMPRECISERR

Attempt to access a UsageFault NOCP UsageFault Status Register
coprocessor

Undefined instruction UNDEFINSTR

Attempt to enter an invalid INVSTATE

instruction set state?

Invalid EXC_RETURN value | UsageFault INVPC UsageFault Status Register
lllegal unaligned load or UNALIGNED

store

Divide By 0 DIVBYZERO
Notes:

1. Occurs on an access to an XN region even if the processor does not include an MPU or the MPU is disabled.

2. Attempting to use an instruction set other than the Thumb instruction set or returns to a non load/store-multiple
instruction with ICI continuation.

Fault Escalation and HardFaults

All faults exceptions except for HardFault have configurable exception priority, see 2.7.2.8. System Handler Priority
Registers. Software can disable execution of the handlers for these faults, see 2.7.2.9. System Handler Control and
State Register.

Usually, the exception priority, together with the values of the exception mask registers, determines whether the
processor enters the fault handler, and whether a fault handler can preempt another fault handler as described in
2.5.3. Exception Model.

In some situations, a fault with configurable priority is treated as a HardFault. This is called priority escalation, and the
fault is described as escalated to HardFault. Escalation to HardFault occurs when:

A fault handler causes the same kind of fault as the one it is servicing. This escalation to HardFault occurs because a
fault handler cannot preempt itself because it must have the same priority as the current priority level.

A fault handler causes a fault with the same or lower priority as the fault it is servicing. This is because the handler for
the new fault cannot preempt the currently executing fault handler.

An exception handler causes a fault for which the priority is the same as or lower than the currently executing
exception.

A fault occurs and the handler for that fault is not enabled.

If a BusFault occurs during a stack push when entering a BusFault handler, the BusFault does not escalate to a
HardFault. This means that if a corrupted stack causes a fault, the fault handler executes even though the stack push
for the handler failed. The fault handler operates but the stack contents are corrupted.

Only Reset and NMI can preempt the fixed priority HardFault. A HardFault can preempt any exception other than
Reset, NMI, or another HardFault.
Fault Status Registers and Fault Address Registers

The fault status registers indicate the cause of a fault. For BusFaults and MemManage faults, the fault address
register indicates the address accessed by the operation that caused the fault, as detailed in the following table.

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 40
and its subsidiaries

2544

2.5.5

2551

25511

2.5.5.1.2

Cortex-M3 Processor (Reference Material)

Table 2-19. Fault Status and Fault Address Registers

Status Register | Address Register | Register Description
Name Name

HardFault HFSR HardFault Status Register
MemManage MMFSR MMFAR MemManage Fault Status Register
MemManage Fault Address Register
BusFault BFSR BFAR BusFault Status Register
BusFault Address Register
UsageFault UFSR — UsageFault Status Register
Lockup

The processor enters a lockup state if a fault occurs when executing the NMI or HardFault handlers. When the
processor is in lockup state it does not execute any instructions. The processor remains in lockup state until either:
* ltisreset
* An NMI occurs
« ltis halted by the debugger

Important: If lockup state occurs from the NMI handler a subsequent NMI does not cause the processor
to leave lockup state.

Power Management
The Cortex-M3 processor sleep modes reduce power consumption:

» Sleep mode stops the processor clock.
» Deep sleep mode stops the system clock and switches off the PLL and flash memory.

The SLEEPDEEP bit of the SCR selects which Sleep mode is used, see 2.7.2.6. System Control Register.

This section describes the mechanisms for entering Sleep mode, and the conditions for waking up from Sleep mode.
Entering Sleep Mode

This section describes the mechanisms software can use to put the processor into Sleep mode.

The system can generate spurious wakeup events, for example a debug operation wakes up the processor.
Therefore software must be able to put the processor back into Sleep mode after such an event. A program might
have an idle loop to put the processor back to Sleep mode.

Wait for Interrupt

The wait for interrupt instruction, WFI, causes immediate entry to sleep mode unless the wake-up condition is true,
see 2.5.5.2.1. Wakeup from WFI or sleep-on-exit. When the processor executes a WFI instruction it stops executing
instructions and enters sleep mode. For more information, see 2.5.5.2.2. Wakeup from WFE.

Wait for Event
The wait for event instruction, WFE, causes entry to sleep mode dependent on the value of a one-bit event register.
When the processor executes a WFE instruction, it checks the value of the event register:

0: The processor stops executing instructions and enters Sleep mode.
1: The processor clears the register to 0 and continues executing instructions without entering Sleep mode.
For more information, see 2.6.10.12. WFI.

If the event register is 1, this indicate that the processor must not enter Sleep mode on execution of a WFE
instruction. Typically, this is because an external event signal is asserted, or a processor in the system has executed
an SEV instruction, see 2.6.10.9. SEV. Software cannot access this register directly.

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 41
and its subsidiaries

25513

2.5.5.2

2.5.,5.2.1

2.5.5.2.2

2.5.5.3

2554

2.5.5.5

2.6

Cortex-M3 Processor (Reference Material)

Sleep-on-exit
If the SLEEPONEXIT bit of the SCR is set to 1, when the processor completes the execution of all exception handles
it returns to Thread mode and immediately enters Sleep mode. Use this mechanism in applications that only require
the processor to run when an exception occurs.
Wakeup from Sleep Mode
The conditions for the processor to wakeup depend on the mechanism that cause it to enter sleep mode.
Wakeup from WFI or sleep-on-exit
Normally, the processor wakes up only when it detects an exception with sufficient priority to cause exception entry.
Some embedded systems might have to execute system restore tasks after the processor wakes up, and before it
executes an interrupt handler. To achieve this set the PRIMASK bit to 1 and the FAULTMASK bit to 0. If an interrupt
arrives that is enabled and has a higher priority than current exception priority, the processor wakes up but does not
execute the interrupt handler until the processor sets PRIMASK to zero. For more information about PRIMASK and
FAULTMASK, see 2.5.1.3.9. Exception Mask Registers.
Wakeup from WFE
The processor wakes up if:
» It detects an exception with sufficient priority to cause exception entry
» It detects an external event signal, see 2.5.5.4. External Event Input
* In a multiprocessor system, another processor in the system executes an SEV instruction
In addition, if the SEVONPEND bit in the SCR is set to 1, any new pending interrupt triggers an event and wakes
up the processor, even if the interrupt is disabled or has insufficient priority to cause exception entry. For more
information about the SCR, see 2.7.2.6. System Control Register.
The Wakeup Interrupt Controller
The Wakeup Interrupt Controller (WIC) is a peripheral that can detect an interrupt and wake the processor from deep
sleep mode. The WIC is enabled only when the DEEPSLEEP bit in the SCR is set to 1, see 2.7.2.6. System Control
Register.
The WIC is not programmable, and does not have any registers or user interface. It operates entirely from hardware
signals.
When the WIC is enabled and the processor enters deep sleep mode, the power management unit in the system can
power down most of the Cortex-M3 processor. This has the side effect of stopping the SysTick timer. When the WIC
receives an interrupt, it takes a number of clock cycles to wakeup the processor and restore its state, before it can
process the interrupt. This means interrupt latency is increased in deep sleep mode.
Important: If the processor detects a connection to a debugger it disables the WIC.
External Event Input
The processor provides an external event input signal. Peripherals can drive this signal, either to wake the processor
from WFE, or to set the internal WFE event register to one to indicate that the processor must not enter Sleep mode
on a later WFE instruction. For more information, see 2.5.5.1.2. Wait for Event.
Power Management Programming Hints
ISO/IEC C cannot directly generate the WFI and WFE instructions. The CMSIS provides the following functions for
these instructions:
void __ WFE(void) // Wait for Event
void __WFI(void) // Wait for Interrupt
Cortex-M3 Processor Instruction Set
This section is the reference material for the Cortex-M3 processor instruction set description in this user guide.
© 2023 Microchip Technology Inc. User Guide DS50003495A-page 42

and its subsidiaries

2.6.1

Cortex-M3 Processor (Reference Material)

Instruction Set Summary
The processor implements a version of the Thumb instruction set. The following table lists the supported instructions.

In the following table:

« angle brackets, <>, enclose alternative forms of the operand

» braces, {}, enclose optional operands
» the Operands column is not exhaustive

» Op2is a flexible second operand that can be either a register or a constant
* most instructions can use an optional condition code sulffix.

For more information on the instructions and operands, see the instruction descriptions.

Table 2-20. Cortex-M3 Processor Instructions

ADC, ADCS
ADD, ADDS
ADD, ADDW
ADR

AND, ANDS
ASR, ASRS
B

BFC

BFI

BIC, BICS
BKPT

BL

BLX

BX

CBNz

CBz
CLREX
CLzZ

CMN

CMP
CPSID
CPSIE
DMB

DSB

EOR, EORS
ISB

IT

{Rd,} Rn, Op2
{Rd,} Rn, Op2
{Rd,} Rn, #imm12
Rd, label

{Rd,} Rn, Op2
Rd, Rm, <Rs|#n>
label

Rd, #lsb, #width
Rd, Rn, #lsb, #width
{Rd,} Rn, Op2
#imm

label

Rm

Rm

Rn, label

Rn, label

Rd, Rm
Rn, Op2
Rn, Op2
i

{Rd,} Rn, Op2

Add with Carry

Add

Add

Load PC-relative Address

Logical AND

Arithmetic Shift Right

Branch

Bit Field Clear

Bit Field Insert

Bit Clear

Breakpoint

Branch with Link

Branch indirect with Link

Branch indirect

Compare and Branch if Non Zero
Compare and Branch if Zero
Clear Exclusive

Count Leading Zeros

Compare Negative

Compare

Change Processor State, Disable Interrupts
Change Processor State, Enable Interrupts
Data Memory Barrier

Data Synchronization Barrier
Exclusive OR

Instruction Synchronization Barrier

If-Then condition block

N,Z C,V
N,Z C,V
N,Z C,V
N,Z, C
N,Z C

N,z C

N,Z,C,V
N,Z,C,V

© 2023 Microchip Technology Inc.

and its subsidiaries

User Guide

DS50003495A-page 43

Cortex-M3 Processor (Reference Material)

........... continued

LDMDB, LDMEA
LDMFD, LDMIA

LDR

LDRB, LDRBT
LDRD

LDREX
LDREXB
LDREXH
LDRH, LDRHT

LDRSB,
LDRSBT

LDRSH,
LDRSHT

LDRT

LSL, LSLS
LSR, LSRS
MLA

MLS

MOV, MOVS
MOVT
MOVW, MOV
MRS

MSR

MUL, MULS
MVN, MVNS
NOP

ORN, ORNS
ORR, ORRS
POP

PUSH

RBIT

REV

REV16
REVSH

Rn{!}, reglist
Rn{!}, reglist
Rn{!}, reglist
Rt, [Rn, #offset]
Rt, [Rn, #offset]
Rt, Rt2, [Rn, #offset]
Rt, [Rn, #offset]
Rt, [Rn]

Rt, [Rn]

Rt, [Rn, #offset]
Rt, [Rn, #offset]

Rt, [Rn, #offset]

Rt, [Rn, #offset]
Rd, Rm, <Rs|#n>
Rd, Rm, <Rs|#n>
Rd, Rn, Rm, Ra
Rd, Rn, Rm, Ra
Rd, Op2

Rd, #imm16

Rd, #imm16

Rd, spec_reg
spec_reg, Rm
{Rd,} Rn, Rm
Rd, Op2

{Rd,} Rn, Op2
{Rd,} Rn, Op2
reglist
reglist
Rd, Rn
Rd, Rn
Rd, Rn
Rd, Rn

Load Multiple registers, increment after
Load Multiple registers, decrement before
Load Multiple registers, increment after
Load Register with word

Load Register with byte

Load Register with two bytes

Load Register Exclusive

Load Register Exclusive with Byte
Load Register Exclusive with Halfword
Load Register with Halfword

Load Register with Signed Byte

Load Register with Signed Halfword

Load Register with word

Logical Shift Left

Logical Shift Right

Multiply with Accumulate, 32-bit result

Multiply and Subtract, 32-bit result

Move

Move Top

Move 16-bit constant

Move from Special Register to general register
Move from general register to Special Register
Multiply, 32-bit result

Move NOT

No Operation

Logical OR NOT

Logical OR

Pop registers from stack

Push registers onto stack

Reverse Bits

Reverse byte order in a word

Reverse byte order in each halfword

Reverse byte order in bottom halfword and sign
extend

N,Z C

N,Z C

N,Z C

N,Z, C

N,Z, CV

N, Z

N,Z C

N,Z C
N,Z C

© 2023 Microchip Technology Inc.

and its subsidiaries

User Guide

DS50003495A-page 44

Cortex-M3 Processor (Reference Material)

........... continued

ROR, RORS Rd, Rm, <Rs|#n> Rotate Right N,Z C
RRX, RRXS Rd, Rm Rotate Right with Extend N, Z,C
RSB, RSBS {Rd,} Rn, Op2 Reverse Subtract N,Z C,V
SBC, SBCS {Rd,} Rn, Op2 Subtract with Carry N,Z C,V
SBFX Rd, Rn, #lsb, #width Signed Bit Field Extract —
SDIV {Rd,} Rn, Rm Signed Divide —
SEV Send Event —
SMLAL RdLo, RdHi, Rn, Rm Signed Multiply with Accumulate (32 x 32 + 64), 64- —

bit result
SMULL RdLo, RdHi, Rn, Rm Signed Multiply (32 x 32), 64-bit result —
SSAT Rd, #n, Rm {,shift #s} Signed Saturate Q
STM Rn{!}, reglist Store Multiple registers, increment after —
STMDB, STMEA Rn{!}, reglist Store Multiple registers, decrement before —
STMFD, STMIA | Rn{!}, reglist Store Multiple registers, increment after —
STR Rt, [Rn, #offset] Store Register word —
STRB, STRBT Rt, [Rn, #offset] Store Register byte —
STRD Rt, Rt2, [Rn, #offset] Store Register two words —
STREX Rd, Rt, [Rn, #offset] Store Register Exclusive
STREXB Rd, Rt, [Rn] Store Register Exclusive Byte —
STREXH Rd, Rt, [Rn] Store Register Exclusive Halfword —
STRH, STRHT Rt, [Rn, #offset] Store Register Halfword —
STRT Rt, [Rn, #offset] Store Register word —
SUB, SUBS {Rd,} Rn, Op2 Subtract N,Z C,V
SUB, SUBW {Rd,} Rn, #imm12 Subtract N,Z C,V
SvVC #imm Supervisor Call —
SXTB {Rd,} Rm {,ROR #n} Sign extend a byte —
SXTH {Rd,} Rm {,ROR #n} Sign extend a halfword —
TBB [Rn, Rm] Table Branch Byte —
TBH [Rn, Rm, LSL #1] Table Branch Halfword —
TEQ Rn, Op2 Test Equivalence N,Z C
TST Rn, Op2 Test N, Z, C
UBFX Rd, Rn, #lsb, #width Unsigned Bit Field Extract —
uDIV {Rd,} Rn, Rm Unsigned Divide —
UMLAL RdLo, RdHi, Rn, Rm Unsigned Multiply with Accumulate —

(32 x 32 + 64), 64-bit result
UMULL RdLo, RdHi, Rn, Rm Unsigned Multiply (32 x 32), 64-bit result —

© 2023 Microchip Technology Inc.

and its subsidiaries

User Guide

DS50003495A-page 45

2.6.2

Cortex-M3 Processor (Reference Material)

........... continued
e e - — -
USAT Rd, #n, Rm {,shift #s} Unsigned Saturate

UXTB {Rd,} Rm {,ROR #n} Zero extend a Byte =

UXTH {Rd,} Rm {,ROR #n} Zero extend a Halfword =

WFE Wait for Event —

WEFI Wait for Interrupt —

CMSIS Functions

ISO/IEC C code cannot directly access some Cortex-M3 processor instructions. This section describes intrinsic
functions that can generate these instructions, provided by the CMSIS and that might be provided by a C compiler.
If a C compiler does not support an appropriate intrinsic function, you might have to use inline assembler to access
some instructions.

The following table lists the intrinsic functions that the CMSIS provides to generate instructions that ISO/IEC C code
cannot directly access.

Table 2-21. CMSIS Functions to Generate some Cortex-M3 Processor instructions

CPSIE | void _ enable irg(void)

CPSID | void disable irg(void)

CPSIE F void _ enable fault irg(void)

CPSID F void _ disable fault irg(void)

ISB void ISB(void)

DSB void DSB(void)

DMB void _ DMB(void)

REV uint32 t REV(uint32 t int value)
REV16 uint32 t REV16(uint32_ t int value)
REVSH uint32 t REVSH(uint32 t int value)
RBIT uint32 t RBIT (uint32 t int value)
SEV void SEV(void)

WFE void _ WFE (void)

WEFI void WFI (void)

The following table lists the functions that CMSIS provides for accessing the special registers using MRS and MSR
instructions.

Table 2-22. CMSIS Functions to Access the Special Registers

Special Register m CMSIS function

PRIMASK Read uint32 t get PRIMASK (void)
Write void set PRIMASK (uint32 t value)
FAULTMASK Read uint32 t get FAULTMASK (void)
Write void set FAULTMASK (uint32 t value)
© 2023 Microchip Technology Inc. User Guide DS50003495A-page 46

and its subsidiaries

2.6.3

2.6.3.1

2.6.3.2

2.6.3.3

2.6.3.3.1

Cortex-M3 Processor (Reference Material)

........... continued
SpocialRosor | Accoss _oMSISfuncton |
BASEPRI Read uint32 t get BASEPRI (void)
Write void set BASEPRI (uint32 t value)
CONTROL Read uint32 t get CONTROL (void)
Write void set CONTROL (uint32 t value)
MSP Read uint32 t get MSP (void)
Write void set MSP (uint32 t TopOfMainStack)
PSP Read uint32 t get PSP (void)
Write void set PSP (uint32 t TopOfProcStack)

About the Instruction Descriptions
The following sections provide more information about using the instructions:

Operands

An instruction operand can be an ARM register, a constant, or another instruction-specific parameter. Instructions
act on the operands and often store the result in a destination register. When there is a destination register in the
instruction, it is usually specified before the operands.

Operands in some instructions are flexible in that they can either be a register or a constant. See 2.6.3.3. Flexible
Second Operand.

Restrictions when Using PC or SP
Many instructions have restrictions on whether you can use the Program Counter (PC) or Stack Pointer (SP) for the
operands or destination register. See instruction descriptions for more information.

Bit[0] of any address you write to the PC with a BX, BLX, LDM, LDR, or POP instruction must be 1 for correct
execution, because this bit indicates the required instruction set, and the Cortex-M3 processor only supports Thumb
instructions.

Flexible Second Operand
Many general data processing instructions have a flexible second operand. This is shown as Operand? in the
descriptions of the syntax of each instruction.

Operand?2 can be a constant or a register with optional shift.

Constant
You specify an Operand2 constant in the form:
fconstant

where constant can be:

* any constant that can be produced by shifting an 8-bit value left by any number of bits within a 32-bit word
» any constant of the form 0x00XY00XY

» any constant of the form 0xXY00XY00

» any constant of the form OxXYXYXYXY

In the constants shown above, X and Y are hexadecimal digits.

In addition, in a small number of instructions, constant can take a wider range of values. These are described in the
individual instruction descriptions.

When an Operand2 constant is used with the instructions MOVS, MVNS, ANDS, ORRS, ORNS, EORS, BICS, TEQ Or TST,
the carry flag is updated to bit[31] of the constant, if the constant is greater than 255 and can be produced by shifting
an 8-bit value. These instructions do not affect the carry flag if Operand?2 is any other constant.

Instruction substitution

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 47
and its subsidiaries

2.6.3.3.2

2.6.34

2.6.3.4.1

Cortex-M3 Processor (Reference Material)

Your assembler might be able to produce an equivalent instruction in cases where you specify a constant that is not
permitted. For example, an assembler might assemble the instruction CMP Rd, #0xFFFFFFFE as the equivalent
instruction CMN Rd, #0x2.

Register with Optional Shift
You specify an Operand? register in the form:

Rm {, shift}

where:

* Rm: is the register holding the data for the second operand.

* shift:is an optional shift to be applied to Rm. It can be one of:
— ASR #n: arithmetic shift right n bits, 1 <n <32
— LSL #n: logical shift left n bits, 1 <n <31
— LSR #n: logical shift right n bits, 1 < n <32
— ROR #n: rotate right n bits, 1 < n < 31
— RRX: rotate right one bit, with extend

- if omitted, no shift occurs, equivalent to LS #0.
If you omit the shift, or specify .SI. #0, the instruction uses the value in Rm.

If you specify a shift, the shift is applied to the value in Rm, and the resulting 32-bit value is used by the instruction.
However, the contents in the register Rm remains unchanged. Specifying a register with shift also updates the carry
flag when used with certain instructions. For information on the shift operations and how they affect the carry flag,
refer to 2.6.3.4. Shift Operations.

Shift Operations

Register shift operations move the bits in a register left or right by a specified number of bits, the shift length. Register
shift can be performed:

« directly by the instructions ASR, LSR, LSL, ROR, and RRX, and the result is written to a destination register

» during the calculation of Operand?2 by the instructions that specify the second operand as a register with shift,
refer to 2.6.3.3. Flexible Second Operand. The result is used by the instruction.

The permitted shift lengths depend on the shift type and the instruction, refer to the individual instruction description
or 2.6.3.3. Flexible Second Operand. If the shift length is 0, no shift occurs. Register shift operations update the carry
flag except when the specified shift length is 0. The following sub-sections describe the various shift operations and
how they affect the carry flag. In these descriptions, Rm is the register containing the value to be shifted, and n is the
shift length.

ASR

Arithmetic shift right by n bits moves the left-hand 32-n bits of the register Rm, to the right by n places, into the
right-hand 32-n bits of the result. And it copies the original bit[31] of the register into the left-hand n bits of the result.
Refer to Figure 2-14.

You can use the ASR #n operation to divide the value in the register Rm by 2", with the result being rounded towards
negative-infinity.
When the instruction is ASRS or when ASR #n is used in Operand?2 with the instructions MOVS, MVNS, ANDS, ORRS,
ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit shifted out, bit[n-1], of the register Rm.

* If nis 32 or more, then all the bits in the result are set to the value of bit[31] of Rm.

» If nis 32 or more and the carry flag is updated, it is updated to the value of bit[31] of Rm.

Figure 2-14. ASR#3
Carry

EREE rlee

31 5|4|3|2(1]0 D

== [

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 48
and its subsidiaries

2.6.3.4.2

2.6.3.4.3

2.6.34.4

Cortex-M3 Processor (Reference Material)

LSR
Logical shift right by n bits moves the left-hand 32-n bits of the register Rm, to the right by n places, into the right-hand
32-n bits of the result. And it sets the left-hand n bits of the result to 0. See the following figure.

You can use the LSR #n operation to divide the value in the register Rm by 2", if the value is regarded as an unsigned
integer.

When the instruction is LSRS or when LSR #n is used in Operand2 with the instructions MOVS, MVNS, ANDS, ORRS,
ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit shifted out, bit[n-1], of the register rRm.

« If nis 32 or more, then all the bits in the result are cleared to 0.
» If nis 33 or more and the carry flag is updated, it is updated to 0.

Figure 2-15. LSR

e ©o—
e o—
o —
uj

QO

«Q

[[P

LSL
Logical shift left by n bits moves the right-hand 32-n bits of the register Rm, to the left by n places, into the left-hand
32-n bits of the result. And it sets the right-hand n bits of the result to 0. See Figure 2-16.

You can use the LSL #n operation to multiply the value in the register Rm by 2", if the value is regarded as an
unsigned integer or a two’s complement signed integer. Overflow can occur without warning.

When the instruction is LSLS or when LS. #n, with non-zero n, is used in Operand2 with the instructions MOVS,
MVNS, ANDS, ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit shifted out, bit[32-n], of
the register Rm. These instructions do not affect the carry flag when used with LS. #0.

« If nis 32 or more, then all the bits in the result are cleared to 0.

» If nis 33 or more and the carry flag is updated, it is updated to 0.

Figure 2-16. LSL

e o—

L] \
= [
=
o
N
w
N +O—
N
o l¢eo—

o JSES ==l

ROR

Rotate right by n bits moves the left-hand 32-n bits of the register Rm, to the right by n places, into the right-hand
32-n bits of the result. And it moves the right-hand n bits of the register into the left-hand n bits of the result. See the
following figure.

When the instruction is RORS or when ROR #n is used in Operand2 with the instructions MOVS, MVNS, ANDS,
ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit rotation, bit[n-1], of the register Rm.

» Ifnis 32, then the value of the result is same as the value in Rm, and if the carry flag is updated, it is updated to
bit[31] of Rm.
* ROR with shift length, n, more than 32 is the same as ROR with shift length n-32.

Figure 2-17. ROR

Carry

31 5|4|3]|2[1]0 D

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 49
and its subsidiaries

Cortex-M3 Processor (Reference Material)

2.6.3.4.5 RRX

2.6.3.5

2.6.3.6

2.6.3.7

Rotate right with extend moves the bits of the register Rm to the right by one bit. And it copies the carry flag into
bit[31] of the result. See the following figure.

When the instruction is RRXS or when RRX is used in Operand2 with the instructions MOVS, MVNS, ANDS, ORRS,
ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to bit[0] of the register Rm.

Figure 2-18. RRX

Carry
Flag

31(30 110

TS C_

Address Alignment
An aligned access is an operation where a word-aligned address is used for a word, dual word, or multiple word
access, or where a halfword-aligned address is used for a halfword access. Byte accesses are always aligned.

The Cortex-M3 processor supports unaligned access only for the following instructions:

+ LDR, LDRT

* LDRH, LDRHT

+ LDRSH, LDRSHT
+ STR, STRT

* STRH, STRHT

All other load and store instructions generate a UsageFault exception if they perform an unaligned access, and
therefore their accesses must be address aligned. For more information about UsageFaults, see 2.5.4. Fault
Handling.

Unaligned accesses are usually slower than aligned accesses. In addition, some memory regions might not support
unaligned accesses. Therefore, Arm recommends that programmers ensure that accesses are aligned. To trap
accidental generation of unaligned accesses, use the UNALIGN_TRP bit in the Configuration and Control Register,
see 2.7.2.7. Configuration and Control Register.

PC-relative Expressions

A PC-relative expression or label is a symbol that represents the address of an instruction or literal data. It is
represented in the instruction as the PC value plus or minus a numeric offset. The assembler calculates the required
offset from the label and the address of the current instruction. If the offset is too big, the assembler produces an
error.

» For B, BL, CBNZ, and CBZ instructions, the value of the PC is the address of the current instruction plus 4
bytes.

» For most other instructions that use labels, the value of the PC is the address of the current instruction plus 4
bytes, with bit[1] of the result cleared to 0 to make it word-aligned.

* Your assembler might permit other syntaxes for PC-relative expressions, such as a label plus or minus a
number, or an expression of the form [PC, #number].

Conditional Execution

Most data processing instructions can optionally update the condition flags in the Application Program Status
Register (APSR) according to the result of the operation; see 2.5.1.3.6. Application Program Status Register. Some
instructions update all flags, and some only update a subset. If a flag is not updated, the original value is preserved.
See the instruction descriptions for the flags they affect.

You can execute an instruction conditionally, based on the condition flags set in another instruction, either:

* Immediately after the instruction that updated the flags
» After any number of intervening instructions that have not updated the flags.

Conditional execution is available by using conditional branches or by adding condition code suffixes to instructions.
For a list of the suffixes to add to instructions to make them conditional instructions, see Table 2-23. The condition
code suffix enables the processor to test a condition based on the flags. If the condition test of a conditional
instruction fails, the instruction:

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 50
and its subsidiaries

2.6.3.7.1

2.6.3.7.2

Cortex-M3 Processor (Reference Material)

* Does not execute
» Does not write any value to its destination register
» Does not affect any of the flags
» Does not generate any exception.
Conditional instructions, except for conditional branches, must be inside an If-Then instruction block. See 2.6.9.3. IT

for more information and restrictions when using the IT instruction. Depending on the vendor, the assembler might
automatically insert an IT instruction if you have conditional instructions outside the IT block.

Use the CBZ and CBNZ instructions to compare the value of a register against zero and branch on the result.

This section describes the condition flags and condition code suffixes.

Condition Flags
The APSR contains the following condition flags:

* N: Set to 1 when the result of the operation was negative, cleared to 0 otherwise.
» Z: Setto 1 when the result of the operation was zero, cleared to 0 otherwise.

» C: Setto 1 when the operation resulted in a carry, cleared to 0 otherwise.

» V: Set to 1 when the operation caused overflow, cleared to 0 otherwise.

For more information about the APSR, refer to 2.5.1.3.5. Program Status Register.
A carry occurs:

+ If the result of an addition is greater than or equal to 232
» If the result of a subtraction is positive or zero
» As the result of an inline barrel shifter operation in a move or logical instruction

Overflow occurs when the sign of the result, in bit[31], does not match the sign of the result had the operation been
performed at infinite precision, for example:

If adding two negative values results in a positive value

If adding two positive values results in a negative value

If subtracting a positive value from a negative value generates a positive value
If subtracting a negative value from a positive value generates a negative value

The Compare operations are identical to subtracting, for CMP, or adding, for CMN, except that the result is discarded.
See the instruction descriptions for more information. Most instructions update the status flags only if the S suffix is
specified. See the instruction descriptions for more information.

Condition Code Suffixes

The instructions that can be conditional have an optional condition code, shown in syntax descriptions as {cond}.
Conditional execution requires a preceding IT instruction. An instruction with a condition code is only executed if the
condition code flags in the APSR meet the specified condition. The following table shows the condition codes to use.
You can use conditional execution with the IT instruction to reduce the number of branch instructions in code. The
table also shows the relationship between condition code suffixes and the N, Z, C, and V flags.

Table 2-23. Condition Code Suffixes

EQ =1 Equal
NE
CSorHS
CCorlLO
MI
PL
VS

1]
o

Not equal

1]
N

Higher or same, unsigned

Lower, unsigned

1
-

Negative

1
o

Positive or zero

< Z2 Z 0 O N N
Il
()

=1 Overflow

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 51
and its subsidiaries

2.6.3.8

Cortex-M3 Processor (Reference Material)

........... continued
sumx _ Fegs __ [Meaning |
VC V=0 No overflow

HI C=1andZ=0 Higher, unsigned

LS C=0o0r Z=1 Lower or same, unsigned

GE N=V Greater than or equal, signed

LT N!I=V Less than, signed

GT Z=0andN=V Greater than, signed

LE Z=1and N!=V Less than or equal, signed

AL Can have any value Always. This is the default when no suffix is specified.

The following example shows the use of a conditional instruction to find the absolute value of a number. RO =
abs(R1).

Example 1

Absolute value

MOVS RO, R1; RO = R1, setting flags

IT MI ; skipping next instruction if value O or positive
RSBMI RO, RO, #0 ; If negative, RO = -R0

The following example shows the use of conditional instructions to update the value of R4 if the signed values RO is
greater than R1 and R2 is greater than R3.

Example 2

Compare and update value

CMP RO, R1 ; Compare RO and R1, setting flags

ITT GT ; Skip next two instructions unless GT condition holds
CMPGT R2, R3; If 'greater than', compare R2 and R3, setting flags
MOVGT R4, R5; If still 'greater than', do R4 = R5

Instruction Width Selection

There are many instructions that can generate either a 16-bit encoding or a 32-bit encoding depending on the
operands and destination register specified. For some of these instructions, you can force a specific instruction size
by using an instruction width suffix. The .W suffix forces a 32-bit instruction encoding. The .N suffix forces a 16-bit
instruction encoding.

If you specify an instruction width suffix and the assembler cannot generate an instruction encoding of the requested
width, it generates an error.

Important: In some cases it might be necessary to specify the .W suffix, for example if the operand is the
label of an instruction or literal data, as in the case of branch instructions. This is because the assembler
might not automatically generate the right size encoding.

To use an instruction width suffix, place it immediately after the instruction mnemonic and condition code, if any. The
following example shows instructions with the instruction width suffix.

Example 3
Instruction width selection

BCS.W label ; creates a 32-bit instruction even for a short branch

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 52
and its subsidiaries

2.6.4

2.6.41

26411

2.6.4.1.2

2.6.41.3

Cortex-M3 Processor (Reference Material)

ADDS.W RO, RO, R1 ; creates a 32-bit instruction even though the same operation can be done by a 16-bit
instruction

Memory Access Instructions
The following table provides memory access instructions:

Table 2-24. Memory Access Instructions

ADR Generate PC-relative address 2.6.4.1. ADR

CLREX Clear Exclusive 2.6.4.9. CLREX

LDM{mode} Load Multiple registers 2.6.4.6. LDM and STM

LDR{type} Load Register using immediate offset 2.6.4.2. LDR and STR, Immediate Offset
LDR{type} Load Register using register offset 2.6.4.3. LDR and STR, Register Offset
LDR{type}T Load Register with unprivileged access 2.6.4.4. LDR and STR, Unprivileged
LDR Load Register using PC-relative address 2.6.4.5. LDR, PC-relative

LDREX{type} Load Register Exclusive 2.6.4.8. LDREX and STREX

POP Pop registers from stack 2.6.4.7. PUSH and POP

PUSH Push registers onto stack 2.6.4.7. PUSH and POP

STM{mode} Store Multiple registers 2.6.4.6. LDM and STM

STR{type} Store Register using immediate offset 2.6.4.2. LDR and STR, Immediate Offset
STR{type} Store Register using register offset 2.6.4.3. LDR and STR, Register Offset
STR{type}T Store Register with unprivileged access 2.6.4.4. LDR and STR, Unprivileged
STREX({type} Store Register Exclusive 2.6.4.8. LDREX and STREX
ADR

Generate PC-relative address.

Syntax

ADR{cond} Rd, label

where:

» cond is an optional condition code, see 2.6.3.7. Conditional Execution.

* Rd is the destination register
» label is a PC-relative expression. See 2.6.3.6. PC-relative Expressions.

Operation

ADR generates an address by adding an immediate value to the PC, and writes the result to the destination register.

ADR provides the means by which position-independent code can be generated, because the address is PC-relative.

If you use ADR to generate a target address for a BX or BLX instruction, you must ensure that bit[0] of the address
you generate is set to 1 for correct execution.

Values of label must be within the range of -4095 to +4095 from the address in the PC.

Note: You may have to use the .W suffix to get the maximum offset range or to generate addresses that are not
word-aligned. See 2.6.3.8. Instruction Width Selection.

Restrictions

Rd must not be SP and must not be PC.

User Guide DS50003495A-page 53

© 2023 Microchip Technology Inc.
and its subsidiaries

26414

2.6.4.2

2.6.4.2.1

2.6.4.2.2

Cortex-M3 Processor (Reference Material)

Condition flags
This instruction does not change the flags.
Examples
ADR R1, TextMessage ; Write address value of a location labelled as
; TextMessage to R1
LDR and STR, Immediate Offset
Load and Store with immediate offset, pre-indexed immediate offset, or post-indexed immediate offset.
Syntax
op{type}{cond} Rt, [Rn {, #offset}] ; immediate offset
op{type}{cond} Rt, [Rn, #offset]! ; pre-indexed
op{type}{cond} Rt, [Rn], #offset ; post-indexed
opD{cond} Rt, Rt2, [Rn {, #offset}] ; immediate offset, two words
opD{cond} Rt, Rt2, [Rn, #offset]! ; pre-indexed, two words
opD{cond} Rt, Rt2, [Rn], #offset ; post-indexed, two words
where:
» opis either LDR (load register) or STR (store register)
+ typeis one of:
— B: unsigned byte, zero extend to 32 bits on loads.
— SB: signed byte, sign extend to 32 bits (LDR only).
— H: unsigned halfword, zero extend to 32 bits on loads.
— SH: signed halfword, sign extend to 32 bits (LDR only).
— -2 omit, for word.
» cond is an optional condition code; see 2.6.3.7. Conditional Execution.
* Rtis the register to load or store.
* Rnis the register on which the memory address is based.
» offset is an offset from Rn. If offset is omitted, the address is the contents of Rn.
» Rt2is the additional register to load or store for two-word operations.
Operation
LDR instructions load one or two registers with a value from memory.
STR instructions store one or two register values to memory.
Load and store instructions with immediate offset can use the following addressing modes:
» Offset Addressing
The offset value is added to or subtracted from the address obtained from the register Rn. The result is used as
the address for the memory access. The register Rn is unaltered. The assembly language syntax for this mode
is:
[Rn, #offset]
* Pre-indexed addressing
The offset value is added to or subtracted from the address obtained from the register Rn. The result is used as
the address for the memory access and written back into the register Rn. The assembly language syntax for this
mode is:
[Rn, #offset]!
* Post-indexed addressing
The address obtained from the register Rn is used as the address for the memory access. The offset value is
added to or subtracted from the address, and written back into the register Rn. The assembly language syntax
for this mode is:
[Rn], #offset
The value to load or store can be a byte, halfword, word, or two words. Bytes and halfwords can either be signed or
unsigned. See 2.6.3.5. Address Alignment.
© 2023 Microchip Technology Inc. User Guide DS50003495A-page 54

and its subsidiaries

2.6.4.2.3

2.64.24

2.6.4.3

2.6.4.3.1

Cortex-M3 Processor (Reference Material)

The following table lists the ranges of offset for immediate, pre-indexed and post-indexed forms.

Table 2-25. Offset Ranges

Instruction Type Immediate Offset Pre-Indexed Post-Indexed

Word, halfword, signed halfword, -255 to 4095 -255 to 255 -255 to 255
byte, or signed byte

Two words Multiple of 4 in the Multiple of 4 in the Multiple of 4 in the
range -1020 to 1020 range -1020 to 1020 range -1020 to 1020

Restrictions
For load instructions:
* Rt can be SP or PC for word loads only
* Rt must be different from Rt2 for two-word loads
* Rn must be different from Rt and Rt2 in the pre-indexed or post-indexed forms.
When Rt is PC in a word load instruction:
» bit[0] of the loaded value must be 1 for correct execution
* abranch occurs to the address created by changing bit[0] of the loaded value to 0
« if the instruction is conditional, it must be the last instruction in the IT block.
For store instructions:
* Rt can be SP for word stores only
* Rt must not be PC
* Rn must not be PC
* Rn must be different from Rt and Rt2 in the pre-indexed or post-indexed forms.
Condition flags
These instructions do not change the flags.
Examples
LDR R8, [R10] ; Loads R8 from the address in R10.
LDRNE R2, [R5, #960]! ; Loads (conditionally) R2 from a word
; 960 bytes above the address in R5, and
; increments R5 by 960
STR R2, [R9,#const-struc] ; const-struc is an expression evaluating
; to a constant in the range 0-4095.
STRH R3, [R4], #4 ; Store R3 as halfword data into address in
; R4, then increment R4 by 4
LDRD R8, R9, [R3, #0x20] ; Load R8 from a word 8 bytes above the
; address in R3, and load R9 from a word 9
; bytes above the address in R3
STRD RO, R1, [R8], #-16 ; Store RO to address in R8, and store Rl to
; a word 4 bytes above the address in RS,
; and then decrement R8 by 16.
LDR and STR, Register Offset
Load and Store with register offset.
Syntax
op{type}{cond} Rt, [Rn, Rm {, LSL #n}]
where:
» opis either LDR (load register) or STR (store register)
+ typeis one of:
— B: unsigned byte, zero extend to 32 bits on loads.
— SB: signed byte, sign extend to 32 bits (LDR only).
— H: unsigned halfword, zero extend to 32 bits on loads.
© 2023 Microchip Technology Inc. User Guide DS50003495A-page 55

and its subsidiaries

2.6.4.3.2

2.6.4.3.3

2.64.3.4

2644

2.6.4.41

Cortex-M3 Processor (Reference Material)

— SH: signed halfword, sign extend to 32 bits (LDR only).
— -2 omit, for word.
» cond is an optional condition code, see 2.6.3.7. Conditional Execution.
* Rtis the register to load or store.
* Rnis the register on which the memory address is based.
* Rmis a register containing a value to be used as the offset.
* LSL #n is an optional shift, with n in the range 0 to 3.

Operation
LDR instructions load a register with a value from memory.

STR instructions store a register value into memory.

The memory address to load from or store to is at an offset from the register Rn. The offset is specified by the register
Rm and can be shifted left by up to 3 bits using LSL.

The value to load or store can be a byte, halfword, or word. For load instructions, bytes and halfwords can either be
signed or unsigned. See 2.6.3.5. Address Alignment.

Restrictions
In these instructions:

* Rn must not be PC

* Rm must not be SP and must not be PC

* Rt can be SP only for word loads and word stores
* Rt can be PC only for word loads.

When Rtis PC in a word load instruction:

+ Bit[0] of the loaded value must be 1 for correct execution, and a branch occurs to this halfword-aligned address
< If the instruction is conditional, it must be the last instruction in the IT block.

Condition Flags
These instructions do not change the flags.

Examples

STR RO, [R5, R1] ; Store value of RO into an address equal to
; sum of R5 and R1

LDRSB RO, [R5, R1, LSL #1] ; Read byte value from an address equal to
; sum of R5 and two times R1l, sign extended it
; to a word value and put it in RO

STR RO, [R1, R2, LSL #2] ; Stores RO to an address equal to sum of R1
; and four times R2.

LDR and STR, Unprivileged
Load and Store with unprivileged access.

Syntax
op{type}T{cond} Rt, [Rn {, #offset}] ; immediate offset

where:

» opis either LDR (load register) or STR (store register)
* type is one of:
— B: unsigned byte, zero extend to 32 bits on loads.
— SB: signed byte, sign extend to 32 bits (LDR only).
— H: unsigned halfword, zero extend to 32 bits on loads.
— SH: signed halfword, sign extend to 32 bits (LDR only).
— -2 omit, for word.
» cond is an optional condition code, refer to 2.6.3.7. Conditional Execution.
* Rtis the register to load or store.

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 56
and its subsidiaries

2.6.44.2

26443

26444

2.6.4.5

2.6.4.5.1

2.6.4.5.2

Cortex-M3 Processor (Reference Material)

* Rnis the register on which the memory address is based.
« offsetis an offset from Rn and can be 0 to 255. If offset is omitted, the address is the value in Rn.

Operation
These load and store instructions perform the same function as the memory access instructions with immediate
offset, see 2.6.4.2. LDR and STR, Immediate Offset. The difference is that these instructions have only unprivileged
access even when used in privileged software.
When used in unprivileged software, these instructions behave in exactly the same way as normal memory access
instructions with immediate offset.
Restrictions
In these instructions:
* Rn must not be PC.
* Rt must not be SP and must not be PC.
Condition Flags
These instructions do not change the flags.
Examples
STRBTEQ R4, [R7] ; Conditionally store least significant byte in
; R4 to an address in R7, with unprivileged access
LDRHT R2, [R2, #8] ; Load halfword value from an address equal to
; sum of R2 and 8 into R2, with unprivileged access.
LDR, PC-relative
Load register from memory.
Syntax
LDR{type}{cond} Rt, label
LDRD{cond} Rt, Rt2, label ; Load two words
where:
+ type is one of:
— B: unsigned byte, zero extend to 32 bits.
— SB: signed byte, sign extend to 32 bits.
— H: unsigned halfword, zero extend to 32 bits.
— SH: signed halfword, sign extend to 32 bits.
— -2 omit, for word.
» cond is an optional condition code, see 2.6.3.7. Conditional Execution.
* Rtis the register to load or store.
* Rt2is the second register to load or store.
* label is a PC-relative expression. See 2.6.3.6. PC-relative Expressions.
Operation
LDR loads a register with a value from a PC-relative memory address. The memory address is specified by a label or
by an offset from the PC.
The value to load or store can be a byte, halfword, or word. For load instructions, bytes and halfwords can either be
signed or unsigned. See 2.6.3.5. Address Alignment.
label must be within a limited range of the current instruction. The following table shows the possible offsets between
label and the PC.
Table 2-26. Offset Ranges
Instruction type Offset range
Word, halfword, signed halfword, byte, signed byte -4095 to 4095
© 2023 Microchip Technology Inc. User Guide DS50003495A-page 57

and its subsidiaries

2.6.4.5.3

26454

2.6.4.6

2.6.4.6.1

2.6.4.6.2

Cortex-M3 Processor (Reference Material)

........... continued
Instruction type Offset range
Two words -1020 to 1020

Note: You might have to use the .W suffix to get the maximum offset range. See 2.6.3.8. Instruction Width Selection.

Restrictions
In these instructions:
* Rt can be SP or PC only for word loads
* Rt2 must not be SP and must not be PC
* Rt must be different from Rt2.
When Rt is PC in a word load instruction:
+ bit[0] of the loaded value must be 1 for correct execution, and a branch occurs to this halfword-aligned address
« if the instruction is conditional, it must be the last instruction in the IT block.
Condition Flags
These instructions do not change the flags.
Examples
LDR RO, LookUpTable ; Load RO with a word of data from an address
; labelled as LookUpTable
LDRSB R7, localdata ; Load a byte value from an address labelled
; as localdata, sign extend it to a word
; value, and put it in R7.
LDM and STM
Load and Store Multiple registers.
Syntax
op{addr mode}{cond} Rn{!}, reglist
where:
* opisone of:
— LDM (Load Multiple registers)
— STM (Store Multiple registers)
* addr_mode is one of:
— 1A (Increment address After each access.) This is the default.
— DB (Decrement address Before each access.)
» cond is an optional condition code, see 2.6.3.7. Conditional Execution.
* Rnis the register on which the memory addresses are based.
« lis an optional writeback suffix. If ! is present the final address, that is loaded from or stored to, is written back
into Rn.
» reglistis a list of one or more registers to be loaded or stored, enclosed in braces. It can contain register ranges.
It must be comma separated if it contains more than one register or register range.
LDM and LDMFD are synonyms for LDMIA. LDMFD refers to its use for popping data from Full Descending stacks.
LDMEA is a synonym for LDMDB, and refers to its use for popping data from Empty Ascending stacks.
STM and STMEA are synonyms for STMIA. STMEA refers to its use for pushing data onto Empty Ascending stacks.
STMFD is s synonym for STMDB, and refers to its use for pushing data onto Full Descending stacks.
Operation
LDM instructions load the registers in reglist with word values from memory addresses based on Rn.
STM instructions store the word values in the registers in reglist to memory addresses based on Rn.
© 2023 Microchip Technology Inc. User Guide DS50003495A-page 58

and its subsidiaries

2.6.4.6.3

2.6.4.6.4

2.64.7

2.64.7.1

2.6.4.7.2

Cortex-M3 Processor (Reference Material)

For L.DM, LDMIA, LDMFD, STM, STMIA, and STMEA the memory addresses used for the accesses are at 4-byte
intervals ranging from Rn to Rn + 4 * (n-1), where n is the number of registers in reglist. The accesses happens
in order of increasing register numbers, with the lowest numbered register using the lowest memory address and the
highest number register using the highest memory address. If the writeback suffix is specified, the value of Rn + 4 *
(n-1) is written back to Rn.

For LDMDB, LDMEA, STMDB, and STMFD the memory addresses used for the accesses are at 4-byte intervals ranging
from Rn to Rn - 4 * (n-1), where n is the number of registers in reglist. The accesses happen in order of
decreasing register numbers, with the highest numbered register using the highest memory address and the lowest
number register using the lowest memory address. If the writeback suffix is specified, the value of Rn - 4 * (n-1) is
written back to Rn.

The PUSH and POP instructions can be expressed in this form. For more information, see 2.6.4.7. PUSH and POP.

Restrictions
In these instructions:
* Rn must not be PC
* reglist must not contain SP
* Inany STM instruction, reglist must not contain PC
* Inany LDM instruction, reglist must not contain PC if it contains LR
* reglist must not contain Rn if you specify the writeback suffix.
When PC is in reglist in an LDM instruction:
» Bit[0] of the value loaded to the PC must be 1 for correct execution, and a branch occurs to this halfword-aligned
address
« If the instruction is conditional, it must be the last instruction in the IT block.
Condition Flags
These instructions do not change the flags.
Examples
LDM R8, {RO,R2,R9} ; LDMIA is a synonym for LDM
TMDB R1!, {R3-R6,R11,R12}
Incorrect Examples
STM R5!, {R5,R4,R9} ; Value stored for R5 is unpredictable
LDM R2, {} ; There must be at least one register in the list.
PUSH and POP
Push registers onto, and pop registers off a full-descending stack.
Syntax
PUSH{cond} reglist
POP{cond} reglist
where:
cond is an optional condition code, see 2.6.3.7. Conditional Execution.
reglist is a non-empty list of registers, enclosed in braces. It can contain register ranges. It must be comma
separated if it contains more than one register or register range.
PUSH and POP are synonyms for STMDB and LDM (or LDMIA) with the memory addresses for the access based on sP,
and with the final address for the access written back to the SP. PUSH and POP are the preferred mnemonics in these
cases.
Operation
PUSH stores registers on the stack, with the lowest numbered register using the lowest memory address and the
highest numbered register using the highest memory address.
© 2023 Microchip Technology Inc. User Guide DS50003495A-page 59

and its subsidiaries

2.6.4.7.3

2.64.7.4

2.6.4.8

2.6.4.8.1

2.6.4.8.2

Cortex-M3 Processor (Reference Material)

POP loads registers from the stack, with the lowest numbered register using the lowest memory address and the
highest numbered register using the highest memory address.

PUSH uses the value in the SP register minus four as the highest memory address, POP uses the value in the SP
register as the lowest memory address, implementing a full-descending stack. On completion, PUSH updates the
SP register to point to the location of the lowest stored value, POP updates the SP register to point to the location
immediately above the highest location loaded.

If a POP instruction includes PC in its reglist, a branch to this location is performed when the POP instruction has
completed. Bit[0] of the value read for the PC is used to update the APSR T-bit. This bit must be 1 to ensure correct
operation.

For more information, see 2.6.4.6. LDM and STM for more information.

Restrictions

The following is a list of restrictions in these instructions:
* reglist must not contain SP
* For the PUSH instruction, reglist must not contain PC
* For the POP instruction, reglist must not contain PC if it contains LR.

When PC is in reglist in a POP instruction:
» bit[0] of the value loaded for PC must be 1 for correct execution
« if the instruction is conditional, it must be the last instruction in the IT block.

Condition Flags

These instructions do not change the flags.

Examples
PUSH {RO,R4-R7} ; Push RO,R4,R5,R6,R7 onto the stack
PUSH {R2,LR} ; Push R2 and the link-register onto the stack
POP {RO,R6,PC} ; Pop r0,r6 and PC from the stack, then branch to the new PC

LDREX and STREX

Load and Store Register Exclusive.

Syntax
LDREX{cond} Rt, [Rn {, #offset}]
STREX{cond} Rd, Rt, [Rn {, #offset}]
LDREXB{cond} Rt, [Rn]
STREXB{cond} Rd, Rt, [Rn]
LDREXH{cond} Rt, [Rn]
STREXH{cond} Rd, Rt, [Rn]

where:

cond is an optional condition code, see 2.6.3.7. Conditional Execution.

Rd is the destination register for the returned status.

Rt is the register to load or store.

Rn is the register on which the memory address is based.

offset is an optional offset applied to the value in Rn. If offset is omitted, the address is the value in Rn.

Operation

LDREX, LDREXB, and LDREXH load a word, byte, and halfword respectively from a memory address.

STREX, STREXB, and STREXH attempt to store a word, byte, and halfword respectively to a memory address. The

address used in any Store-Exclusive instruction must be the same as the address in the most recently executed

Load-exclusive instruction. The value stored by the Store-Exclusive instruction must also have the same data

size as the value loaded by the preceding Load-exclusive instruction. This means software must always use a

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 60

and its subsidiaries

2.6.4.8.3

2.6.4.8.4

2.6.49

2.6.4.9.1

2.6.4.9.2

2.6.4.9.3

Cortex-M3 Processor (Reference Material)

Load-exclusive instruction and a matching Store-Exclusive instruction to perform a synchronization operation, see
2.5.2.7. Synchronization Primitives.

If an Store-Exclusive instruction performs the store, it writes 0 to its destination register. If it does not perform the

store, it writes 1 to its destination register. If the Store-Exclusive instruction writes 0 to the destination register, it is
ensured that no other process in the system has accessed the memory location between the Load-exclusive and

Store-Exclusive instructions.

For reasons of performance, keep the number of instructions between corresponding Load-Exclusive and Store-
Exclusive instruction to a minimum.

Important: The result of executing a Store-Exclusive instruction to an address that is different from that
used in the preceding Load-Exclusive instruction is unpredictable.

Restrictions
The following is a list of restrictions in these instructions:

* Do notuse PC

* Do not use SP for Rd and Rt

¢ For STREX, Rd must be different from both Rt and Rn

* The value of offset must be a multiple of four in the range 0-1020

Condition Flags
These instructions do not change the flags.

Examples

MOV R1, #0x1 ; Initialize the ‘lock taken’ value

try

Load the lock value

Is the lock free?

IT instruction for STREXEQ and CMPEQ
Try and claim the lock

Did this succeed?

No - try again

Yes - we have the lock.

LDREX RO, [LockAddr]

CMP RO, #0

ITT EQ

STREXEQ RO, R1, [LockAddr]
CMPEQ RO, #0

BNE try

CLREX
Clear Exclusive.

Syntax
CLREX{cond}

where:

cond is an optional condition code, see 2.6.3.7. Conditional Execution.

Operation

Use CLREX to make the next STREX, STREXB, or STREXH instruction write 1 to its destination register and fail to
perform the store. It is useful in exception handler code to force the failure of the store exclusive if the exception
occurs between a load exclusive instruction and the matching store exclusive instruction in a synchronization
operation.

For more information, see 2.5.2.7. Synchronization Primitives.

Condition Flags
These instructions do not change the flags.

Examples
CLREX

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 61
and its subsidiaries

Cortex-M3 Processor (Reference Material)

2.6.5 General Data processing instructions
The following table shows the data processing instructions.

Table 2-27. Data Processing Instructions

Add with Carry 2.6.5.1. ADD, ADC, SUB, SBC, and RSB
ADD Add 2.6.5.1. ADD, ADC, SUB, SBC, and RSB
ADDW Add 2.6.5.1. ADD, ADC, SUB, SBC, and RSB
AND Logical AND 2.6.5.2. AND, ORR, EOR, BIC, and ORN
ASR Arithmetic Shift Right 2.6.5.3. ASR, LSL, LSR, ROR, and RRX
BIC Bit Clear 2.6.5.2. AND, ORR, EOR, BIC, and ORN
CLz Count leading zeros 2.6.54. CLzZ
CMN Compare Negative 2.6.5.5. CMP and CMN
CMP Compare 2.6.5.5. CMP and CMN
EOR Exclusive OR 2.6.5.2. AND, ORR, EOR, BIC, and ORN
LSL Logical Shift Left 2.6.5.3. ASR, LSL, LSR, ROR, and RRX
LSR Logical Shift Right 2.6.5.3. ASR, LSL, LSR, ROR, and RRX
MOV Move 2.6.5.6. MOV and MVN
MOVT Move Top 2.6.5.7. MOVT
MOVW Move 16-bit constant 2.6.5.6. MOV and MVN
MVN Move NOT 2.6.5.6. MOV and MVN
ORN Logical OR NOT 2.6.5.2. AND, ORR, EOR, BIC, and ORN
ORR Logical OR 2.6.5.2. AND, ORR, EOR, BIC, and ORN
RBIT Reverse Bits 2.6.5.8. REV, REV16, REVSH, and RBIT
REV Reverse byte order in a word 2.6.5.8. REV, REV16, REVSH, and RBIT
REV16 Reverse byte order in each halfword 2.6.5.8. REV, REV16, REVSH, and RBIT
REVSH Reverse byte order in bottom halfword and 2.6.5.8. REV, REV16, REVSH, and RBIT

sign extend
ROR Rotate Right 2.6.5.3. ASR, LSL, LSR, ROR, and RRX
RRX Rotate Right with Extend 2.6.5.3. ASR, LSL, LSR, ROR, and RRX
RSB Reverse Subtract 2.6.5.1. ADD, ADC, SUB, SBC, and RSB
SBC Subtract with Carry 2.6.5.1. ADD, ADC, SUB, SBC, and RSB
SuB Subtract 2.6.5.1. ADD, ADC, SUB, SBC, and RSB
SUBW Subtract 2.6.5.1. ADD, ADC, SUB, SBC, and RSB
TEQ Test Equivalence 2.6.5.9. TST and TEQ
TST Test 2.6.5.9. TST and TEQ

2.6.5.1 ADD, ADC, SUB, SBC, and RSB
Add, Add with carry, Subtract, Subtract with carry, and Reverse Subtract.

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 62
and its subsidiaries

Cortex-M3 Processor (Reference Material)

2.6.5.1.1 Syntax
op{S}{cond} {Rd,} Rn, Operand?2

op{cond} {Rd,} Rn, #imml2 ; ADD and SUB only
where:
* opisoneof:
— ADD: Add
— ADC: Add with Carry
— SUB: Subtract
— SBC: Subtract with Carry
— RSB: Reverse Subtract

» s is an optional suffix. If S is specified, the condition code flags are updated on the result of the operation, see
2.6.3.7. Conditional Execution.

* cond is an optional condition code, see 2.6.3.7. Conditional Execution.
* Rdis the destination register. If Rd is omitted, the destination register is Rn.
* Rnis the register holding the first operand.

» Operand?2 is a flexible second operand. For more information about the options, see 2.6.3.3. Flexible Second
Operand.

* imml2 is any value in the range 0-4095

2.6.5.1.2 Operation
The ADD instruction adds the value of Operand2 or imm12 to the value in Rn.

The ADC instruction adds the values in Rn and Operand?2, together with the carry flag.
The sUB instruction subtracts the value of Operand2 or imm12 from the value in Rn.

The sBC instruction subtracts the value of Operand2 from the value in Rn. If the carry flag is clear, the result is
reduced by one.

The RSB instruction subtracts the value in Rn from the value of Operand2. This is useful because of the wide range of
options for Operand?2.

Use ADC and sBC to synthesize multiword arithmetic, see 2.6.5.1.5. Multiword Arithmetic Examples.

See also 2.6.4.1. ADR.

Important: ADDW is equivalent to the ADD syntax that uses the imm12 operand. SUBW is equivalent to the
SUB syntax that uses the imm12 operand.

2.6.5.1.3 Restrictions
In these instructions:

* Operand2 must not be SP and must not be PC

* Rdcan be SP only in ADD and SUB, and only with the additional restrictions:
— Rn must also be SP
— Any shift in Operand2 must be limited to a maximum of 3 bits using LSL

* Rn can be SP only in ADD and SUB

* Rdcan be PConly in the ADD{cond} PC, PC, Rm instruction where:
— You must not specify the s suffix
— Rm must not be PC and must not be SP
— If the instruction is conditional, it must be the last instruction in the IT block

» with the exception of the ADD{cond} PC, PC, Rm instruction, Rn can be PC only in ADD and SUB, and only
with the additional restrictions:

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 63
and its subsidiaries

2.6.51.4

2.6.5.1.5

2.6.5.2

2.6.5.2.1

Cortex-M3 Processor (Reference Material)

— You must not specify the s suffix
— The second operand must be a constant in the range 0 to 4095

— When using the PC for an addition or a subtraction, bits[1:0] of the PC are rounded to b00 before
performing the calculation, making the base address for the calculation word-aligned.

— If you want to generate the address of an instruction, you have to adjust the constant based on the value of
the PC. Arm recommends that you use the ADR instruction instead of ADD or SUB with Rn equal to the PC,
because your assembler automatically calculates the correct constant for the ADR instruction.

When Rd is PC in the ADD{cond} PC, PC, Rminstruction:

« Bit[0] of the value written to the PC is ignored
» A branch occurs to the address created by forcing bit[0] of that value to 0

Condition Flags
If s is specified, these instructions update the N, z, ¢ and v flags according to the result.
Examples
ADD R2, R1, R3
SUBS R8, R6, #240 ; Sets the flags on the result
RSB R4, R4, #1280 ; Subtracts contents of R4 from 1280
ADCHI R11, RO, R3 ; Only executed if C flag set and Z
; flag clear.
Multiword Arithmetic Examples
The following example shows two instructions that add a 64-bit integer contained in R2 and R3 to another 64-bit
integer contained in RO and R1, and place the result in R4 and R5.
* Example 4: 64-bit addition
ADDS R4, RO, R2 ; add the least significant words
ADC R5, R1, R3 ; add the most significant words with carry
Multiword values do not have to use consecutive registers. The following example shows instructions that
subtract a 96-bit integer contained in R9, R1, and R11 from another contained in R6, R2, and R8. The example
stores the result in R6, R9, and R2.
« Example 5: 96-bit subtraction
SUBS R6, R6, R9 ; subtract the least significant words
SBCS R9, R2, Rl ; subtract the middle words with carry
SBC R2, R8, R11 ; subtract the most significant words with carry
AND, ORR, EOR, BIC, and ORN
Logical AND, OR, Exclusive OR, Bit Clear, and OR NOT.
Syntax
op{S}{cond} {Rd,} Rn, Operand?
where:
* opisone of:
— AND: logical AND.
— ORR: logical OR, or bit set.
— EOR: logical Exclusive OR.
— BIC: logical AND NOT, or bit clear.
— ORN: logical OR NOT.
» Sis an optional suffix. If S is specified, the condition code flags are updated on the result of the operation, see
2.6.3.7. Conditional Execution.
* cond is an optional condition code, see 2.6.3.7. Conditional Execution.
* Rdis the destination register.
* Rn is the register holding the first operand.
© 2023 Microchip Technology Inc. User Guide DS50003495A-page 64

and its subsidiaries

2.6.5.2.2

2.6.5.2.3

2.6.5.2.4

2.6.5.3

2.6.5.3.1

Cortex-M3 Processor (Reference Material)

» Operand?2 is a flexible second operand. For more information about the options, see 2.6.3.3. Flexible Second
Operand.

Operation
The AND, EOR, and ORR instructions perform bitwise AND, Exclusive OR, and OR operations on the values in Rn and
Operand2.

The BIC instruction performs an AND operation on the bits in Rn with the complements of the corresponding bits in
the value of Operand2.

The ORN instruction performs an OR operation on the bits in Rn with the complements of the corresponding bits in the
value of Operand2.

Restrictions
Do not use SP and do not use PC.

Condition Flags

If s is specified, these instructions:
» Update the N and z flags according to the result
» Can update the c flag during the calculation of Operand2, see 2.6.3.3. Flexible Second Operand
* Do not affect the Vv flag.

Examples

AND R9, R2, #0xFFO00

ORREQ R2, RO, R5

ANDS R9, R8, #0x19

EORS R7, R11, #0x18181818
BIC RO, R1l, #0xab

ORN R7, R11, R14, ROR #4
ORNS R7, R11, R14, ASR #32

ASR, LSL, LSR, ROR, and RRX
Arithmetic Shift Right, Logical Shift Left, Logical Shift Right, Rotate Right, and Rotate Right with Extend.

Syntax
op{S}{cond} Rd, Rm, Rs

op{S}{cond} Rd, Rm, #n
RRX{S}{cond} Rd, Rm
where:

* opisone of:
— ASR: Arithmetic Shift Right.
— LSL: Logical Shift Left.
— LSR: Logical Shift Right.
— ROR: Rotate Right.

* Sis an optional suffix. If S is specified, the condition code flags are updated on the result of the operation, see
2.6.3.7. Conditional Execution.

* Rdis the destination register.
* Rmis the register holding the value to be shifted.

* Rs is the register holding the shift length to apply to the value in Rm. Only the least significant byte is used and
can be in the range 0 to 255.

* nis the shift length. The range of shift length depends on the instruction:
— ASR shift length from 1 to 32
— LSL shift length from 0 to 31
— LSR shift length from 1 to 32
— ROR shift length from 1 to 31

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 65
and its subsidiaries

2.6.5.3.2

2.6.5.3.3

2.6.5.3.4

2.6.54

2.6.5.4.1

2.6.5.4.2

2.6.54.3

2.6.54.4

2.6.5.5

2.6.5.5.1

Cortex-M3 Processor (Reference Material)

Important: MOVS Rd, Rmis the preferred syntax for LSLS Rd, Rm, #0.

Operation
ASR, LSIL, LSR, and ROR move the bits in the register Rm to the left or right by the number of places specified by
constant n or register Rs.
RRX moves the bits in register Rm to the right by 1.
In all these instructions, the result is written to Rd, but the value in register Rm remains unchanged. For more
information about the result generated by the different instructions, see 2.6.3.4. Shift Operations.
Restrictions
Do not use SP and do not use PC.
Condition Flags
If s is specified:
» These instructions update the N and z flags according to the result
» The c flag is updated to the last bit shifted out, except when the shift length is 0, see 2.6.3.4. Shift Operations.
Examples
ASR R7, R8, #9 ; Arithmetic shift right by 9 bits
LSLS R1, R2, #3 ; Logical shift left by 3 bits with flag update
LSR R4, R5, #6 ; Logical shift right by 6 bits
ROR R4, R5, R6 ; Rotate right by the value in the bottom byte of R6
RRX R4, R5 ; Rotate right with extend.
CLz
Count Leading Zeros.
Syntax
CLZ{cond} Rd, Rm
where:
cond is an optional condition code, see 2.6.3.7. Conditional Execution.
Rd is the destination register.
Rm is the operand register.
Operation
The CLZ instruction counts the number of leading zeros in the value in Rm and returns the result in Rd. The result
value is 32 if no bits are set and zero if bit[31] is set.
Restrictions
Do not use SP, and do not use PC.
Condition Flags
This instruction does not change the flags.
Examples
CLZ R4,R9O
CLZNE R2,R3
CMP and CMN
Compare and Compare Negative.
Syntax
CMP{cond} Rn, Operand2
© 2023 Microchip Technology Inc. User Guide DS50003495A-page 66

and its subsidiaries

2.6.5.5.2

2.6.5.5.3

2,6.5.54

2.6.5.6

2.6.5.6.1

2.6.5.6.2

Cortex-M3 Processor (Reference Material)

CMN{cond} Rn, Operand?

where:

cond is an optional condition code, see 2.6.3.7. Conditional Execution.
Rn is the register holding the first operand.

Operand2 is a flexible second operand. See 2.6.3.3. Flexible Second Operand for details of the options.

Operation
These instructions compare the value in a register with Operand2. They update the condition flags on the result, but
do not write the result to a register.

The CMP instruction subtracts the value of Operand2 from the value in Rn. This is the same as a SUBS instruction,
except that the result is discarded.

The CMN instruction adds the value of Operand2 to the value in Rn. This is the same as an ADDS instruction, except
that the result is discarded.

Restrictions
In these instructions:

* donotuse PC
* Operand2 must not be SP.

Condition Flags
These instructions update the N, Z, C and V flags according to the result.

Examples

CMP R2, R9

CMN RO, #6400

CMPGT SP, R7, LSL #2

MOV and MVN
Move and Move NOT.

Syntax
MOV{S}{cond} Rd, Operand2

MOV{cond} Rd, #imml6
MVN{S}{cond} Rd, Operand2
where:

S is an optional suffix. If S is specified, the condition code flags are updated on the result of the operation, see
2.6.3.7. Conditional Execution.

cond is an optional condition code, see 2.6.3.7. Conditional Execution.
Rd is the destination register.
Operand? is a flexible second operand. See 2.6.3.3. Flexible Second Operand for details of the options.

imm16 is any value in the range 0-65535.

Operation
The MOV instruction copies the value of Operand2 into Rd.

When Operand2 in a MOV instruction is a register with a shift other than LSL #0, the preferred syntax is the
corresponding shift instruction:

* ASR{S}{cond} Rd, Rm, #n is the preferred syntax for MOV{S}{cond} Rd, Rm, ASR #n

* LSL{S}cond} Rd, Rm, #n is the preferred syntax for MOV{S}cond} Rd, Rm, LSL #nifn!=0

* LSR{S}{cond} Rd, Rm, #n is the preferred syntax for MOV{S}{cond} Rd, Rm, LSR #n

* ROR({S¥cond} Rd, Rm, #n is the preferred syntax for MOV{S}{cond} Rd, Rm, ROR #n

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 67
and its subsidiaries

2.6.5.6.3

2.6.5.6.4

2.6.5.7

2.6.5.7.1

2.6.5.7.2

2.6.5.7.3

Cortex-M3 Processor (Reference Material)

* RRX{S}cond} Rd, Rm is the preferred syntax for MOV{S}{cond} Rd, Rm, RRX.
Also, the MOV instruction permits additional forms of Operand2 as synonyms for shift instructions:

* MOV{SHcond} Rd, Rm, ASR Rs is a synonym for ASR{S}{cond} Rd, Rm, Rs
* MOV{SHcond} Rd, Rm, LSL Rs is a synonym for LSL{S}{cond} Rd, Rm, Rs
* MOV{S}cond} Rd, Rm, LSR Rs is a synonym for LSR{S}{cond} Rd, Rm, Rs
* MOV{S}cond} Rd, Rm, ROR Rs is a synonym for ROR{S}{cond} Rd, Rm, Rs

See 2.6.5.3. ASR, LSL, LSR, ROR, and RRX.

The MVN instruction takes the value of Operand2, performs a bitwise logical NOT operation on the value, and places
the result into Rd.

Note: The MOVW instruction provides the same function as MOV, but is restricted to using the imm16 operand.

Restrictions

You can use SP and PC only in the MOV instruction, with the following restrictions:
» the second operand must be a register without shift
» you must not specify the S suffix.

When Rd is PC in a MOV instruction:

+ bit[0] of the value written to the PC is ignored

» abranch occurs to the address created by forcing bit[0] of that value to 0.
Note: Though it is possible to use MOV as a branch instruction, Arm strongly recommends the use of a BX or
BLX instruction to branch for software portability to the Arm instruction set.

Condition Flags
» If Sis specified, these instructions:
» update the N and Z flags according to the result
» can update the C flag during the calculation of Operand2, see 2.6.3.3. Flexible Second Operand
» do not affect the V flag.

Example
MOVS R11, #0x000B ; Write value of 0x000B to R11l, flags get updated
MOV R1l, #0xFAO5 ; Write value of OxFAO5 to R1, flags are not updated
MOVS R10, R12 ; Write value in R12 to R10, flags get updated
MOV R3, #23 ; Write value of 23 to R3
MOV R8, SP ; Write value of stack pointer to RS
MVNS R2, #0xF ; Write value of OxXFFFFFFFO (bitwise inverse of O0xF)
; to the R2 and update flags.
MOVT
Move Top.
Syntax

MOVT {cond} Rd, #immlé6

where:

cond is an optional condition code, see 2.6.3.7. Conditional Execution.
Rd is the destination register.

imm16 is a 16-bit immediate constant.

Operation
MOVT writes a 16-bit immediate value, imm16, to the top halfword, Rd[31:16], of its destination register. The write
does not affect Rd[15:0].

The MOV, MOVT instruction pair enables you to generate any 32-bit constant.

Restrictions
Rd must not be SP and must not be PC.

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 68
and its subsidiaries

2.6.5.7.4

2.6.5.8

2.6.5.8.1

2.6.5.8.2

2.6.5.8.3

2.6.5.8.4

2.6.5.9

2.6.5.9.1

Cortex-M3 Processor (Reference Material)

Condition Flags
This instruction does not change the flags.

Examples

MOVT R3, #0xF123 ; Write 0xF123 to upper halfword of R3, lower halfword
; and APSR are unchanged.

REV, REV16, REVSH, and RBIT
Reverse bytes and Reverse bits.

Syntax
op{cond} Rd, Rn

where:

* opisany of:
— REV: Reverse byte order in a word.
— REV16: Reverse byte order in each halfword independently.
— REVSH: Reverse byte order in the bottom halfword, and sign extend to 32 bits.
— RBIT: Reverse the bit order in a 32-bit word.

» cond is an optional condition code, see 2.6.3.7. Conditional Execution.

* Rd is the destination register.

* Rnis the register holding the operand.

Operation
Use these instructions to change endianness of data:

* REV: converts 32-bit big-endian data into little-endian data or 32-bit little-endian data into big-endian data.
* REV16: converts 16-bit big-endian data into little-endian data or 16-bit little-endian data into big-endian data.
* REVSH: converts either:

— 16-bit signed big-endian data into 32-bit signed little-endian data

— 16-bit signed little-endian data into 32-bit signed big-endian data.

Restrictions
Do not use SP and do not use PC.

Condition Flags
These instructions do not change the flags.

Examples

REV R3, R7 ; Reverse byte order of value in R7 and write it to R3

REV16 RO, RO ; Reverse byte order of each 16-bit halfword in RO

REVSH RO, RS ; Reverse Signed Halfword

REVHS R3, R7 ; Reverse with Higher or Same condition

RBIT R7, R8 ; Reverse bit order of value in R8 and write the result to R7.

TST and TEQ
Test bits and Test Equivalence.

Syntax
TST{cond} Rn, Operand2

TEQ{cond} Rn, Operand?

where:

cond is an optional condition code, see 2.6.3.7. Conditional Execution.
Rn is the register holding the first operand.

Operand? is a flexible second operand. See 2.6.3.3. Flexible Second Operand for details of the options.

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 69
and its subsidiaries

2.6.5.9.2

2.6.5.9.3

2.6.5.9.4

2.6.6

2.6.6.1

Cortex-M3 Processor (Reference Material)

Operation
These instructions test the value in a register against Operand2. They update the condition flags based on the resuilt,
but do not write the result to a register.

The TST instruction performs a bitwise AND operation on the value in Rn and the value of Operand2. This is the
same as the ANDS instruction, except that it discards the result.

To test whether a bit of Rn is 0 or 1, use the TST instruction with an Operand2 constant that has that bit set to 1 and
all other bits cleared to 0.

The TEQ instruction performs a bitwise Exclusive OR operation on the value in Rn and the value of Operand2. This is
the same as the EORS instruction, except that it discards the result.

Use the TEQ instruction to test if two values are equal without affecting the V or C flags.

TEQ is also useful for testing the sign of a value. After the comparison, the N flag is the logical Exclusive OR of the
sign bits of the two operands.

Restrictions
Do not use SP and do not use PC.

Condition Flags

These instructions:
» update the N and Z flags according to the result
» can update the C flag during the calculation of Operand2, see 2.6.3.3. Flexible Second Operand
» do not affect the V flag.

Examples
TST RO, #0x3F8 ; Perform bitwise AND of RO value to 0x3F8,
; APSR is updated but result is discarded
TEQEQ R10, R9 ; Conditionally test if value in R10 is equal to

; value in R9, APSR is updated but result is discarded.

Multiply and Divide Instructions
The following table shows the multiply and divide instructions:

Table 2-28. Multiply and Divide Instructions

Multiply with Accumulate, 32-bit result 2.6.6.1. MUL, MLA, and MLS
MLS Multiply and Subtract, 32-bit result 2.6.6.1. MUL, MLA, and MLS
MUL Multiply, 32-bit result 2.6.6.1. MUL, MLA, and MLS
SDIV Signed Divide 2.6.6.3. SDIV and UDIV
SMLAL Signed Multiply with Accumulate 2.6.6.3. SDIV and UDIV
(32x32+64), 64-bit result
SMULL Signed Multiply (32x32), 64-bit result 2.6.6.2. UMULL, UMLAL, SMULL, and SMLAL
ubDIVv Unsigned Divide 2.6.6.3. SDIV and UDIV
UMLAL Unsigned Multiply with Accumulate 2.6.6.2. UMULL, UMLAL, SMULL, and SMLAL
(32x32+64), 64-bit result
UMULL Unsigned Multiply (32x32), 64-bit result 2.6.6.2. UMULL, UMLAL, SMULL, and SMLAL

MUL, MLA, and MLS

Multiply, Multiply with Accumulate, and Multiply with Subtract, using 32-bit operands, and producing a
32-bit result.

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 70
and its subsidiaries

2.6.6.1.1

2.6.6.1.2

2.6.6.1.3

2.6.6.1.4

2.6.6.2

2.6.6.2.1

Cortex-M3 Processor (Reference Material)

Syntax
MUL{S}{cond} {Rd,} Rn, Rm ; Multiply
MLA{cond} Rd, Rn, Rm, Ra ; Multiply with accumulate
MLS{cond} Rd, Rn, Rm, Ra ; Multiply with subtract
where:
cond is an optional condition code, see 2.6.3.7. Conditional Execution.
S is an optional suffix. If S is specified, the condition code flags are updated on the result of the operation, see
2.6.3.7. Conditional Execution.
Rd is the destination register. If Rd is omitted, the destination register is Rn.
Rn, Rm are registers holding the values to be multiplied.
Ra is a register holding the value to be added or subtracted from.
Operation
The MUL instruction multiplies the values from Rn and Rm, and places the least significant 32 bits of the result in Rd.
The MLA instruction multiplies the values from Rn and Rm, adds the value from Ra, and places the least significant
32 bits of the result in Rd.
The MLS instruction multiplies the values from Rn and Rm, subtracts the product from the value from Ra, and places
the least significant 32 bits of the result in Rd.
The results of these instructions do not depend on whether the operands are signed or unsigned.
Restrictions
In these instructions, do not use SP and do not use PC.
If you use the S suffix with the MUL instruction:
* Rd, Rn, and Rm must all be in the range RO to R7
* Rd must be the same as Rm
* you must not use the cond suffix.
Condition Flags
If S is specified, the MUL instruction:
» updates the N and Z flags according to the result
» does not affect the C and V flags.
Examples
MUL R10, R2, R5 ; Multiply, R10 R2 x R5
MLA R10, R2, R1, RS ; Multiply with accumulate, R10 = (R2 x R1) + RS
MULS RO, R2, R2 ; Multiply with flag update, RO = R2 x R2
MULLT R2, R3, R2 ; Conditionally multiply, R2 = R3 x R2
MLS R4, R5, R6, R7 ; Multiply with subtract, R4 = R7 - (R5 x R6).
UMULL, UMLAL, SMULL, and SMLAL
Signed and Unsigned Long Multiply, with optional Accumulate, using 32-bit operands and producing a 64-bit result.
Syntax
op{cond} RdLo, RdHi, Rn, Rm
where:
* op is one of:
— UMULL: Unsigned Long Multiply
— UMLAL: Unsigned Long Multiply, with Accumulate
— SMULL: Signed Long Multiply
— SMLAL: Signed Long Multiply, with Accumulate
» cond is an optional condition code, see 2.6.3.7. Conditional Execution.
© 2023 Microchip Technology Inc. User Guide DS50003495A-page 71

and its subsidiaries

2.6.6.2.2

2.6.6.2.3

2.6.6.2.4

2.6.6.3

2.6.6.3.1

2.6.6.3.2

2.6.6.3.3

2.6.6.3.4

Cortex-M3 Processor (Reference Material)

* RdHi, RdLo are the destination registers. For UMLAL and SMLAL they also hold the accumulating value.
* Rn, Rm are registers holding the operands.

Operation
The UMULL instruction interprets the values from Rn and Rm as unsigned integers. It multiplies these integers and
places the least significant 32 bits of the result in RdLo, and the most significant 32 bits of the result in RdHi.

The UMLAL instruction interprets the values from Rn and Rm as unsigned integers. It multiplies these integers, adds
the 64-bit result to the 64-bit unsigned integer contained in RdHi and RdLo, and writes the result back to RdHi and
RdLo.

The SMULL instruction interprets the values from Rn and Rm as two’s complement signed integers. It multiplies
these integers and places the least significant 32 bits of the result in RdLo, and the most significant 32 bits of the
result in RdHi.

The SMLAL instruction interprets the values from Rn and Rm as two’s complement signed integers. It multiplies
these integers, adds the 64-bit result to the 64-bit signed integer contained in RdHi and RdLo, and writes the result
back to RdHi and RdLo.

Restrictions
In these instructions:

» do not use SP and do not use PC
* RdHi and RdLo must be different registers.

Condition Flags
These instructions do not affect the condition code flags.

Examples

UMULL RO, R4, R5, R6 ; Unsigned (R4,R0) = R5 x R6
SMLAL R4, R5, R3, RS8 ; Signed (R5,R4) = (R5,R4) + R3 x RS

SDIV and UDIV
Signed Divide and Unsigned Divide.

Syntax

SDIV{cond} {Rd,} Rn, Rm
UDIV{cond} {Rd,} Rn, Rm

where:

cond is an optional condition code, see 2.6.3.7. Conditional Execution.

Rd is the destination register. If Rd is omitted, the destination register is Rn.
Rn is the register holding the value to be divided.

Rm is a register holding the divisor.

Operation
SDIV performs a signed integer division of the value in Rn by the value in Rm.

UDIV performs an unsigned integer division of the value in Rn by the value in Rm.
For both instructions, if the value in Rn is not divisible by the value in Rm, the result is rounded towards zero.

Restrictions
Do not use SP and do not use PC.

Condition Flags
These instructions do not change the flags.

Examples

SDIV RO, R2, R4 ; Signed divide, RO = R2/R4
UDIV R8, R8, Rl ; Unsigned divide, R8 = R8/RI1.

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 72
and its subsidiaries

Cortex-M3 Processor (Reference Material)

2.6.7 Saturating Instructions
This section describes the saturating instructions, SSAT and USAT.

2.6.7.1 SSAT and USAT
Signed Saturate and Unsigned Saturate to any bit position, with optional shift before saturating.

2.6.7.1.1 Syntax
op{cond} Rd, #n, Rm {, shift #s}

where:

* op is one of:
— SSAT: Saturates a signed value to a signed range.
— USAT: Saturates a signed value to an unsigned range.
» cond is an optional condition code, see 2.6.3.7. Conditional Execution.
* Rd is the destination register.
* n specifies the bit position to saturate to:
— nranges from 1 to 32 for SSAT
— nranges from 0 to 31 for USAT.
* Rm is the register containing the value to saturate.
» shift #s is an optional shift applied to Rm before saturating. It must be one of the following:
— ASR #s where s is in the range 1 to 31
— LSL #s where s is in the range 0 to 31

2.6.7.1.2 Operation
These instructions saturate to a signed or unsigned n-bit value.

The SSAT instruction applies the specified shift, then saturates to the signed range -2"1 < x < 2n-1-1,
The USAT instruction applies the specified shift, then saturates to the unsigned range 0 < x < 2"-1.
For signed n-bit saturation using SSAT, this means that:

- if the value to be saturated is less than -2"-1, the result returned is -2n-"1
« if the value to be saturated is greater than 2"-1-1, the result returned is 2"'-1
« otherwise, the result returned is the same as the value to be saturated.

For unsigned n-bit saturation using USAT, this means that:

« if the value to be saturated is less than 0, the result returned is 0
+ if the value to be saturated is greater than 2"-1, the result returned is 2"-1
« otherwise, the result returned is the same as the value to be saturated.
If the returned result is different from the value to be saturated, it is called saturation. If saturation occurs, the

instruction sets the Q flag to 1 in the APSR. Otherwise, it leaves the Q flag unchanged. To clear the Q flag to 0, you
must use the MSR instruction, see 2.6.10.7. MSR.

To read the state of the Q flag, use the MRS instruction, see 2.6.10.6. MRS.

2.6.7.1.3 Restrictions
Do not use SP and do not use PC.

2.6.7.1.4 Condition Flags
These instructions do not affect the condition code flags.

If saturation occurs, these instructions set the Q flag to 1.

Examples

SSAT R7, #1l6, R7, LSL #4 ; Logical shift left value in R7 by 4, then
; saturate it as a signed 16-bit value and
; write it back to R7
USATNE RO, #7, R5 ; Conditionally saturate value in R5 as an
; unsigned 7 bit value and write it to RO.

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 73
and its subsidiaries

2.6.8

2.6.8.1

2.6.8.1.1

2.6.8.1.2

2.6.8.1.3

2.6.8.1.4

2.6.8.2

2.6.8.2.1

Cortex-M3 Processor (Reference Material)

Bitfield instructions
The following table shows the instructions that operate on adjacent sets of bits in registers or bitfields:

Table 2-29. Packing and Unpacking Instructions

BFC Bit Field Clear 2.6.8.1. BFC and BFI
BFI Bit Field Insert 2.6.8.1. BFC and BFI
SBFX Signed Bit Field Extract 2.6.8.2. SBFX and UBFX
SXTB Sign extend a byte 2.6.8.3. SXT and UXT
SXTH Sign extend a halfword 2.6.8.3. SXT and UXT
UBFX Unsigned Bit Field Extract 2.6.8.2. SBFX and UBFX
UXTB Zero extend a byte 2.6.8.3. SXT and UXT
UXTH Zero extend a halfword 2.6.8.3. SXT and UXT
BFC and BFI

Bit Field Clear and Bit Field Insert.

Syntax

BFC{cond} Rd, #lsb, #width
BFI{cond} Rd, Rn, #lsb, #width

where:

cond is an optional condition code, see 2.6.3.7. Conditional Execution.

Rd is the destination register.

Rn is the source register.

Isb is the position of the least significant bit of the bitfield. Isb must be in the range 0 to 31.
width is the width of the bitfield and must be in the range 1 to 32-Isb.

Operation
BFC clears a bitfield in a register. It clears width bits in Rd, starting at the low bit position Isb. Other bits in Rd are
unchanged.

BFI copies a bitfield into one register from another register. It replaces width bits in Rd starting at the low bit position
Isb, with width bits from Rn starting at bit[0]. Other bits in Rd are unchanged.

Restrictions
Do not use SP and do not use PC.

Condition Flags
These instructions do not affect the flags.

Examples
BFC R4, #8, #12 ; Clear bit 8 to bit 19 (12 bits) of R4 to O
BFI R9, R2, #8, #12 ; Replace bit 8 to bit 19 (12 bits) of R9 with

; bit 0 to bit 11 from R2.

SBFX and UBFX
Signed Bit Field Extract and Unsigned Bit Field Extract.

Syntax
SBFX{cond} Rd, Rn, #lsb, #width

UBFX{cond} Rd, Rn, #lsb, #width

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 74
and its subsidiaries

2.6.8.2.2

2.6.8.2.3

2.6.8.24

2.6.8.3

2.6.8.3.1

2.6.8.3.2

2.6.8.3.3

Cortex-M3 Processor (Reference Material)

where:

cond is an optional condition code, see 2.6.3.7. Conditional Execution.

Rd is the destination register.

Rn is the source register.

Isb is the position of the least significant bit of the bitfield. Isb must be in the range 0 to 31.
width is the width of the bitfield and must be in the range 1 to 32-Isb.

Operation
SBFX extracts a bitfield from one register, sign extends it to 32 bits, and writes the result to the destination register.

UBFX extracts a bitfield from one register, zero extends it to 32 bits, and writes the result to the destination register.

Restrictions
Do not use SP and do not use PC.

Condition Flags
These instructions do not affect the flags.

Examples

SBFX RO, R1, #20, #4 ; Extract bit 20 to bit 23 (4 bits) from Rl and sign
; extend to 32 bits and then write the result to RO.
UBFX R8, R11, #9, #10 ; Extract bit 9 to bit 18 (10 bits) from R11 and zero
; extend to 32 bits and then write the result to RS8.

SXT and UXT
Sign extend and Zero extend.

Syntax
SXTextend{cond} {Rd,} Rm {, ROR #n}

UXTextend{cond} {Rd}, Rm {, ROR #n}
where:

» extend is one of:
— B: Extends an 8-bit value to a 32-bit value.
— H: Extends a 16-bit value to a 32-bit value.
» cond is an optional condition code, see 2.6.3.7. Conditional Execution.
* Rd is the destination register.
* Rm is the register holding the value to extend.
* ROR #nis one of:
— ROR #8: Value from Rm is rotated right 8 bits.
— ROR #16: Value from Rm is rotated right 16 bits.
— ROR #24: Value from Rm is rotated right 24 bits.
— If ROR #n is omitted, no rotation is performed.

Operation
These instructions do the following:

Rotate the value from Rm right by 0, 8, 16 or 24 bits.
Extract bits from the resulting value:
» SXTB extracts bits [7:0] and sign extends to 32 bits.
* UXTB extracts bits [7:0] and zero extends to 32 bits.

» SXTH extracts bits [15:0] and sign extends to 32 bits.
» UXTH extracts bits [15:0] and zero extends to 32 bits.

Restrictions
Do not use SP and do not use PC.

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 75
and its subsidiaries

2.6.8.34

2.6.9

2.6.91

2.6.9.1.1

2.6.9.1.2

Cortex-M3 Processor (Reference Material)

Condition Flags
These instructions do not affect the flags.

Examples

SXTH R4, R6, ROR #16 ; Rotate R6 right by 16 bits, then obtain the lower
; halfword of the result and then sign extend to
; 32 bits and write the result to R4.

UXTB R3, R10 ; Extract lowest byte of the value in R10 and zero
; extend it, and write the result to R3.

Branch and Control Instructions
The following table lists the branch and control instructions:

Table 2-30. Branch and Control Instructions

B Branch 2.6.9.1. B, BL, BX, and BLX
BL Branch with Link 2.6.9.1. B, BL, BX, and BLX
BLX Branch indirect with Link 2.6.9.1. B, BL, BX, and BLX
BX Branch indirect 2.6.9.1. B, BL, BX, and BLX
CBNZ Compare and Branch if Non Zero 2.6.9.2. CBZ and CBNZ
CBz Compare and Branch if Zero 2.6.9.2. CBZ and CBNZ

IT If-Then 2.6.93. IT

TBB Table Branch Byte 2.6.9.4. TBB and TBH

TBH Table Branch Halfword 2.6.9.4. TBB and TBH

B, BL, BX, and BLX
Branch instructions.

Syntax

B{cond}
labelBL{cond}
labelBX{cond}
RmBLX{cond} Rm

where:

* B is branch (immediate).

* BL is branch with link (immediate).

* BX is branch indirect (register).

* BLX is branch indirect with link (register).

* cond is an optional condition code, see 2.6.3.7. Conditional Execution.

* label is a PC-relative expression. See 2.6.3.6. PC-relative Expressions.

* Rmis a register that indicates an address to branch to. Bit[0] of the value in Rm must be 1, but the address to
branch to is created by changing bit[0] to 0.

Operation
All these instructions cause a branch to label, or to the address indicated in Rm. In addition:

» The BL and BLX instructions write the address of the next instruction to LR (the link register, R14).
» The BX and BLX instructions result in a UsageFault exception if bit[0] of Rm is 0.

Bcond label is the only conditional instruction that can be either inside or outside an IT block. All other branch
instructions can only be conditional inside an IT block, and are always unconditional otherwise, see 2.6.9.3. IT.

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 76
and its subsidiaries

2.6.9.1.3

2.6.9.1.4

2.6.9.2

2.6.9.2.1

2.6.9.2.2

Cortex-M3 Processor (Reference Material)

The following table lists the ranges for the various branch instructions.

Table 2-31. Branch Ranges

B label -16 MB to +16 MB
Bcond label (outside IT block) -1 MB to +1 MB
Bcond label (inside IT block) -16 MB to +16 MB
BL{cond} label -16 MB to +16 MB
BX{cond} Rm Any value in register
BLX{cond} Rm Any value in register

You may have to use the .W suffix to get the maximum branch range. See 2.6.3.8. Instruction Width Selection.

Restrictions
The restrictions are:
* do not use PC in the BLX instruction
« for BX and BLX, bit[0] of Rm must be 1 for correct execution but a branch occurs to the target address created
by changing bit[0] to 0
» when any of these instructions is inside an IT block, it must be the last instruction of the IT block.
Note: Bcond is the only conditional instruction that is not required to be inside an IT block. However, it has a
longer branch range when it is inside an IT block.
Condition Flags
These instructions do not change the flags.
Examples
B loopA ; Branch to loopA
BLE ng ; Conditionally branch to label
ngB.W target ; Branch to target within 16MB range
BEQ target ; Conditionally branch to target
BEQ.W target ; Conditionally branch to target within 1 MB
BL funC ; Branch with link (Call) to function funC, return address
; stored in LR
BX LR ; Return from function call
BXNE RO ; Conditionally branch to address stored in RO
BLX RO ; Branch with link and exchange (Call) to a address stored
; in RO.
CBZ and CBNZ
Compare and Branch on Zero, Compare and Branch on Non-Zero.
Syntax
CBZ Rn, label
CBNZ Rn, label
where:
* Rn is the register holding the operand.
* label is the branch destination.
Operation
Use the CBZ or CBNZ instructions to avoid changing the condition code flags and to reduce the number of
instructions.
CBZ Rn, label does not change condition flags but is otherwise equivalent to:
CMP Rn, #0
BEQ label
© 2023 Microchip Technology Inc. User Guide DS50003495A-page 77

and its subsidiaries

Cortex-M3 Processor (Reference Material)

CBNZ Rn, label does not change condition flags but is otherwise equivalent to:
CMP Rn, #0
BNE label

2.6.9.2.3 Restrictions
The restrictions are:
Rn must be in the range of RO to R7
the branch destination must be within 4 to 130 bytes after the instruction
these instructions must not be used inside an IT block.
2.6.9.2.4 Condition Flags

These instructions do not change the flags.

Examples

CBZ R5, target ; Forward branch if R5 is zero
CBNZ RO, target ; Forward branch if RO is not zero.

2693 IT
If-Then condition instruction.

2.6.9.3.1 Syntax
IT{x{y{z}}} cond

where:

» x specifies the condition switch for the second instruction in the IT block.

» y specifies the condition switch for the third instruction in the IT block.

» z specifies the condition switch for the fourth instruction in the IT block.

* cond specifies the condition for the first instruction in the IT block. The condition switch for the second, third and
fourth instruction in the IT block can be either:

* T: Then. Applies the condition cond to the instruction.

» E: Else. Applies the inverse condition of cond to the instruction.

Important: It is possible to use AL (the always condition) for cond in an IT instruction. If this is done,
all of the instructions in the IT block must be unconditional, and each of %, y, and z must be T or
omitted but not E.

2.6.9.3.2 Operation
The IT instruction makes up to four following instructions conditional. The conditions can be all the same, or some
of them can be the logical inverse of the others. The conditional instructions following the IT instruction form the IT
block.

The instructions in the IT block, including any branches, must specify the condition in the {cond} part of their syntax.

Note: Your assembler might be able to generate the required IT instructions for conditional instructions automatically,
so that you do not need to write them yourself. See your assembler documentation for details.

A BKPT instruction in an IT block is always executed, even if its condition fails.

Exceptions can be taken between an IT instruction and the corresponding IT block, or within an IT block. Such an
exception results in entry to the appropriate exception handler, with suitable return information in LR and stacked
PSR.

Instructions designed for use for exception returns can be used as normal to return from the exception, and execution
of the IT block resumes correctly. This is the only way that a PC-modifying instruction is permitted to branch to an
instruction in an IT block.

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 78
and its subsidiaries

2.6.9.3.3

2,6.9.34

2.6.94

2.6.9.4.1

Cortex-M3 Processor (Reference Material)

Restrictions
The following instructions are not permitted in an IT block:

e T

« CBZand CBNZ

- CPSID and CPSIE
- MOVS.N Rd, Rm.

Other restrictions when using an IT block are:

» abranch or any instruction that modifies the PC must either be outside an IT block or must be the last instruction
inside the IT block. These are:
— ADD PC, PC, Rm
— MOV PC, Rm
- B, BL, BX, BLX
— any LDM, LDR, or POP instruction that writes to the PC
— TBBand TBH
» do not branch to any instruction inside an IT block, except when returning from an exception handler
» all conditional instructions except Bcond must be inside an IT block. Bcond can be either outside or inside an IT
block but has a larger branch range if it is inside one
» each instruction inside the IT block must specify a condition code suffix that is either the same or logical inverse
as for the other instructions in the block.
Note: Your assembler might place extra restrictions on the use of IT blocks, such as prohibiting the use of
assembler directives within them.

Condition Flags
This instruction does not change the flags.

Example
ITTE NE ; Next 3 instructions are conditional
ANDNE RO, RO, RI1 ; ANDNE does not update condition flags
ADDSNE R2, R2, #1 ; ADDSNE updates condition flags
MOVEQ R2, R3 ; Conditional move

CMP RO, #9 ; Convert RO hex value (0 to 15) into ASCII
; (101_19’, ’A’_’F’)

ITE GT ; Next 2 instructions are conditional
ADDGT R1, RO, #55 ; Convert OxA -> 'A'

ADDLE R1, RO, #48 ; Convert 0x0 -> '0'

IT GT ; IT block with only one conditional instruction
ADDGT R1, R1, #1 ; Increment R1 conditionally

ITTEE EQ ; Next 4 instructions are conditional

MOVEQ RO, R1 ; Conditional move
ADDEQ R2, R2, #10 ; Conditional add

ANDNE R3, R3, #1 ; Conditional AND
BNE.W dloop ; Branch instruction can only be used in the last
; instruction of an IT block

IT NE ; Next instruction is conditional
ADD RO, RO, R1 ; Syntax error: no condition code used in IT block.

TBB and TBH
Table Branch Byte and Table Branch Halfword.

Syntax

TBB [Rn, Rm]

TBH [Rn, Rm, LSL #1]

where:

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 79

and its subsidiaries

2.6.9.4.2

2.6.9.4.3

2.6.9.4.4

2.6.10

Cortex-M3 Processor (Reference Material)

* Rn is the register containing the address of the table of branch lengths. If Rn is PC, then the address of the table
is the address of the byte immediately following the TBB or TBH instruction.

* Rmis the index register. This contains an index into the table. For halfword tables, .S, #1 doubles the value in
Rm to form the right offset into the table.

Operation
These instructions cause a PC-relative forward branch using a table of single byte offsets for TBB, or halfword offsets
for TBH. Rn provides a pointer to the table, and Rm supplies an index into the table. For TBB the branch offset is
twice the unsigned value of the byte returned from the table. and for TBH the branch offset is twice the unsigned
value of the halfword returned from the table. The branch occurs to the address at that offset from the address of the
byte immediately after the TBB or TBH instruction.
Restrictions
The restrictions are:
* Rn must not be SP
* Rm must not be SP and must not be PC
» when any of these instructions is used inside an IT block, it must be the last instruction of the IT block.
Condition Flags
These instructions do not change the flags.
Examples
ADR.W RO, BranchTable Byte
TBB [RO, R1] ; Rl is the index, RO is the base address of the
; branch table
Casel
; an instruction sequence follows
Case2
; an instruction sequence follows
Case3
; an instruction sequence follows
BranchTable Byte
DCB 0 ; Casel offset calculation
DCB ((Case2-Casel) /2) ; Case2 offset calculation
DCB ((Case3-Casel)/2) ; Case3 offset calculation
TBH [PC, R1, LSL #1] ; Rl is the index, PC is used as base of the
; branch table
BranchTable H
DCI ((CaseA - BranchTable H)/2) ;CaseA offset calculation
DCI ((CaseB - BranchTable H)/2) ; CaseB offset calculation
DCI ((CaseC - BranchTable_H)/2) ; CaseC offset calculation
CaseA
; an instruction sequence follows
CaseB
; an instruction sequence follows
CaseC
; an instruction sequence follows
Miscellaneous Instructions
The following table lists the remaining Cortex-M3 processor instructions:
Table 2-32. Miscellaneous Instructions
BKPT Breakpoint 2.6.10.1. BKPT
© 2023 Microchip Technology Inc. User Guide DS50003495A-page 80

and its subsidiaries

2.6.10.1

Cortex-M3 Processor (Reference Material)

2.6.10.1.1 Syntax

........... continued

Mnermenic —[BristBsseription——Jsee |
CPSID Change Processor State, Disable Interrupts 2.6.10.2. CPS
CPSIE Change Processor State, Enable Interrupts 2.6.10.2. CPS
DMB Data Memory Barrier 2.6.10.3. DMB
DSB Data Synchronization Barrier 2.6.10.4. DSB
ISB Instruction Synchronization Barrier 2.6.10.5. I1SB
MRS Move from special register to register 2.6.10.6. MRS
MSR Move from register to special register 2.6.10.7. MSR
NOP No Operation 2.6.10.8. NOP
SEV Send Event 2.6.10.9. SEV
sSvC Supervisor Call 2.6.10.10. SVC
WFE Wait For Event 2.6.10.11. WFE
WEFI Wait For Interrupt 2.6.10.12. WFI
BKPT

Breakpoint.

BKPT #imm

where:

imm is an expression evaluating to an integer in the range 0-255 (8-bit value).

2.6.10.1.2 Operation

The BKPT instruction causes the processor to enter Debug state. Debug tools can use this to investigate system
state when the instruction at a particular address is reached.

imm is ignored by the processor. If required, a debugger can use it to store additional information about the
breakpoint.

The BKPT instruction can be placed inside an IT block, but it executes unconditionally, unaffected by the condition
specified by the IT instruction.

2.6.10.1.3 Condition Flags

2.6.10.2

This instruction does not change the flags.

Examples

BKPT #0x3 ; Breakpoint with immediate value set to 0x3 (debugger can
; extract the immediate value by locating it using the PC)

Note: Arm does not recommend the use of the BKPT instruction with an immediate value set to OxAB for any
purpose other than Semi-hosting.

CPS
Change Processor State.

2.6.10.2.1 Syntax

CPSeffect iflags
where:

» effectis one of:
— |E: Clears the special purpose register.

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 81
and its subsidiaries

Cortex-M3 Processor (Reference Material)

— ID: Sets the special purpose register.
» iflags is a sequence of one or more flags:

— i: Set or clear PRIMASK.

— f: Set or clear FAULTMASK.

2.6.10.2.2 Operation

CPS changes the PRIMASK and FAULTMASK special register values. See 2.5.1.3.9. Exception Mask Registers for
more information about these registers.

2.6.10.2.3 Restrictions
The restrictions are:

» use CPS only from privileged software, it has no effect if used in unprivileged software
* CPS cannot be conditional and so must not be used inside an IT block.

2.6.10.2.4 Condition Flags
This instruction does not change the condition flags.

Examples

CPSID i ; Disable interrupts and configurable fault handlers (set PRIMASK)
CPSID f ; Disable interrupts and all fault handlers (set FAULTMASK)

CPSIE i ; Enable interrupts and configurable fault handlers (clear PRIMASK)
CPSIE f; Enable interrupts and fault handlers (clear FAULTMASK).

2.6.10.3 DMB
Data Memory Barrier.

2.6.10.3.1 Syntax
DMB{cond}

where:

cond is an optional condition code, see 2.6.3.7. Conditional Execution.

2.6.10.3.2 Operation
DMB acts as a data memory barrier. It ensures that all explicit memory accesses that appear, in program order,
before the DMB instruction are completed before any explicit memory accesses that appear, in program order, after
the DMB instruction. DMB does not affect the ordering or execution of instructions that do not access memory.

2.6.10.3.3 Condition Flags
This instruction does not change the flags.

Examples
DMB ; Data Memory Barrier

2.6.10.4 DSB
Data Synchronization Barrier.

2.6.10.4.1 Syntax
DSB{cond}
where:

cond is an optional condition code, see 2.6.3.7. Conditional Execution.

2.6.10.4.2 Operation
DSB acts as a special data synchronization memory barrier. Instructions that come after the DSB, in program
order, do not execute until the DSB instruction completes. The DSB instruction completes when all explicit memory
accesses before it complete.

2.6.10.4.3 Condition Flags
This instruction does not change the flags.

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 82
and its subsidiaries

Cortex-M3 Processor (Reference Material)

Examples
DSB ; Data Synchronisation Barrier

2.6.10.5 ISB
Instruction Synchronization Barrier.

2.6.10.5.1 Syntax
ISB{cond}

where:

cond is an optional condition code, see 2.6.3.7. Conditional Execution.

2.6.10.5.2 Operation
ISB acts as an instruction synchronization barrier. It flushes the pipeline of the processor, so that all instructions
following the ISB are fetched from cache or memory again, after the ISB instruction has been completed.

2.6.10.5.3 Condition Flags
This instruction does not change the flags.

Examples
ISB ; Instruction Synchronisation Barrier

2.6.10.6 MRS
Move the contents of a special register to a general-purpose register.

2.6.10.6.1 Syntax
MRS{cond} Rd, spec_reg

where:
cond is an optional condition code, see 2.6.3.7. Conditional Execution.
Rd is the destination register.

spec_reg can be any of: APSR, IPSR, EPSR, IEPSR, IAPSR, EAPSR, PSR, MSP, PSP, PRIMASK, BASEPRI,
BASEPRI_MAX, FAULTMASK, or CONTROL.

Note: All the EPSR and IPSR fields are zero when read by the MRS instruction.

2.6.10.6.2 Operation
Use MRS in combination with MSR as part of a read-modify-write sequence for updating a PSR, for example to clear
the Q flag.

Note: BASEPRI_MAX is an alias of BASEPRI when used with the MRS instruction. See 2.6.10.7. MSR.

2.6.10.6.3 Restrictions
Rd must not be SP and must not be PC.

2.6.10.6.4 Condition Flags
This instruction does not change the flags.

Examples
MRS RO, PRIMASK ; Read PRIMASK value and write it to RO.

2.6.10.7 MSR
Move the contents of a general-purpose register into the specified special register.

2.6.10.7.1 Syntax
MSR{cond} spec_reg, Rn

where:
cond is an optional condition code, see 2.6.3.7. Conditional Execution.

Rn is the source register.

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 83
and its subsidiaries

Cortex-M3 Processor (Reference Material)

spec_reg can be any of: APSR, IPSR, EPSR, IEPSR, IAPSR, EAPSR, PSR, MSP, PSP, PRIMASK, BASEPRI,
BASEPRI_MAX, FAULTMASK, or CONTROL.

Note: The processor ignores MSR writes to the EPSR and IPSR fields.

2.6.10.7.2 Operation
The register access operation in MSR depends on the privilege level. Unprivileged software can only access the
APSR, see Table 2-4. Privileged software can access all special registers.

In unprivileged software writes to unallocated or execution state bits in the PSR are ignored.

Notes: When you write to BASEPRI_MAX, the instruction writes to BASEPRI only if either:
* Rnis non-zero and the current BASEPRI value is 0
* Rnis non-zero and less than the current BASEPRI value.

See 2.6.10.6. MRS

2.6.10.7.3 Restrictions
Rn must not be SP and must not be PC.

2.6.10.7.4 Condition Flags
This instruction updates the flags explicitly based on the value in Rn.

Examples

MSR CONTROL, R1 ; Read R1 value and write it to the CONTROL register.

2.6.10.8 NOP
No Operation.

2.6.10.8.1 Syntax
NOP{cond}

where:
cond is an optional condition code, see 2.6.3.7. Conditional Execution.

2.6.10.8.2 Operation
NOP does nothing. NOP is not necessarily a time-consuming NOP. The processor might remove it from the pipeline
before it reaches the execution stage.

Use NOP for padding, for example to adjust the alignment of a following instruction.

2.6.10.8.3 Condition Flags
This instruction does not change the flags.

Examples

NOP ; No operation

2.6.10.9 SEV
Send Event.
2.6.10.9.1 Syntax
SEV{cond}
where:

cond is an optional condition code, see 2.6.3.7. Conditional Execution.

2.6.10.9.2 Operation
SEV is a hint instruction that causes an event to be signaled to all processors within a multiprocessor system. It also
sets the local event register to 1, see 2.5.5. Power Management.

2.6.10.9.3 Condition Flags
This instruction does not change the flags.

Examples
SEV ; Send Event

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 84
and its subsidiaries

Cortex-M3 Processor (Reference Material)

2.6.10.10 SVC
Supervisor Call.

2.6.10.10.1 Syntax
SVC{cond} #imm

where:
cond is an optional condition code, see 2.6.3.7. Conditional Execution.

imm is an expression evaluating to an integer in the range 0-255 (8-bit value).

2.6.10.10.2 Operation
The SVC instruction causes the SVC exception.

imm is ignored by the processor. If required, it can be retrieved by the exception handler to determine what service is
being requested.

2.6.10.10.3 Condition Flags
This instruction does not change the flags.

Examples
SVC #0x32 ; Supervisor Call (SVCall handler can extract the immediate value
; by locating it via the stacked PC)

2.6.10.11 WFE
Wait For Event.

2.6.10.11.1 Syntax
WFE{cond}

where:

cond is an optional condition code, see 2.6.3.7. Conditional Execution.

2.6.10.11.2 Operation
WEE is a hint instruction.

If the event register is 0, WFE suspends execution until one of the following events occurs:
an exception, unless masked by the exception mask registers or the current priority level

an exception enters the Pending state, if SEVONPEND in the System Control Register is set
a Debug Entry request, if Debug is enabled

an event signaled by a peripheral or another processor in a multiprocessor system using the SEV instruction.
If the event register is 1, WFE clears it to 0 and returns immediately.

For more information see 2.5.5. Power Management.

Condition flags

This instruction does not change the flags.

Examples

WEFE ; Wait for event

2.6.10.12 WFI
Wait for Interrupt.

2.6.10.12.1 Syntax
WFI{cond}

where:

cond is an optional condition code, see 2.6.3.7. Conditional Execution.

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 85
and its subsidiaries

Cortex-M3 Processor (Reference Material)

2.6.10.12.2 Operation
WEFl is a hint instruction that suspends execution until one of the following events occurs:

* anon-masked interrupt occurs and is taken
* an interrupt masked by PRIMASK becomes pending
* a Debug Entry request.

2.6.10.12.3 Condition Flags
This instruction does not change the flags.

Examples

WFI ; Wait for interrupt

2.7 Cortex-M3 Processor Peripherals

The following sections are the reference material for the Cortex-M3 processor core peripherals descriptions in this
user guide.

271 About the Cortex-M3 Processor Peripherals
The following table provides the address map of the Private peripheral bus (PPB).

Table 2-33. Core Peripheral Register Regions

0OxEOOOEO008-0xEOOOEOOF System control block Table 2-44
0xEO00EO010-0xEO0OEO1F System timer Table 2-65
OxEOOOE100-0xEOOOE4EF Nested Vectored Interrupt Controller Table 2-34
O0xEOOOEDO00-0xEOOOED3F System control block Table 2-44
O0xEOOOED90-0xEOOOED93 MPU Type Register Reads as zero, indicating no MPU
is implemented’
O0xEOOOED90-0xEOOOEDBS8 Memaory protection unit Table 2-71
0xEOOOEF00-O0xEOOOEF03 Nested Vectored Interrupt Controller Table 2-34
Note:
1. Software can read the MPU Type Register at 0OXEOOOED9O to test for the presence of a memory protection unit
(MPU).

In register descriptions:

» the register type is described as follows:
— RW: Read and write.
— RO: Read-only.
— WO: Write-only.
» the required privilege gives the privilege level required to access the register, as follows:
— Privileged: Only privileged software can access the register.
— Unprivileged: Both unprivileged and privileged software can access the register.

2711 Nested Vectored Interrupt Controller
This section describes the Nested Vectored Interrupt Controller (NVIC) and the registers it uses. The NVIC supports:

* 1 1to 240 interrupts.

* A programmable priority level of 0-255 for each interrupt. A higher level corresponds to a lower priority, so level
0 is the highest interrupt priority.

» Level and pulse detection of interrupt signals.

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 86
and its subsidiaries

2.71.2

Cortex-M3 Processor (Reference Material)

» Dynamic reprioritization of interrupts.
» Grouping of priority values into group priority and subpriority fields.
* Interrupt tail-chaining.
* An external Non-maskable interrupt (NMI).

The processor automatically stacks its state on exception entry and unstacks this state on exception exit, with
no instruction overhead. This provides low latency exception handling. The hardware implementation of the NVIC

registers is:

Table 2-34. NVIC Register Summary

Address Type | Required Reset
privilege value

OxEOOOE100 -
OxEOQOOE11C

0XEOOOE180-
O0xEOOOE19C

0XEOO0OE200-
OxEO00OE21C

0XEOO00E280-
O0xEO00E29C

OxEOOOE300-
O0xEOOOE31C

0xEO000E400-
OxEOOOE4EF

0xEOOOEF00

Note:

NVIC_ISERO-
NVIC_ISER7

NVIC_ICERO-
NVIC_ICER7

NVIC_ISPRO-
NVIC_ISPR7

NVIC_ICPRO-
NVIC_ICPR7

NVIC_IABRO-
NVIC_IABR7

NVIC_IPRO-
NVIC_IPR59

STIR

RW

RW

RW

RO

RW

woO

Privileged

Privileged

Privileged

Privileged

Privileged

Privileged

Configurable | 0x00000000
1

0x00000000 2.7.1.3. Interrupt Set-enable Registers
0x00000000 2.7.1.4. Interrupt Clear-enable Registers
0x00000000 2.7.1.5. Interrupt Set-pending Registers
0x00000000 2.7.1.6. Interrupt Clear-Pending Registers
0x00000000 2.7.1.7. Interrupt Active Bit Registers
0x00000000 2.7.1.8. Interrupt Priority Registers

2.7.1.9. Software Trigger Interrupt
Register

1. See the register description for more information.

Accessing the Cortex-M3 Processor NVIC Registers Using CMSIS

CMSIS functions enable software portability between different Cortex-M3 profile processors. To access the NVIC
registers when using CMSIS, use the following functions:

Table 2-35. CMSIS Access NVIC Functions

void NVIC_EnablelRQ(IRQn_Type IRQn)'

void NVIC_Disable|RQ(IRQn_Type IRQn)?

void NVIC_SetPendingIRQ(IRQn_Type IRQN)?
void NVIC_ClearPendingIRQ(IRQn_Type IRQn)?2

uint32_t NVIC_GetPendingIRQ(IRQn_Type IRQnN)?

void NVIC_SetPriority(IRQn_Type IRQnN, uint32_t

priority)?@

uint32_t NVIC_GetPriority(IRQn_Type IRQn)?

Enables an interrupt or exception.

Disables an interrupt or exception.

Sets the pending status of interrupt or exception to 1.
Clears the pending status of interrupt or exception to 0.

Reads the pending status of interrupt or exception.
This function returns non-zero value if the pending status is
set to 1.

Sets the priority of an interrupt or exception with configurable
priority level to 1.

Reads the priority of an interrupt or exception with
configurable priority level.
This function return the current priority level.

© 2023 Microchip Technology Inc.
and its subsidiaries

User Guide DS50003495A-page 87

2713

2714

2715

Cortex-M3 Processor (Reference Material)

Note:
1. The input parameter IRQn is the IRQ number, see Table 22 on page 34 for more information.

Interrupt Set-enable Registers

The NVIC_ISERO-NVIC_ISER? registers enable interrupts, and show which interrupts are enabled. See the register
summary in Table 2-34 for the register attributes.

The bit assignments are:

Figure 2-19. ISER Register Bit Assignments
31 0

SETENA bits

Table 2-36. NVIC_ISER Bit Assignments

[31:0] SETENA Interrupt set-enable bits.
Write:

0: no effect

1: enable interrupt.
Read:

0: interrupt disabled

1: interrupt enabled.

If a pending interrupt is enabled, the NVIC activates the interrupt based on its priority. If an interrupt is not enabled,
asserting its interrupt signal changes the interrupt state to pending, but the NVIC never activates the interrupt,
regardless of its priority.

Interrupt Clear-enable Registers

The NVIC_ICERO-NVIC_ICERY registers disable interrupts, and show which interrupts are enabled. See the register
summary in Table 2-34 for the register attributes.

The bit assignments are:

Figure 2-20. ICER Register Bit Assignments
31 0

CLRENA bits

Table 2-37. NVIC_ICER Bit Assignments

[31:0] CLRENA Interrupt clear-enable bits.
Write:

0: no effect

1: disable interrupt.
Read:

0: interrupt disabled

1: interrupt enabled.

Interrupt Set-pending Registers

The NVIC_ISPRO-NVIC_ISPRY registers force interrupts into the pending state, and show which interrupts are
pending. See the register summary in Table 2-34 for the register attributes.

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 88
and its subsidiaries

Cortex-M3 Processor (Reference Material)

The bit assignments are:

Figure 2-21. ISPR Register Bit Assignments
31 0

SETPEND bits

Table 2-38. NVIC_ISPR Bit Assignments

S

[31:0] SETPEND Interrupt set-pending bits.
Write:

0: No effect

1: Changes interrupt state to pending.
Read:

0: Interrupt is not pending

1: Interrupt is pending.

Important: Writing 1 to the NVIC_ISPR bit corresponding to:
* Aninterrupt that is pending has no effect.
« Adisabled interrupt sets the state of that interrupt to pending.

2.71.6 Interrupt Clear-Pending Registers
The NVIC_ICPRO-NVIC_ICPRY7 registers remove the pending state from interrupts, and show which interrupts are
pending. See the register summary in Table 2-34 for the register attributes.

The bit assignments are:

Figure 2-22. ICPR Register Bit Assignments
31 0

CLRPEND bits

Table 2-39. NVIC_ICPR bit assignments

[31:0] CLRPEND Interrupt clear-pending bits.
Write:

0: no effect

1: removes pending state an interrupt.
Read:

0: interrupt is not pending

1: interrupt is pending.

Important: Writing 1 to an NVIC_ICPR bit does not affect the active state of the corresponding interrupt.

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 89
and its subsidiaries

2.71.7

2718

Cortex-M3 Processor (Reference Material)

Interrupt Active Bit Registers

The NVIC_IABRO-NVIC_IABRY registers indicate which interrupts are active. See the register summary in Table 2-34
for the register attributes.

The bit assignments are:

Figure 2-23. IABR Register Bit Assignments
31 0

ACTIVE bits

Table 2-40. NVIC_IABR Bit Assignments

[31:0] ACTIVE Interrupt active flags:
0: interrupt not active

1: interrupt active.

A bit reads as one if the status of the corresponding interrupt is active or active and pending.

Interrupt Priority Registers

The NVIC_IPRO-NVIC_IPR59 registers provide an 8-bit priority field for each interrupt. These registers are byte-
accessible. See the register summary in Table 2-34 for their attributes. Each register holds four priority fields as
shown:

Figure 2-24. IPR Register Bit Assignments

31 2423 1615 8.7 0
IPR59 PRI_239 PRI_238 PRI_237 PRI_236
IPRn PRI_4n+3 PRI_4n+2 PRI_4n+1 PRI_4n
IPRO PRI_3 PRI_2 PRI_1 PRI_O

Table 2-41. NVIC_IPR Bit Assignments

[31:24] Priority, byte offset 3 Each priority field holds a priority value, 0-255. The lower the value,
) . the greater the priority of the corresponding interrupt. The processor

[23:16] Priority, byte offset 2 implements only bits [7:n] of each field, bits [n-1:0] read as zero and

[15:8] Priority, byte offset 1 ignore writes.

[7:0] Priority, byte offset 0

See 2.7.1.2. Accessing the Cortex-M3 Processor NVIC Registers Using CMSIS for more information about the
access to the interrupt priority array, which provides the software view of the interrupt priorities.

Find the IPR number and byte offset for interrupt m as follows:

» the corresponding IPRn number (see the preceding table), n is given by n = m DIV 4
« the byte offset of the required Priority field in this register is m MOD 4, where:

— byte offset 0 refers to register bits [7:0]

— byte offset 1 refers to register bits [15:8]

— byte offset 2 refers to register bits [23:16]

— byte offset 3 refers to register bits [31:24].

User Guide DS50003495A-page 90

© 2023 Microchip Technology Inc.
and its subsidiaries

Cortex-M3 Processor (Reference Material)

2.71.9 Software Trigger Interrupt Register

Write to the STIR to generate an interrupt from software. See the register summary in Table 2-34 for the STIR
attributes.

When the USERSETMPEND bit in the SCR is set to 1, unprivileged software can access the STIR, see
2.7.2.6. System Control Register.

Important: Only privileged software can enable unprivileged access to the STIR.

The bit assignments are:

Figure 2-25. IABR Register Bit Assignments
31 9 8 0

Reserved INTID

Table 2-42. STIR Bit Assignments

[31:9] Reserved.

[8:0] INTID Interrupt ID of the interrupt to trigger, in the range 0-239. For example, a value of 0x03
specifies interrupt IRQ3.

2.71.10 Level-sensitive and Pulse Interrupts

The processor supports both level-sensitive and pulse interrupts. Pulse interrupts are also described as edge-
triggered interrupts.

A level-sensitive interrupt is held asserted until the peripheral de-asserts the interrupt signal. Typically this happens
because the ISR accesses the peripheral, causing it to clear the interrupt request. A pulse interrupt is an interrupt
signal sampled synchronously on the rising edge of the processor clock. To ensure the NVIC detects the interrupt, the
peripheral must assert the interrupt signal for at least one clock cycle, during which the NVIC detects the pulse and
latches the interrupt.

When the processor enters the ISR, it automatically removes the pending state from the interrupt, see

2.7.1.10.1. Hardware and Software Control of Interrupts. For a level-sensitive interrupt, if the signal is not deasserted
before the processor returns from the ISR, the interrupt becomes pending again, and the processor must execute its
ISR again. This means that the peripheral can hold the interrupt signal asserted until it no longer needs servicing.

See <reference required> for details of which interrupts are level-sensitive and which are pulsed.

2.7.1.10.1 Hardware and Software Control of Interrupts
The Cortex-M3 processor latches all interrupts. A peripheral interrupt becomes pending for one of the following
reasons:

« the NVIC detects that the interrupt signal is HIGH and the interrupt is not active
» the NVIC detects a rising edge on the interrupt signal
» software writes to the corresponding interrupt set-pending register bit, see 2.7.1.5. Interrupt Set-pending
Registers, or to the STIR to make an interrupt pending, see 2.7.1.9. Software Trigger Interrupt Register.
A pending interrupt remains pending until one of the following occurs:
» The processor enters the ISR for the interrupt. This changes the state of the interrupt from pending to active.
Then:

— For a level-sensitive interrupt, when the processor returns from the ISR, the NVIC samples the interrupt
signal. If the signal is asserted, the state of the interrupt changes to pending, which might cause the
processor to immediately re-enter the ISR. Otherwise, the state of the interrupt changes to inactive.

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 91
and its subsidiaries

2.71.11

271111

2.7.2

Cortex-M3 Processor (Reference Material)

— For a pulse interrupt, the NVIC continues to monitor the interrupt signal, and if this is pulsed the state of the
interrupt changes to pending and active. In this case, when the processor returns from the ISR the state of
the interrupt changes to pending, which might cause the processor to immediately re-enter the ISR.

If the interrupt signal is not pulsed while the processor is in the ISR, when the processor returns from the
ISR the state of the interrupt changes to inactive.

» Software writes to the corresponding interrupt clear-pending register bit.
For a level-sensitive interrupt, if the interrupt signal is still asserted, the state of the interrupt does not change.
Otherwise, the state of the interrupt changes to inactive.

For a pulse interrupt, state of the interrupt changes to:

— inactive, if the state was pending
— active, if the state was active and pending.

NVIC Design Hints and Tips

Ensure software uses correctly aligned register accesses. The processor does not support unaligned accesses to
NVIC registers. See the individual register descriptions for the supported access sizes.

An interrupt can enter pending state even if it is disabled. Disabling an interrupt only prevents the processor from
taking that interrupt.

Before programming VTOR to relocate the vector table, ensure the vector table entries of the new vector table are
setup for fault handlers, NMI and all enabled exception like interrupts. For more information see 2.7.2.4. Vector Table
Offset Register.

NVIC programming hints
Software uses the CPSIE | and CPSID | instructions to enable and disable interrupts. The CMSIS provides the
following intrinsic functions for these instructions:

void __disable_irg(void) // Disable Interrupts
void __enable_irg(void) // Enable Interrupts
In addition, the CMSIS provides a number of functions for NVIC control, including those listed in the following table.

Table 2-43. CMSIS Functions for NVIC Control

void NVIC_SetPriorityGrouping(uint32_t priority_grouping) Set the priority grouping

void NVIC_EnablelRQ(IRQn_t IRQnN) Enable IRQn

void NVIC_DisablelRQ(IRQn_t IRQnN) Disable IRQn

uint32_t NVIC_GetPendingIRQ (IRQn_t IRQN) Return true (IRQ-Number) if IRQn is pending
void NVIC_SetPendingIRQ (IRQn_t IRQN) Set IRQnN pending

void NVIC_ClearPendingIRQ (IRQn_t IRQN) Clear IRQn pending status

uint32_t NVIC_GetActive (IRQn_t IRQnN) Return the IRQ number of the active interrupt
void NVIC_SetPriority (IRQn_t IRQn, uint32_t priority) Set priority for IRQn

uint32_t NVIC_GetPriority (IRQn_t IRQnN) Read priority of IRQn

void NVIC_SystemReset (void) Reset the system

The input parameter IRQn is the IRQ number, see Table 2-16. For more information about these functions see the
CMSIS documentation.

System Control Block

The System control block (SCB) provides system implementation information, and system control. This includes
configuration, control, and reporting of the system exceptions. The following table lists the SCB registers.

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 92
and its subsidiaries

2.7.21

Cortex-M3 Processor (Reference Material)

Table 2-44. Summary of the System Control Block Registers

= I
privilege value

OxEOOOE008 | ACTLR Privileged | 0x00000000 2.7.2.1. Auxiliary Control Register

OxEOOOEDOO CPUID RO Privleged 0x412FC230 2.7.2.2. CPUID Base Register

OxEOOOED04 | ICSR RW ' | Privileged | 0x00000000 2.7.2.3. Interrupt Control and State Register

OxEOOOED0O8 | VTOR RW Privileged | 0x00000000 2.7.2.4. Vector Table Offset Register
OxEOOOEDOC | AIRCR RW?a | Privileged |0xFA050000 |2.7.2.5. Application Interrupt and Reset Control

Register
OxEOOOED10 @ SCR RW Privileged 0x00000000 2.7.2.6. System Control Register
OxEOOOED14 | CCR RW Privileged | 0x00000200 2.7.2.7. Configuration and Control Register

OxEOOOED18 @ SHPR1 RW Privleged | 0x00000000 2.7.2.8. System Handler Priority Registers
OxEOOOED1C | SHPR2 RW Privileged | 0x00000000 2.7.2.8. System Handler Priority Registers
OxEOOOED20 @ SHPR3 RW Privileged | 0x00000000 2.7.2.8. System Handler Priority Registers
OxEOOOED24 A SHCRS |RW Privleged | 0x00000000 | 2.7.2.9. System Handler Control and State

Register
OxEOOOED28 | CFSR RW Privileged 0x00000000 2.7.2.10. Configurable Fault Status Register
OxEOOOED28 'MMSRZ2 |RW Privileged | 0x00 2.7.2.11. MemManage Fault Status Register
OxEOOOED29 BFSRP RW Privileged 0x00 2.7.2.12. BusFault Status Register
OxEOOOED2A | UFSRP RW Privileged | 0x0000 2.7.2.13. UsageFault Status Register
OxEOOOED2C HFSR RW Privileged | 0x00000000 2.7.2.12. BusFault Status Register
OxEOOOED34 HMMAR RW Privileged | Unknown 2.7.2.13. UsageFault Status Register
OxEOOOED38 BFAR RW Privileged Unknown 2.7.2.14. HardFault Status Register

OXEOOOED3C | AFSR RW Privileged | 0x00000000 | 2.7.2.15. MemManage Fault Address Register

Notes:
1. See the register description for more information.
2. A sub-register of the CFSR.

Auxiliary Control Register
The ACTLR provides disable bits for the following processor functions:

« IT folding
» write buffer use for accesses to the default memory map
» interruption of multi-cycle instructions.

By default this register is set to provide optimum performance from the Cortex-M3 processor, and does not normally
require modification.

See the register summary in the preceding table for the ACTLR attributes. The bit assignments are:

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 93
and its subsidiaries

2.7.2.2

2.7.23

Cortex-M3 Processor (Reference Material)

Figure 2-26. ACTLR Bit Assignments

31 3210
Reserved
DISFOLD4
DISDEFWBUF
DISMCYCINT

Table 2-45. ACTLR Bit Assignments

[31:3] Reserved

[2] DISFOLD When set to 1, disables the ability of the Cortex-M3 processor to execute an IT
instruction in parallel with a neighboring instruction.

[1] DISDEFWBUF When set to 1, disables write buffer use during default memory map accesses.
This causes all BusFaults to be precise BusFaults but decreases performance
because any store to memory must complete before the processor can execute
the next instruction. This bit only affects write buffers implemented in the Cortex-M3
processor.

[0] DISMCYCINT When set to 1, disables interruption of load multiple and store multiple instructions.
This increases the interrupt latency of the processor because any LDM or STM must
complete before the processor can stack the current state and enter the interrupt
handler.

CPUID Base Register

The CPUID register contains the processor part number, version, and implementation information. See the register
summary in Table 2-44 for its attributes. The bit assignments are:

Figure 2-27. CPUID Register Bit Assignments
31 2423 20:19 16:15 4:3 0

Implementer Variant Constant PartNo Revision

Table 2-46. CPUID register Bit Assignments

[31:24] Implementer Implementer code:
0x41 = Arm
[23:20] Variant Variant number, the r value in the rnpn product revision identifier:

0x2 = Revision 2

[19:16] Constant Reads as OxF

[15:4] PartNo Part number of the processor:
0xC23 = Cortex-M3

[3:0] Revision Revision number, the p value in the rnpn product revision identifier:
0x0 = Patch 0

Interrupt Control and State Register
The ICSR:

* Provides:

— A set-pending bit for the Non-Maskable Interrupt (NMI) exception

— Set-pending and clear-pending bits for the PendSV and SysTick exceptions
* Indicates:

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 94
and its subsidiaries

Cortex-M3 Processor (Reference Material)

The exception number of the exception being processed
Whether there are preempted active exceptions

The exception number of the highest priority pending exception
Whether any interrupts are pending

See the register summary in Table 2-44, and the Type descriptions in the following table, for the ICSR attributes. The
bit assignments are:

Figure 2-28. ICSR Bit Assignments
3130 29 28 27 26 25 2423 22 21 1211110 9 8 0

VECTPENDING VECTACTIVE

L ISRPENDING L Reserved
Reserved for Debug RETTOBASE

Reserved
PENDSTCLR
PENDSTSET
PENDSVCLR
PENDSVSET
Reserved
NMIPENDSET

Table 2-47. ICSR Bit Assignments

ECN =R ETN

[31] NMIPENDSET ' RW NMI set-pending bit.
Write:

+ 0: no effect
* 1: changes NMI exception state to pending.

Read:

* 0: NMI exception is not pending
* 1: NMI exception is pending.

Because NMI is the highest-priority exception, normally the processor enter
the NMI exception handler as soon as it registers a write of 1 to this bit, and
entering the handler clears this bit to 0. A read of this bit by the NMI exception
handler returns 1 only if the NMI signal is reasserted while the processor is
executing that handler.

[30:29] Reserved.
[28] PENDSVSET | RW PendSV set-pending bit.
Write:

+ 0: no effect
» 1: changes PendSV exception state to pending

Read:

» 0: PendSV exception is not pending
* 1: PendSV exception is pending
Writing 1 to this bit is the only way to set the PendSV exception state to
pending.
[27] PENDSVCLR WO PendSV clear-pending bit.
Write:

» 0: no effect
» 1: removes the pending state from the PendSV exception

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 95
and its subsidiaries

Cortex-M3 Processor (Reference Material)

........... continued

B e e fReeme]

[26] PENDSTSET |RW SysTick exception set-pending bit.
Write:

» 0: no effect
» 1: changes SysTick exception state to pending

Read:
+ 0: SysTick exception is not pending
» 1: SysTick exception is pending
[25] PENDSTCLR WO SysTick exception clear-pending bit.
Write:

» 0: no effect
» 1: removes the pending state from the SysTick exception

This bit is WO. On a register read its value is Unknown.

[24] Reserved.

[23] Reserved for RO This bit is reserved for Debug use and reads-as-zero when the processor is
Debug use not in Debug.

[22] ISRPENDING | RO Interrupt pending flag, excluding NMI and Faults:
« 0:interrupt not pending
* 1:interrupt pending

[21:18] Reserved.

[17:12] VECTPENDIN | RO Indicates the exception number of the highest priority pending enabled
G exception:
* 0: no pending exceptions
* Nonzero: the exception number of the highest priority pending enabled
exception

The value indicated by this field includes the effect of the BASEPRI and
FAULTMASK registers, but not any effect of the PRIMASK register.

[11] RETTOBASE RO Indicates whether there are preempted active exceptions:
» 0: there are preempted active exceptions to execute

» 1: there are no active exceptions, or the currently-executing exception is
the only active exception

[10:9] Reserved.

[8:0] VECTACTIVE?2 RO Contains the active exception number:
* 0: Thread mode
+ Nonzero: The exception number! of the currently active exception.

Subtract 16 from this value to obtain the CMSIS IRQ number required to index
into the Interrupt Clear-Enable, Set-Enable, Clear-Pending, Set-Pending, or
Priority Registers, see Table 2-5.

Note:
1. This is the same value as IPSR bits[8:0], see 2.5.1.3.7. Interrupt Program Status Register.

When you write to the ICSR, the effect is unpredictable if you:
« Write 1 to the PENDSVSET bit and write 1 to the PENDSVCLR bit

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 96
and its subsidiaries

Cortex-M3 Processor (Reference Material)

* Write 1 to the PENDSTSET bit and write 1 to the PENDSTCLR bit

2.7.2.4 Vector Table Offset Register

2.7.2.5

The VTOR indicates the offset of the vector table base address from memory address 0x00000000. For its attributes,
see the register summary in Table 2-44.

The bit assignments are:

Figure 2-29. VTOR Bit Assignments
313029 76 0

TBLOFF Reserved

\— Reserved

Table 2-48. VTOR Bit Assignments

[31:30] Reserved.

[29:7] TBLOFF Vector table base offset field. It contains bits[29:7] of the offset of the table base from the
bottom of the memory map.
Bit [29] determines whether the vector table is in the code or SRAM memory region:

0: Code
1: SRAM.
Bit [29] is sometimes called the TBLBASE bit.

[6:0] Reserved.

When setting TBLOFF, you must align the offset to the number of exception entries in the vector table. <Configure
the next statement to give the information required for your implementation, the statement reminds you of how to
determine the alignment requirement.> The minimum alignment is 32 words, enough for up to 16 interrupts. For more
interrupts, adjust the alignment by rounding up to the next power of two. For example, if you require 21 interrupts, the
alignment must be on a 64-word boundary because the required table size is 37 words, and the next power of two is
64.

Table alignment requirements mean that bits [6:0] of the table offset are always zero.

Application Interrupt and Reset Control Register

The AIRCR provides priority grouping control for the exception model, endian status for data accesses, and reset
control of the system. See the register summary in Table 2-44 and Table 2-49 for its attributes.

To write to this register, you must write 0x5FA to the VECTKEY field, otherwise the processor ignores the write.
The bit assignments are:

Figure 2-30. AIRCR Bit Assignments
\

31 1615 14 1110 8 7 3210

On read: VECTKEYSTAT
On write: VECTKEY

ENDIANNESS J PRIGROUP J SYSRESETREQ J
VECTCLRACTIVE

Reserved for Debug use{ VECTRESET

Reserved Reserved

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 97
and its subsidiaries

Cortex-M3 Processor (Reference Material)

Table 2-49. AIRCR Bit Assignments

T

[31:16] Write:

VECTKEYSTAT
Read: VECTKEY

[15] ENDIANNESS

[14:11]

[10:8] PRIGROUP

[7:3]

[2] SYSRESETREQ
1 VECTCLRACTIVE
[0] VECTRESET

2.7.2.5.1 Binary Point

RO

R/W

WO

WO

WO

Register key:
Reads as 0xFAOQ5.

On writes, write 0x0O5FA to VECTKEY, otherwise the write is ignored.

Data endianness bit:
0: Little-endian

1: Big-endian.
ENDIANNESS is set from the BIGEND configuration signal during reset.
Reserved

Interrupt priority grouping field. This field determines the split of group
priority from subpriority, see 2.7.2.5.1. Binary Point.

Reserved.

System reset request:
0: no system reset request

1: asserts a signal to the outer system that requests a reset.

This is intended to force a large system reset of all major components
except for debug.

This bit reads as 0.

Reserved for Debug use. This bit reads as 0. When writing to the register
you must write 0 to this bit, otherwise behavior is Unpredictable.

Reserved for Debug use. This bit reads as 0. When writing to the register
you must write 0 to this bit, otherwise behavior is Unpredictable.

The PRIGROUP field indicates the position of the binary point that splits the PRI_n fields in the Interrupt Priority
Registers into separate group priority and subpriority fields. The following table shows how the PRIGROUP value
controls this split. If you implement fewer than 8 priority bits you might require more explanation here, and want to
remove invalid rows from the table, and modify the entries in the number of columns.

Table 2-50. Priority Grouping

PRIGROUP

Interrupt priority level value, PRI_N[7:0]

Binary point! | Group priority bits | Subpriority bits | Group priorities | Subpriorities

b000 bXXxXxxXX.y [7:1] 128
b001 bXxxxxxx.yy [7:2] [1:0] 64 4
b010 bxxxxx.yyy [7:3] [2:0] 32 8
b011 bxxxx.yyyy [7:4] [3:0] 16 16
b100 bxxx.yyyyy [7:5] [4:0] 8 32
b101 bxx.yyyyyy [7:6] [5:0] 4 64
b110 bx.yyyyyyy [7 [6:0] 2 128
b111 b.yyyyyyyy None [7:0] 1 256
© 2023 Microchip Technology Inc. User Guide DS50003495A-page 98

and its subsidiaries

2.7.2.6

2.7.2.7

Cortex-M3 Processor (Reference Material)

Note:
1. PRI_n[7:0] field showing the binary point. x denotes a group priority field bit, and y denotes a subpriority field
bit.
Determining preemption of an exception uses only the group priority field, see 2.5.3.6. Interrupt Priority Grouping.

System Control Register

The SCR controls features of entry to and exit from low power state. See the register summary in Table 2-44 for its
attributes. The bit assignments are:

Figure 2-31. SCR Bit Assignments
31 543210

SEVONPEND J
Reserved
SLEEPDEEP

SLEEPONEXIT
Reserved

Reserved

Table 2-51. SCR Bit Assignments

[31:5] Reserved.

[4] SEVONPEND Send Event on Pending bit:
0: only enabled interrupts or events can wakeup the processor, disabled interrupts are
excluded

1: enabled events and all interrupts, including disabled interrupts, can wakeup the
processor.

When an event or interrupt enters pending state, the event signal wakes up the
processor from WFE. If the processor is not waiting for an event, the event is registered
and affects the next WFE.

The processor also wakes up on execution of an SEV instruction or an external event.

(3] Reserved.
[2] SLEEPDEEP Controls whether the processor uses sleep or deep sleep as its low power mode:
0: sleep

1: deep sleep

[1] SLEEPONEXIT | Indicates sleep-on-exit when returning from Handler mode to Thread mode:
0: do not sleep when returning to Thread mode.

1: enter sleep, or deep sleep, on return from an ISR.
Setting this bit to 1 enables an interrupt driven application to avoid returning to an
empty main application.

[0] Reserved.

Configuration and Control Register
The CCR controls entry to Thread mode and enables:

« the handlers for NMI, HardFault and faults escalated by FAULTMASK to ignore BusFaults
« trapping of divide by zero and unaligned accesses
» access to the STIR by unprivileged software, see 2.7.1.9. Software Trigger Interrupt Register.

See the register summary in Table 2-44 for the CCR attributes.

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 99
and its subsidiaries

Cortex-M3 Processor (Reference Material)

The bit assignments are:

Figure 2-32. CCR Bit Assignments
31

10987 543210

Reserved
STKALIGN ﬂ
BFHFNMIGN
Reserved
DIV_0_TRP
UNALIGN_TRP
Reserved
USERSETMPEND
NONBASETHRDENA
Table 2-52. CCR Bit Assignments
[31:10] Reserved.
[9] STKALIGN Indicates stack alignment on exception entry:
0: 4-byte aligned
1: 8-byte aligned.
On exception entry, the processor uses bit[9] of the stacked PSR to indicate the
stack alignment. On return from the exception it uses this stacked bit to restore
the correct stack alignment.

[8] BFHFNMIGN Enables handlers with priority -1 or -2 to ignore data BusFaults caused by load
and store instructions. This applies to the HardFault, NMI, and FAULTMASK
escalated handlers:

0: data BusFaults caused by load and store instructions cause a lock-up

1: data BusFaults caused by load and store instructions are ignored.

Set this bit to 1 only when the handler and its data are in absolutely safe
memory. The normal use of this bit is to probe system devices and bridges to
detect problems.

[7:5] Reserved.

[4] DIV_0_TRP Enables faulting or halting when the processor executes an SDIV or UDIV
instruction with a divisor of 0:

0: do not trap divide by 0
1: trap divide by 0.
When this bit is set to 0, a divide by zero returns a quotient of 0.

[3] UNALIGN_TRP Enables unaligned access traps:

(2]

0: do not trap unaligned halfword and word accesses
1: trap unaligned halfword and word accesses.
If this bit is set to 1, an unaligned access generates a UsageFault.

Unaligned LDM, STM, LDRD, and STRD instructions always fault irrespective
of whether UNALIGN_TRP is set to 1.

Reserved.

© 2023 Microchip Technology Inc.
and its subsidiaries

User Guide DS50003495A-page 100

2.7.2.8

2.7.2.81

2.7.2.8.2

Cortex-M3 Processor (Reference Material)

........... continued
[1] USERSETMPEND Enables unprivileged software access to the STIR, see 2.7.1.9. Software
Trigger Interrupt Register:
0: disable
1: enable
[0] NONBASETHRDEN | Indicates how the processor enters Thread mode:
A 0: processor can enter Thread mode only when no exception is active.

1: processor can enter Thread mode from any level using the appropriate
EXC_RETURN value, see 2.5.3.7.2. Exception Return.

System Handler Priority Registers
The SHPR1-SHPR3 registers set the priority level, 0 to 255 of the exception handlers that have configurable priority.

SHPR1-SHPR3 are byte accessible. See the register summary in Table 2-44 for their attributes.
The system fault handlers and the priority field and register for each handler are:
Table 2-53. System Fault Handler Priority Fields

MemManage PRI_4 2.7.2.8.2. System Handler Priority Register 2
BusFault PRI_5

UsageFault PRI_6

SVCall PRI_11 2.7.2.8.2. System Handler Priority Register 2
PendSV PRI_14 2.7.2.8.2. System Handler Priority Register 2
SysTick PRI_15

Each PRI_N field is 8 bits wide, but the processor implements only bits [7:M] of each field, and bits [M-1:0] read as
zero and ignore writes.

System Handler Priority Register 1
The bit assignments are:

Figure 2-33. SHPR1 Bit Assignments
31 2423 1615 8 7 0

Reserved PRI 6 PRI 5 PRI 4

Table 2-54. SHPR1 Bit Assignments

[31:24] PRI_7 Reserved

[23:16] PRI_6 Priority of system handler 6, UsageFault
[15:8] PRI_5 Priority of system handler 5, BusFault
[7:0] PRI_4 Priority of system handler 4, MemManage

System Handler Priority Register 2
The bit assignments are:

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 101
and its subsidiaries

Cortex-M3 Processor (Reference Material)

Figure 2-34. SHPR2 Bit Assignments
31 2423 0

PRI_11 Reserved

Table 2-55. SHPR2 Bit Assignments

[31:24] PRI_11 Priority of system handler 11, SVCall
[23:0] Reserved
2.7.2.8.3 System Handler Priority Register 3
The bit assignments are:

Figure 2-35. SHPR3 Bit Assignments
31 2423 1615 0

PRI_15 PRI_14 Reserved

Table 2-56. SHPR3 Bit Assignments

[31:24] PRI_15 Priority of system handler 15, SysTick exception
[23:16] PRI_14 Priority of system handler 14, PendSV
[15:0] Reserved

2.7.2.9 System Handler Control and State Register
The SHCSR enables the system handlers, and indicates:

» the pending status of the BusFault, MemManage fault, and SVC exceptions
» the active status of the system handlers.

See the register summary in Table 2-44 for the SHCSR attributes. The bit assignments are:

Figure 2-36. SHCSR Bit Assignments
31 191817161514131211109 8 76 4 3 2 1 0

Reserved

USGFAULTENA J L MEMFAULTACT
BUSFAULTENA BUSFAULTACT

MEMFAULTENA Reserved
SVCALLPENDED USGFAULTACT

BUSFAULTPENDED Reserved
MEMFAULTPENDED
USGFAULTPENDED
SYSTICKACT
PENDSVACT
Reserved
MONITORACT
SVCALLACT

Table 2-57. SHCSR Bit Assignments

[31:19] — Reserved
[18] USGFAULTENA UsageFault enable bit, set to 1 to enable’

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 102
and its subsidiaries

2.7.2.10

Cortex-M3 Processor (Reference Material)

........... continued

[17] BUSFAULTENA BusFault enable bit, set to 1 to enable @

[16] MEMFAULTENA MemManage enable bit, set to 1 to enable @

[15] SVCALLPENDED SVCall pending bit, reads as 1 if exception is pending?

[14] BUSFAULTPENDED BusFault exception pending bit, reads as 1 if exception is pending °
[13] MEMFAULTPENDED | MemManage fault exception pending bit, reads as 1 if exception is pending P
[12] USGFAULTPENDED UsageFault exception pending bit, reads as 1 if exception is pending °
[11] SYSTICKACT SysTick exception active bit, reads as 1 if exception is active3

[10] PENDSVACT PendSV exception active bit, reads as 1 if exception is active

[9] — Reserved

[8] MONITORACT Debug monitor active bit, reads as 1 if Debug monitor is active

[7] SVCALLACT SVCall active bit, reads as 1 if SVC call is active

[6:4] — Reserved

[3] USGFAULTACT UsageFault exception active bit, reads as 1 if exception is active

[2] = Reserved

[1 BUSFAULTACT BusFault exception active bit, reads as 1 if exception is active

[0] MEMFAULTACT MemManage exception active bit, reads as 1 if exception is active
Notes:

1. Enable bits, set to 1 to enable the exception, or set to 0 to disable the exception.

2. Pending bits, read as 1 if the exception is pending, or as 0 if it is not pending. You can write to these bits to
change the pending status of the exceptions.

3. Active bits, read as 1 if the exception is active, or as 0 if it is not active. You can write to these bits to change
the active status of the exceptions, but see the Caution in this section.
If you disable a system handler and the corresponding fault occurs, the processor treats the fault as a HardFault.

You can write to this register to change the pending or active status of system exceptions. An OS kernel can write to
the active bits to perform a context switch that changes the current exception type.

» Software that changes the value of an active bit in this register without correct adjustment to the stacked content
can cause the processor to generate a fault exception. Ensure software that writes to this register retains and
subsequently restores the current active status.

» After you have enabled the system handlers, if you have to change the value of a bit in this register you must
use a read-modify-write procedure to ensure that you change only the required bit.

Configurable Fault Status Register
The CFSR indicates the cause of a MemManage fault, BusFault, or UsageFault. See the register summary in Table
2-44 for its attributes. The bit assignments are:

Figure 2-37. CFSR Bit Assignments

31 1615 87 0

Bus Fault Status
Register

{ A A)
UFSR BFSR MMFSR

The following subsections describe the sub-registers that make up the CFSR:

Memory Management

Usage Fault Status Register Fault Status Register

The CFSR is byte accessible. You can access the CFSR or its sub-registers as follows:

User Guide DS50003495A-page 103

© 2023 Microchip Technology Inc.
and its subsidiaries

Cortex-M3 Processor (Reference Material)

» access the complete CFSR with a word access to OXEOOOED28

» access the MMFSR with a byte access to 0OXEOOOED28

» access the MMFSR and BFSR with a halfword access to 0OXEOOOED28
» access the BFSR with a byte access to OxEOOOED29

» access the UFSR with a halfword access to 0OXEOOOED2A

2.7.2.11 MemManage Fault Status Register
The flags in the MMFSR indicate the cause of memory access faults. The bit assignments are:

Figure 2-38. MMFSR Bit Assignments
76543210

MMARVALID J
Reserved
MSTKERR

MUNSTKERR
Reserved
DACCVIOL
IACCVIOL

Table 2-58. MMFSR Bit Assignments

[7] MMARVALID MemManage Fault Address Register (MMFAR) valid flag:
0: value in MMAR is not a valid fault address

1: MMAR holds a valid fault address.

If a MemManage fault occurs and is escalated to a HardFault because of priority, the
HardFault handler must set this bit to 0. This prevents problems on return to a stacked
active MemManage fault handler whose MMAR value has been overwritten.

[6:5] Reserved.

[4] MSTKERR MemManage fault on stacking for exception entry:
0: no stacking fault

1: stacking for an exception entry has caused one or more access violations.

When this bit is 1, the SP is still adjusted but the values in the context area on the
stack might be incorrect. The processor has not written a fault address to the MMAR.

[3] MUNSTKERR MemManage fault on unstacking for a return from exception:
0: no unstacking fault

1: unstack for an exception return has caused one or more access violations.

This fault is chained to the handler. This means that when this bit is 1, the original
return stack is still present. The processor has not adjusted the SP from the failing
return, and has not performed a new save. The processor has not written a fault
address to the MMAR.

[2] Reserved

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 104
and its subsidiaries

Cortex-M3 Processor (Reference Material)

........... continued

[1] DACCVIOL

[0] IACCVIOL

2.7.2.12 BusFault Status Register

Data access violation flag:
0: no data access violation fault

1: the processor attempted a load or store at a location that does not permit the
operation.

When this bit is 1, the PC value stacked for the exception return points to the faulting
instruction. The processor has loaded the MMAR with the address of the attempted
access.

Instruction access violation flag:
0: no instruction access violation fault

1: the processor attempted an instruction fetch from a location that does not permit
execution.

This fault occurs on any access to an XN region, even when the MPU is disabled or
not present.

When this bit is 1, the PC value stacked for the exception return points to the faulting
instruction. The processor has not written a fault address to the MMAR.

The flags in the BFSR indicate the cause of a bus access fault. The bit assignments are:

Table 2-59. BFSR Bit Assignments

7] BFARVALID
[6:5]

[4] STKERR

3] UNSTKERR

BusFault Address Register (BFAR) valid flag:
0: value in BFAR is not a valid fault address

1: BFAR holds a valid fault address.

The processor sets this bit to 1 after a BusFault where the address is known. Other
faults can set this bit to 0, such as a MemManage fault occurring later.

If a BusFault occurs and is escalated to a HardFault because of priority, the
HardFault handler must set this bit to 0. This prevents problems if returning to a
stacked active BusFault handler whose BFAR value has been overwritten.

Reserved.

BusFault on stacking for exception entry:
0: no stacking fault

1: stacking for an exception entry has caused one or more BusFaults.

When the processor sets this bit to 1, the SP is still adjusted but the values in the
context area on the stack might be incorrect. The processor does not write a fault
address to the BFAR.

BusFault on unstacking for a return from exception:
0: no unstacking fault

1: unstack for an exception return has caused one or more BusFaults.

This fault is chained to the handler. This means that when the processor sets this bit
to 1, the original return stack is still present. The processor does not adjust the SP
from the failing return, does not performed a new save, and does not write a fault
address to the BFAR.

© 2023 Microchip Technology Inc.
and its subsidiaries

User Guide DS50003495A-page 105

Cortex-M3 Processor (Reference Material)

continued

(2]

(1]

[0]

IMPRECISERR

PRECISERR

IBUSERR

2.7.2.13 UsageFault Status Register

Imprecise data bus error:
0: no imprecise data bus error

1: a data bus error has occurred, but the return address in the stack frame is not
related to the instruction that caused the error.

When the processor sets this bit to 1, it does not write a fault address to the BFAR.

This is an asynchronous fault. Therefore, if it is detected when the priority of

the current process is higher than the BusFault priority, the BusFault becomes
pending and becomes active only when the processor returns from all higher priority
processes. If a precise fault occurs before the processor enters the handler for the
imprecise BusFault, the handler detects both IMPRECISERR set to 1 and one of the
precise fault status bits set to 1.

Precise data bus error:
0: no precise data bus error

1: a data bus error has occurred, and the PC value stacked for the exception return
points to the instruction that caused the fault.

When the processor sets this bit is 1, it writes the faulting address to the BFAR.

Instruction bus error:
0: no instruction bus error

1: instruction bus error.

The processor detects the instruction bus error on prefetching an instruction, but it
sets the IBUSERR flag to 1 only if it attempts to issue the faulting instruction.

When the processor sets this bit is 1, it does not write a fault address to the BFAR.

76543210

BFARVALID J
Reserved
STKERR

UNSTKERR
IMPRECISERR
PRECISERR
IBUSERR

The UFSR indicates the cause of a UsageFault. The bit assignments are:
Figure 2-39. UFSR Bit Assignments

15 109 87 43210

Reserved Reserved

DIVBYZERO J NOCPJ
UNALIGNED INVPC

INVSTATE
UNDEFINSTR

© 2023 Microchip Technology Inc.

and its subsidiaries

User Guide DS50003495A-page 106

Cortex-M3 Processor (Reference Material)

Table 2-60. UFSR Bit Assignments

[15:10] Reserved.

[9] DIVBYZERO Divide by zero UsageFault:
0: no divide by zero fault, or divide by zero trapping not enabled

1: the processor has executed an SDIV or UDIV instruction with a divisor of 0.

When the processor sets this bit to 1, the PC value stacked for the exception return
points to the instruction that performed the divide by zero.

Enable trapping of divide by zero by setting the DIV_0_TRP bit in the CCR to 1, see
2.7.2.7. Configuration and Control Register.
[8] UNALIGNED Unaligned access UsageFault:
0: no unaligned access fault, or unaligned access trapping not enabled
1: the processor has made an unaligned memory access.

Enable trapping of unaligned accesses by setting the UNALIGN_TRP bit in the CCR
to 1, see 2.7.2.7. Configuration and Control Register.

Unaligned LDM, STM, LDRD, and STRD instructions always fault irrespective of the
setting of UNALIGN_TRP.

[7:4] Reserved.
[3] NOCP No coprocessor UsageFault. The processor does not support coprocessor
instructions:

0: no UsageFault caused by attempting to access a coprocessor

1: the processor has attempted to access a coprocessor.

[2] INVPC Invalid PC load UsageFault, caused by an invalid PC load by EXC_RETURN:
0: no invalid PC load UsageFault

1: the processor has attempted an illegal load of EXC_RETURN to the PC, as a
result of an invalid context, or an invalid EXC_RETURN value.

When this bit is set to 1, the PC value stacked for the exception return points to the
instruction that tried to perform the illegal load of the PC.

[1] INVSTATE Invalid state UsageFault:
0: no invalid state UsageFault

1: the processor has attempted to execute an instruction that makes illegal use of the
EPSR.

When this bit is set to 1, the PC value stacked for the exception return points to the
instruction that attempted the illegal use of the EPSR.

This bit is not set to 1 if an undefined instruction uses the EPSR.

[0] UNDEFINSTR Undefined instruction UsageFault:
0: no undefined instruction UsageFault

1: the processor has attempted to execute an undefined instruction.

When this bit is set to 1, the PC value stacked for the exception return points to the
undefined instruction.

An undefined instruction is an instruction that the processor cannot decode.

The UFSR bits are sticky. This means as one or more fault occurs, the associated bits are set to 1. A bit that is set to
1 is cleared to 0 only by writing 1 to that bit, or by a reset.

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 107
and its subsidiaries

2.7.2.14

2.7.2.15

Cortex-M3 Processor (Reference Material)

HardFault Status Register

The HFSR gives information about events that activate the HardFault handler. See the register summary in Table
2-44 for its attributes.

This register is read, write to clear. This means that bits in the register read normally, but writing 1 to any bit clears
that bit to 0. The bit assignments are:

Figure 2-40. HFSR Bit Assignments
313029 210

Reserved

LFORCED VECTTBLJ
DEBUGEVT Reserved
Table 2-61. HFSR Bit Assignments

[31] DEBUGEVT | Reserved for Debug use. When writing to the register you must write 0 to this bit,
otherwise behavior is Unpredictable.

[30] FORCED Indicates a forced HardFault, generated by escalation of a fault with configurable priority
that cannot be handles, either because of priority or because it is disabled:
0: no forced HardFault

1: forced HardFault.

When this bit is set to 1, the HardFault handler must read the other fault status registers
to find the cause of the fault.

[29:2] Reserved.

[1] VECTTBL Indicates a BusFault on a vector table read during exception processing:
0: no BusFault on vector table read

1: BusFault on vector table read.

This error is always handled by the HardFault handler.

When this bit is set to 1, the PC value stacked for the exception return points to the
instruction that was preempted by the exception.

[0] Reserved.

The HFSR bits are sticky. This means as one or more fault occurs, the associated bits are set to 1. A bit that is set to
1 is cleared to 0 only by writing 1 to that bit, or by a reset.

MemManage Fault Address Register
The MMFAR contains the address of the location that generated a MemManage fault. See the register summary in
Table 2-44 for its attributes. The bit assignments are:

Table 2-62. MMFAR Bit Assignments

[31:0] ADDRESS | When the MMARVALID bit of the MMFSR is set to 1, this field holds the address of the
location that generated the MemManage fault

When an unaligned access faults, the address is the actual address that faulted. Because a single read or write
instruction can be split into multiple aligned accesses, the fault address can be any address in the range of the
requested access size.

Flags in the MMFSR indicate the cause of the fault, and whether the value in the MMFAR is valid. See
2.7.2.11. MemManage Fault Status Register.

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 108
and its subsidiaries

2.7.2.16

2.7.217

2.7.2.18

2.7.3

Cortex-M3 Processor (Reference Material)

BusFault Address Register

The BFAR contains the address of the location that generated a BusFault. See the register summary in Table 2-44 for
its attributes. The bit assignments are:

Table 2-63. BFAR Bit Assignments

[31:0] ADDRESS When the BFARVALID bit of the BFSR is set to 1, this field holds the address of the
location that generated the BusFault

When an unaligned access faults the address in the BFAR is the one requested by the instruction, even if it is not the
address of the fault.

Flags in the BFSR indicate the cause of the fault, and whether the value in the BFAR is valid. See 2.7.2.12. BusFault
Status Register.

Auxiliary Fault Status Register
The AFSR contains additional system fault information. See the register summary in Table 2-44 for its attributes.

This register is read, write to clear. This means that bits in the register read normally, but writing 1 to any bit clears
that bit to 0.

The bit assignments are:
Table 2-64. AFSR Bit Assignments

[31:0] IMPDEF Implementation defined. The bits map to the AUXFAULT input signals.

Each AFSR bit maps directly to an AUXFAULT input of the processor, and a single-cycle HIGH signal on the input
sets the corresponding AFSR bit to one. It remains set to 1 until you write 1 to the bit to clear it to zero.

When an AFSR bit is latched as one, an exception does not occur. Use an interrupt if an exception is required.
System Control Block Design - Hints and Tips
Ensure software uses aligned accesses of the correct size to access the system control block registers:

» except for the CFSR and SHPR1-SHPR3, it must use aligned word accesses.
» for the CFSR and SHPR1-SHPRS it can use byte or aligned halfword or word accesses.

The processor does not support unaligned accesses to system control block registers.
In a fault handler. to determine the true faulting address:

* Read and save the MMFAR or BFAR value.
+ Read the MMARVALID bit in the MMFSR, or the BFARVALID bit in the BFSR. The MMFAR or BFAR address is
valid only if this bit is 1.

Software must follow this sequence because another higher priority exception might change the MMFAR or BFAR
value. For example, if a higher priority handler preempts the current fault handler, the other fault might change the
MMFAR or BFAR value.

System Timer, SysTick

The processor has a 24-bit system timer, SysTick, that counts down from the reload value to zero, reloads (wraps to)
the value in the SYST_RVR register on the next clock edge, then counts down on subsequent clocks.

When the processor is halted for debugging the counter does not decrement.

The system timer registers are:

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 109
and its subsidiaries

2.7.31

2.7.3.2

Cortex-M3 Processor (Reference Material)

Table 2-65. System Timer Registers Summary

Address Type |Required Reset Value
Privilege

OxEOOOEO10 | SYST_CTRL Privileged | 0x00000004 | 2.7.3.1. SysTick Control and Status
Register

OxEOO0EO014 SYST_RVR RW Privileged 0x00000000 2.7.3.2. SysTick Reload Value Register
OxEOO0OEO018 ' SYST_CVR RW Privileged | 0x00000000 | 2.7.3.3. SysTick Current Value Register
OxEOOOEO1C SYST_CALIB RO Privileged | 0xC0000000 ' 2.7.3.4. SysTick Calibration Value Register

Note:
1. SysTick calibration value.

SysTick Control and Status Register

The SYST_CTRL register enables the SysTick features. See the register summary in the preceding table for its
attributes. The bit assignments are:

Figure 2-41. SYST_CTRL Register Bit Assignments

31 1716115 3210
Reserved Reserved ololo
COUNTFLAGJ CLKSOURCEJ
TICKINT
ENABLE

Table 2-66. SYST_CTRL Register Bit Assignments

[31:17] Reserved.

[16] COUNTFLAG Returns 1 if timer counted to O since last time this was read.
[15:3] Reserved.

[2] CLKSOURCE | Selects the SysTick timer clock source:

1: processor clock. Determined by STCLK_DIVISOR bits in 21.5.20. M3
Configuration Register register.

[1] TICKINT Enables SysTick exception request:
0: counting down to zero does not assert the SysTick exception request

1: counting down to zero to asserts the SysTick exception request.

Software can use COUNTFLAG to determine if SysTick has ever counted to zero.

[0] ENABLE Enables the counter:
0: counter disabled

1: counter enabled.

When ENABLE is set to 1, the counter loads the RELOAD value from the SYST_RVR register and then counts down.
On reaching 0, it sets the COUNTFLAG to 1 and optionally asserts the SysTick depending on the value of TICKINT. It
then loads the RELOAD value again, and begins counting.

SysTick Reload Value Register

The SYST_RVR register specifies the start value to load into the SYST_CVR register. See the register summary in
Table 2-65 for its attributes. The bit assignments are:

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 110
and its subsidiaries

2.7.3.21

2.7.3.3

2734

Cortex-M3 Processor (Reference Material)

Figure 2-42. SYST_RVR Register Bit Assignments
31 24 .23 0

Reserved RELOAD

Table 2-67. SYST_RVR Register Bit Assignments

[31:24] Reserved.

[23:0] RELOAD Value to load into the SYST_CVR register when the counter is enabled and when it
reaches 0, see 2.7.3.2.1. Calculating the RELOAD Value.

Calculating the RELOAD Value
The RELOAD value can be any value in the range 0x00000001-0x00FFFFFF. A start value of 0 is possible, but has
no effect because the SysTick exception request and COUNTFLAG are activated when counting from 1 to 0.

The RELOAD value is calculated according to its use. To generate a multi-shot timer with a period of N processor
clock cycles, use a RELOAD value of N-1. For example, if the SysTick interrupt is required every 100 clock pulses,
set RELOAD to 99.

SysTick Current Value Register

The SYST_CVR register contains the current value of the SysTick counter. See the register summary in Table 2-65
for its attributes. The bit assignments are:

Figure 2-43. SYST_CVR Register Bit Assignments
31 24 23 0

Reserved CURRENT

Table 2-68. SYST_CVR Register Bit Assignments

[31:24] Reserved.

[23:0] CURRENT Reads return the current value of the SysTick counter.
A write of any value clears the field to 0, and also clears the SysTick
CTRL.COUNTFLAG bit to 0.

SysTick Calibration Value Register

The SYST_CALIB register indicates the SysTick calibration properties. See the register summary in Table 2-65 for its
attributes. The bit assignments are:

Figure 2-44. SYST_CALIB Register Bit Assignments
3130 29 24 23 0

Reserved TENMS

I— SKEW
— NOREF
Table 2-69. SYST_CALIB Register Bit Assignments

[31] NOREF Reads as one. Indicates that no separate reference clock is provided.

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 111
and its subsidiaries

2.7.3.5

274

Cortex-M3 Processor (Reference Material)

........... continued

[30] SKEW Reads as one. Calibration value for the 10ms inexact timing is not known because
TENMS is not known. This can affect the suitability of SysTick as a software real time
clock.

[29:24] Reserved.

[23:0] TENMS Reads as zero. Indicates calibration value is not known.

If calibration information is not known, calculate the calibration value required from the frequency of the processor
clock or external clock.

SysTick Design Hints and Tips

The SysTick counter runs on the processor clock. If this clock signal is stopped for Low-power mode, the SysTick
counter stops.

Ensure software uses aligned word accesses to access the SysTick registers.

The SysTick counter reload and current value are undefined at reset, the correct initialization sequence for the
SysTick counter is:

Program reload value.
Clear current value.

Program Control and Status register.

Memory Protection Unit
This section describes the Memory protection unit (MPU).
The MPU divides the memory map into a number of regions, and defines the location, size, access permissions, and
memory attributes of each region. It supports:

» independent attribute settings for each region

» overlapping regions

» export of memory attributes to the system.
The memory attributes affect the behavior of memory accesses to the region. The Cortex-M3 processor MPU
defines:

» eight separate memory regions, 0-7

* a background region.

When memory regions overlap, a memory access is affected by the attributes of the region with the highest number.
For example, the attributes for region 7 take precedence over the attributes of any region that overlaps region 7.

The background region has the same memory access attributes as the default memory map, but is accessible from
privileged software only.

The Cortex-M3 processor MPU memory map is unified. This means instruction accesses and data accesses have
same region settings.

If a program accesses a memory location that is prohibited by the MPU, the processor generates a MemManage
fault. This causes a fault exception, and might cause termination of the process in an OS environment.

In an OS environment, the kernel can update the MPU region setting dynamically based on the process to be
executed. Typically, an embedded OS uses the MPU for memory protection.

Configuration of MPU regions is based on memory types, see 2.5.2.1. Memory Regions, Types and Attributes.

The following table shows the possible MPU region attributes. These include shareability and cache behavior
attributes that are not relevant to most microcontroller implementations. See 2.7.4.9.1. MPU Configuration for a
Microcontroller for guidelines for programming such an implementation.

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 112
and its subsidiaries

Cortex-M3 Processor (Reference Material)

Table 2-70. Memory Attributes Summary

Memory Type | Shareability | Other Attributes

Strongly- All accesses to Strongly-ordered memory
ordered occur in program order. All Strongly-ordered
regions are assumed to be shared.

Device Shared Memory-mapped peripherals that several

processors share.

Non-shared Memory-mapped peripherals that only a

single processor uses.

Normal Shared Non-cacheable Write-through

Cacheable Write-back Cacheable

Normal memory that is shared between
several processors.

Non-shared | Non-cacheable Write-through

Cacheable Write-back Cacheable

Normal memory that only a single processor
uses.

Use the MPU registers to define the MPU regions and their attributes. The MPU registers are:
Table 2-71. MPU Registers Summary

Address Type Required | Reset
privilege |value

0xEOOOED90 MPU_TYPE Privileged | 0x00000800 | 2.7.4.1. MPU Type Register

O0xEOO0ED94 MPU_CTRL RW Privileged 0x00000000 2.7.4.2. MPU Control Register

O0xEOOOED98 MPU_RNR RW Privileged | 0x00000000 | 2.7.4.3. MPU Region Number
Register

OXxEOOOED9C MPU_RBAR RW Privileged 0x00000000 2.7.4.4. MPU Region Base Address
Register

OxEOOOEDAO MPU_RASR RW Privileged | 0x00000000 | 2.7.4.5. MPU Region Attribute and
Size Register

OxEOOOEDA4 MPU_RBAR_A1 RW Privileged 0x00000000 Alias of MPU_RBAR, see
2.7.4.4. MPU Region Base Address
Register

OxEOOOEDAS8 MPU_RASR_A1 RW Privileged | 0x00000000 | Alias of MPU_RASR, see
2.7.4.5. MPU Region Attribute and
Size Register

OXxEOOOEDAC MPU_RBAR_A2 RW Privileged 0x00000000 Alias of MPU_RBAR, see
2.7.4.4. MPU Region Base Address
Register

0xEOOOEDBO MPU_RASR_A2 RW Privileged | 0x00000000 | Alias of MPU_RASR, see
2.7.4.5. MPU Region Attribute and
Size Register

O0xEOOOEDB4 MPU_RBAR_A3 RW Privileged 0x00000000 Alias of MPU_RBAR, see
2.7.4.4. MPU Region Base Address
Register

0xEOOOEDB8 MPU_RASR_A3 RW Privileged | 0x00000000 | Alias of MPU_RASR, see
2.7.4.5. MPU Region Attribute and
Size Register

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 113

and its subsidiaries

2741

2.74.2

Cortex-M3 Processor (Reference Material)

MPU Type Register
The MPU_TYPE register indicates whether the MPU is present, and if so, how many regions it supports. See the
register summary in Table 2-71 for its attributes. The bit assignments are:

Figure 2-45. MPU_TYPE Register Bit Assignments
31 24 23 16 15 8 7 10

Reserved IREGION DREGION Reserved

SEPARATE —I
Table 2-72. MPU_TYPE Register Bit Assignments

[31:24] Reserved.
[23:16] IREGION Indicates the number of supported MPU instruction regions.
Always contains 0x00. The MPU memory map is unified and is described by the
DREGION field.
[15:8] DREGION Indicates the number of supported MPU data regions:
0x08=Eight MPU regions.
[7:0] Reserved.
[0] SEPARATE | Indicates support for unified or separate instruction and date memory maps:
0: unified

MPU Control Register
The MPU_CTRL register:

* enables the MPU
» enables the default memory map background region

» enables use of the MPU when in the HardFault, Non-maskable Interrupt (NMI), and FAULTMASK escalated
handlers.

See the register summary in Table 2-71 for the MPU_CTRL attributes. The bit assignments are:

Figure 2-46. MPU_CTRL Register Bit Assignments (continued)
31 3210

PRIVDEFENA—|
HFNMIENA

ENABLE

Reserved

Table 2-73. MPU_CTRL Register Bit Assignments

[31:3] |— Reserved.

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 114
and its subsidiaries

2743

Cortex-M3 Processor (Reference Material)

........... continued

[2] PRIVDEFENA Enables privileged software access to the default memory map:
0: If the MPU is enabled, disables use of the default memory map. Any memory access
to a location not covered by any enabled region causes a fault.

1: If the MPU is enabled, enables use of the default memory map as a background
region for privileged software accesses.

When enabled, the background region acts as if it is region number -1. Any region that is
defined and enabled has priority over this default map.

If the MPU is disabled, the processor ignores this bit.
[1] HFNMIENA Enables the operation of MPU during HardFault, NMI, and FAULTMASK handlers.
When the MPU is enabled:

0: MPU is disabled during HardFault, NMI, and FAULTMASK handlers, regardless of the
value of the ENABLE bit

1: the MPU is enabled during HardFault, NMI, and FAULTMASK handlers.
When the MPU is disabled, if this bit is set to 1 the behavior is Unpredictable.

[0] ENABLE Enables the MPU:
0: MPU disabled

1: MPU enabled

When ENABLE and PRIVDEFENA are both set to 1:

» For privileged accesses, the default memory map is as described in 2.5.2. Memory Model. Any access by
privileged software that does not address an enabled memory region behaves as defined by the default memory
map.

* Any access by unprivileged software that does not address an enabled memory region causes a MemManage
fault.

XN and Strongly-ordered rules always apply to the System Control Space regardless of the value of the ENABLE bit.

When the ENABLE bit is set to 1, at least one region of the memory map must be enabled for the system to function
unless the PRIVDEFENA bit is set to 1. If the PRIVDEFENA bit is set to 1 and no regions are enabled, then only
privileged software can operate.

When the ENABLE bit is set to 0, the system uses the default memory map. This has the same memory attributes
as if the MPU is not implemented, see Table 2-11. The default memory map applies to accesses from both privileged
and unprivileged software.

When the MPU is enabled, accesses to the System Control Space and vector table are always permitted. Other
areas are accessible based on regions and whether PRIVDEFENA is set to 1.

Unless HFNMIENA is set to 1, the MPU is not enabled when the processor is executing the handler for an exception
with priority —1 or —2. These priorities are only possible when handling a HardFault or NMI exception, or when
FAULTMASK is enabled. Setting the HFNMIENA bit to 1 enables the MPU when operating with these two priorities.

MPU Region Number Register

The MPU_RNR selects which memory region is referenced by the MPU_RBAR and MPU_RASR registers. See the
register summary in Table 2-71 for its attributes. The bit assignments are:

Figure 2-47. SYST_CVR Register Bit Assignments
31 8 7 0

Reserved REGION

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 115
and its subsidiaries

2744

27441

Cortex-M3 Processor (Reference Material)

Table 2-74. MPU_RNR Bit Assignments

[31:8] Reserved.

[7:0] REGION Indicates the MPU region referenced by the MPU_RBAR and MPU_RASR registers.
The MPU supports 8 memory regions, so the permitted values of this field are 0-7.

Normally, you write the required region number to this register before accessing the MPU_RBAR or MPU_RASR.
However you can change the region number by writing to the MPU_RBAR with the VALID bit set to 1, see
2.7.4.4. MPU Region Base Address Register. This write updates the value of the REGION field.

MPU Region Base Address Register

The MPU_RBAR defines the base address of the MPU region selected by the MPU_RNR, and can update the value
of the MPU_RNR. See the register summary in Table 2-71 for its attributes.

Write MPU_RBAR with the VALID bit set to 1 to change the current region number and update the MPU_RNR. The
bit assignments are:

Figure 2-48. MPU_RBAR Bit Assignments
31 N N-1 54 3 0

ADDR Reserved REGION

VALID
If the region size is 32B, the ADDR field is bits [31:5] and there is no Reserved field

Table 2-75. MPU_RBAR Bit Assignments

[31:N] ADDR Region base address field. The value of N depends on the region size. For more
information see 2.7.4.4.1. ADDR Field.

[(N-1):5] Reserved.

[4] VALID MPU Region Number valid bit:
Write:

0 = MPU_RNR not changed, and the processor:

updates the base address for the region specified in the MPU_RNR
ignores the value of the REGION field

1 = the processor:

updates the value of the MPU_RNR to the value of the REGION field
updates the base address for the region specified in the REGION field.

Always reads as zero.

[3:0] REGION MPU region field:
For the behavior on writes, see the description of the VALID field.

On reads, returns the current region number, as specified by the MPU_RNR.

ADDR Field
The ADDR field is bits[31:N] of the MPU_RBAR. The region size, as specified by the SIZE field in the MPU_RASR,
defines the value of N:

N = Log2(Region size in bytes),

If the region size is configured to 4GB, in the MPU_RASR, there is no valid ADDR field. In this case, the region
occupies the complete memory map, and the base address is 0x00000000.

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 116
and its subsidiaries

Cortex-M3 Processor (Reference Material)

The base address is aligned to the size of the region. For example, a 64KB region must be aligned on a multiple of
64KB, for example, at 0x00010000 or 0x00020000.

2.7.4.5 MPU Region Attribute and Size Register

The MPU_RASR defines the region size and memory attributes of the MPU region specified by the MPU_RNR, and
enables that region and any subregions. See the register summary in Table 2-71 for its attributes.

MPU_RASR is accessible using word or halfword accesses:

» the most significant halfword holds the region attributes
» the least significant halfword holds the region size and the region and subregion enable bits.

The bit assignments are:

Figure 2-49. MPU_RASR Bit Assignments
31 29282726 24232221 1918 17 16 15 8 76 5 10

AP TEX [S|C|B SRD SIZE

I— Reserved I— Reserved Reserved —, |
XN ENABLE
Reserved

Table 2-76. MPU_RASR Bit Assignments

[31:29] Reserved.

[28] XN Instruction access disable bit:
0: instruction fetches enabled

1: instruction fetches disabled.

[27] Reserved.

[26:24] AP Access permission field, see Table 2-80.
[23:22] Reserved.

[21:19,17,16] TEX, C,B Memory access attributes, see Table 2-78.

[18] S Shareable bit, see Table 2-78.

[15:8] SRD Subregion disable bits. For each bit in this field:

0: corresponding sub-region is enabled
1: corresponding sub-region is disabled
See 2.7.4.8.1. Subregions for more information.

Region sizes of 128 bytes and less do not support subregions. When writing the
attributes for such a region, write the SRD field as 0x00.

[7:6] Reserved.

[5:1] SIZE Specifies the size of the MPU protection region. The minimum permitted value is 3
(b00010), see See 2.7.4.5.1. SIZE Field Values for more information.

[0] ENABLE Region enable bit.

For information about access permission, refer to 2.7.4.6. MPU Access Permission Attributes.

2.7.4.5.1 SIZE Field Values
The SIZE field defines the size of the MPU memory region specified by the MPU_RNR. as follows:

(Region size in bytes) = 2(SIZE+1)

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 117
and its subsidiaries

2746

Cortex-M3 Processor (Reference Material)

The smallest permitted region size is 32B, corresponding to a SIZE value of 4. The following table provides example
SIZE values, with the corresponding region size and value of N in the MPU_RBAR.

Table 2-77. Example SIZE Field Values

b00100 (4) Minimum permitted size
b01001 (9) 1KB 10

b10011 (19) 1MB 20

b11101 (29) 1GB 30

b11111 (31) 4GB 32 Maximum possible size
Note:

1. Inthe MPU_RBAR, see 2.7.4.4. MPU Region Base Address Register.

MPU Access Permission Attributes

This section describes the MPU access permission attributes. The access permission bits, TEX, C, B, S, AP, and XN,
of the MPU_RASR, control access to the corresponding memory region. If an access is made to an area of memory
without the required permissions, then the MPU generates a permission fault.

The following table shows the encodings for the TEX, C, B, and S access permission bits.

Table 2-78. TEX, C, B, and S Encoding

--EE Memory type Shareability Other attributes

b000 x Strongly-ordered Shareable
1 x@ Device Shareable =
1 0 0 Normal Not shareable Outer and inner write-through. No write
1 Shareable allocate.
1 0 Normal Not shareable Outer and inner write-back. No write
1 Shareable allocate.
b001 0 0 0 Normal Not shareable Outer and inner non-cacheable.
1 Shareable
1 xa Reserved encoding —
1 0 xa Implementation defined attributes. —
1 0 Normal Not shareable Outer and inner write-back. Write and
1 Shareable read allocate.
b0o10 |0 0 x@ Device Not shareable Nonshared Device.
1 xa Reserved encoding —
1 x @ xa Reserved encoding —
b1BB A A 0 Normal Not shareable Cached memoryz, BB = outer policy,
1 Shareable AA = inner policy.
Notes:

1. The MPU ignores the value of this bit.
2. See Table 2-79 for the encoding of the AA and BB bits.

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 118
and its subsidiaries

2747

27438

Cortex-M3 Processor (Reference Material)

The following table describes the cache policy for memory attribute encodings with a TEX value is in the range 4-7.

Table 2-79. Cache Policy for Memory Attribute Encoding

Encoding, AA or BB Corresponding cache policy

00 Non-cacheable

01 Write back, write and read allocate
10 Write through, no write allocate

11 Write back, no write allocate

The following table lists the AP encodings that define the access permissions for privileged and unprivileged
software.

Table 2-80. AP Encoding

Privileged Unprivileged Description
Permissions Permissions

No access No access All accesses generate a permission fault
001 RW No access Access from privileged software only
010 RW RO Writes by unprivileged software generate a permission fault
011 RW RW Full access
100 Unpredictable Unpredictable Reserved
101 RO No access Reads by privileged software only
110 RO RO Read only, by privileged or unprivileged software
111 RO RO Read only, by privileged or unprivileged software

MPU Mismatch

When an access violates the MPU permissions, the processor generates a MemManage fault, see
2.5.1.4. Exceptions and Interrupts. The MMFSR indicates the cause of the fault. See 2.7.2.17. Auxiliary Fault
Status Register for more information.

Updating an MPU Region

To update the attributes for an MPU region, update the MPU_RNR, MPU_RBAR and MPU_RASR registers. You can
program each register separately, or use a multiple-word write to program all of these registers. You can use the
MPU_RBAR and MPU_RASR aliases to program up to four regions simultaneously using an STM instruction.

Updating an MPU region using separate words

Simple code to configure one region:

; Rl = region number

; R2 = size/enable

; R3 = attributes

; R4 = address

LDR RO,=MPU_RNR ; 0xEOOOED98, MPU region number register
STR R1, [RO, #0x0] ; Region Number

STR R4, [RO, #0x4] ; Region Base Address

STRH R2, [RO, #0x8] ; Region Size and Enable

STRH R3, [RO, #0xA] ; Region Attribute

Disable a region before writing new region settings to the MPU if you have previously enabled the region being
changed. For example:

; Rl = region number
; R2 = size/enable
; R3 = attributes
© 2023 Microchip Technology Inc. User Guide DS50003495A-page 119

and its subsidiaries

2.7.4.8.1

Cortex-M3 Processor (Reference Material)

; R4 = address
LDR RO, =MPU_RNR
STR R1, [RO, #0x0] Region Number
BIC R2, R2, #1 Disable

; 0xEOOOED98, MPU region number register
STRH R2, [RO, #0x8] ; Region Size and Enable

STR R4, [RO, #0x4] ; Region Base Address
STRH R3, [RO, #0xA] Region Attribute

ORR R2, #1 Enable

STRH R2, [RO, #0x8] Region Size and Enable

Software must use memory barrier instructions:

» before MPU setup if there might be outstanding memory transfers, such as buffered writes, that might be
affected by the change in MPU settings
» after MPU setup if it includes memory transfers that must use the new MPU settings.

However, memory barrier instructions are not required if the MPU setup process starts by entering an exception
handler, or is followed by an exception return, because the exception entry and exception return mechanism cause
memory barrier behavior.

Software does not need any memory barrier instructions during MPU setup, because it accesses the MPU through
the PPB, which is a Strongly-Ordered memory region.

For example, if you want all of the memory access behavior to take effect immediately after the programming
sequence, use a DSB instruction and an ISB instruction. A DSB is required after changing MPU settings, such as at
the end of context switch. An ISB is required if the code that programs the MPU region or regions is entered using a
branch or call. If the programming sequence is entered using a return from exception, or by taking an exception, then
you do not require an ISB.

Updating an MPU region using multi-word writes

You can program directly using multi-word writes, depending on how the information is divided. Consider the following
reprogramming:

; Rl = region number

; R2 = address

; R3 = size, attributes in one

LDR RO, =MPU RNR ; 0xEOOOED98, MPU region number register
STR R1, [RO, #0x0] Region Number

STR R2, [RO, #0x4] ; Region Base Address
STR R3, [RO, #0x8] ; Region Attribute, Size and Enable

You can do this in two words for pre-packed information. This means that the MPU_RBAR contains the required
region number and had the VALID bit set to 1, see 2.7.4.4. MPU Region Base Address Register. Use this when the
data is statically packed, for example in a boot loader:

; Rl = address and region number in one

; R2 = size and attributes in one

LDR RO, =MPU MPU RBAR ; OxEOOOED9C, MPU Region Base register

STR R1, [RO, #0x0] ; Region base address and

; region number combined with VALID (bit 4) set to 1

STR R2, [RO, #0x4] ; Region Attribute, Size and Enable
Subregions
Regions of 256 bytes or more are divided into eight equal-sized subregions. Set the corresponding bit in the SRD
field of the MPU_RASR to disable a subregion, see 2.7.4.5. MPU Region Attribute and Size Register. The least
significant bit of SRD controls the first subregion, and the most significant bit controls the last subregion. Disabling a
subregion means another region overlapping the disabled range matches instead. If no other enabled region overlaps
the disabled subregion the MPU issues a fault.
Regions of 32, 64, and 128 bytes do not support subregions, With regions of these sizes, you must set the SRD field
to 0x00, otherwise the MPU behavior is Unpredictable.
Example of SRD use
Two regions with the same base address overlap. Region one is 128 KB, and region two is 512 KB. To ensure the
attributes from region one apply to the first 128 KB region, set the SRD field for region two to b00000011 to disable
the first two subregions, as shown in the following figure.
© 2023 Microchip Technology Inc. User Guide DS50003495A-page 120

and its subsidiaries

2.74.9

27491

Cortex-M3 Processor (Reference Material)

Figure 2-50. SRD Field
Region 2, with Offset from
subregions base address

512KB
448KB
384KB
320KB
256KB
Region 1 192KB

128KB
Disabled subregion

64KB
Disabl i
Base address of both regions isabled subregion 0

MPU Design Hints and Tips
To avoid unexpected behavior, disable the interrupts before updating the attributes of a region that the interrupt
handlers might access.

Ensure software uses aligned accesses of the correct size to access MPU registers:

» except for the MPU_RASR, it must use aligned word accesses
» for the MPU_RASR it can use byte or aligned halfword or word accesses.

The processor does not support unaligned accesses to MPU registers.

When setting up the MPU, and if the MPU has previously been programmed, disable unused regions to prevent any
previous region settings from affecting the new MPU setup.

MPU Configuration for a Microcontroller
Usually, a microcontroller system has only a single processor and no caches. In such a system, program the MPU as
indicated in the following table.

Table 2-81. Memory Region Attributes for a Microcontroller

ey T G e s e o s

Flash memory b000 Normal memory, Non-shareable, write-through
Internal SRAM b000 1 0 1 Normal memory, Shareable, write-through

External SRAM b000 1 1 1 Normal memory, Shareable, write-back, write-allocate
Peripherals b000 0 1 1 Device memory, Shareable

In most microcontroller implementations, the shareability and cache policy attributes do not affect the system
behavior. However, using these settings for the MPU regions can make the application code more portable. The
values given are for typical situations. In special systems, such as multiprocessor designs or designs with a separate
DMA engine, the shareability attribute might be important. In these cases refer to the recommendations of the
memory device manufacturer.

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 121
and its subsidiaries

Cache Controller

3. Cache Controller

The SmartFusion 2 SoC FPGA has an instruction cache. The Arm® Cortex® -M3 processor interfaces to this
instruction cache through the Cache Controller. The Cache Controller treats embedded SRAM (eSRAM), embedded
nonvolatile memory (eNVM), or DDR memory as main memory.

3.1 Features
« 8 KB of cache size

» Four-way set associativity: Cache Controller has a four-way set associative cache subsystem with 32 byte
cache lines organized as 64 sets of 4 cache lines, with a total of 256 locations.

» Cache line size is 32 bytes, fixed irrespective of DDR burst.

» Least recently used (LRU) cache line replacement policy.

» Fill mechanism: Full cache line refill and critical word first.

» The Cortex-M3 processor can write to Cache Memory through the System bus (SBUS).

» Zero wait state in case of a hit (instruction in Cache Memory) and can run up to the maximum system frequency.
» Supports Cache locked mode

» Cache is constructed of latches

The following figure depicts the connectivity of the Cache Controller in a SmartFusion 2 device.

Figure 3-1. Cache Controller Interfaces to Cortex-M3 Processor, AHB Bus Matrix, and MDDR Bridge

Arm® Cortex®-M3
MDDR Processor
S D |
At lt A
\ A
»| IDc Cache Syst
»| MSS DDR g Controler| v | | eNvM_0 eNVM 1| [eSRAM 0| [eSRAM_1
Bridge |-
S D IC
A A | A A A A A A
Y Y ¥ Y Y Y A Y
A4 MS6 MM2 MMAMMO M9 MS2 MS3 MS0 MST
HPDMA (<1 M3 w7 [—{ PDMA
MM4 MS4 MM5 MM6 MS5 MMs
A A A j
AHB Bus Matrix
Fico | o = > UsSBOTG
< & AHB To AHB Bridge with Address Decoder S >
[} ©
(%} [2]
> vss mac mss sk MS5_APBO MS5_FIC2 MS5_APBT
A A A A J
Y Y Y Y A / Y A
Triple Speed FIC_2 (Peripheral
FIC_1 Ethernet MAC SYSREG APB_0 Initialization) APB_1
A J \
PDMA
| MMUART_O < Configuration || MMUART_1 <> | CAN | | | |
| SPI_0 |<—><—>| WATCHDOG || SPI_1 |<—>4—>| GPIO |
| 12C_0 |<—><—>| FIIC || 12C_1 |<—><—>| RTC |
\ Y
TIMERx2 COMM_BLK
3.2 Functional Description

The following figure depicts all sub-blocks in the Cache Controller block.

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 122
and its subsidiaries

3.21

3.2.2

3.2.21

Cache Controller

Figure 3-2. Cache Controller Block Diagram

Cortex-M3 Microcontroller

32 - 32 | 32
\ Y \/ V To cache memory
MMO MM1 MM2 MM 3
D [S ,
Cache Matrix (4 x 7)
D(W)/
D(RW) S(RW) IC(R) D(R) IR) S(RW) S(RW)
MSO0 MS1 MS2 MS3 MS4 MS6 MS5
A A A A A A
Cache Engine M)I‘ET/IBDtEC
v
Z NN
A A y
432 32 £ 32 A 128 | 32
\/ Y A
D(Rw) System Controller |c(R) IDC (R) D(W)/SG(RW)

Bus (RW)
MSS DDR Bridge
AHB Bus Matrix

MM - Mirrored Master MS - Mirrored Slave DSG - Data System and System Controller Bus
IDC - Icode and DCode Cacheable |- Instruction D - Data S- System R -Read W - Write

The Cache Controller consists of two primary components:

* Cache Matrix
» Cache Engine

Cache Matrix

The cache matrix is a multi-layer AHB-Lite switch matrix. It takes care of the connectivity between masters and
slaves, arbitration for slaves, memory mapping between main memory (eNVM, eSRAM, or DDR), and Cache
Memory. The masters and slaves in the AHB matrix are referred to as mirrored masters (MM) and mirrored slaves
(MS).

One master can access a slave at the same time another master accesses another slave. If more than one master
attempts to access the same slave simultaneously, arbitration is performed. Each of the slave devices contains an
arbiter, which manages accesses when more than one master attempts to access a slave at the same time.

Memory Mapping
The following sections explain memory mapping for eNVM, eSRAM, and DDR address spaces to cache regions.

eNVM Mapping
The cache matrix decodes the code region addresses by any master accessing a targeted slave. By default, the
eNVM slave is mapped to the cache.

The following table shows the default memory map of the MSS digital subsystem - eNVM Remapped mode.

User Guide DS50003495A-page 123

© 2023 Microchip Technology Inc.
and its subsidiaries

Cache Controller

Table 3-1. Default (eNVM Remapped Mode)

CM3 Data Region Reserved 0xE000_0000 to OxFFFF_FFFF
DDR _SPACE 3 (256 MB) 0xD000_0000 to OXDFFF_FFFF
DDR _SPACE 2 (256 MB) 0xC000_0000 to OXCFFF_FFFF
DDR_ SPACE 1 (256 MB) 0xB000_0000 to 0XBFFF_FFFF
DDR _SPACE 0 (256 MB) 0xA000_0000 to OXAFFF_FFFF
eNVM, Remap Area etc (1 GB) 0x6000_0000 to 0x9FFF_FFFF
Peripheral [SPI, UART, CAN, Fabric etc.] (0.5 GB) 0x4000_0000 to Ox5FFF_FFFF
Reserved 0x2001_0000 to 0x3FFF_FFFF
eSRAM-1 (32 KB) 0x2000_8000 to 0x2000_FFFF
eSRAM-0 (32 KB) 0x2000_0000 to 0x2000_7FFF
CM3 Code Region Reserved 0x0008_0000 to Ox1FFF_FFFF
eNVM (Virtual View) [512 KB] 0x0000_0000 to 0x0007_FFFF

The address range of the eNVM_0 is from 0x60000000 to 0x6003FFFF and the address range of eNVM_1 is from
0x60040000 to 0x6007FFFF. The full eNVM (0x60000000 to 0x6007FFFF) is accessible (read/write) in the system
space (0x00000000 to 0x0007FFFF). The eNVM AHB controller maps a specified segment of eNVM to this range.
This allows multiple firmware images to be stored in eNVM.

Important: Not all devices fully populate either or both eNVM address spaces. Please refer to the
SmartFusion 2 data sheet for the available eNVM for the device.

3.22.2 eSRAM Mapping
The cache matrix supports the ability of re-mapping eSRAM into code space. The two eSRAM blocks are re-mapped
to appear at the bottom of the Cortex-M3 processor code space as shown in the following table using eSRAM

Remapped mode.
Table 3-2. eSRAM Remapped Mode (Memory Map)

CM3 Data Region Reserved 0xEO000_0000 to OxFFFF_FFFF

DDR _SPACE 3 (256 MB) 0xD000_0000 to OXDFFF_FFFF
DDR _SPACE 2 (256 MB) 0xC000_0000 to OXCFFF_FFFF
DDR_ SPACE 1 (256 MB) 0xB000_0000 to OXBFFF_FFFF
DDR _SPACE 0 (256 MB) [MIRRORED] 0xA000_0000 to OXAFFF_FFFF
eNVM, Remap Area etc (1 GB) 0x6000_0000 to OX9FFF_FFFF
Peripheral [SPI, UART, CAN, Fabric etc.] (0.5 GB) | 0x4000_0000 to Ox5FFF_FFFF
Reserved 0x2001_0000 to Ox3FFF_FFFF
eSRAM-1 (32 KB) [MIRRORED] 0x2000_8000 to 0x2000_FFFF
eSRAM-0 (32 KB) [MIRRORED] 0x2000_0000 to 0x2000_7FFF
User Guide DS50003495A-page 124

© 2023 Microchip Technology Inc.
and its subsidiaries

Cache Controller

........... continued
DucodeRogion Spaco adaress
CM3 Code Region | DDR_SPACE 0 (256 MB) 0x1000_0000 to Ox1FFF_FFFF
Reserved 0x0018_0000 to OxOFFF_FFFF
eNVM (Remap View) [512 KB] 0x0010_0000 to 0x0017_FFFF
Reserved 0x0001_0000 to 0x000F_FFFF
eSRAMO & eSRAM1 [64 KB] 0x0000_0000 to 0x0000_FFFF

3.2.2.3 DDR Mapping
In DDR Remapping, the user boot code is present in the DDR. DDR remapping is also used for debugging purposes.
This can give high performance execution in systems where DDR is present. The DDR is also used as the main
memory for the Cache Controller. In case the of DDR remapping, the cacheable region can be configured to 128
MB, 256 MB, or 512 MB. The Cache Controller generates the appropriate DDR address as per remap configuration
settings before putting the address on the MDDR bridge.

Table 3-3. DDR Remap

CM3 Data Region | Reserved 0xE000_0000 to OxFFFF_FFFF
DDR _SPACE 3 (256 MB) 0xD000_0000 to OXDFFF_FFFF
DDR _SPACE 2 (256 MB) 0xC000_0000 to OXCFFF_FFFF
DDR _SPACE 1 (256 MB) 0xB000_0000 to 0XBFFF_FFFF
DDR _SPACE 0 (256 MB) 0xA000_0000 to OXAFFF_FFFF
eNVM, Remap Area etc (1 GB) 0x6000_0000 to 0x9FFF_FFFF
Peripheral [SPI, UART, CAN, Fabric etc.] (0.5 GB) ' 0x4000_0000 to Ox5FFF_FFFF
Reserved 0x2001_0000 to Ox3FFF_FFFF
eSRAM-1 (32 KB) 0x2000_8000 to 0x2000_FFFF
eSRAM-0 (32 KB) 0x2000_0000 to 0x2000_7FFF

CM3 Code Region | DDR_SPACE 1 (256 MB) 0x1000_0000 to Ox1FFF_FFFF
DDR_SPACE 0 (256 MB) 0x0000_0000 to OXOFFF_FFFF

3.23 Memory Maps and Transaction Mapping

The following table depicting transaction mapping depends upon the Memory map mode selected and the possible
destination slave for the transaction.

For example, the case eNVM Remapped mode is selected—the condition mentioned in the first row in the table—If
the cacheable transaction comes on ICode bus it will be targeted for the eNVM. This transaction initiates on mirrored
slave 2 (MS2). The transaction flow will be (MS4 — MM3 — MS2) and it will be routed through AHB Bus Matrix. As
shown in the Figure 3-2, all the instruction fetch are first checked in the Cache Engine that is MS4 and from there to
Cache Memory. If not present, then as shown in the following table, the corresponding routing slave will be selected
(For eNVM Remap mode it is switch MS2). The following are the abbreviations used in the table:

IC: Instruction CODE (ICODE) Cacheable
INC: ICODE Non Cacheable

NC: Non Cacheable

DC: Data CODE (DCODE) Cacheable
DNC: DCODE Non Cacheable

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 125

and its subsidiaries

Cache Controller

(W): Write
(R): Read

Table 3-4. Data Path for Various Maps

Memory Map Supported | Region | Destination | Routed Through
Mode Trans Slave

Default Memory Map - eNVM Remapped

ICODE IC eNVM MS2 AHB Bus Matrix
INC eNVM | MS2 AHB Bus Matrix
DCODE DC eNVM MS2 AHB Bus Matrix
DNC eNVM | MSO AHB Bus Matrix
System Bus NC DDR MS5 MSS DDR Bridge
NC NON MS1 AHB Bus Matrix
DDR
System NC DDR MS5 MSS DDR Bridge
Controller Bus
NC NON MS1 AHB Bus Matrix
DDR
2 eSRAM Remapped
ICODE INC eNVM | MS2 AHB Bus Matrix
INC DDR MS3 MSS DDR Bridge
INC eSRAM | MS2 AHB Bus Matrix
DCODE DNC eNVM MSO AHB Bus Matrix
DNC (R) DDR MS3 MSS DDR Bridge
DNC (W) DDR MS5 MSS DDR Bridge
DNC eSRAM | MSO AHB Bus Matrix
SBUS NC DDR MS5 MSS DDR Bridge
NC NON MS1 AHB Bus Matrix
DDR
GBUS NC DDR MS5 MSS DDR Bridge
NC NON MS1 AHB Bus Matrix
DDR
3 DDR Remapped
ICODE IC DDR MS3 MSS DDR Bridge
INC DDR MS3 MSS DDR Bridge
DCODE DC DDR MS3 MSS DDR Bridge
DNC(R) DDR MS3 MSS DDR Bridge
DNC(W) DDR MS5 MSS DDR Bridge
SBUS NC DDR MS5 MSS DDR Bridge
User Guide DS50003495A-page 126

© 2023 Microchip Technology Inc.

and its subsidiaries

3.2.31

3.2.3.2

3.23.3

Cache Controller

........... continued
Memory Map Supported | Region | Destination | Routed Through
Mode Trans Slave
NON AHB Bus Matrix
DDR
GBUS NC DDR MS5 MSS DDR Bridge
NC NON MS1 AHB Bus Matrix
DDR

Unimplemented Address Space

The cache matrix performs address decoding based on the memory map defined, and also to decide which slave is
addressed. Any access to RESERVED memory space in code region is considered “unimplemented” from the point
of view of the Cache Matrix.

Other Features of the Cache Matrix

« If any master attempts a write access to an unimplemented address space, the cache matrix completes the
handshake with the master, with HRESP error indication. No write occurs to any slave.

« If any master attempts a read access from an unimplemented address space, the cache matrix completes the
handshake with the master, with HRESP error indication. Garbage data is returned in this case.

* The cache matrix supports locked transactions from the SBUS towards the eSRAM AHB controller, through
the switch, by monitoring HMASTLOCK. The cache matrix initiates IDLE on the AHB bus after every LOCKED
transfer. SmartFusion2 SoC FPGA - Cache Controller Configuration Application Note

* The cache matrix handshakes correctly with masters performing AHB-Lite bursts to any slave. The ICache slave
on the cache matrix supports bursts from the cache master.

Cache Engine

The Cache Engine takes care of address generation logic using a four-way set associative, hit and miss generation
logic, cache line filling/replacement, a temporary local buffer for cache line while writing, and arbitration logic for
ICode and DCode buses.

The Cache Controller has a four-way set associative cache subsystem with 32-byte cache lines organized as 64 sets
of 4 cache lines. Eight bits from the memory address (shown in the following figure) select one of these 256 different

locations. The Cache Controller can map a block of 32 data bytes to any of the cache lines, replacing the LRU block.
As one location of the memory contains 64-bit information the required data can be selected by using the second bit

from the memory address as shown in the figure.

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 127

and its subsidiaries

Cache Controller

Figure 3-3. General Cache Architecture and Addressing

31 11 10... 3210
Tag \|\ 7 -~ 3
Index Block Offset
(10:5] [10:3] j 64 Bits R
\Y Tag N Data "
256
1
64
v L | v
~
»
{ 21 o 32
‘/> ~_ 32
y A
MUX
A 4
32
Hit Data

The Cache Engine has two buses interacting with the ICode and DCode buses through interfaces MS3 and MS4. It
supports the following functionalities:

Only read transfers from ICode and DCode bus are cached

32 bytes local buffering of cache line read from slave

Support 32-/128-bit local interface on the AHB master side

All miss non-cacheable transactions targeted for eNVM are routed through MM4

Arbitration: In case of simultaneous access from ICode and DCode, all transactions from DCode are
processed before ICode is processed.

— a. Supports full cache flush or index-based flushing
— b. Supports hit/miss generation mechanism for Cache Memory and local buffer
— c¢. One of the following types of transaction will come to the Cache Engine:

« Transaction for cacheable region in DDR

« Transaction for non-cacheable region in DDR

» Transaction for cacheable region in eNVM

6. Supports Cache Disable mode where all transactions will be treated as non-cacheable and replicated “as is”
on DDR or switch-side

o kw0~

3.2.3.3.1 Accessing | and D Buses Concurrently
Accessing the | and D buses concurrently are not allowed. In rare cases, accessing the | and D buses concurrently
might result in an invalid value returned to the internal registers from the cache causing the firmware to not function
properly. To overcome this behavior, there are few workarounds such as turning off the cache, avoiding D-Bus literals,
and moving variables including constants to eSRAM.

IAR tool chain users can do a work around for this problem by preventing the Cortex-M3 processor from issuing
concurrent | and D buses access through the cache. To implement this work-around, updates are required to the IAR
tool chains. All libraries must be fully rebuilt from the source code to avoid this interaction by preventing the cache
D-Bus accesses. The user's linker scripts are required to locate constants and data variables outside the memory
regions accessed by the cache to prevent conflicts. Consequently, IAR compilation requires using the -no_literal_pool

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 128
and its subsidiaries

3.24

Cache Controller

option to prevent the compiler/assembler from locating variables close to instructions known as literal pools. Refer to
the following two figures. This option prevents literal pool data generation of instructions that used D-bus accesses.

Important: There is no known workaround for SoftConsole, Keil, or GCC (Linux) tool chains.

Figure 3-4. IAR Compiler Options

Options for node "FreeRTOS_wIP_WebServer™

Categary:

General Options.
Assembler
Output Converter
Custom Build
Builld Actions
Linker
Debugger
Simulator
Angel
CMSIS DAP
1GD8 Server
TAR ROM-monitor
Tet/ITAGHt
J-Linkj1-Trace
1 Stedlaris
Macraigor
PE micro
ROIL
ST4INK
ThirdParty Driver
XD5100/200/1C01

.\ Factory Seltings
Mukidile Compilation
Discard Unused Publ

Language 1 | Language 2 | Code [Optimizations | Output [st [£+]*

| Use command line options

Command ne options: (ane per ine)
—no_Reral_paal

===

Figure 3-5. IAR Assembler Options

Cache Locked Mode

-
Options for node “FreeRTOS_IwIP_WebServer™

===

Category:

General Options.
CfC++ Compiler
Assembler
Ouitpat Converter
Custom Buld
Buid Actions
Linker
Debugger
Simulator

CMSIS DAP

1GD8 Server

TAR ROM-monitor
I4et/ITAGIEt
J-Linkf)-Trace

TI Stedlaris.
Macraigor

PE micro

RDT

ST4INK
Third-Party Driver

'\ Factoy Seltings

Larwagal&mlba |Pwum|&a9~mm Bara Options
/] Use command line options

Command ine options: (ane per ine)

-ne_Reral_pool

XD5100/200,1C01

ok | [Cowe |

Cache Locked mode is a special mode that provides predictable execution required for some specific applications
like avionics and certain security applications. Before enabling Cache Locked mode, the software should ensure that
the code is copied to the Cache Memory by simulating a sequential location cache miss through DCode or writes
through SBUS by enabling SBUS Write mode. After copying the complete the 8 KB, Cache Locked mode is enabled.

© 2023 Microchip Technology Inc.
and its subsidiaries

User Guide

DS50003495A-page 129

3.2.5

Cache Controller

After Cache Locked mode is enabled, any access from 0 to 8 KB is directly read from the cache and the cache is
not invalidated or refilled for normal operations. The memory region beyond 8 KB is treated as non-cacheable and
accessed as per the prevailing memory map.

In Cache Locked mode if an uncorrectable error is detected for cacheable address (0 to 8 KB), then the cache line
is fetched from the main memory using the cache lock base address and the entire cache line in Cache Memory is
replaced with new data from main memory. Cache Locked mode can only be used in either DDR or eNVM remap
modes and the lock base address should be used in the code region of CM3. In Cache Locked mode the least
recently used (LRU) cache update algorithm will be deactivated.

Important: CC_CACHE_LOCK bit of CC_CR system register (Table 21-12) is used to lock or unlock the
entire 8 KB of Cache memory.

Interfaces

The following figure shows the Cache Controller interface in the MSS subsystem. There are two interfaces through
which the Cache Controller is connected to the main memories:

Interface towards MDDR bridge: 128-bit AHB-Lite, this interface is read-only for instruction/data reads and 32-bit
AHB-Lite to access DDR memory through DDR bridge and system bus (read and write access)

Interface towards AHB bus matrix: There are three 32-bit AHB-Lite modes:

« Read/write for non-cacheable data access to eSRAM/eNVM
* Read/write from SBus
¢ Read/write from ICode bus

Figure 3-6. Cache Controller Interface

Cortex-M3
Processor MSS
S D |
2 | n | 2|
P
64-Bit D
Ipc MSS DDR M MDDR D DDR
Cache Controler DS 2 Bridge Subsystem T SDRAM
S D IC 2 o]
S | eNVM | | eSRAM |
2 /t, ® 4,
AHB Bus Matrix
FICO | | FIC 1
—+ -
2 »
Fabric SRAM
FPGA Fabric
© 2023 Microchip Technology Inc. User Guide DS50003495A-page 130

and its subsidiaries

3.3

Cache Controller

How to Use Cache Controller

Cache Controller can be configured statically by using the Libero design software. The following figure shows the
Cache Controller enable option, cache region size selection.

Figure 3-7. MSS Configurator with Cache Controller Configuration Options

vooR O Bridge

S8 B Wl

The following figure shows how to select the main memory from memory blocks eNVM, eSRAM, and DDR SDRAM.
Figure 3-8. MSS Configurator with Remapping Options for eNVM, eSRAM, and MDDR

MICROCONTROLLER SUBSYSTEM

MOOR
=
]

|

8 Configuring SWITCH (MSS_SWITCH - 0.0.510) (=13

Configuration

~
Remapping
Remapped Region ta Incation 000000000 of Cortex-M3 1D Code space:

() e) esRAM) MDDR

Reemap ey to location 000000000 of Fabric Master space []

&b Remap Regin Size 256KE v
&MY Remap Base Address (Cortex-M3) 000000000
1 eV Remap Base Address (Fabric Master) 000000000

Arhitration

The selection of the main memory for the Cache Controller can also be made using the system builder flow of the
Libero SoC software. This procedure is explained in the following figure.

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 131

and its subsidiaries

3.31

Cache Controller

Figure 3-9. System Builder with Remapping Options for eNVM, eSRAM, and MDDR

e ET] (Wakon Tmer '\ el T Courtes W Percher sl P\ Coromi-t, 1 Cache Cortraller '/ A B Pl |

Configuration,

Remageng
FoammapectBgon 15 kocation DeO000N00 of CorbaeEE 1D Conte spusee

3 e O esham 2 HeR
weacn [
P B oo S T -
A R Barie Ao {Contee-be) FOOEC0000

Cache Controller configurations like enable/disable, selecting the main memory, and Cache Locked mode can also
be performed using the firmware/application code with the register settings provided in the 3.3.1. System Registers
Used for Cache Operations.

See the following application notes for more details on the Cache Controller configurations:

* AC389: SmartFusion2 SoC FPGA - Cache Controller Configuration Application Note

* AC390: SmartFusion2 SoC FPGA — Remapping eNVM, eSRAM, and DDR/SDR SDRAM Memories Application
Note

Important: Create or modify the linker scripts/linker settings of the application in such a way that all
read and write data sections are in non-cacheable memory regions or accessed through the system bus
address space. This note has to be strictly followed if eSRAM or DDR SDRAM are selected as the main
memory for the cache.

System Registers Used for Cache Operations
Table 3-5. System Registers for Cache Operations
Flash

Write
Protect

Register Name Registe Reset Source |Description

r Type

Table 21-12 RW-P Register SYSRESET_N | Used to configure cache options like cache
enable/disable, cache lock enable/disable,
Debug mode system bus read & write.

Table 21-13 RW-P Register SYSRESET_N Defines the cache region size

Table 21-14 RW-P Register SYSRESET_N | Used when Cache Memory index is to be
flushed or invalidated.

Table 21-112 RwW N/A SYSRESET_N Used to flush the Cache Memory

Detailed bit-level descriptions of the cache registers are provided in the 21. System Register Block.

User Guide DS50003495A-page 132

© 2023 Microchip Technology Inc.
and its subsidiaries

Embedded NVM (eNVM) Controllers

4, Embedded NVM (eNVM) Controllers

The SmartFusion 2 SoC FPGA devices have one or two embedded nonvolatile memory (eNVM) blocks (depending
on the device) for user non-volatile memory. The eNVM controller interfaces these eNVM blocks to the advanced
high-performance bus (AHB) bus matrix.

41 Features
» Single error correction and dual error detection (SECDED) protected

» Based on the selected SmartFusion 2 device, the total size of eNVM memory ranges from 128 KB, 256 KB, and
512 KB.

— M2S005 has a single block of 128 KB.
— M2S010, M2S025, M2S050, and M2S060 have a single block of 256 KB.
— M2S090 and M2S150 have two blocks of 256 KB each. The total eNVM size is 512 KB.
» In devices with two blocks present, any two masters can accesses the eNVM blocks (eNVM_0 and eNVM_1) in
parallel, which improves the overall performance of the system.
As shown in the following figure, the eNVM block(s) is connected as slave to the AHB bus matrix.

Figure 4-1. eNVM Connection to AHB Bus Matrix

Arm® Cortex®-M3
MDDR Processor
S D |
! {3
/ A A
»| IDc Cache Svst
»{ 1SS PDR g Controller| ¥ | | eNVML0 | | eNvM_1| |eSRAM_O| |esRAM_1
Bridge |-
S D IC
A A | A A A A A A
Y Y Y \ Y Y A Y
Y MS6 MM2 MMT_MMO MM9 MS2 MS3 MSO MST
HPDMA |<&f»| Mm3 M7 fe—1 PDMA
MMm4 MS4 MM5 MM6 MS5 MM8
A A A .
AHB Bus Matrix
Fico | o = > USBOTG
< e AHB To AHB Bridge with Address Decoder Eln >
(2 ©
(2] [%2]
o EMSSiM/-\C MS5_SR MS5_APBO MS5_FIC2 MSSJ\F’BWE
A A y A A
Y \ Yy VY Y 4 Y Y
Triple Speed FIC_2 (Peripheral
FIC_1 L oPemc | | SYSREG| | APB_O Initialization) APB_1
A A
PDMA
MMUART_0	<_><_> ConﬁguraﬁonH MMUART _1 I,_,<_,	CAN				
SPI_0	<—><—>	WATCHDOG		SPI_1	<—><—>	GPIO
12C_0	<—><—>	FlIC		12C_1	<—><—>	RTC
Y \/
TIMERx2 COMM_BLK
4.2 Functional Description

The address range of eNVM_0 is 060000000 to 0x6003FFFF and the address range of eNVM_1 is 060040000 to
0x6007FFFF. The location of eNVM_1 always follows eNVM_0 in the system memory map. The following table gives
the eNVM_0 and eNVM_1 addresses for different devices.

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 133
and its subsidiaries

Embedded NVM (eNVM) Controllers

Table 4-1. eNVM Address Locations

eNVM_0 eNVM_1 Total NVM

M2S005 0x60000000 None 128 KB
M2S010 0x60000000 None 256 KB
M2S025 0x60000000 None 256 KB
M2S050 0x60000000 None 256 KB
M2S060 0x60000000 None 256 KB
M2S090 0x60000000 0x60040000 512 KB
M2S150 0x60000000 0x60040000 512 KB

Both eNVMs and embedded NVM controllers are identical and the eNVM controller consists of three components:

* eNVM Array
* eNVM Controller
« eNVM to AHB Controller

Figure 4-2. eNVM Controller Block Diagram

eNVM Controller

32-Bit eNVM Array

Sectorn

Write Write data
> Sector n-1
32-Bit Data —> Assembly [T sedtorn
> Buffer
Buffer

Commands and
AHBL Interface 64-Bit Data ECC
]

eNVM to Interface
aHB [> Address Interface

Controller

Readdata ~ |Jeeeeerencrineninenns
64-Bit Sector 0

L Read
__ 32:Bit

<EREQRNG | - Buffer

A

FREQRNG

DPD
NVM_BLOCK_SIZE
NVM_G4C_INT

NVM_BUSY

Yvyy

M3_CLK is used within the MSS to clock the AHB bus matrix. Refer to UG0449: SmartFusion2 and IGLOO2 Clocking
Resources User Guide for more information on M3_CLK.

eNVM Array: The eNVM array is connected to a 25 MHz internal oscillator. This 25 MHz internal oscillator is used
during device start-up to initialize the NVM controller. It is also used for eNVM program operation. For other eNVM
operations (Read and Verify), the eNVM controller operates at the M3_CLK. During eNVM read operations, the NVM
controller uses the NV_FREQRNG input to insert wait states to match with the eNVM array access times. The eNVM
array stores the data. Table 4-2 shows the eNVM memory organization and the total size of the eNVM.

eNVM Controller: Decodes all transactions from the AHBL master and issues the commands to the eNVM array.

ECC: The error-correcting code (ECC) block in eNVM Controller performs the SECDED. The ECC stores error
correction information with each block to perform SECDED on each 64-bit data word. ECC does not consume any
eNVM array bits. Refer to Table 4-21 for ECC status information. ECC block in eNVM Controller is enabled by
default. The user has no access to control the ECC block.

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 134
and its subsidiaries

421

4.2.2

Embedded NVM (eNVM) Controllers

Read Data Buffer: Contains four 64-bit data words. It functions as a small cache by reading NVM data as four
consecutive 64-bit data words. Data read from the eNVM is stored in read data buffer (RDBUFF) and presented to
AHB read data bus (HRDATA) corresponding to HADDR.

If the data is not available, an eNVM read cycle is invoked to retrieve data from the eNVM array. To support an 8-bit
fixed length wrapping burst, four eNVM read cycles are automatically invoked and data read from the eNVM is stored
in RDBUFF. Read data is presented to HRDATA when the data for the current read address becomes available.

Assembly Buffer (AB): The eNVM is page-based Flash memory. Only one page of data (1,024 bits) can be written at
a time. The assembly buffer stores thirty-two 32-bit data words for programming. During programming, the assembly
buffer cannot be updated. If more than one page is to be written, the page programming function needs to be called
as many times as the number of pages.

Write Data Buffer: The write data buffer provides a secondary 32-word data buffer. This can be updated with the next
32 words to be programmed during eNVM programming.

eNVM to AHB Controller: This block interfaces the eNVM Controller with the AHB-Lite (AHBL) master as shown in
Figure 4-2.

Memory Organization

The eNVM is divided into sectors based on the eNVM size. Each sector is divided into 32 pages. Each page holds
1,024 bits of data. The following table lists the total available memory and its organization.

Table 4-2. Memory Organization

NVM Size Number of | Pages per Bytes per | Words per | 64-Bit Locations | Total
Sectors Sector Page Page per Page Bytes
32 32 32 16

M2S005 | 128 KB 128 131072
M2S010 256 KB 64 32 128 32 16 262, 144
M2S025 | 256 KB 64 32 128 32 16 262, 144
M2S050 256 KB 64 32 128 32 16 262, 144
M2S060 | 256 KB 64 32 128 32 16 262, 144
M2S090 512 KB 64 per NVM 32 per NVM 128 32 16 262, 144
(two eNVMs, per sector per NVM
each 256 KB)
M2S150 | 512 KB 64 per NVM | 32 per NVM | 128 32 16 262, 144
(two eNVMs, per sector per NVM

each 256 KB)

Data Retention Time

The following table shows the retention time of the eNVM with respect to the number of programming cycles. The
same values are applicable for both commercial and industrial SmartFusion 2 product grades. Refer to IGLOO2
FPGA and SmartFusion2 SoC FPGA Datasheet for more information on Programming cycles and retention time.

Table 4-3. Data Retention Time

<1000 20 years
< 10000 10 years

Important: The eNVM is not prevented from programming, even if a page exceeds the write count
threshold. The eNVM Controller generates a flag through Status register.

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 135
and its subsidiaries

423

424

4.2.41

4242

Embedded NVM (eNVM) Controllers

eNVM Access Time

Refer to the Embedded NVM (eNVM) Characteristics section from IGLOO2 FPGA and SmartFusion2 SoC FPGA
Datasheet for eNVM Maximum Read Frequency and eNVM Page Programming Time.

Theory of Operation
The eNVM AHB Controller supports the following operations:

» Interface from AHBL for read, and writeoperations

* Issues all eNVM commands through AHBL read and write bus operation. The data width to and from AHBL bus
is 32 bits, and data to and from eNVM is 64 bits.

» AB can be read directly from AHBL bus.

* eNVMs treated as ROM. AHBL write transactions to eNVM user data array receive errors on HRESP and write
will be ignored.

» Page Program command is used to write the NVM user data array.

» AB can be written directly or loaded from the write data buffer (WDBUFF). Data can be written to WDBUFF in
byte, half-word or word AHB transfers.

« Data for Page Program comes from WDBUFF or user data previously written into AB.

» Command code in Table 4-6 determines the NVM commands to be issued. The eNVM user data array is treated
as ROM, so any program operations must be performed by submitting relevant commands to the controller. Any
AHBL writes to NVM user data without a valid NVM command will cause the HRESP signal to be asserted on
the AHBL bus. Any data that needs to be written into the NVM user array must be uploaded first to the WDBUFF
and then written into the NVM user array through the assembly buffer. Program operation for the NVM user
array occurs at the page boundaries.

Write Control

The data to be programmed into eNVM must first be uploaded into WDBUFF due to the width difference between
the AHBL bus and the eNVM. Data can be written into WDBUFF by word, half-word, or byte from the AHBL bus.
ProgramDa and ProgramADS commands take care of uploading data into AB from WDBUFF before programming
eNVM.

Data is sent to eNVM from WDBUFF in chunks of double words (64 bits). Subsequent data transfer commands to
the AB and then to eNVM array, or commands such as ProgramAd, ProgramDa, and ProgramStart, must specify the
page address and upload data to AB to start eNVM array programming. For more information, see Table 4-6.

Figure 4-3. Write Path

eNVM Controller

eNVM Array

32-Bit Sectorn

Commands and *
64 -Bit Data Write data Sector n-1
AHBL Interf; eNVM to Interface wie |1 L e
nterface - > o
<> aHB ECC nar | pata Assembly | 6aBit
> Buffer
Controller Buffer
Address Interface

Sector 0

Read Control
The following steps describe eNVM read control.

* The read transaction from the eNVM user array to AHBL bus uses the read data buffer as a mini cache.

« If the requested 32-bit word exists in the read data buffer, it will be returned immediately on the AHB bus;
otherwise a 64-bit read access of the eNVM is initiated and will take several clock cycles as configured by Table
4-12 register.

* The eNVM data is stored in the read data buffer and provided to the AHB bus. Assuming that the eNVM address
is incremented, the data value stored in the read data buffer is available for the next AHB read cycle.

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 136
and its subsidiaries

Embedded NVM (eNVM) Controllers

The following figure shows the eNVM array read path.

The AHB Controller also supports WRAP4 burst operations, which are initiated by the cache controller. In this case,
the AHB eNVM controller will automatically perform four 64-bit read operations (critical word first) and fill the read
data buffer in advance to the AHB read transactions to increase system throughput.

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 137
and its subsidiaries

Embedded NVM (eNVM) Controllers

Figure 4-4. Read Path

eNVM Array
Sector n
Address Interface [~="""""""""""""
> Sector n-1
AHBL Interface Read .
~+——»| eNVM to Commﬁ}?g;:cld Data ECC Buffer Read data]
AHB < > ~_ 32-Bit | 4-64 Bit | 64-Bit .
Controller < Registers
n
Sector 0
© 2023 Microchip Technology Inc. User Guide DS50003495A-page 138

and its subsidiaries

4243

4.2.5

Embedded NVM (eNVM) Controllers

In the eNVM array, the addresses are 64-bit locations; therefore each page of 1,024 bits (16 double words = 32
words) requires an AHBL address map, as specified in the following table.

Table 4-4. AHBL Address Map to NVM

Sector Number Page Number in Sector Address in Page Byte Number in 64-Bit Data

HADDR[17:12] HADDR[11:7] HADDRI[6:3] HADDR[2:0]

When programming the eNVM, sector and page addresses must be programmed into the command (CMD) register,
as specified in Table 4-6.

eNVM Commands

The eNVM commands are explained in the Table 4-6. The eNVM Command register is used to program the eNVM
commands. The following section explains the details of the eNVM Command register.

eNVM Command Register
The following table shows the Command register bit definitions.

Table 4-5. Command (CMD) Register

B R]

31:24 Command code
23:0 Address field; to supply address for NVM operation, refer to Table 4-6.

The Command register is located at offset 0x148 in the Control register. Refer to Table 4-6 for more information. By
writing to CMD when HADDR[18:0] = 0x148, any eNVM operation may be invoked. The eNVM goes into a busy state
and HREADY is set High until it finishes the write operation. Any further invoking of the eNVM operation will cause
HREADY to go Low until it finishes the previous operation.

Before using the eNVM read command, ensure to check the ready bit of the ENVM_SR register. The value 0 of
the ready bit indicates that the eNVM controller is not busy. To execute eNVM reads/writes via FIC, ensure that the
HREADY signal is LOW.

The following steps describe when to write to the Command Register, decoding of commands and command
execution.

» The command register should only be written when the NVM is non-busy (Status Register bit 0). Refer to Table
4-21 for the Status Register definitions

« If the Command register is written when the NVM is still busy from a previous command then the logic will
prevent the new command and all future commands, the access_denied bit in the STATUS register will be set.
To recover from this state, 1 should be written to bit 1 in the Table 4-25 register to clear the access_denied bit.
This mechanism is used to detect the improper NVM command sequences and protect the NVM data until the
firmware recovers.

* When the AHBL triggers a write transaction with HADDR[18:0] = 0x148, HWDATA is treated as a command
(CMD).

* CMD[31:24] will be decoded as the eNVM operation, as mentioned in Figure 4-4.

* The value from CMDI[23:3] will be decoded as the NVM array address for the eNVM operation. Depending
on the command code, some LSB bits of CMD[23:0] will be ignored. For example, to submit a program
address, only the page address CMD[17:7] is significant. Therefore CMD[17:7] is taken as the NVM address and
CMDI6:0] is ignored. Refer to Table 4-6 for more information.

For masters, which are only capable of byte access, four cycles of write may be needed to fill the Command (CMD)
register, by writing to 0x14b, 0x14a, 0x149, and 0x148.

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 139
and its subsidiaries

Embedded NVM (eNVM) Controllers

Table 4-6. Command Table

HWDATA Transaction | Description

Read Page Read

ProgramAd 1 ACMD 05 PGA Write Submit page address for programming.
CMD[17:7] is considered as the eNVM
address and CMD[6:0] is ignored.

ProgramDa 1 ACMD 06 AAB Write Submit data to assembly buffer for
programming, up to 16 dwords can be
written to the assembly buffer as specified
by DWSIZE. ProgramDa must be preceded
by ProgramAd. CMD[17:7] is considered
as the eNVM address and CMDI[6:0] is
ignored.

ProgramStart 1 ACMD 07 X Write Start program NVM operation

ProgramADS | 1 ACMD 08 PGA Write Start whole program page procedure,
includes sending page address, sending
entire content of write data buffer to
assembly buffer, then starting the NVM
operation.

VerifyAd 1 ACMD 0D PGA Write Submit page address for standalone verify.
CMD[17:7] is taken as the eNVM address
and CMD[6:0] is ignored.

VerifyDa 1 ACMD OE AAB Write Submit data to assembly buffer for
standalone verify. Up to 16 dwords can
be written to the assembly buffer, as
specified by DWSIZE. VerifyDa must be
proceeded by the VerifyAd. CMDI[6:3] is
taken as the starting double word address
and CMD[23:7] is ignored.

VerifyStart 1 ACMD OF X Write Start standalone verify NVM operation

VerifyADS 1 ACMD 10 PGA Write Start whole standalone verify procedure;
includes sending page address, sending
entire content of write data buffer to
assembly buffer, and then starting NVM
operation.

User Unlock 13 X Write Submit a User Unlock NVM command
before Program NVM.

Notes:
* AA =NVM Array address. Refer to Table 4-1.
» AAB = Address of assembly buffer. Refer to Table 4-20 for address values.

* ACMD = Address of CMD register. The Command register is located at offset 0x148 in the Control register.
Refer to Table 4-20 for more information.

* PGA = Page address
* SEA = Sector address
* X =Notused

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 140
and its subsidiaries

4251

4.2.5.2

425.21

4.2.5.3

4.2.5.3.1

4254

4.2.5.5

4.2.5.5.1

Embedded NVM (eNVM) Controllers

Read Page

Data read from eNVM is stored in the read data buffer (eight 32-bit memory blocks) and presented to HRDATA based
on HADDRJ2:0]. For non-sequential reads, the read data buffer is checked first. If the data is available, it is presented
to HRDATA; otherwise an eNVM read cycle is invoked to read the data from the eNVM array and data is presented to
HRDATA as soon as corresponding data is available.

To support 8-byte fixed length burst (that is, to read the complete read data buffer, which consists of eight 32-bit
memory blocks), 4 eNVM read cycles (each 64-bit) are automatically invoked. Data read from the eNVM is stored in
the read data buffer.

Page Program
This mode allows writing the page with pre-erase. In Page Program there are three stages:

* ProgramAd: This command is used to submit the page address to be programmed.

* ProgramDa: Once the ProgramAd command is issued, data can be written to AB.

» ProgramStart: After ProgramAd and ProgramDa (optional), ProgramStart can be used to start the NVM
operation. Once the NVM operation starts and until it finishes, any further NVM accessing AHBL transaction
will result in HREADYOUT going Low until the operation is done.
If the command ProgramDa is not issued after the ProgramAd operation, the current data in the assembly buffer
will be programmed to the NVM array.

Program Page with a Single AHBL Write

ProgramADS: During the command ProgramADS, a single AHBL write transaction can be used to start and

complete the program page procedure. By default, all WDBUFF content is written to AB and internal program
operation automatically begins. Once the NVM operation starts and until it finishes, any further NVM accessing AHBL
transaction will result in HREADYOUT going Low until the operation is done.

Note: eNVM frequency range (NV_FREQRNG field of Table 4-12 system register) value must be set to maximum
value 15 to ensure the correct programming of the eNVM. After programming eNVM, restore the original frequency
range value for eNVM read or verify operations.

Standalone Verify
This mode allows verifying the operation of a page. In verify there are three stages:

» VerifyAd: This command is used to submit the page address to be verified.

» VerifyDa: Once the VerifyAd command is issued, data can be written to AB.

» VerifyStart: After VerifyAd and VerifyDa (optional), VerifyStart can be used to start the NVM operation. Once
the NVM operation starts and until it finishes, any further NVM accessing AHBL transaction will result in
HREADYOUT going Low until the operation is done. If the VerifyDa command is not issued after the VerifyAd
operation, the current data in assembly buffer is verified with the NVM array.

Standalone-Verify with a Single AHBL Write

VerifyADS: With the command VerifyADS, a single AHBL write transaction can be used to start and complete

the verify page procedure. By default, all WDBUFF content is written to AB and the internal Standalone-Verify
operation automatically starts. Once the NVM operation starts and until it finishes, any further NVM accessing AHBL
transaction will result in HREADYOUT going Low until the operation is done.

Set Lock Bit and User Unlock Commands

There is a user page lock bit to lock the page for writing. The Control Register PAGE_LOCK_SET]I0] is used
to set the user lock bit of the page. Refer to PAGE_LOCK_SET register in Table 4-20 for more information. If
PAGE_LOCK_SET[0] == 1, then nv_s_page_lock_set will be asserted when submitting the address for Program.

To program a page, the User Unlock command must be submitted before submitting ProgramAd or ProgramADS.

eNVM Read Operations with Timing Diagrams

The following are the example eNVM read operations with the Cortex-M3 processor operating at 166 MHz. The
eNVM NV_FREQRNG is set to 6.

Single Word Read
The following figure shows the AHB read command to 0x60001000 starting at the first cursor, and data being
returned at the second cursor 9 clock cycles later.

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 141
and its subsidiaries

Embedded NVM (eNVM) Controllers

Figure 4-5. Timing Diagram Showing Single Word Read Operation

. Wave » — - - =S ﬁ
Eile [Edit Yeew Add Fgermst Took Bookmarks | Window | Help
i Wavee - Defauit o Halxl

Cursor 3 | 42039027 ps |J8) T -
Ll < T sl LI

AMIGHEL Pt to 42099470 ps festhendh 54 _ENVMTOAHE_inst HTRANS [1:0]

4.2.5.5.2 Consecutive Reads Incrementing through Memory
In this case, four reads from addresses 0x60000010, 0x60000014, 0x60000018, and 0x6000001C are initiated by the
AHB master in succession. The first word is returned 9 clock cycles later (as shown in the preceding figure), but the
second word occurs in the following cycle, 9 clock cycles later the third word is provided and the fourth word occurs in
the next clock cycle. This pattern is repeated as the memory is incremented as shown in the following figure.

Figure 4-6. Timing Diagram Showing Consecutive Reads Incrementing through Memory

e

Bie Eoe foww fpid Fgee Dok Bocgmain Sedow jep

4.2.5.5.3 Cache Fill Operation Utilizing Bursts
The internal cache fill operations using AHB wrapping can utilize bursts to optimize the cache fill operations. The
AHB-NVM controller always returns 8 words in a burst. The first word returns after 9 clock cycles, and second word
in the following cycle as shown in the preceding figure. But the third word occurs 7 clock cycles later, and the fourth
word occurs a cycle later with a repeating pattern for the remaining words as shown in following figure. This burst
transfer is 8 clock cycles quicker than a non-burst sequence of read commands.

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 142

and its subsidiaries

4.2.5.6

4.2.5.6.1

Embedded NVM (eNVM) Controllers

Figure 4-7. Timing Diagram Showing Cache Fill Read Operations Utilizing Bursts

. Wi ey e

Fde [fdit Yiew Add Fgrnat Jook Bockmara ffindow Help

il we - Dot = Hllxl
CER Pk

ATAE pe e 423470 pe Arl B

eNVM Program and Verify Operations Timing Diagrams

Timing diagrams in this section illustrate eNVM Program and Verify operations at the AHB bus transfer level with the
Cortex-M3 processor operating at 166 MHz. The eNVM NV_FREQRNG is set to 15. The sample eNVM operation
programs the eNVM sector 0 page 4 with random data and verifies the eNVM sector 0 page 4.

Note: In all the waveforms, the eNVM controller register offset is shown in AHB address line (HADDR). Refer to
4.6. eNVM Control Registers for more information.

Sequence of eNVM Program and Verify Operations when using ProgramADS and VerifyADS Commands
The following figure shows the following sequence of eNVM ProgramADS and VerifyADS commands:

Cortex-M3 master requests for exclusive register access by writing 0x1 to the REQACCESS register.

Fills the WDBUFF (Write Data Buffer) register with the data to be written to the eNVM array.

Issues ProgramADS command.

Completes the eNVM Program operation and starts the eNVM Verification by issuing a VerifyADS command.
Completes the eNVM verify operation.

Releases the exclusive register access by writing 0x0 to the REQACCESS register.

The status of the eNVM operations are monitored by polling the Status register response.

For a description of the registers, see Table 4-20.

The following figure shows the complete eNVM program (ProgramADS) and eNVM verify (VerifyADS) operations.
Figure 4-8. eNVM Program (ProgramADS) and Verify (VerifyADS) Operations

At cursor 1, steps 1 and 2 in the sequence are performed. At cursor 2, the eNVM Program operation gets completed
and Verify operation gets started. At Cursor 3, the verify operation is completed. Refer to the preceding figure.

eNVM commands sequence is shown in waveforms. See Figure 4-9 through Figure 4-12.

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 143
and its subsidiaries

Embedded NVM (eNVM) Controllers

The Cortex-M3 processor gets the exclusive register access by writing Ox1 to the REQACCESS register. It reads the
value 0x5 from AHB read data line (HRDATA), it means the exclusive register access is issued. Then the WDBUFF
(Write Data Buffer) register is filled with the random data, as shown in the following figure.

Figure 4-9. Exclusive Register Access and Filling Data in WDBUFF

| Wave -Default

The following figure shows issue of ProgramADS command by writing 0x08 to the CMD register in Table 4-20.
Figure 4-10. Issuing the ProgramADS Command

| Wave - Default

0oE0

5t1
00000000
00000000

Important: HWDATA[31:24] holds the ProgramADS command and HWDATA[23:0] holds the eNVM page
address. Refer to Table 4-5.

The following figure shows completion of ProgramADS and issue of VerifyADS command.

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 144
and its subsidiaries

Embedded NVM (eNVM) Controllers

Figure 4-11. Completion of ProgramADS and Issue of VerifyADS Command

| Wave - Default

The ProgramADS command completion can be confirmed by polling Status register response. The following figure
shows the completion of eNVM verify operation.

Figure 4-12. Completion of eNVM Verify Operation

00000000
00000000 E0000221)

—

4.2.5.6.2 Sequence of eNVM Program and Verify Operations when Using ProgramAD, ProgramDA, ProgramStart,
VerifyAD, VerifyDA, and VerifyStart Commands
Figure 4-13 through Figure 4-17 show the sequence of eNVM program operation:

1. Cortex-M3 master requests for exclusive register access by writing 0x1 to the REQACCESS register. Refer to
Figure 4-14.

Fills the WDBUFF (Write Data Buffer) register with the data to be written to the eNVM array. Refer to Figure
4-14.

Issues ProgramAD command. Refer to Figure 4-15.

Completes the ProgramAD command and Issues the ProgramDA command. Refer to Figure 4-16.
Completes the ProgramDA command and Issues ProgramStart command. Refer to Figure 4-17.
Completes the eNVM Program operation and starts the eNVM verification by issuing a VerifyAD command.
Completes the VerifyAD command and Issues the VerifyDA command.

Completes the VerifyDA command and Issue the VerifyStart command.

Completes the eNVM verify operation.

0. Releases the exclusive register access by writing 0x0 to the REQACCESS register.

N

2 OP NSO AW

The status of the eNVM operations are monitored by polling the Status register response.

The following figure shows the complete eNVM program and eNVM verify operations.

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 145
and its subsidiaries

Embedded NVM (eNVM) Controllers

Figure 4-13. Complete eNVM Program and Verify Operations Waveform

At cursor 1,steps 1 and 2 in the sequence are performed. At cursor 2, the eNVM ProgramStart operation is
completed and VerifyAD operation is started. At cursor 3, the verify operation is completed. Refer to the preceding
figure. The eNVM commands sequence is explained in waveforms in Figure 4-14 through Figure 4-17.

The following figure shows the Cortex-M3 master requesting for exclusive register access and filling WDBUFF (Write
Data Buffer).

Figure 4-14. Exclusive Register Access and Filling Data in WDBUFF

M Wave - Default

15

The following figure shows the issuance of the ProgramAD command.

Figure 4-15. ProgramAD Command

g Wave - Default

The following figure shows the completion of ProgramAD command and the issuance of the ProgramDA command.

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 146
and its subsidiaries

Embedded NVM (eNVM) Controllers

Figure 4-16. ProgramDA Command

M Wave - Default

The following figure shows the completion of the ProgramDA command and the issuance of the ProgramStart
command.

Figure 4-17. ProgramStart Command

ﬂ Wave - Default

15

S [1 [S S S I
N I I I D D E—

of fio [ool [T T THo [[oo
oo [[T T T Tioi4 | Joia

Jo70

e 4

The completion of the eNVM command is confirmed by monitoring the eNVM status register for eNVM ready
and the next command in sequence is sent. VerifyAD, VerifyDA, and VerifyStart commands are issued by writing
corresponding command value into CMD register.

4.2.6 Error Response
The error response, which is indicated by the HRESP signal, is asserted if any of the following conditions occur:

* AHBL burst read is terminated early or address sequence is not as expected. This should never occur within the
system during normal operation.

* AHBL write transaction addressed to read-only user data array

» AHBL read or write transaction to a protected memory area. Refer to 4.3. Security.

Data on HRDATA with error response is zero. A write transaction addressed to read-only Control register such as RD
or RDT will not trigger an error response. However, the data in these registers will not be affected.

4.2.7 Interrupt to Cortex-M3 Processor
Setting the Control registers Table 4-24, as shown in Table 4-20, allows the user to configure HINT (INTISR[17]
and INTISR[18] of Cortex-M3 processor) to assert an interrupt on any active status events from eNVM, such as the
assertion of any status bit from eNVM or when an internal eNVM operation ends.

After HINT is asserted, the Cortex-M3 processor determines the next steps. The Cortex-M3 processor can respond to
the interrupt and then clear HINT by writing 1 to bit 0 of the write-only register Table 4-25 (HADDR = 0x158) in Table
4-20. If the Cortex-M3 processor decides to ignore the interrupt (by masking it out), the interrupt is cleared if read or
write continues and the interrupt-triggering events are not re-occurring. If the same triggering event happens again,
HINT will remain asserted.

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 147

and its subsidiaries

Embedded NVM (eNVM) Controllers

4.3 Security

The eNVM is protected using four levels of security features:

» The eNVM page protection uses two levels: factory lock and user lock. Factory lock is not accessible for the
user. Refer to the 4.2.5.4. Set Lock Bit and User Unlock Commands.

» There are two or four special sectors per eNVM array that can be protected for read and write, depending on
which entity is accessing the region as shown in Figure 4-18 through Figure 4-22. On devices with smaller
or bigger eNVMs, the upper 4 KB special sector is aligned to the top 4 KB region of the eNVM. These
user-protectable 4 KB special sectors can be configured by Libero software, see Figure 4-29.

* There are two private regions in M2S060, M2S090, and M2S150 as shown in Figure 4-21 and Figure 4-22 which
are reserved for storing device certificate, eNVM digest, security keys and so on. Only system controller can
access the private regions. See 4.3.2. eNVM Pages for Special Purpose Storage

» Using AHB bus master access control, the eNVM can be protected from different masters connected on the
AHB bus matrix. Refer to the 6. AHB Bus Matrix.

» User-defined regions can be protected from the FPGA fabric.

4.31 User Protectable 4K Regions
Figure 4-18. eNVM Special Sectors for the M2S050TS Device with 256 KB eNVM_0

M2S050TS
A
0x6003F000 to 0x6003FFFF Special Sector Upper 4 KB Region (U0)
eNVM_0
Total 256 KB 248 KB
0x60000000 to 0x60000FFF Special Sector Lower 4 KB Region (LO)
v
© 2023 Microchip Technology Inc. User Guide DS50003495A-page 148

and its subsidiaries

Embedded NVM (eNVM) Controllers

Figure 4-19. eNVM Special Sectors for the M2S005S Device with 128 KB eNVM_0

eNVM_0
Total 128 KB

M2S005S

0x6001F000 to 0x6001FFFF

0x6001E000 to Ox6001EFFF

0x6001D000 to 0x6001DFFF

0x60000000 to Ox60000FFF

Special Sector Upper 4 KB Region (UO)
Special Sector Lower 4 KB Region (L1)

Special Sector Upper 4 KB Region (U1)

112 KB

Special Sector Lower 4 KB Region (LO)

Figure 4-20. eNVM Special Sectors for the M2S010TS, M2S025TS Devices with 256 KB eNVM_0

eNVM_0
Total 256 KB

M2S010TS, M2S025TS

0x6003F000 to 0x6003FFFF

0x6003E000 to Ox6003EFFF

0x6003D000 to 0x6003DFFF

0x60000000 to Ox60000FFF

Special Sector Upper 4 KB Region (UO)
Special Sector Lower 4 KB Region (L1)

Special Sector Upper 4 KB Region (U1)

240 KB

Special Sector Lower 4 KB Region (LO)

© 2023 Microchip Technology Inc.
and its subsidiaries

User Guide

DS50003495A-page 149

Embedded NVM (eNVM) Controllers

Figure 4-21. eNVM Special Sectors for the M2S060TS Devices with 256 KB eNVM_0

M2S060TS
A
0x6003F000 to 0x6003FFFF Private Region 4 KB
0x6003E000 to Ox6003EFFF Private Region 4 KB

0x6003D000 to 0x6003DFFF Special Sector Upper 4 KB Region (U0)

eNVM_0

Total 256 KB
240 KB

0x60000000 to Ox60000FFF Special Sector Lower 4 KB Region (LO)

Figure 4-22. eNVM Special Sectors for the M2S090TS, M2S150TS Devices with 512 KB

M2S090TS, M2S150TS

A A
0x6007F000 to 0x6007FFFF Private Region 4 KB
0x6007E000 to O0x6007EFFF Private Region 4 KB
0x6007D000 to 0x6007DFFF Special Sector Upper 4 KB Region (UO)
0x6007C000 to 0x6007CFFF Special Sector Lower 4 KB Region (L1)
eNVM_1
256 KB 0x6007B000 to 0x6007BFFF Special Sector Upper 4 KB Region (U1)
Total
eNVM ;[
512 KB b
488 KB
eNVM_0
256 KB
0x60000000 to Ox60000FFF Special Sector Lower 4 KB Region (LO)
v v

The security configuration is provided as input to the eNVM Controller from system registers as per the Table 4-16
register described in Table 4-11 for configuration of upper and lower regions of NVM. The following table shows user
protection regions for different masters.

Table 4-7. User Protection Regions

Cortex-M3 processor | Cortex-M3 processor can access the protected memory regions. Access bit defines the read
accessibility. Write allowed bit indicates that the masters which have read access can also
have write access.

Fabric master FIC_0 can access the protected memory regions. Access bit defines the read accessibility.
Write allowed bit indicates that the masters which have read access can also have write
access.

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 150

and its subsidiaries

4311

4.3.1.2

4313

4.3.2

Embedded NVM (eNVM) Controllers

........... continued

Other masters (PDMA | All other masters are allowed access. Access bit defines the read accessibility.
and HPDMA)

Read Protection

When AHB masters other than the system controller issue read transactions to protected regions, the address and
protection configuration is checked to determine whether the read is targeted to the protected region and if the read
is allowed. If the read is not allowed, eNVM read command is not sent to the eNVM and an error is generated. For
a specific AHB master to read a protected region, both the factory and user allowed bits must be set. Refer to Table
4-16 for information on eNVM access controls for AHB masters.

Write Protection

When AHB masters other than system controller issue write transactions (which may be one of the program
commands supported by this interface) to protected regions, the address and protection configuration is checked to
determine whether the transaction is targeted to the protected region. If the transaction is not allowed, no command
is sent to eNVM and the Status bit is asserted.

Power-Down

During device start-up, the eNVM(s) will be powered up as the fabric is powered up. As soon as the fabric is active,
if the user sets the deep power-down (DPD) bit, the NVM(s) will be powered down. Each eNVM block can be put into
deep power-down mode by configuring the SYSREG. The eNVM can permanently be switched on or switched off.
Refer to the ENVM_CR register (Table 4-11) for configuration settings.

During Flash*Freeze, users may want to put the NVM(s) into deep power-down mode, to save power. The user
should not enter power-down while the NVM is in use. DPD is not entered automatically when Flash*Freeze is
entered.

Important: Flash*Freeze applies mainly to the fabric.

eNVM Pages for Special Purpose Storage

A few pages in the final sector (N-1) of the last eNVM module are used for special purpose storage like device
certificate and eNVM digest. Some special purpose pages are reserved and protected. Refer below tables for

more information on eNVM special purpose storage based on SmartFusion 2 device density. The system controller
performs read/write operations on unreserved eNVM pages using system controller services. It only reads data from
reserved eNVM pages. 16 pages in the final sector of eNVM_0 module for M2S005, M2S010, M2S025, and M2S050
devices are used for special purpose storage as listed in the following table.

Table 4-8. Special Purpose Storage Regions

M2S005/M2S010/ eNVM_0 16-24 Reserved Reserved for future
M2S025/M2S050 use
25-30 Reserved Device Certificate
31 Unreserved Digest for eNVM_0

64 pages of eNVM in the final 2 sectors (private regions) of the last eNVM module for M2S060, M2S090, and
M2S150 devices are used as special purpose storage. See the following table for more information. M2S060 device
has 2 private regions in eNVM_0 and M2S090/M2S150 device has 2 private regions in eNVM_1.

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 151
and its subsidiaries

Embedded NVM (eNVM) Controllers

Table 4-9. Special Purpose Storage Regions for M2S060, M2S090, and M2S150 Devices

Sector Page Type
eNVM

N-2

29-21
30

30

30
31
31
31

31
31

31
31

31
31
31

Unreserved

Unreserved

Unreserved

Unreserved

Unreserved
Unreserved
Unreserved

Unreserved

Unreserved

Unreserved

Unreserved

Unreserved

Unreserved
Unreserved

Unreserved

User Key Code#2 to User Key Code #N.
N can be maximum 58.

Maximum 56 Key Codes (KC#2 to KC#58),each
occupies 48 Bytes

Minimum 5 Key Codes (KC#2 to KC#7), each
occupies 528 Bytes

User Activation Code

User Activation Code (Total 1192 bytes across
page 21 to page 30)

User Defined (Key sizes + Exported bit + Valid bit)
byte array: 56 bytes holds 56 key sizes along with
exported and valid bit flags.

Reserved for future use
User PK-X (384-bit User PUF ECC Public Key)
User PK-Y (384-bit User PUF ECC Public Key)

User Activation Code exported flag (Digests Valid,
Activation Code missing)

User Activation Code valid flag

User Key Code #0 exported flag (Digests Valid,
Key Code missing)

User Key Code #0 valid flag

User Key Code #1 exported flag (Digests Valid,
Key Code missing)

User Key Code #1 valid flag
User Public Key valid flag

Reserved for future use

Offset in

page

(Bytes)

0 2687:0
0 1151:0
0 39:0
40 55:0
96 31:0

0 47:0
48 47:0
96 1 byte
97 1 byte
98 1 byte
99 1 byte
100 1 byte
101 1 byte
102 1 byte
103 24:0

© 2023 Microchip Technology Inc.

and its subsidiaries

User Guide

DS50003495A-page 152

4.4

441

Embedded NVM (eNVM) Controllers

........... continued
Sector |Page Type Offsetin | Range
in page (Bytes)
eNVM (Bytes)
N-1 0 Unreserved User Key Code #0 (256-bit User AES Key) 0 43:0
0 Unreserved User Key Code#1 (384-bit User PUF ECC Key) 44 75:0
(76 bytes)
0 Unreserved Reserved for future use 120 7:0
9-1 Reserved Factory Activation Code 0 1151:0
10 Reserved Factory Activation Code (Total 1192 bytes across 0 1191:1152
page 1 to page 10)
10 Reserved Factory Key Code (384 bit Factory ECC Key 40 75:0
Code)
10 Reserved Reserved for future use 116 11:0
15-11 Reserved Second ECC Key Certificate 0 639:0
21-16 Reserved Reserved for future use 0 767:0
22 Unreserved eNVM_1 Private User Digest of page 0 of N-1 and |0 127:0
all pages of N-2
23 Reserved eNVM_1 Private Factory Digest of pages from 1to 0 127:0
30 of N-1 except pages 22, 23, and 24
24 Unreserved eNVM_1 Public Digest 0 127:0
30-25 Reserved Device Certificate 0 767:0
31 Unreserved eNVM_0 Digest 0 127:0
Important:

» Refer to UG0443: SmartFusion2 SoC FPGA and IGLOO2 FPGA Security Best Practices for more
information on the certificates, key codes, and digests.

» The system controller performs read/write operations on unreserved eNVM pages using system
controller services. It only reads data from reserved eNVM pages.

How to Use eNVM

This section describes how to use the eNVM in the SmartFusion 2 devices. To configure the SmartFusion 2 device
features and then build a complete system, use the System Builder graphical design wizard in the Libero® SoC
software.

Data Storage in eNVM Using the Libero eNVM Client

The Libero eNVM client creates the eNVM data that the FlashPro software uses to initialize the eNVM during
programming. The programmed eNVM can be accessed by the Cortex-M3 processor, High Performance Direct
Memory Access (HPDMA), Peripheral Direct Memory Access (PDMA), or the FPGA fabric master connected to the
AHB bus matrix.

The following figure shows the initial System Builder window where the required device features can be selected. For
more information on how to launch the System Builder and how to use it, see SmartFusion2 System Builder User
Guide.

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 153
and its subsidiaries

Embedded NVM (eNVM) Controllers

Figure 4-23. System Builder Window

. N
(@ System Builder - Device Features [

> Device Features > » Peripherals » > Clocks » > Microcontroller SECDED > 2> Security > > Interrupts » > Memory Map >
Select the SmartFusion2 features you will be using in your design

Memory
[Mss External Memary
(@ MDDR
Soft Memary Controller (SMC)
[] Mss On-chip Flash Memary { eNVM)
[] Fabric External DDR Memory (FDDR)

Microcontroller Options

[] wiatchdog Timer

1 1
i 1
' i
1
1 1 :
' i
] fe] 1
1 DR = i
' !
1 a 1
1 1
' i
1 |
1 1 :
1 1 1
' '
] I |
' ' |
1 I
1 1 :
[Peripheral DMA 3 U (Fabeic : |
[7] Real Time Counter] | | |
: : i | o o = Leretienigh :
]] FAB_CCC | 8 3l 3]
] H ERE 1
: : | 494 |
g | A B !
: : HAS !
1 1 A ki 1
] 1 i]
' ' 3 FODR |
: : APR_RILANE 1
i
p3
: : APE_S_PCK g :
' ' i
1 H APB_S PSESET M :
1 1 1 1
' '
: : : b
[| o ¥, [
i o [| — o & 3 b
1 SDR = g ol o 1 I
' RAM K GDRESDR # gl 2 i I
1 E = 2 I 1
1 = | ™ I I
'
i i | PR [
1 | SERCES | |
T o T T e T e e e e e e e e 1
1 1
' i
1
i 1
D e e e e e e e e]]

The following steps describe how to generate a programming file with the eNVM client in an application using System
Builder.

1. Check the MSS On-chip Flash Memory (eNVM) check box under the Device Features tab and leave the
other check boxes unchecked. The following figure shows the System Builder > Device Features tab.

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 154
and its subsidiaries

Embedded NVM (eNVM) Controllers

2. Figure 4-24. System Builder - Device Features Tab

. o
(® System Builder - Device Features e

> Device Features » Memories » > Peripherals » } Clocks) Microcontroller ») SECDED)) Security » » Interrupts » > Memory Map »

Select the SmartFusion2 features you will be using in your design

Memary d

[CIMssExternalMemory 0 e
@ MDDR
Soft Memory Controller (SMC)

| M55 On-chip Flash Memory (elvM) | l

|| Fabric External DDR Memory { FDDR)

Microcontroller Options
[] watchdog Timer
[] Peripheral DMA
[] Real Time Counter

2

‘o

o

&

e T]
Tucan

A 15 sy U

[LWELE 'S

PE_SLANE

APE_S FCK
£FB_§ PRESET M

8
oo} — 14 3
COREEDR # '3 E
=y Y

ol
E0R
RAM

3. Click Next to navigate to the Memories tab. The following figure shows the System Builder > Memories tab.

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 155

and its subsidiaries

Embedded NVM (eNVM) Controllers

4. Figure 4-25. System Builder - Memories Tab

© System Builder - Memories B
Device Features Memories » > Peripherals > > Clocks Microcontroller > 7 SECDED » » Security »? Interrupts » > Memory Map »
Configure your external and embedded memories
ENVM
Avsiable Client types User Clients in eNVM
Data Storage
Serialization CentType | Cienthiame | Depthawicth | start address(ed Pagestart | Pagend Initiaization Order Loc

Add to System...

Usage Statistics
Avalable Pages: 2032
UsedPages: 0

FreePages: 2032

< T v

5. Select Data Storage under Available Client Types and click Add to System.
The following figure shows the Add Data Storage Client dialog box. It supports the following file formats:

— Intel-Hex

— Motorola-S

— Microsemi-Hex

— Microsemi-Binary

i. Create the memory file in any one of the above formats with the executable code or data.

Memory file can be created for the code using the SoftConsole v3.4 or later with the linker
script production-execute-in-place. 1d. For more information on using the SoftConsole,
see SoftConsole Documentation.

i. Enter the Client name, navigate to the Memory file location, and select it. Give the rest of
the parameters according to the requirements and click OK to add the eNVM client. For more
information on Use absolute addressing, Use as ROM, and other options, click Help.

The following figure shows the Add Data Storage Client Dialog box.

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 156
and its subsidiaries

Embedded NVM (eNVM) Controllers

Figure 4-26. Add Data Storage Client Dialog

G" Add Data Storage Client

2 |

Client name: eMvM_Clientl
eMVM

Content:

Format: [InteI-Hex -]

[7] Uze abzolute addressing o
(7) Content filed with 0s
") Mo Content (Clientis a placeholder)
Start address: 0x 0 =
(8 ~] bits
54108

|:| Use as ROM e

Size of word:

Mumber of Waords:

[7] use Content for Simulation

Help

@ Memory file: Tibeo_project/softconsole Release feMVM_Client1.hex

(dedmal)

Ok] [Cancel

The eNVM client data is populated in the System Builder > Memories tab. The following figure shows the

System Builder > Memories tab with two eNVM clients.

© 2023 Microchip Technology Inc.
and its subsidiaries

User Guide

DS50003495A-page 157

Embedded NVM (eNVM) Controllers

Figure 4-27. System Builder - Memories Tab with Two eNVM Clients

@ System Builder - Memries E S|
Device Features > > Memories > > Peripherals > > Clocks Microcontroller > > SECDED > > Security) Interrupts > > Memory Map >
Configure your external and embedded memories
ENVM
AT =S User Clients in eNVM
Data Storage
Serialization Client Type Client Name DepthxWidth Start Address(Hex) Page Start Page End Initialization Order Lock Start Address
€ Dataswrage| M Clent 54108x 8 0) a2 N/A a
€ DataStorage| eNVM_Client2 541088 1000 2 454 N/A =
Usage Statistics
Available Pages: 2032
Used Pages: 846
Free Pages: 1188
==

6. Navigate to the Microcontroller tab in the System Builder and select AHB Bus Matrix to confirm the
remapping of eNVM to the Cortex-M3 code space. eNVM is remapped to the Cortex-M3 code space, by
default. For more information on eNVM Remap Region Size and Base Address, click Help and select AHB
Bus Matrix to access the help document, as shown in the following figure. See AC390: SmartFusion2 SoC

FPGA — Remapping eNVM, eSRAM, and DDR/SDR SDRAM Memories Application Note.

© 2023 Microchip Technology Inc.
and its subsidiaries

User Guide

DS50003495A-page 158

Embedded NVM (eNVM) Controllers

Figure 4-28. System Builder - Microcontroller Tab

(® System Builder - Microcantraller B

Device Features Memories » > Peripherals » ; Clocks Microcontroller > } SECDED Security » 7 _Interrupts » 2 Memory Map »

Configure Microcontroller options

Cortex3 "\ (Cache Controller \{| AHE Bus Matrix \\|

Configuration .
Remapping
Remapped Region to location 0x00000000 of Cortex-M3 ID Code space

) esman) oo

Remap eNVM to location 0x00000000 of Fabric Master space [

I

NVM Remap Region Size 256KB -
NVM Remap Base Address (Cortex-M3) 0x00000000
NVM Remap Base Address (Fabric Master) 0x00000000

Arbitration
Fixed Priority (2) Weight for Cartex-M3 IC Master 1
Fixed Priority (3) Weight for Cortex-M3 § Master 1

Fixed Priority (4) Weight for System Controller Master 1

Round Robin Weight for FIC_0 Master 1
Cancel Back Next
= System Builder Users Guide
E MSS Peripherals vl
Microcontroller Options 3 Watchdog Timer
Single Error Correct / Double Error Detect ¥ Real Time Counter(RTC)
Peripheral DMA(PDMA)
Cortex-M3
Cache Controller
AHB Bus Matrix
Important:

» The code executing from eNVM can program the other regions of eNVM memory. Ensure that
the code executing region is not overwritten.

» Configure “eNVM Remap Region Size” and “eNVM Remap Base Address (Cortex-M3)” such
that the end address of the eNVM remap region is less than 0x00040000. The end address is
obtained by adding the eNVM Remap Region Size to the eNVM Remap Base Address. This is
applicable to SmartFusion 2 M2S090 and M2S150 devices only.

+ If the user design is using the FPGA fabric based master, the Cortex-M3 processor requires
a valid program in eNVM (from eNVM start address 0x60000000) to execute at power-up or
Power-on Reset. The valid program can be a simple user boot code or a simple loop program.
You can select a .hex file of a valid program for eNVM data client using the System Builder.
The read and write permission options for different masters are available for data and design
security enabled devices like M2S050TS only.

For more information on configuring the security options, see SmartFusion2 MSS Security
Configuration User Guide.

7. Navigate to the Security tab to select the read and write access permissions of eNVM including protected
regions for different masters, as shown in the following figure.

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 159
and its subsidiaries

Embedded NVM (eNVM) Controllers

Figure 4-29. System Builder - Security Tab

(® System Builder - Security [
Device Features Memories ») Peripherals > 7 Clocks Microcontroller SECDED > Security »» Interrupts » Memory Map >

Configure Security options

Master/Slave | MSS to Fabric Memory Map | Configuration Registers |

Master to Slaves Read/Write Access
_ |Hide Spedal + AHB2AHB
- e IMS5]
ESRAMD ESRAM1 eNVMO [M52] FIC_D DDR Bridge
[Ms0] Ms1] Ms4] [Ms6]
Upper Sector Lower Sector
LR || Use as ROM || Use 35 ROM
ICBus[MMO] R R R R R - -

ol Read Read Read Read
D-BUS [MM1] RW Write RW Write RW Write RW Read RW Read = = Write
5-BUS [MM2] RW RW RW RW RW RW -

FIC_O [MM4] RW RW RW RW RW RW RW
Read Read Read Read Read Read

FIC1[MM5] RW Write RW Write RW Write RW RW R RW Write
HPDMA [MM3] RW RW R R R RW -

L] Read Read Read Read
MAC_M[MMS] RW Write RW Write = Write = = R - Write

Read Read

PDMA [MM7] RW RW R RW RW RW RW
USB[MME] RW RW - - - RW RW
To protect these "Data Security” bits with user pass key 1, you must configure the Security Policy Manager, specify user key set 1, and program the security feature.
If the security programming feature is enabled for programming, then you must reprogram the security features if you modify the "Data Security” bits

conce ack ext

8. Navigate to the Memory Map tab giving the required data in the rest of the System Builder tabs and click
Finish to proceed with creating the MSS Subsystem.

9. Do required Pin connections and Save the project. Generate the SmartDesign in Libero by clicking Generate
Component.

10. Double click Run PROGRAM Action in the Libero Design Flow window to program the SmartFusion 2
device to initialize the eNVM with the memory file.

Important:

* The MSS eNVM supports full behavioral simulation models. For information on how to simulate the
eNVM operations, see SmartFusion2 MSS Embedded Nonvolatile Memory (eNVM) Simulation User
Guide.

* For information on how to access the eNVM using FPGA fabric logic, see AC429: SmartFusion2 and
IGLOO2 - Accessing eNVM and eSRAM from FPGA Fabric Application Note.

* For more information on how to add multiple eNVM data storage clients using the Libero SoC
software, see AC426: Implementing Production Release Mode Programming for SmartFusion2
Application Note.

4.4.2 Reading the eNVM Block

Any master connected on the AHB bus matrix (for example, Cortex-M3 processor, HPDMA, PDMA, user logic in
FPGA) can access the eNVM blocks using the address range provided in Table 4-1 for read operations.

443 Writing to the eNVM Block

Writing to eNVM by using the Cortex-M3 processor can be done by the API provided in the eNVM driver. The eNVM
driver is available in the Firmware Catalog. FPGA fabric user logic can implement the state machine to write into the
eNVM by implementing the commands sequence explained in the eNVM commands section.

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 160
and its subsidiaries

44.4

Embedded NVM (eNVM) Controllers

For information about reading and writing to the eNVM block using the Cortex-M3, see AC391: SmartFusion2 SoC
FPGA - eNVM Initialization Application Note.

Firmware and Sample Project

Microchip provides eNVM firmware drivers to use with the application development. The SmartFusion 2 eNVM
firmware drivers can be downloaded from the Firmware Catalog. The eNVM firmware driver provides APIs to unlock
and write to eNVM features. For the list of APIs and their descriptions, see the SmartFusion 2 eNVM Driver User
Guide from Open Documentation.

The eNVM driver package includes sample projects to show the usage of eNVM. The sample projects are available
for three different tool chains: IAR Embedded Work, Keil-MDK, and SoftConsole. The sample project can be
generated by right-clicking the eNVM driver and selecting Generate..., as shown in the following figure.

Figure 4-30. Generating a Sample Project for eNVM

~# Firmware Catalog ' =NACN X
File View Tools Help
View (43/78): Search by all fields (43/43):
l /6 All l[f Vault][U Web repositories a
display only the latest version of a core
Mame . Version o
SmartFusion M55 SPI Driver 22103
SmartFusion M55 Tirmer Driver 21101
SmartFusion M55 UART Driver 23101
SmartFusion M55 Watchdog Driver 2.0.107
SmartFusion M55 eNVM Driver 22102
SmartFusion2 CMSIS Hardware Abstraction Layer 21101 (%)
SmartFusion2 M55 CAN Controller Driver 20101
SmartFusion2 MSS Ethernet MAC Driver 21102
SmartFusion2 MS5 GPIO Driver 20101
SmartFusion2 M55 HPDMA Driver 20101
SmartFusion2 MSS I2C Driver 20,100 (%)
SmartFusion2 M55 MMUART Driver 20101
SmartFusion2 MSS PDMA driver 20102
SmartFusion2 M55 RTC Driver 21102
SrnartFusion2 M55 SPI Driver 21103 A
SmartFusion2 M55 System Services Driver 23102 r
SmartFusion2 MSS Timer Driver 20101
SmartFusion2 M55 USB Driver 22103
SmartFusion2 M55 Watchdog Driver 2.0.102
‘SmartFUI. - _.-'i AACT KNIAA Dl ;e 2.2.100
25| Generate... -
Docume 98 Remove from vault | -
SmartFus
smartfus % Show details...
Descripl Open decumentation * m (M35) eNvM bare metal software driver, 3
This crive fedede Lare s Cortex-M3 ¥ IAR Embedded Work Bench >
Compatible IP cores:) Keil-MDK b -
SoftConsole »
I, Mew cores are available for download enerate

© 2023 Microchip Technology Inc. User Guide DS50003495A-page 161
and its subsidiaries

4.5

Embedded NVM (eNVM) Controllers

The following table lists the available APIs for eNVM in the eNVM firmware drivers

Table 4-10. Available APIs for eNVM

I

NVM_unlock Unlock the eNVM Block

NVM_write The function NVM_write () is used to program data in to the eNVM. This function treats the
two eNVM blocks contiguously, hence 512 KB of memory can be accessed linearly. The starting
address and ending address of the memory to be written need not be page aligned. This
function supports programming data that spawns across multiple pages, and does not support
writing or programming eNVM without input data. This function is a blocking function.

The NVM write () function performs a verify operation on each page programmed to ensure
that the NVM is programmed with the expected content.

SYSREG Control Registers

The System Control registers control eNVM behavior. These registers are located in the SYSREG section and are
listed in the following tables for clarity. For more information on each register and bit, see 4. Embedded NVM (eNVM)

Controllers.

Table 4-11. SYSREG Control Registers

Register Name Flash Write | Reset Description
r Protect Source

Table 4-12 (0x4003800C)

Table 4-14
(0x40038010)

Table 4-15
(0x40038014)

Table 4-16
(0x40038144)

Table 4-17
(0x40038148)

Table 4-18
(0x40038158)

Table 4-12. ENVM_CR

Registe
Type
RW-P

RW-P

RW-P

RO-U

RO-U

RO

Register
Register

Register

N/A

N/A

N/A

sysreset_n

sysreset_n

sysreset_n

sysreset_n

sysreset_n

sysreset_n

eNVM Configuration register.

eNVM remap Configuration register for the
Cortex®-M3 processor.

eNVM remap configuration register for a soft
processor in the FPGA.

Configuration for accessibility of protected
regions of eNVM_0 and eNVM_1 by different
masters on the AHB bus matrix. This register
gets updated by Flash bit configuration set
during device programming. This configuration
can be done through the System Builder using
settings on the Security tab.

Code shadow Status register.

Indicates busy status for eNVM_0 and
eNVM_1.

Bit Reset | Description
Number Value

[31:17] | Reserved

© 2023 Microchip Technology Inc.

and its subsidiaries

User Guide

DS50003495A-page 162

Embedded NVM (eNVM) Controllers

........... continued

Bit Reset | Description
Number Value

ENVM_SENSE_ON

15 ENVM_PERSIST
14 NV_DPD1
13 NV_DPDO

Turns On or Off the sense amps for both NVMO and NVM1.
The sense amp switching feature is useful to decrease the eNVM
access time.

0: Normal Operation - The sense amp turns Off after every read
cycle if an idle cycle follows. This saves power but slightly increases
access time on the next read cycle.

1: The sense amp is turned ON. This increases power but decreases
access times.

Reset control for NVMO and NVM1.
0: NVMO, NVM1 will get reset on SYSRESET_N and PORESET_N.

1: NVMO, NVM1 will get reset on PORESET_N.

Deep power-down control for NVM1.
0: Normal operation

1: NVM deep power-down

Deep power-down control for NVMO.
0: Normal operation

1: NVM deep power-down

© 2023 Microchip Technology Inc.
and its subsidiaries

User Guide DS50003495A-page 163

Embedded NVM (eNVM) Controllers

........... continued

Bit Reset | Description
Number Value

[12:5] NV_FREQRNG

4:0 SW_ENVMREMAPSIZE

0x11

Setting of NV_FREQRNG[8:5] or NV_FREQRNG[12:9] determines
the behavior of eNVM BUSY_B with respect to the AHB Bus interface
clock. It can be used to accommodate various frequencies of the
external interface clock, M3_CLK, or it can be used to advance

or delay the data capture due to variation of read access time

of the NVM core. It sets the number of wait states to match

with the Cortex®-M3 or Fabric master operating frequency for read
operations. The small counter in the NVM Controller uses this value
to advance or delay the data capture before sampling data.

0000: Not Supported

0001: Not Supported

0010: Page Read = 3, All other modes (Page program and Page
verify) =

0011: Page Read = 4, All other modes (Page program and Page
verify) = 2

0100: Page Read = 5, All other modes (Page program and Page
verify) = 2

0101: Page Read = 6, All other modes (Page program and Page
verify) = 3

0110: Page Read = 7, All other modes (Page program and Page
verify) =

0111: Page Read = 8, All other modes (Page program and Page
verify) =

1000: Page Read = 9, All other modes (Page program and Page
verify) =

1001: Page Read = 10, All other modes (Page program and Page
verify) = 4

1010: Page Read = 11, All other modes (Page program and Page
verify) = 5

1011: Page Read = 12, All other modes (Page program and Page
verify) =

1100: Page Read = 13, All other modes (Page program and Page
verify) =

1101: Page Read = 14, All other modes (Page program and Page
verify) =

1110: Page Read = 15, All other modes (Page program and Page
verify) = 6

1111: Page Read = 16, All other modes (Page program and Page
verify) =

NV_FREQRNGI8:5] is used for NVM0 and NV_FREQRNG[12:9] is
used for NVM1.

Size of the segment in eNVM, which is to be remapped to location
0x00000000. This logically splits eNVM into a number of segments,
each of which may be used to store a different firmware image, for
example. The region sizes are shown in Table 4-13.

© 2023 Microchip Technology Inc.
and its subsidiaries

User Guide DS50003495A-page 164

Embedded NVM (eNVM) Controllers

Table 4-13. SW_ENVMREMAPSIZE

T TS N T S

0 0 0
0 0 0
0 0 0
0 0 0
0 0 1
0 0 1
0 0 1
0 0 1
0 1 0
0 1 0
0 1 0
0 1 0
0 1 1
0 1 1
0 1 1
0 1 1
1 0 0
1 0 0
1 0 0

Table 4-14. ENVM_REMAP_BASE_CR

© O =~ =210 O =~ 20 O =~ =~ 0o o -

—_

Reserved
1 Reserved
0 Reserved
1 Reserved
0 Reserved
1 Reserved
0 Reserved
1 Reserved
0 Reserved
1 Reserved
0 Reserved
1 Reserved
0 Reserved
1 16 KB
0 32 KB
1 64 KB
0 128 KB
1 256 KB
0 512 KB, reset value

Bit Reset Description
Number Value

[31:19] Reserved
[18:1] SW_ENVMREMAPBASE 0

0 SW_ENVMREMAPENABLE 0

Reserved.

Offset address of eNVM for remapping.
SW_ENVMREMAPBASE indicates the offset within eNVM
address space of the base address of the segment in eNVM,
which is to be remapped to the location 0x00000000.

Bit 0 of this register is defined as SW_ENVMREMAPENABLE
and must be set to get the remapping done with new
addresses filled in this register.

0: eNVM remap not enabled. Bottom of eNVM is mapped to
address 0x00000000.

1: eNVM remap enabled. eNVM visible at 0x00000000 is a
remapped segment of the eNVM.

© 2023 Microchip Technology Inc.
and its subsidiaries

User Guide DS50003495A-page 165

Embedded NVM (eNVM) Controllers

Table 4-15. ENVM_REMAP_FAB_CR

Bit Reset | Description
Number Value

[31:19]
[18:1]

0

Reserved

SW_ENVMFABREMAPBASE 0

SW_ENVMFABREMAPENABLE | 0

Table 4-16. ENVM_PROTECT_USER

Bit Reset | Description
Number Value

[31:16]
15

14

13

12

11

10

Reserved

NVM1_UPPER_WRITE_ALLOWED

NVM1_UPPER_OTHERS_ACCESS

NVM1_UPPER_FABRIC_ACCESS

NVM1_UPPER_M3ACCESS

NVM1_LOWER_WRITE_ALLOWED

NVM1_LOWER_OTHERS_ACCESS

NVM1_LOWER_FABRIC_ACCESS

NVM1_LOWER_M3ACCESS

0x1

0x1

Offset within eNVM address space of the base address of
the segment in eNVM, which is to be remapped to location
0x00000000 for use by a soft processor in the FPGA fabric.
The base address of the remapped segment of eNVM is
determined by the value of this register. Bit O of this register
is defined as SW_ENVMFABREMAPENABLE. Bit 0 must be
set to remap the NVM.

0: eNVM fabric remap not enabled for access by fabric master/
soft processor. The portion of eNVM visible in the eNVM
window at location 0x00000000 of a soft processor’'s memory
space corresponds to the memory locations at the bottom of
eNVM.

1: eNVM fabric remap enabled. The portion of eNVM visible at
location 0x00000000 of a soft processor’s memory space of is
a remapped segment of eNVM.

0x1 When set indicates that the masters who have read

access can have write access to the upper protection
region of eNVM1. This is updated by the user Flash row
bit.

0x1 When set indicates that the other masters can access the

upper protection region of eNVM1. This is set by the user
Flash row bit.

0x1 When set indicates that the fabric can access the upper

protection region of eNVM1. This is set by the user Flash
row bit.

0x1 When this bit is set, it indicates that the Cortex®-M3

processor can access the upper protection region of
eNVM1. This is updated by the user Flash row bit.

0x1 When set indicates that the masters who have read

access can have write access to the lower protection
region of eNVM1. This is set by the user Flash row bit.

0x1 When set indicates that the other masters can access the

lower protection region of eNVM1. This is set by the user
Flash row bit.

When set indicates that the fabric can access the lower
protection region of eNVM1. This is set by user Flash row
bit.

When this bit is set, it indicates that the M3 can access
the lower protection region of eNVM1. This will be set by
the user Flash row bit.

© 2023 Microchip Technology Inc.
and its subsidiaries

User Guide DS50003495A-page 166

Embedded NVM (eNVM) Controllers

........... continued

Bit Reset | Description
Number Value

NVMO_UPPER_WRITE_ALLOWED 0x1 When set indicates that the masters who have read
access can have write access to the upper protection
region of eNVMO. Thi