
Page 1 of 2

Product Change Notification / SYST-02DOZZ491

Date:

10-Mar-2023

Product Category:

General Purpose FPGAs, System On Chip FPGAs

PCN Type:

Document Change

Notification Subject:

Data Sheet - SmartFusion2 Microcontroller Subsystem User Guide

Affected CPNs:

SYST-02DOZZ491_Affected_CPN_03102023.pdf
SYST-02DOZZ491_Affected_CPN_03102023.csv

Notification Text:

SYST-02DOZZ491

Microchip has released a new Datasheet for the SmartFusion2 Microcontroller Subsystem User Guide of devices. If you are using one of
these devices please read the document located at SmartFusion2 Microcontroller Subsystem User Guide.

Notification Status: Final

Description of Change:
• Remapping eNVM data from eNVM_1 memory block to Cortex®-M3 Code space is not permitted for SmartFusion® 2 M2S090/150 and
IGLOO® 2 M2GL090/150 devices. For information about eNVM remapping and limitation, see the note under Figure 4-28.
• Timing models for Fabric to MSS interrupts have been updated with additional time delay. This changes the timing arcs of nets and
interface between Fabric to MSS interrupts. For more information about the updated timing arcs, see PCN 17005A.
• Updated 1.5.2.3. Embedded Trace Macrocell to include information about timing arcs update from Fabric to Embedded Trace Macrocell.
• Updated 10.5.1. SGMII Interface Configuration to include information about timing arcs update from SerDes to Fabric.
• Updated 22.3.1. Configuring the FIIC Using the Libero SoC to include information about timing arcs update from Fabric to MSS
interrupts.
• The document was converted to Microchip template.
• The document number was changed to DS50003495 from UG0331.

Impacts to Data Sheet: See above details.

Reason for Change: To Improve Productivity

Change Implementation Status: Complete

Date Document Changes Effective: 10 Mar 2023

NOTE: Please be advised that this is a change to the document only the product has not been changed.

Markings to Distinguish Revised from Unrevised Devices: N/A

Attachments:

SmartFusion2 Microcontroller Subsystem User Guide

Please contact your local Microchip sales office with questions or concerns regarding this notification.

Terms and Conditions:

If you wish to receive Microchip PCNs via email please register for our PCN email service at our PCN
home page select register then fill in the required fields. You will find instructions about registering for
Microchips PCN email service in the PCN FAQ section.

If you wish to change your PCN profile, including opt out, please go to the PCN home page select login
and sign into your myMicrochip account. Select a profile option from the left navigation bar and make
the applicable selections.

Affected Catalog Part Numbers (CPN)

M2S090T-1FGG676S0027

M2S090T-1FGG676S0028

M2S090T-1FGG676S0030

M2S090T-1FGG676S0032

M2S090T-1FGG676X416

M2S090T-1FGG676Z246

M2GL150TS-FCVG484I

M2S090TS-1FG484MX3

M2S090TS-1FG484MX399

M2S090TS-1FG484MX471

M2S090TS-1FG676

M2S090TS-1FG676I

M2S090TS-1FG676IX417

M2S090TS-1FGG484

M2S090TS-1FGG484I

M2S090TS-1FGG484IX416

M2S090TS-1FGG484IX418

M2S090TS-1FGG484M

M2S090TS-1FGG484T2

M2S090TS-1FGG484X416

M2S090TS-1FGG484X418

M2S090TS-1FGG676

M2S090TS-1FGG676H0017

M2S090TS-1FGG676H0044

M2S090TS-1FGG676H0046

M2S090TS-1FGG676H0071

M2S090TS-1FGG676H0090

M2S090TS-1FGG676H0132

M2S090TS-1FGG676H0144

M2S090TS-1FGG676H0223

M2S150-1FCV484I

M2S150-1FCVG484

M2S150-1FCVG484I

M2S150-FC1152

M2S150-FC1152I

M2S150-FCG1152

M2S150-FCG1152I

M2S150-FCG1152X486

M2S150-FCS536

M2S150-FCS536I

M2S150-FCSG536

M2S150-FCSG536I

M2S150-FCV484

M2S150-FCV484I

M2S150-FCVG484

M2S150-FCVG484I

SYST-02DOZZ491 - Data Sheet - SmartFusion2 Microcontroller Subsystem User Guide

Date: Thursday, March 09, 2023

M2S150T-1FC1152

M2S150T-1FC1152I

M2S150T-1FC1152IX3

M2S150T-1FC1152M

M2S150T-1FC1152MX259

M2S150T-1FCG1152

M2S150T-1FCG1152I

M2S150T-1FCG1152IX417

M2S150T-1FCG1152M

M2S150T-1FCG1152X416

M2S150T-1FCS536

M2S150T-1FCS536I

M2S150T-1FCSG536

M2S150T-1FCSG536I

M2S150T-1FCV484

M2S150T-1FCV484I

M2S150T-1FCV484IX259

M2S150T-1FCV484IX3

M2S150T-1FCV484M

M2S150T-1FCV484MX259

M2S150T-1FCVG484

M2S150T-1FCVG484I

M2S150T-FC1152

M2S150T-FC1152I

M2S150T-FC1152X416

M2S150T-FCG1152

M2S150T-FCG1152I

M2S150T-FCG1152X416

M2S150T-FCG1152X417

M2S150T-FCS536

M2S150T-FCS536I

M2S150T-FCSG536

M2S150T-FCSG536I

M2S150T-FCV484

M2S150T-FCV484I

M2S150T-FCVG484

M2S150T-FCVG484I

M2S150T-FCVG484IX94

M2S150TS-1FC1152

M2S150TS-1FC1152I

M2S150TS-1FC1152IX130

M2S150TS-1FC1152IX167

M2S150TS-1FC1152IX3

M2S150TS-1FC1152M

M2S150TS-1FC1152MX259

M2S150TS-1FC1152MX417

M2S150TS-1FCG1152

M2S150TS-1FCG1152H0012

M2S150TS-1FCG1152H0038

SYST-02DOZZ491 - Data Sheet - SmartFusion2 Microcontroller Subsystem User Guide

Date: Thursday, March 09, 2023

M2S150TS-1FCG1152H0061

M2S150TS-1FCG1152H0084

M2S150TS-1FCG1152H0105

M2S150TS-1FCG1152H0121

M2S150TS-1FCG1152H0163

M2S150TS-1FCG1152H0186

M2S150TS-1FCG1152H0195

M2S150TS-1FCG1152H0261

M2S150TS-1FCG1152H0313

M2S150TS-1FCG1152H0327

M2S150TS-1FCG1152H0338

M2S150TS-1FCG1152H0342

M2S150TS-1FCG1152H0343

M2S150TS-1FCG1152H0354

M2S150TS-1FCG1152H0363

M2S150TS-1FCG1152I

M2S150TS-1FCG1152IX417

M2S150TS-1FCG1152M

M2S150TS-1FCG1152X416

M2S150TS-1FCG1152X417

M2S150TS-1FCS536

M2S150TS-1FCS536I

M2S150TS-1FCSG536

M2S150TS-1FCSG536I

M2S150TS-1FCV484

M2S150TS-1FCV484I

M2S150TS-1FCV484M

M2S150TS-1FCVG484

M2S150TS-1FCVG484I

M2S150TS-DIELOTW

M2S150TS-FC1152

M2S150TS-FC1152I

M2S150TS-FC1152X416

M2S150TS-FCG1152

M2S150TS-FCG1152H0012

M2S150TS-FCG1152H0138

M2S150TS-FCG1152I

M2S150TS-FCG1152X416

M2S150TS-FCS536

M2S150TS-FCS536I

M2S150TS-FCSG536

M2S150TS-FCSG536I

M2S150TS-FCSG536X416

M2S150TS-FCV484

M2S150TS-FCV484I

M2S150TS-FCVG484

M2S150TS-FCVG484I

M2GL090-1FCS325

M2GL090-1FCS325I

SYST-02DOZZ491 - Data Sheet - SmartFusion2 Microcontroller Subsystem User Guide

Date: Thursday, March 09, 2023

M2GL090-1FCSG325

M2GL090-1FCSG325I

M2GL090-1FG484

M2GL090-1FG484I

M2GL090-1FG484IX417

M2GL090-1FG676

M2GL090-1FG676I

M2S090TS-1FGG676H0280

M2S090TS-1FGG676H0374

M2S090TS-1FGG676I

M2S090TS-1FGG676IX418

M2S090TS-1FGG676T2

M2S090TS-1FGG676X416

M2S090TS-DIELOTW

M2S090TS-FCS325

M2S090TS-FCS325I

M2S090TS-FCS325IX416

M2S090TS-FCS325IX417

M2S090TS-FCSG325

M2S090TS-FCSG325I

M2S090TS-FCSG325IX418

M2S090TS-FG484

M2S090TS-FG484I

M2S090TS-FG484IX416

M2S090TS-FG484IX456

M2S090TS-FG484X416

M2S090TS-FG676

M2S090TS-FG676I

M2S090TS-FGG484

M2S090TS-FGG484I

M2S090TS-FGG484IH0365

M2S090TS-FGG484IH0382

M2S090TS-FGG484IX416

M2S090TS-FGG484IX418

M2S090TS-FGG484X416

M2S090TS-FGG676

M2S090TS-FGG676H0137

M2S090TS-FGG676H0309

M2S090TS-FGG676H0376

M2S090TS-FGG676H0379

M2S090TS-FGG676I

M2S090TS-FGG676IH0053

M2S090TS-FGG676IH0076

M2S090TS-FGG676IH0107

M2S090TS-FGG676IH0122

M2S090TS-FGG676IH0145

M2S090TS-FGG676IH0231

M2S090TS-FGG676IH0258

M2S090TS-FGG676IH0275

SYST-02DOZZ491 - Data Sheet - SmartFusion2 Microcontroller Subsystem User Guide

Date: Thursday, March 09, 2023

M2S090TS-FGG676IH0279

M2S090TS-FGG676IH0334

M2S090TS-FGG676IH0370

M2S090TS-FGG676IS0004

M2S090TS-FGG676IX416

M2S090TS-FGG676X416

M2S150-1FC1152

M2S150-1FC1152I

M2S150-1FCG1152

M2S150-1FCG1152I

M2S150-1FCS536

M2S150-1FCS536I

M2GL090T-1FG676I

M2GL090T-1FGG484

M2GL090T-1FGG484I

M2GL090T-1FGG484M

M2GL090T-1FGG676

M2S090-FGG676X425

M2S090T-1FCS325

M2S090T-1FCS325I

M2S090T-1FCSG325

M2S090T-1FCSG325I

M2S090T-1FCSG325Q183

M2S090T-1FG484

M2S090T-1FG484I

M2S090T-1FG484IX399

M2S090T-1FG484IX416

M2S090T-1FG484IX538

M2S090T-1FG484M

M2S090T-1FG676

M2S090T-1FG676I

M2S090T-1FGG484

M2S090T-1FGG484I

M2S090T-1FGG484IX417

M2S090T-1FGG484IX418

M2S090T-1FGG484IX538

M2S090T-1FGG484M

M2S090T-1FGG484MX399

M2S090T-1FGG484MX416

M2S090T-1FGG484MX417

M2S090T-1FGG484X538

M2S090T-1FGG676

M2S090T-1FGG676H0316

M2S090T-1FGG676I

M2S090T-1FGG676Q149

M2S090T-1FGG676Q326

M2S090T-1FGG676Q353

M2S090T-1FGG676Q355

M2S090T-1FGG676S0001

SYST-02DOZZ491 - Data Sheet - SmartFusion2 Microcontroller Subsystem User Guide

Date: Thursday, March 09, 2023

M2S090T-1FGG676S0002

M2S090T-1FGG676S0003

M2S090T-1FGG676S0006

M2S090T-1FGG676S0007

M2S090T-1FGG676S0012

M2S090T-1FGG676S0016

M2GL090T-FCSG325

M2GL090T-FCSG325I

M2GL090T-FG484

M2GL090T-FG484I

M2GL090T-FG676

M2GL090T-FG676I

M2GL090T-FGG484

M2GL090T-FGG484I

M2GL090T-FGG484IX416

M2GL090T-FGG676

M2GL090T-FGG676I

M2GL090T-FGG676IX416

M2GL090TS-1FCS325

M2GL090TS-1FCS325I

M2GL090TS-1FCSG325

M2GL090TS-1FCSG325I

M2GL090TS-1FG484

M2GL090TS-1FG484I

M2GL090TS-1FG484M

M2GL090TS-1FG676

M2GL090TS-1FG676I

M2GL090TS-1FGG484

M2GL090TS-1FGG484I

M2GL090TS-1FGG484IX416

M2GL090TS-1FGG484M

M2GL090TS-1FGG484T2

M2GL090TS-1FGG676

M2GL090TS-1FGG676I

M2GL090TS-1FGG676T2

M2GL090TS-FCS325

M2GL090TS-FCS325I

M2GL090TS-FCSG325

M2GL090TS-FCSG325I

M2GL090TS-FG484

M2GL090TS-FG484I

M2GL090TS-FG676

M2GL090TS-FG676I

M2GL090TS-FGG484

M2GL090TS-FGG484I

M2GL090TS-FGG676

M2GL090TS-FGG676I

M2GL150-1FC1152

M2GL150-1FC1152I

SYST-02DOZZ491 - Data Sheet - SmartFusion2 Microcontroller Subsystem User Guide

Date: Thursday, March 09, 2023

M2GL150-1FC1152IX259

M2GL150-1FC1152IX441

M2GL150-1FC1152IX520

M2GL150-1FCG1152

M2GL150-1FCG1152I

M2GL150-1FCG1152IX417

M2GL150-1FCG1152IX538

M2GL150-1FCG1152X417

M2GL150-1FCS536

M2GL150-1FCS536I

M2GL150-1FCSG536

M2GL150-1FCSG536I

M2GL150-1FCV484

M2GL150-1FCV484I

M2GL150-1FCVG484

M2GL150-1FCVG484I

M2GL150-FC1152

M2GL150-FC1152I

M2GL150-FC1152X417

M2GL150-FCG1152

M2GL150-FCG1152I

M2GL150-FCS536

M2GL150-FCS536I

M2GL150-FCS536IX3

M2GL150-FCSG536

M2GL150-FCSG536I

M2GL150-FCV484

M2GL150-FCV484I

M2GL150-FCVG484

M2GL150-FCVG484I

M2GL150-FCVG484IX475

M2GL150T-1FC1152

M2GL150T-1FC1152I

M2GL150T-1FC1152IX417

M2GL150T-1FC1152M

M2GL150T-1FC1152MX3

M2GL150T-1FC1152MX441

M2GL150T-1FC1152MX520

M2GL150T-1FCG1152

M2GL150T-1FCG1152I

M2GL150T-1FCG1152IX417

M2GL150T-1FCG1152IX538

M2GL150T-1FCG1152M

M2GL150T-1FCS536

M2GL150T-1FCS536I

M2S090-1FCS325

M2S090-1FCS325I

M2S090-1FCSG325

M2S090-1FCSG325I

SYST-02DOZZ491 - Data Sheet - SmartFusion2 Microcontroller Subsystem User Guide

Date: Thursday, March 09, 2023

M2S090-1FG484

M2S090-1FG484I

M2S090-1FG484IX6

M2S090-1FG676

M2S090-1FG676I

M2S090-1FG676IX417

M2S090-1FGG484

M2S090-1FGG484I

M2S090-1FGG484IX418

M2S090-1FGG484X418

M2S090-1FGG676

M2S090-1FGG676I

M2S090-1FGG676IX538

M2S090-FCS325

M2S090-FCS325I

M2S090-FCS325X339

M2S090-FCSG325

M2S090-FCSG325I

M2S090-FG484

M2S090-FG484I

M2S090-FG484IX416

M2S090-FG484IX538

M2S090-FG484X416

M2S090-FG484X456

M2S090-FG676

M2S090-FG676I

M2S090-FG676IX416

M2S090-FG676X416

M2S090-FGG484

M2S090-FGG484I

M2S090-FGG484IX416

M2S090-FGG484IX417

M2S090-FGG484IX418

M2S090-FGG484X416

M2S090-FGG484X417

M2S090-FGG484X418

M2S090-FGG484X456

M2S090-FGG676

M2S090-FGG676I

M2S090-FGG676ORT

M2S090-FGG676X416

M2GL150TS-FCSG536I

M2GL150TS-FCV484

M2GL150TS-FCV484I

M2GL150TS-FCVG484

M2S090T-FCS325

M2S090T-FCS325I

M2S090T-FCSG325

M2S090T-FCSG325I

SYST-02DOZZ491 - Data Sheet - SmartFusion2 Microcontroller Subsystem User Guide

Date: Thursday, March 09, 2023

M2S090T-FG484

M2S090T-FG484I

M2S090T-FG484X538

M2S090T-FG676

M2S090T-FG676I

M2S090T-FG676IX417

M2S090T-FGG484

M2S090T-FGG484I

M2S090T-FGG484IX417

M2S090T-FGG484IX418

M2S090T-FGG484X416

M2S090T-FGG484X417

M2S090T-FGG676

M2S090T-FGG676I

M2S090T-FGG676Q189

M2S090T-FGG676S0006

M2S090T-FGG676S0029

M2S090T-FGG676X416

M2S090TS-1FCS325

M2S090TS-1FCS325I

M2S090TS-1FCS325IX417

M2S090TS-1FCS325IX418

M2S090TS-1FCSG325

M2S090TS-1FCSG325I

M2S090TS-1FCSG325IX416

M2S090TS-1FCSG325IX418

M2S090TS-1FG484

M2S090TS-1FG484I

M2S090TS-1FG484IX3

M2S090TS-1FG484IX416

M2S090TS-1FG484IX418

M2S090TS-1FG484M

M2GL150T-1FCSG536

M2GL150T-1FCSG536I

M2GL150T-1FCV484

M2GL150T-1FCV484I

M2GL150T-1FCV484M

M2GL150T-1FCVG484

M2GL150T-1FCVG484I

M2GL150T-FC1152

M2GL150T-FC1152I

M2GL150T-FCG1152

M2GL150T-FCG1152I

M2GL150T-FCG1152IX417

M2GL150T-FCS536

M2GL150T-FCS536I

M2GL150T-FCSG536

M2GL150T-FCSG536I

M2GL150T-FCV484

SYST-02DOZZ491 - Data Sheet - SmartFusion2 Microcontroller Subsystem User Guide

Date: Thursday, March 09, 2023

M2GL150T-FCV484I

M2GL150T-FCVG484

M2GL150T-FCVG484I

M2GL150TS-1FC1152

M2GL150TS-1FC1152I

M2GL150TS-1FC1152M

M2GL150TS-1FCG1152

M2GL150TS-1FCG1152I

M2GL150TS-1FCG1152M

M2GL150TS-1FCS536

M2GL150TS-1FCS536I

M2GL150TS-1FCSG536

M2GL150TS-1FCSG536I

M2GL150TS-1FCV484

M2GL150TS-1FCV484I

M2GL150TS-1FCV484M

M2GL150TS-1FCVG484

M2GL150TS-1FCVG484I

M2GL150TS-1FCVG484IX323

M2GL150TS-FC1152

M2GL150TS-FC1152I

M2GL150TS-FCG1152

M2GL150TS-FCG1152I

M2GL150TS-FCS536

M2GL150TS-FCS536I

M2GL150TS-FCSG536

M2GL090T-1FGG676I

M2GL090T-1FGG676IX418

M2GL090T-FCS325

M2GL090T-FCS325I

M2GL090-1FG676IX259

M2GL090-1FG676IX417

M2GL090-1FG676IX441

M2GL090-1FGG484

M2GL090-1FGG484I

M2GL090-1FGG484IX417

M2GL090-1FGG484T1

M2GL090-1FGG676

M2GL090-1FGG676I

M2GL090-1FGG676IX259

M2GL090-1FGG676IX417

M2GL090-1FGG676IX441

M2GL090-FCS325

M2GL090-FCS325I

M2GL090-FCSG325

M2GL090-FCSG325I

M2GL090-FG484

M2GL090-FG484I

M2GL090-FG484IX3

SYST-02DOZZ491 - Data Sheet - SmartFusion2 Microcontroller Subsystem User Guide

Date: Thursday, March 09, 2023

M2GL090-FG484IX417

M2GL090-FG484X416

M2GL090-FG484X456

M2GL090-FG676

M2GL090-FG676I

M2GL090-FG676X416

M2GL090-FGG484

M2GL090-FGG484I

M2GL090-FGG484IX417

M2GL090-FGG484IX418

M2GL090-FGG484X416

M2GL090-FGG484X418

M2GL090-FGG484X456

M2GL090-FGG484X505

M2GL090-FGG676

M2GL090-FGG676I

M2GL090-FGG676X416

M2GL090-FGG676X456

M2GL090T-1FCS325

M2GL090T-1FCS325I

M2GL090T-1FCSG325

M2GL090T-1FCSG325I

M2GL090T-1FG484

M2GL090T-1FG484I

M2GL090T-1FG484IX417

M2GL090T-1FG484M

M2GL090T-1FG484MX418

M2GL090T-1FG484MX6

M2GL090T-1FG676

M2S150-1FCSG536

M2S150-1FCSG536I

M2S150-1FCV484

SYST-02DOZZ491 - Data Sheet - SmartFusion2 Microcontroller Subsystem User Guide

Date: Thursday, March 09, 2023

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 1

 SmartFusion 2 Microcontroller Subsystem

Introduction
This user guide describes the SmartFusion® 2 system-on-chip (SoC) field programmable gate array (FPGA)
devices hard peripheral interfaces and the Arm® Cortex®-M3 processor which are together called as Microcontroller
Subsystem (MSS) and their use models.

The MSS includes Cortex-M3 processor, cache controller, embedded NVM (eNVM), embedded SRAM (eSRAM),
AHB bus matrix, high performance DMA (HPDMA), peripheral DMA (PDMA), Universal Serial Bus On-The-Go
(USB OTG) controller, Triple Speed Ethernet MAC (EMAC), CAN controller, multi-mode universal asynchronous/
synchronous receiver/transmitter (MMUART), serial peripheral interface (SPI) controller, inter-integrated circuit
controller (I2C), MSS general purpose input/output (GPIO), communications block, real-time counter (RTC) system,
system timer, watchdog timer, reset controller, system register block, fabric interface interrupt controller (FIIC), fabric
interface controller (FIC), and APB configuration interface.

This user guide describes features, functional description, configuration parameters, configuration options through
the Libero® System-on-Chip (SoC) software and through Firmware, Firmware APIs, use models for the interfaces,
links to the useful information/resources like application notes and other relevant documentations.

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 2

Table of Contents

Introduction...1

1. Cortex-M3 Processor Overview and Debug Features.. 6

1.1. Features... 6
1.2. Functional Description..7
1.3. Cortex-M3 Processor NVIC..7
1.4. Cortex-M3 Processor SysTick Timer.. 11
1.5. Cortex-M3 Processor Debug Subsystem... 11
1.6. Cortex-M3 Processor Port Descriptions...14
1.7. How to Use the Cortex-M3 Processor and the Debug Subsystem.. 15

2. Cortex-M3 Processor (Reference Material).. 17

2.1. System Level Interface...18
2.2. Integrated Configurable Debug.. 18
2.3. Cortex-M3 Processor Features and Benefits Summary...18
2.4. Cortex-M3 Processor Core Peripherals... 18
2.5. Cortex-M3 Processor Description.. 19
2.6. Cortex-M3 Processor Instruction Set... 42
2.7. Cortex-M3 Processor Peripherals.. 86

3. Cache Controller... 122

3.1. Features... 122
3.2. Functional Description..122
3.3. How to Use Cache Controller...131

4. Embedded NVM (eNVM) Controllers.. 133

4.1. Features... 133
4.2. Functional Description..133
4.3. Security.. 148
4.4. How to Use eNVM..153
4.5. SYSREG Control Registers..162
4.6. eNVM Control Registers...168

5. Embedded SRAM (eSRAM) Controllers... 174

5.1. Features... 174
5.2. Functional Description..175
5.3. How to Use eSRAM... 179
5.4. SYSREG Control Registers..183

6. AHB Bus Matrix...196

6.1. Functional Description..196
6.2. How to Use AHB Bus Matrix.. 215
6.3. Register Map..218

7. High Performance DMA Controller..220

7.1. Features... 220
7.2. Functional Description..221

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 3

7.3. How to Use HPDMA...225
7.4. HPDMA Controller Register Map... 228
7.5. SYSREG Control Register... 246

8. Peripheral DMA...248

8.1. Features... 248
8.2. Functional Description..249
8.3. How to Use the PDMA... 254
8.4. PDMA Register Map...260
8.5. SYSREG Control Registers..268

9. Universal Serial Bus On-The-Go Controller.. 269

9.1. Features... 269
9.2. Functional Description..270
9.3. How to Use USB OTG Controller...283

10. Ethernet MAC..358

10.1. Features... 358
10.2. Functional Description..359
10.3. TSEMAC PHY Interfaces... 362
10.4. EMAC Operation.. 366
10.5. How to Use TSEMAC...369
10.6. SYSREG Control Register for EMAC...380
10.7. EMAC Configuration Register Summary..380
10.8. EMAC Register Bit Definitions..386
10.9. CoreMACFilter Overview..421

11. CAN Controller.. 423

11.1. Features... 423
11.2. Functional Description..424
11.3. CAN Controller Configuration...429
11.4. How to Use the MSS CAN Controller...432
11.5. Use Cases..433
11.6. CAN Controller Register Map...437

12. MMUART Peripherals... 457

12.1. Features... 457
12.2. Functional Description..458
12.3. How to Use MMUART.. 474
12.4. MMUART Register Map... 479

13. Serial Peripheral Interface Controller.. 496

13.1. Features... 496
13.2. Functional Description..496
13.3. How to Use SPI..513
13.4. SPI Register Map... 518

14. Inter-Integrated Circuit Peripherals... 530

14.1. Features... 530

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 4

14.2. Functional Description..531
14.3. How to Use I2C...536
14.4. I2C Register Map..542

15. MSS GPIO.. 555

15.1. Features... 555
15.2. MSS GPIO Functional Description...555
15.3. MSS GPIO Usage.. 560
15.4. GPIO Register Map..567

16. Communication Block... 583

16.1. Features... 583
16.2. Functional Description..584
16.3. How to Use the Communication Block...586
16.4. COMM_BLK Configuration Registers...588
16.5. COMM_BLK Register Interface Details..588

17. RTC System..592

17.1. Features... 592
17.2. Functional Description..592
17.3. How to Use RTC.. 595
17.4. RTC Register Map..599
17.5. SYSREG Control Registers..604

18. System Timer.. 605

18.1. Features... 605
18.2. Functional Description..606
18.3. How to Use Timer...610
18.4. Timer Register Map..614

19. Watchdog Timer.. 622

19.1. Features... 622
19.2. Functional Description..623
19.3. How to Use the Watchdog Timer..626
19.4. Watchdog Timer Register Map...631
19.5. SYSREG Control Registers..633

20. Reset Controller.. 635

20.1. Functional Description..635
20.2. Power-Up to Functional Time Data.. 640
20.3. CoreResetP Soft Reset Controller... 654
20.4. How to Use the Reset Controller..659
20.5. SYSREG Control Registers..662

21. System Register Block.. 664

21.1. SYSREG Block Register Write Protection..664
21.2. Register Types... 665
21.3. Register Lock Bits Configuration..668
21.4. Register Map..670

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 5

21.5. Register Details..676

22. Fabric Interface Interrupt Controller.. 735

22.1. Features... 735
22.2. Functional Description..736
22.3. How to Use FIIC...738
22.4. FIIC Controller Registers..746
22.5. FIIC Controller Register Bit Definitions...746

23. Fabric Interface Controller...755

23.1. Functional Description..757
23.2. Advanced AHB-Lite Options...758
23.3. FIC Interface Port List.. 759
23.4. Timing Diagrams.. 762
23.5. Implementation Considerations..765
23.6. Fabric Interface Clocks...765
23.7. How to Use FIC..765
23.8. Reference Documents..781
23.9. SYSREG Control Registers for FIC_0 and FIC_1..781

24. APB Configuration Interface..783

24.1. Functional Block Diagram Description... 783
24.2. How to Use...787

25. Error Detection and Correction Controllers... 793

25.1. Functional Description..793
25.2. Configuration..794
25.3. How to Use EDAC..794

26. Revision History.. 797

Microchip FPGA Support..804

Microchip Information...804

The Microchip Website..804
Product Change Notification Service.. 804
Customer Support... 804
Microchip Devices Code Protection Feature...804
Legal Notice.. 805
Trademarks... 805
Quality Management System.. 806
Worldwide Sales and Service..807

Cortex-M3 Processor Overview and Debug Featu...

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 6

1. Cortex-M3 Processor Overview and Debug Features
The Arm® Cortex®-M3 processor is a low power consumption processor that features low gate count, low interrupt
latency, and low-cost debug. It is intended for deeply embedded applications that require optimal interrupt response
features. This processor implements the Arm v7-M architecture and is shown in Figure 1-1. The SmartFusion® 2 SoC
FPGA device uses the R2P1 version of the Cortex-M3 core. This chapter highlights the Cortex-M3 processor and
debug subsystem customizations made specific to SmartFusion 2.

For more details on the internals like programming model, exception model, instruction set, the
Cortex-M3 specific peripherals such as SysTick timer, memory protection unit, and others, refer to the 2. Cortex-M3
Processor (Reference Material). The following manuals are available at the ARM Info center:

• Cortex-M3 Technical Reference Manual
• ARM v7-M Architecture Reference Manual
• ARM v7-M Architecture Application Level Reference Manual

The Definitive Guide to the Arm Cortex-M3 by Joseph Yiu is recommended as additional reading (ISBN:
978-0-7506-8534-4).

1.1 Features
The Arm Cortex-M3 processor supports the following features:

• A 32-bit processor core with low gate count and low latency interrupt processing
• A RISC processor, with 3-stage pipeline Harvard architecture, pipeline core incorporating branch speculation,

single cycle multiplication, and hardware division, giving a Dhrystone benchmark of 1.25 DMIPS/MHz.
• A Nested Vectored Interrupt Controller (NVIC) that closely integrates with the processor core to achieve low

latency interrupt processing.
• A memory protection unit (MPU) is included. This facilitates the protected memory regions creation and setting

access rights for the protected regions.
• A Cortex-M3 processor, which is configured for SmartFusion 2 MSS, and uses only little-endian.
• An auxiliary control register is included
• Multiple high-performance bus interfaces that are connected through an advanced

high-performance bus (AHB)
• A debug solution with the optional ability to:

– Implement breakpoints and code patches
– Implement watchpoints, tracing, and system profiling
– Support print style debugging
– Bridge to a trace port analyzer

Manufacturers of the Cortex-M3 processor integrated circuits are permitted some latitude in configuring a particular
implementation of the Cortex-M3 processor delivered by Arm. The following features are implementation specifics in
the SmartFusion 2 device:

• MPU: This helps in creating protected and protected regions of memory
• Flash patch break point (FPB)
• Data watchpoint and trace (DWT) unit
• Instrumental trace macrocell (ITM)
• Embedded trace macrocell (ETM)
• Power-mode saving:

– HCLK is gated off when in SLEEPING or SLEEPDEEP mode
SLEEPING and SLEEPDEEP signals are available at the FPGA fabric interface sleep mode extension
handshake signals are available at the FPGA fabric interface.

• Not all registers in the register bank are reset
• Endianness: little endian only
• Auxiliary control register is included

Cortex-M3 Processor Overview and Debug Featu...

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 7

• Wake-up interrupt controller (WIC) is not included

For more details of these configurations and optional features, see 2. Cortex-M3 Processor (Reference Material).

1.2 Functional Description
The following figure shows the Cortex-M3 processor, core peripherals, and debug subsystem implementations used
in SmartFusion 2.

Figure 1-1. Cortex-M3 Processor R2P1 Block Diagram as Implemented in the SmartFusion 2 SoC FPGA

Core
ETM

Data Watchpoint
Trace
(DWT)

Trace Port
Interface Unit

(TPIU)

AHB
Access Port

(AHB - AP)

Cortex- M3
Debug
(Serial
Wire or
JTAG)

Trigger

Cortex-M 3 Microcontroller

CPU I/FNested Vector
Interrupt
Controller (NVIC)

Flash Patch Break Point
(FPB)

Memory Protection Unit
(MPU)

Instrumentation
Trace Macrocell

(ITM)

APB I /F

CoreSight
ROM Table

Private
Peripheral

Bus
I-Code

Bus
D -Code

Bus
System

Bus

Interrupts and
Power Control

Instruction Data

Trace Port
Interface

AHB Bus Matrix

Cortex-M3 Processor

The following topics are covered in detail in the sub-sections:

• Cortex-M3 Processor NVIC
• Cortex-M3 Processor SysTick Timer
• Cortex-M3 Processor Debug Subsystem
• Data Watch Point (DWP) and Trace
• Instrumentation Trace Macrocell
• Embedded Trace Macrocell

Important: The Cortex-M3 operating frequency is dependent on device speed grade (up to 166
MHz). See the SmartFusion 2 Specifications-MSS Clock Frequency section from IGLOO 2 FPGA and
SmartFusion 2 SoC FPGA Datasheet for more information.

1.3 Cortex-M3 Processor NVIC
The Cortex-M3 processor contains an NVIC, which is responsible for:

• Facilitating low-latency exception and interrupt handling
• Controlling power management

The following table lists the 11 exceptions that NVIC supports. The NVIC also supports up to 83 dynamically re-
prioritizable external interrupts, each with up to 16 levels of priority (see Table 1-2). The NVIC maintains knowledge
of stacked (nested) interrupts to enable tail-chaining of interrupts. In MSS, the NVIC is configured to have 16 levels of
priority (4 msb in BASEPRI register) are implemented, so BASEPRI register [7-4] are used for the priority setting and
[3-0] are read as zeros.

Cortex-M3 Processor Overview and Debug Featu...

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 8

The following table lists exceptions. The detailed description of these exceptions can be found in the ARM Cortex-M3
Technical Reference Manual.

Table 1-1. Cortex-M3 Processor Exceptions

Cortex-M3
Exceptions

Position in
Interrupt Vector
Table

Priority Description

Reset 1 (zero position is
stack pointer)

–3 Invoked on power-up and reset

Non-maskable
exception

2 –2 Non-maskable interrupt (NMI)—watchdog timeout
interrupt

HardFault 3 –1 Hard fault interrupt: all fault conditions if the
corresponding fault handler is not enabled

Memory management
exception

4 Configurable Memory management interrupt: memory management
fault; MPU violation or access to illegal locations.

Bus fault exception 5 Configurable Bus fault interrupt: bus error; occurs when the AHB
interface receives an error response from a bus slave
(also called prefetch abort if it is an instruction fetch or
data abort if it is a data access).

UsageFault 6 Configurable Usage fault interrupt: exceptions resulting from a program
error or trying to access a coprocessor (the Cortex-M3
does not support a coprocessor).

SVCall 11 Configurable Supervisory call interrupt

Debug monitor 12 Configurable Debug monitor interrupt: breakpoints, watchpoints, or
external debug requests

PendSV 14 Configurable Pend supervisory interrupt

SysTick 15 Configurable System tick timer interrupt

The interrupt sources listed in the following table are connected to the NVIC of the Cortex-M3 processor in the MSS.

Table 1-2. Cortex-M3 Processor Interrupts

Cortex-M3
Interrupt

Signal Source Description

INTNMI WDOGTIMEOUTINT WATCHDOG This interrupt is asserted (if enabled) if the counter reaches zero and
interrupt rather than reset generation has been selected on counter timeout.

INTISR[0] WDOGWAKEUPINT WATCHDOG This interrupt is asserted (if enabled) on crossing the WDOGMVRP level
when the SLEEPING input is asserted.

INTISR[1] RTC_WAKEUP_INTR RTC RTC match/wake up interrupt from RTC block

INTISR[2] SPIINT0 SPI_0 Interrupt from SPI 0

INTISR[3] SPIINT1 SPI_1 Interrupt from SPI 1

INTISR[4] I2C_INT0 I2C_0 Interrupt from I2C 0

INTISR[5] I2C_SMBALERT0 I2C_0 Interrupt from I2C 0

INTISR[6] I2C_SMBSUS0 I2C_0 Interrupt from I2C 0

INTISR[7] I2C_INT1 I2C_1 Interrupt from I2C 1

INTISR[8] I2C_SMBALERT1 I2C_1 Interrupt from I2C 1

INTISR[9] I2C_SMBSUS1 I2C_1 Interrupt from I2C 1

INTISR[10] MMUART0_INTR MMUART_0 Interrupt from MMUART 0

INTISR[11] MMUART1_INTR MMUART_1 Interrupt from MMUART 1

INTISR[12] MAC_INT MAC Interrupt from Ethernet MAC

Cortex-M3 Processor Overview and Debug Featu...

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 9

...........continued
Cortex-M3
Interrupt

Signal Source Description

INTISR[13] PDMAINTERRUPT PDMA Interrupt from peripheral DMA block

INTISR[14] TIMER1_INTR TIMER Timer1 interrupt

INTISR[15] TIMER2_INTR TIMER Timer2 interrupt

INTISR[16] CAN_INTR CAN Interrupt from CAN

INTISR[17] ENVM_INT0 ENVMTOAHB0 Asserted on an eNVM_0 basis at the completion of PROGRAM, ECC
ERROR, etc.

INTISR[18] ENVM_INT1 ENVMTOAHB1 Asserted on an eNVM_1 basis at the completion of PROGRAM, ECC
ERROR, etc.

INTISR[19] COMM_BLK_INTR COMBLK Communication block interrupt

INTISR[20] USB_MC_INT USB CPU interrupts

INTISR[21] USB_DMA_INT USB Core’s DMA engine performs data transfer between endpoint memories and
system memory via AHB master port. DMA controller-interrupt.

INTISR[22] MSSDDR_PLL_LOCK_INT SYSREG Interrupt indicating that MSSDDR PLL has achieved lock.

INTISR[23] MSSDDR_PLL_LOCKLOST_INT SYSREG Interrupt indicating that MSSDDR PLL has lost lock.

INTISR[24] SW_ERRORINTERRUPT SYSREG If set, it indicates to the Cortex-M3 processor that:
– One of the masters of the switch attempted an access that resulted in
either an error termination by the slave (or possibly the switch itself) or

– Was decoded as an access to unimplemented address space or o. If the
master attempted an access while disabled or

– In the case of the fabric master, attempted to access the protected region
of memory space

This signal is set by ORing the fields of SW_ERRORSTATUS. It is cleared by
writing 1 to the SW_CLEARSTATUS bit.

INTISR[25] CACHE_ERRINTR SYSREG If asserted, indicates that the interrupt is coming from CACHE. This
interrupt is generated in the SysReg by ORing of the various interrupts
from the CACHE block: CC_HRESPERRINT0, CC_HRESPERRINT1,
CC_HRESPERRINT2, CC_HRESPERRINT3.

INTISR[26] DDRB_INTR SYSREG If asserted, indicates that the interrupt is coming from DDRBRDIGE module.
Interrupts from MSS DDR Bridge module: DDRB_ERROR and
DDRB_LOCKTIMEOUT.
These interrupts are ORed in the SysReg and fed to the Cortex-M3
processor.

INTISR[27] HPD_XFR_CMP_INT HPDMA It is asserted when any HPDMA completes a descriptor transfer. Once
asserted, it remains asserted until cleared by means of writing 1 to the
bit in the control register of the Descriptor-N (0, 1, 2, 3). If HPDMA
completes more than one descriptor transfers before the interrupt is
serviced then this bit remains asserted until all the descriptors have had
Clr_D<N>_Xfr_cmp_int written to 1.

INTISR[28] HPD_XFR_ERR_INT HPDMA It is asserted when any HPDMA completes a descriptor transfer with error.
Once asserted, it remains asserted until cleared by means of writing 1 to the
bit in the control register of the Descriptor-N (0, 1, 2, 3). If HPDMA completes
more than one descriptor with errors before the interrupt is serviced then this
bit remains asserted until all the descriptors have had Clr_D<N>_Xfr_err_int
written to 1.

INTISR[29] ECCINTR SYSREG It is asserted when an ECC error has been detected in ESRAM0, ESRAM1,
MAC, CAN, MDDR, and USB. This is generated by ORing ECC interrupts
from these modules.

Cortex-M3 Processor Overview and Debug Featu...

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 10

...........continued
Cortex-M3
Interrupt

Signal Source Description

INTISR[30] MDDR_IO_CALIB_INT SYSREG The interrupt is generated when MDDR calibration is finished. For the
calibration after reset, this would be followed by locking the codes directly.
However, for in-between runs during functional DDR operation, the assertion
of interrupt does not guarantee lock as the state machine would wait for the
ideal time (DRAM self-refresh) for locking. This can be used by the firmware
to insert an ideal time, and provides an indication of availability of locked
codes.

INTISR[31] FAB_PLL_LOCK_INT SYSREG Interrupt indicating that MSSDDR PLL has achieved lock

INTISR[32] FAB_PLL_LOCKLOST_INT SYSREG Interrupt indicating that MSSDDR PLL has lost lock

INTISR[33] FIC64_INT SYSREG This interrupt will be generated by FIC64 when one of the following
conditions is true:
Write error for HPDMA or switch WCBs (from DDR_AXI_INTF)

Simultaneous read and write accesses by HPDMA and switch for same
address

Lock time out condition

INTISR[34] F2H_INTERRUPT[0] FPGA fabric Interrupt from the FPGA fabric

INTISR[35] F2H_INTERRUPT[1] FPGA fabric Interrupt from the FPGA fabric

INTISR[36] F2H_INTERRUPT[2] FPGA fabric Interrupt from the FPGA fabric

INTISR[37] F2H_INTERRUPT[3] FPGA fabric Interrupt from the FPGA fabric

INTISR[38] F2H_INTERRUPT[4] FPGA fabric Interrupt from the FPGA fabric

INTISR[39] F2H_INTERRUPT[5] FPGA fabric Interrupt from the FPGA fabric

INTISR[40] F2H_INTERRUPT[6] FPGA fabric Interrupt from the FPGA fabric

INTISR[41] F2H_INTERRUPT[7] FPGA fabric Interrupt from the FPGA fabric

INTISR[42] F2H_INTERRUPT[8] FPGA fabric Interrupt from the FPGA fabric

INTISR[43] F2H_INTERRUPT[9] FPGA fabric Interrupt from the FPGA fabric

INTISR[44] F2H_INTERRUPT[10] FPGA fabric Interrupt from the FPGA fabric

INTISR[45] F2H_INTERRUPT[11] FPGA fabric Interrupt from the FPGA fabric

INTISR[46] F2H_INTERRUPT[12] FPGA fabric Interrupt from the FPGA fabric

INTISR[47] F2H_INTERRUPT[13] FPGA fabric Interrupt from the FPGA fabric

INTISR[48] F2H_INTERRUPT[14] FPGA fabric Interrupt from the FPGA fabric

INTISR[49] F2H_INTERRUPT[15] FPGA fabric Interrupt from the FPGA fabric

INTISR[50] GPIO_INT[0] GPIO Interrupt from GPIO

INTISR[51] GPIO_INT[1] GPIO Interrupt from GPIO

INTISR[52] GPIO_INT[2] GPIO Interrupt from GPIO

INTISR[53] GPIO_INT[3] GPIO Interrupt from GPIO

INTISR[54] GPIO_INT[4] GPIO Interrupt from GPIO

INTISR[55] GPIO_INT[5] GPIO Interrupt from GPIO

INTISR[56] GPIO_INT[6] GPIO Interrupt from GPIO

INTISR[57] GPIO_INT[7] GPIO Interrupt from GPIO

INTISR[58] GPIO_INT[8] GPIO Interrupt from GPIO

INTISR[59] GPIO_INT[9] GPIO Interrupt from GPIO

INTISR[60] GPIO_INT[10] GPIO Interrupt from GPIO

INTISR[61] GPIO_INT[11] GPIO Interrupt from GPIO

INTISR[62] GPIO_INT[12] GPIO Interrupt from GPIO

INTISR[63] GPIO_INT[13] GPIO Interrupt from GPIO

INTISR[64] GPIO_INT[14] GPIO Interrupt from GPIO

INTISR[65] GPIO_INT[15] GPIO Interrupt from GPIO

INTISR[66] GPIO_INT[16] GPIO Interrupt from GPIO

Cortex-M3 Processor Overview and Debug Featu...

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 11

...........continued
Cortex-M3
Interrupt

Signal Source Description

INTISR[67] GPIO_INT[17] GPIO Interrupt from GPIO

INTISR[68] GPIO_INT[18] GPIO Interrupt from GPIO

INTISR[69] GPIO_INT[19] GPIO Interrupt from GPIO

INTISR[70] GPIO_INT[20] GPIO Interrupt from GPIO

INTISR[71] GPIO_INT[21] GPIO Interrupt from GPIO

INTISR[72] GPIO_INT[22] GPIO Interrupt from GPIO

INTISR[73] GPIO_INT[23] GPIO Interrupt from GPIO

INTISR[74] GPIO_INT[24] GPIO Interrupt from GPIO

INTISR[75] GPIO_INT[25] GPIO Interrupt from GPIO

INTISR[76] GPIO_INT[26] GPIO Interrupt from GPIO

INTISR[77] GPIO_INT[27] GPIO Interrupt from GPIO

INTISR[78] GPIO_INT[28] GPIO Interrupt from GPIO

INTISR[79] GPIO_INT[29] GPIO Interrupt from GPIO

INTISR[80] GPIO_INT[30] GPIO Interrupt from GPIO

INTISR[81] GPIO_INT[31] GPIO Interrupt from GPIO

1.4 Cortex-M3 Processor SysTick Timer
The processor has a 24-bit system timer, SysTick, that counts down from the reload value to zero, reloads, that is,
wraps to the value in the SYST_RVR register on the next clock edge, and then counts down on subsequent clocks.
The SysTick timer is used to generate a periodic interrupt to the Cortex-M3 processor. The SysTick can be polled by
the software or it can be configured to generate an interrupt. The SysTick interrupt has its own entry in the vector
table and therefore its own handler.

1.5 Cortex-M3 Processor Debug Subsystem

1.5.1 Cortex-M3 Processor Debug Port
The debug port uses a serial wire (SW) JTAG debug port (SWJ-DP). This enables either the JTAG or the SW protocol
to be used for debugging. The SWJ-DP defaults to JTAG mode at power-up and can be switched to SW by applying
a specific sequence to the debug pins.

The trace port interface unit (TPIU) is configured to support ITM debug trace and ETM debug trace. Serial wire
mode is used for the TPIU output data and this is overlaid on the JTAG TDO port. One implication of this is that
instrumentation trace cannot be used along with JTAG-based debugging. SW debugging and ITM can be used
together.

The Cortex-M3 processor provides the following debug Interfaces:

• SWJ-DP: JTAG is the industry-standard interface used to download and debug programs on a target processor,
as well as for other functions. It offers access to all of the Cortex-M3 processor CoreSight® debug capabilities.

• SW-DP: The serial wire debug (SWD) mode is an alternative to the standard JTAG interface. SWD uses two
pins to provide the same debug functionality as JTAG with no performance penalty, and introduces data trace
capabilities with the serial wire viewer (SWV). The SWD interface pins are overlaid with the JTAG signals,
allowing standard target connectors to be used.

– TCLK: SWCLK (serial wire clock)
– TMS: SWDIO (serial wire debug data input/output)
– DO: SWO (output pin for SWV, refer to the next section).

• SWV: It provides real-time data trace information from various sources within the Cortex-M3 processor device.
This is output via the single serial wire output (SWO) pin while your system processor continues running at full
speed. SWV can only be used with the SWD interface.

Cortex-M3 Processor Overview and Debug Featu...

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 12

• ETM: The embedded trace macrocell provides high bandwidth instruction trace via four dedicated trace pins.

1.5.2 Cortex-M3 Processor Trace System
The debug system of the Cortex-M3 processor is based on the CoreSight architecture. The
CoreSight-based designs enable the memory and peripheral registers to be examined even when the CPU is
running. It also includes the following trace capabilities:

• Data trace, generating events to record data reads/writes, exceptions/interrupts, and PC (program counter)
sampling information.

• Software trace, supporting output of debug messages (for example, printf) to the host.
• Instruction trace, collecting a sequence of every executed instruction continuously for a selected portion of your

application.

Trace data can be useful for debugging issues and collecting statistics:

• Locating errors that have irregular symptoms
• Analyzing dynamic system behavior
• Optimizing performance bottlenecks
• Counting code coverage statistics

Trace results are generated in the form of packets, which can be of various lengths. The trace components transfer
the packets using the advanced trace bus (ATB) to the TPIU, which formats the packets into the trace interface
protocol (TIP). The data is then captured by an external trace capture device such as a trace port analyzer (TPA).

The main components of the Cortex-M3 processor that can be a trace source:

• DWT, for data trace
• ITM, for software trace
• ETM, for full instruction trace

DWT, ITM, and ETM generate trace data in the form of packets and transfer them through the ATB to the TPIU.

The TPIU has two operation modes:

• Clocked mode, using up to 4-bit (1-, 2- or 4-bit) parallel data outputs
• SWV mode, using the single-bit SWO format. Instruction trace from ETM must use the parallel trace port, while

packets of data trace and software trace normally use SWO (called SWO trace) but can also be multiplexed with
the ETM trace stream through the parallel trace port.

The following figure shows the diagram of a Cortex-M3 processor trace system. JTAG/SWD, SWO, and the 4-bit
parallel trace port can be deployed into a 20-pin Cortex Debug + ETM connector on the target.

Important: The TDO signal of JTAG is multiplexed with SWO, so that SWO trace is not accessible when
the DP is in a JTAG configuration. Only the SWD interface can be used together with SWO.

Cortex-M3 Processor Overview and Debug Featu...

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 13

Figure 1-2. Trace System Block Diagram

Cortex-M 3
Processor Core

AHB Bus
Matrix

ETM

DWT

PC Sampler

Interrupt Trace

4 Watch points

ETM Trigger

ITM

Time Stamp

Software Trace

Trace Port
Interface Unit

(TPIU)

AHB -AP

DP

Cortex-M3 Debug
(Serial Wire or

JTAG)

Cortex-M3 Debug +
ETM

Trigger

ATB

ATB
ATB

ATB

System
Bus

DAP BUS

SWO

4-Bit
Trace

JTAG /
SWD

To Standard JTAG
Connector via IO

pads

To Trace for Cortex-M3
 Connector via

FPGA Fabric

CPU I /F

Cortex-M3 Microcontroller

The following table shows pin multiplexing details for JTAG, SWD, and ETM modes of the debug section. For more
details on pin information, refer to the DS0115: SmartFusion2 Pin Descriptions Datasheet.

Table 1-3. Signal Multiplexing

FPGA Pin JTAG Mode SWD Mode ETM Mode

JTAG_TMS/
M3_TMS/

M3_SWDIO

TMS SWDIO SWDIO

JTAG_TCK/
M3_TCK

TCK SWCLK SWCLK

JTAG_TDO/
M3_TDO/

M3_SWO

TDO SWO SWO

JTAG_TDI/
M3_TDI

TDI TRACECLK

— TRACEDATA[3:0]

1.5.2.1 Data Watch Point (DWP) and Trace
The DWT unit is able to provide either focused data trace or global data trace. It has four comparators used to
compare the following conditions:

• Hardware watch point: generates a watch point event to the processor to invoke debug modes such as halt or
debug monitor.

• ETM trigger: causes the ETM to emit a trigger packet in the instruction trace stream.
• PC sampler event trigger
• Data address sample trigger

1.5.2.2 Instrumentation Trace Macrocell
ITM provides the support for the debug message output, such as printf, and feeds output to the TPIU. ITM uses a
FIFO to buffer the output messages and outputs are not delayed as UART transfers. The output messages can be

Cortex-M3 Processor Overview and Debug Featu...

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 14

collected at the TPI or the SWV interface on TPIU. ITM timestamps the outputs and it outputs the messages from the
DWT unit.

1.5.2.3 Embedded Trace Macrocell
The ETM block is a high speed, low power-consumption debugging tool that provides instruction trace only, and
which feeds output to the TPIU. The ETM has a FIFO queue of 24 bytes, and ETM outputs 8 bits of data at a time at
the core clock speed. This output is compatible with the AMBA trace bus (ATB). The ETM trace is supported by tools
like Keil Trace, IAR Trace, Greenhills software trace, and others. The ETM provides the following features:

• Tracing of 16-bit and 32-bit thumb instructions
• Four EmbeddedICE watchpoint inputs
• A Trace Start/Stop block with EmbeddedICE inputs
• Two external inputs
• Global time-stamping

Important: Timing model for Fabric to Embedded Trace Macrocell has been updated with additional time
delay. This changes the timing arcs of nets between Fabric to Embedded Trace Macrocell. To meet timing
accuracy, open all Libero v11.7 SP3 designs and re-run Timing Analysis. If you get new timing violations,
do the following:

1. Re-run place-and-route.
2. Re-run place-and-route with high effort.
3. Run place-and-route with multi-pass.
4. Adjust timing constraints or use chip planner to floorplan the affected interfaces.

For more information about the updated timing arcs, see PCN 17005A.

1.6 Cortex-M3 Processor Port Descriptions
The following table lists all the ports related to the Cortex-M3 subsystem, their direction, and a description of the
ports.

Table 1-4. Port Details of the Cortex-M3-Subsystem

Port Name Direction Pad Description

RXEV In No Causes the Cortex-M3 to wake up from a wait for event (WFE) instruction.
The event input, RXEV, is registered even when not waiting for an event,
and so affects the next WFE.

TXEV Out No Event transmitted as a result of a Cortex-M3 SEV (send event) instruction.
This is a single-cycle pulse equal to 1 M3_CLK period.

SLEEP Out No Signal is asserted when the Cortex-M3 processor is in sleep now or
sleep-on-exit mode, and indicates that the clock to the processor can be
stopped.

DEEPSLEEP Out No Signal is asserted when the Cortex-M3 processor is in sleep now or
sleep-on-exit mode when the SLEEPDEEP bit of the system control
register is set.

SLEEPHOLDREQn In No Request to extend Cortex-M3 processor sleep state. Signal is asserted
when SLEEPING signal is High.

SLEEPHOLDACKn Out No Signal is asserted to confirm the Cortex-M3 processor sleep state
extension request.

TRACECLK Out No TRACETRACEDATA changes on both the edges of TRACECLK.

TRACEDATA[3:0] Out No Output data for clocked modes.

Cortex-M3 Processor Overview and Debug Featu...

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 15

1.7 How to Use the Cortex-M3 Processor and the Debug Subsystem

1.7.1 Configuration Through Libero Software and Firmware
The Cortex-M3 processor and debug subsystem can be configured using the Libero® SoC design software. Using the
MSS Cortex-M3 (CM3) configurator macro, various options can be selected, as shown in the following figure.

Figure 1-3. CM3 Configurator

The timing arcs for interrupts to the Cortex-M3 sourced from the FPGA fabric have been updated in Libero SoC. In
addition, timing arcs for the Cortex-M3 Embedded Trace Macrocell (ETM) have been added.

1.7.1.1 Memory Protection Unit
The MPU can be enabled by the selection option provided, as shown in the preceding figure. The following table lists
all the registers that can be used to configure the MPU for the creation of the protected memory regions and setting
the privileges for the created memory region in the firmware.

Table 1-5. MPU Configuration Register

Name of Register Access Type Address Reset Value

MPU type register Read Only 0xE000ED90 0x800

MPU control register Read/Write 0xE000ED94 0x0

Cortex-M3 Processor Overview and Debug Featu...

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 16

...........continued
Name of Register Access Type Address Reset Value

MPU region number Read/Write 0xE000ED98 NA

MPU region base address Read/Write 0xE000ED9C NA

MPU region attribute and size Read/Write 0xE000EDA0 NA

1.7.1.2 SysTick Timer Configuration
The SysTick timer can be configured using the Libero software, as shown in Figure 1-3, for the SysTick calibration
value; which is the rollover value of the internal SysTick timer, and SysTick clock frequency as the division (4, 8, 16,
or 32) of Cortex-M3 clock. This value is loaded into the STCLK_DIVISOR register and it has to be configured to make
sure that the SysTick clock frequency is less than half of the frequency of Cortex-M3. SysTick also can be configured
using the firmware by using the following register, as depicted in the following table

Table 1-6. SysTick Configuration Register

Name of Register Access Type Address Reset value

SysTick Control & Status Read/Write 0xE000E010 0x0

SysTick Reload value Read/Write 0xE000E014 Unpredictable

SysTick Current Value Read/Write clear 0xE000E018 Unpredictable

SysTick Calibration value Read-only 0xE000E01C STCALIB set through the Libero® software

1.7.1.3 Events Configuration
TXEV and RXEV event signals of the Cortex-M3 processor can be exposed to the FPGA fabric. This can be
configured using the Libero software, as shown in Figure 1-3.

1.7.1.4 System Power Management Configuration
The Cortex-M3 processor provides various power modes. M3_CLK is gated off when in SLEEPING or SLEEPDEEP
mode. SLEEPING and SLEEPDEEP signals are available at the FPGA fabric interface. Sleep mode extension
handshake signals are available at the FPGA fabric interface. System power management options can be configured
as shown in Figure 1-3.

1.7.1.5 Trace Port Interface Unit (TPIU) Configuration
TRACECLK & TRACEDATA[3:0] can be exposed to the FPGA fabric. TACECLK can be configured for these signals
by using the Libero software, as shown in Figure 1-3.

Important: If the user design is using the FPGA fabric based master, the Cortex-M3 processor requires a
valid program in eNVM (from eNVM start address 0x60000000) to execute at power-up or power-on reset.
The valid program can be a simple user boot code or a simple loop program. You can select a .hex file of
a valid program for eNVM data client using the SystemBuilder.

Cortex-M3 Processor (Reference Material)

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 17

2. Cortex-M3 Processor (Reference Material)
The Cortex-M3 processor is a high performance 32-bit processor designed for the microcontroller market. It offers the
following significant benefits to developers:

• Outstanding processing performance combined with fast interrupt handling
• Enhanced system debug with extensive breakpoint and trace capabilities
• Efficient processor core, system, and memories
• Ultra-low power consumption with integrated Sleep modes
• Robust platform security, with optional integrated memory protection unit (MPU)

Figure 2-1. Cortex-M3 Processor Implementation

Processor
Core

Embedded
Trace MacrocellNVIC

Debug
Access

Port

Memory
Protection Unit

Serial
Wire

Viewer

Bus Matrix
Code

Interface
SRAM and

Peripheral Interface

Data
Watchpoints

Flash
Patch

Cortex-M3
processor

WIC

The Cortex-M3 processor is built on a high-performance processor core, with a 3-stage pipeline Harvard architecture,
making it ideal for demanding embedded applications. The processor delivers exceptional power efficiency through
an efficient instruction set and extensively optimized design, providing high-end processing hardware including a
range of single-cycle and SIMD multiplication and multiply-with-accumulate capabilities, saturating arithmetic and
dedicated hardware division.

To facilitate the design of cost-sensitive devices, the Cortex-M3 processor implements tightly-coupled system
components that reduce processor area while significantly improving interrupt handling and system debug
capabilities. The Cortex-M3 processor implements a version of the Thumb® instruction set based on Thumb-2
technology, ensuring high code density and reduced program memory requirements. The Cortex-M3 processor
instruction set provides the exceptional performance expected of a modern 32-bit architecture, with the high code
density of 8-bit and 16-bit microcontrollers.

The Cortex-M3 processor closely integrates a configurable nested interrupt controller (NVIC), to deliver industry-
leading interrupt performance. The NVIC includes a non-maskable interrupt (NMI), and provides up to 256 interrupt
priority levels. NVIC in SmartFusion 2 SoC FPGA MSS is set to have 83 interrupts (including non-maskable
interrupt).The tight integration of the processor core and NVIC provides fast execution of interrupt service routines
(ISRs), dramatically reducing the interrupt latency.

This is achieved through the hardware stacking of registers, and the ability to suspend load-multiple and store-
multiple operations. Interrupt handlers do not require wrapping in assembly code, removing any code overhead from
the ISRs. A Tail-chain optimization also significantly reduces the overhead when switching from one ISR to another.

To optimize low-power designs, the NVIC integrates with the sleep modes, that include a deep sleep function that
enables the entire device to be rapidly powered down while still retaining program state.

Cortex-M3 Processor (Reference Material)

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 18

2.1 System Level Interface
The Cortex-M3 processor provides multiple interfaces using AMBA® technology to provide high speed, low latency
memory accesses. It supports unaligned data accesses and implements atomic bit manipulation that enables faster
peripheral controls, system spinlocks, and thread-safe Boolean data handling.

The Cortex-M3 processor has an optional memory protection unit (MPU) that provides fine grain memory control,
enabling applications to utilize multiple privilege levels, separating and protecting code, data and stack on a task-by-
task basis. Such requirements are becoming critical in many embedded applications such as automotive systems.

2.2 Integrated Configurable Debug
The Cortex-M3 processor implements a complete hardware debug solution. This provides high system visibility of the
processor and memory through either a traditional JTAG port or a 2-pin Serial Wire Debug (SWD) port that is ideal for
microcontrollers and other small package devices. The MCU vendor determines the debug feature configuration and
therefore this can differ across different devices and families.

For system trace the processor integrates an Instrumentation Trace Macrocell™ (ITM) alongside data watchpoints
and a profiling unit. To enable simple and cost-effective profiling of the system events these generate, a Serial Wire
Viewer (SWV) can export a stream of software-generated messages, data trace, and profiling information through a
single pin.

The optional Embedded Trace Macrocell (ETM) delivers unrivaled instruction trace capture in an area far smaller than
traditional trace units, enabling many low cost MCUs to implement full instruction trace for the first time.

The optional Flash Patch and Breakpoint Unit (FPB) provides up to eight hardware breakpoint comparators that
debuggers can use. The comparators in the FPB also provide remap functions of up to eight words in the program
code in the CODE memory region. This enables applications stored on a non-erasable, ROM-based microcontroller
to be patched if a small programmable memory, for example flash, is available in the device. During initialization, the
application in ROM detects, from the programmable memory, whether a patch is required. If a patch is required, the
application programs the FPB to remap a number of addresses. When those addresses are accessed, the accesses
are redirected to a remap table specified in the FPB configuration, which means the program in the non-modifiable
ROM can be patched.

2.3 Cortex-M3 Processor Features and Benefits Summary
Cortex-M3 has the following features and benefits.

• Tight integration of system peripherals reduces area and development costs
• Thumb instruction set combines high code density with 32-bit performance
• Code-patch ability for ROM system updates
• Power control optimization of system components
• Integrated Sleep modes for low power consumption
• Fast code execution permits slower processor clock or increases sleep mode time
• Hardware division and fast multiplier
• Deterministic, high-performance interrupt handling for time-critical applications
• Optional Memory Protection Unit (MPU) for safety-critical applications
• Extensive debug and trace capabilities—Serial Wire Debug and Serial Wire Trace reduce the number of pins

required for debugging, tracing and code profiling.

2.4 Cortex-M3 Processor Core Peripherals
This section discusses the following topics:

• 2.4.1. Nested Vectored Interrupt Controller
• 2.4.2. System Control Block

Cortex-M3 Processor (Reference Material)

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 19

• 2.4.3. System Timer
• 2.4.4. Memory Protection Unit

2.4.1 Nested Vectored Interrupt Controller
The Nested Vectored Interrupt Controller (NVIC) is an embedded interrupt controller that supports low latency
interrupt processing.

2.4.2 System Control Block
The System control block (SCB) is the programmers model interface to the processor. It provides system
implementation information and system control, including configuration, control, and reporting of system exceptions.

2.4.3 System Timer
The system timer, SysTick, is a 24-bit count-down timer. Use this as a Real Time Operating System (RTOS) tick timer
or as a simple counter.

2.4.4 Memory Protection Unit
The Memory protection unit (MPU) improves system reliability by defining the memory attributes for different memory
regions. It provides up to eight different regions, and an optional predefined background region.

2.5 Cortex-M3 Processor Description
This section discusses the programmers model, memory model, exception model, fault handling, and power
management.

2.5.1 Programmers Model
This section describes the Cortex-M3 processor programmers model. In addition to the individual core register
descriptions, it contains information about the processor modes and privilege levels for software execution and
stacks.

2.5.1.1 Processor Mode and Privilege Levels for Software Execution
The following is a list of processor modes for software execution:

• Thread mode: Used to execute application software. The processor enters Thread mode when it comes out of
reset.

• Handler mode: Used to handle exceptions. The processor returns to Thread mode when it has finished all
exception processing.

The following is a list of privilege levels for software execution:

• Unprivileged:
– has limited access to the MSR and MRS instructions, and cannot use the CPS instruction
– cannot access the system timer, NVIC, or system control block
– might have restricted access to memory or peripherals.

Unprivileged software executes at the unprivileged level.
• Privileged: The software can use all the instructions and has access to all resources.

Privileged software executes at the privileged level.

In Thread mode, the CONTROL register controls whether software execution is privileged or unprivileged, see
2.5.1.3.10. CONTROL Register. In Handler mode, software execution is always privileged.

Only privileged software can write to the CONTROL register to change the privilege level for software execution in
Thread mode. Unprivileged software can use the SVC instruction to make a supervisor call to transfer control to
privileged software.

2.5.1.2 Stacks
The processor uses a full descending stack. This means the stack pointer holds the address of the last stacked item
in the stack memory. When the processor pushes a new item onto the stack, it decrements the stack pointer and then

Cortex-M3 Processor (Reference Material)

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 20

writes the item to the new memory location. The processor implements two stacks, the main stack and the process
stack, held in independent registers, see 2.5.1.3.2. Stack Pointer.

In Thread mode, the CONTROL register controls whether the processor uses the main stack or the process stack,
see 2.5.1.3.10. CONTROL Register. In Handler mode, the processor always uses the main stack. The options for
processor operations are:

Table 2-1. Summary of Processor Mode, Execution Privilege Level, and Stack Use Options

Processor Mode Used to Execute Privilege Level for
Software Execution

Stack Used

Thread Applications Privileged or unprivileged Main stack or process stack

Handler Exception handlers Always privileged Main stack

2.5.1.3 Core Registers
The following figure shows the processor core registers.

Figure 2-2. Core Register Set

SP (R13)
LR (R14)
PC (R15)

R5
R6
R7

R0
R1

R3
R4

R2

R10
R11
R12

R8
R9

Low Registers

High Registers

MSP‡PSP‡

PSR
PRIMASK

FAULTMASK
BASEPRI
CONTROL

General-purpose Registers

Stack Pointer
Link Register

Program Counter

Program Status Register

Exception Mask Registers

CONTROL Register

Special Registers

‡Banked version of SP

Table 2-2. Core Register Set Summary

Name Type1 Required
Privilege2

Reset Value Description

R0-R12 RW Either Unknown General-Purpose Registers

MSP RW Privileged See description Stack Pointer

PSP RW Either Unknown Stack Pointer

LR RW Either 0xFFFFFFFF Link Register

PC RW Either See description Program Counter

PSR RW Privileged Unknown Program Status Register

ASPR RW Either Unknown Application Program Status Register

IPSR RO Privileged 0x00000000 Interrupt Program Status Register

EPSR RO Privileged 0x01000000 Execution Program Status Register

PRIMASK RW Privileged 0x00000000 Priority Mask Register

Cortex-M3 Processor (Reference Material)

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 21

...........continued
Name Type1 Required

Privilege2
Reset Value Description

FAULTMASK RW Privileged 0x00000000 Fault Mask Register

BASEPRI RW Privileged 0x00000000 Base Priority Mask Register

CONTROL RW Privileged 0x00000000 CONTROL Register

Notes: 
1. Describes access type during program execution in Thread mode and Handler mode. Debug access can differ.
2. An entry of Either means privileged and unprivileged software can access the register.

The following sections describe these registers in detail.

2.5.1.3.1 General-Purpose Registers
R0-R12 are 32-bit general-purpose registers for data operations.

2.5.1.3.2 Stack Pointer
The Stack Pointer (SP) is register R13. In Thread mode, bit[1] of the CONTROL register indicates the stack pointer to
use:

• 0: Main Stack Pointer (MSP). This is the reset value
• 1: Process Stack Pointer (PSP)

On reset, the processor loads the MSP with the value from address 0x00000000.

2.5.1.3.3 Link Register
The Link Register (LR) is register R14. It stores the return information for subroutines, function calls, and exceptions.
On reset, the processor sets the LR value to 0xFFFFFFFF.

2.5.1.3.4 Program Counter
The Program Counter (PC) is register R15. It contains the current program address. On reset, the processor loads
the PC with the value of the reset vector, which is at address 0x00000004. Bit[0] of the value is loaded into the EPSR
T-bit and must be 1.

2.5.1.3.5 Program Status Register
The Program Status Register (PSR) combines:

• Application Program Status Register (APSR)
• Interrupt Program Status Register (IPSR)
• Execution Program Status Register (EPSR)

These registers are mutually exclusive bitfields in the 32-bit PSR. The bit assignments are shown in the following
figure.

Figure 2-3. Program Status Register

31 30 29 28 27 26 25 24 23 16 15 10 9 8 0

N Z C V QAPSR

IPSR

EPSR Reserved

Reserved

Reserved

Reserved ReservedICI/IT ICI/ITT

ISR_NUMBER

Access these registers individually or as a combination of any two or all three registers, using the register name as an
argument to the MSR or MRS instructions. For example:

• Read all of the registers using PSR with the MRS instruction.

Cortex-M3 Processor (Reference Material)

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 22

• Write to the APSR using APSR with the MSR instruction.

The following table shows the PSR combinations and attributes.

Table 2-3. PSR Combinations and Attributes

Register Type Combination

PSR RW1,2 APSR, EPSR, and IPSR

IEPSR RO EPSR and IPSR

IAPSR RW1 APSR and IPSR

EAPSR RW2 APSR and EPSR

Notes: 
1. The processor ignores writes to the IPSR bits.
2. Reads of the EPSR bits return zero, and the processor ignores writes to the these bits.

See the instruction descriptions in 2.6.10.6. MRS and 2.6.10.7. MSR for more information about how to access the
program status registers.

2.5.1.3.6 Application Program Status Register
The APSR contains the current state of the condition flags from previous instruction executions. See the register
summary in the following table for its attributes. The following table lists the bit assignments.

Table 2-4. Application Program Status Register

Bits Name Function

[31] N Negative flag

[30] Z Zero flag

[29] C Carry or borrow flag

[28] V Overflow flag

[27] Q Saturation flag

[27:0] — Reserved

2.5.1.3.7 Interrupt Program Status Register
The IPSR contains the exception type number of the current Interrupt Service Routine (ISR). See the register
summary in Table 2-2 for its attributes. The following table lists the bit assignments.

Table 2-5. IPSR Bit Assignments

Bits Name Function

[31:9] Reserved

Cortex-M3 Processor (Reference Material)

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 23

...........continued
Bits Name Function

[8:0] ISR_NUMBER This is the number of the current exception:
0 = Thread mode

1 = Reserved

2 = NMI

3 = HardFault

4 = MemManage

5 = BusFault

6 = UsageFault

7-10 = Reserved

11 = SVCall

12 = Reserved for Debug

13 = Reserved

14 = PendSV

15 = SysTick

16 = IRQ0.

.

.

.

255 = IRQ239

For more information, see 2.5.3.2. Exception Types.

2.5.1.3.8 Execution Program Status Register
The EPSR contains the Thumb state bit, and the execution state bits for either the:

• If-Then (IT) instruction
• Interruptible-Continuable Instruction (ICI) field for an interrupted load multiple or store multiple instruction

For the EPSR attributes, see the register summary in Table 2-2. The following table lists the bit assignments.

Table 2-6. EPSR Bit Assignments

Bits Name Function

[31:27] — Reserved

[26:25], [15:10] ICI/IT Indicates the interrupted position of a continuable instruction, or the execution
state of an IT instruction (see 2.6.9.3. IT).

[24] T Thumb state bit

[23:16] — Reserved

[9:0] — Reserved

Attempts to read the EPSR directly using the MRS instruction always return zero. Attempts to write the EPSR using
the MSR instruction are ignored.

Interruptible-continuable Instructions

When an interrupt occurs during the execution of an LDM, STM, PUSH, or POP instruction, the processor:

Cortex-M3 Processor (Reference Material)

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 24

• Stops the load multiple or store multiple instruction operation temporarily
• Stores the next register operand in the multiple operation to EPSR bits[15:12]

After servicing the interrupt, the processor:

• Continues loading the register pointed to by bits[15:12]
• Resumes execution of the multiple load or store instruction

When the EPSR holds ICI execution state, bits[26:25,11:10] are zero.

• If-Then Block
The If-Then block contains up to four instructions following an IT instruction. Each instruction in the block is
conditional. The conditions for the instructions are either all the same, or some can be the inverse of others. For
more information, see 2.6.9.3. IT.

• Thumb State
The Cortex-M3 processor only supports execution of instructions in Thumb state. The following can clear the T
bit to 0:

• Instructions BLX, BX and POP{PC}
• Restoration from the stacked xPSR value on an exception return
• Bit[0] of the vector value on an exception entry or reset

Attempting to execute instructions when the T bit is 0 results in a fault or lockup. For more information, see
2.5.4.4. Lockup.

The T bit can be modified both by software, using the mechanisms described in this section, and directly by the
debugger.

2.5.1.3.9 Exception Mask Registers
The exception mask registers disable the handling of exceptions by the processor. Disable exceptions where they
might impact on timing critical tasks.

To access the exception mask registers use the MSR and MRS instructions, or the CPS instruction to change the
value of PRIMASK or FAULTMASK. For more information, see 2.6.10.6. MRS, 2.6.10.7. MSR, and 2.6.10.2. CPS.

Priority Mask Register

The PRIMASK register prevents activation of all exceptions with configurable priority. For information about its
attributes, see the register summary in Table 2-2. The following figure for bit assignments for MSR or MRS access.

Figure 2-4. Priority Mask Register
31 1 0

Reserved

PRIMASK
Table 2-7. PRIMASK Register Bit Assignments

Bits Name Function

[31:1] — Reserved

[0] PRIMASK 0: no effect
1: prevents the activation of all exceptions with configurable priority.

Fault Mask Register

The FAULTMASK register prevents activation of all exceptions except for Non-Maskable Interrupt (NMI). For
information about its attributes, see the register summary in Table 2-2.

The following table lists the big assignments for MSR or MRS access.

Cortex-M3 Processor (Reference Material)

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 25

Table 2-8. FAULT Register Bit Assignments

Bits Name Function

[31:1] — Reserved

[0] FAULTMASK 0: no effect
1: prevents the activation of all exceptions except for NMI.

The processor clears the FAULTMASK bit to 0 on exit from any exception handler except the NMI handler.

Base Priority Mask Register

The BASEPRI register defines the minimum priority for exception processing. When BASEPRI is set to a nonzero
value, it prevents the activation of all exceptions with the same or lower priority level as the BASEPRI value. For
information about its attributes, see the register summary in Table 2-2.

Figure 2-5. Base Priority Mask Register

Reserved BASEPRI

31 8 7 0

The following table lists the big assignments for MSR or MRS access.

Table 2-9. BASEPRI Register Bit Assignments

Bits Name Function

[31:8] — Reserved

[7:0] BASEPRI1  Priority mask bits:
0x00: no effect

Nonzero: defines the base priority for exception processing.

The processor does not process any exception with a priority value greater than or
equal to BASEPRI.

Note: (1) This field is similar to the priority fields in the interrupt priority registers. The device implements only
bits[7:M] of this field, bits [M-1:0] read as zero and ignore writes. For more information, see 2.7.1.8. Interrupt Priority
Registers. Remember that higher priority field values correspond to lower exception priorities.

2.5.1.3.10 CONTROL Register
The CONTROL register controls the stack used and the privilege level for software execution when the processor
is in Thread mode. For information about its attributes, see the register summary in Table 2-2. The following figure
shows the bit assignments for MSR or MRS access.

Figure 2-6. Control Register

Reserved

31 2 1 0

Active Stake Pointer
Thread Mode Privilege Level

Table 2-10. Control Register Bit Assignments

Bits Name Function

[31:2] — Reserved

Cortex-M3 Processor (Reference Material)

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 26

...........continued
Bits Name Function

[1] Active stack pointer Defines the currently active stack pointer:
• 0: MSP is the current stack pointer
• 1: PSP is the current stack pointer

In Handler mode this bit reads as zero and ignores writes.

[0] Thread mode privilege level Defines the Thread mode privilege level:
• 0: Privileged
• 1: Unprivileged

Handler mode always uses the MSP, so the processor ignores explicit writes to the active stack pointer bit of the
CONTROL register when in Handler mode. The exception entry and return mechanisms automatically update the
CONTROL register based on the EXC_RETURN value, see Table 2-17.

In an OS environment, Arm recommends that threads running in Thread mode use the process stack and the kernel
and exception handlers use the main stack.

By default, Thread mode uses the MSP. To switch the stack pointer used in Thread mode to the PSP, either:

• Use the MSR instruction to set the Active stack pointer bit to 1, see 2.6.10.7. MSR
• Perform an exception return to Thread mode with the appropriate EXC_RETURN value. For more information,

see Table 2-17

Important: When changing the stack pointer, software must use an ISB instruction immediately after
the MSR instruction. This ensures that instructions after the ISB instruction execute using the new
stack pointer. For more information, see 2.6.10.5. ISB.

2.5.1.4 Exceptions and Interrupts
The Cortex-M3 processor supports interrupts and system exceptions. The processor and the Nested Vectored
Interrupt Controller (NVIC) prioritize and handle all exceptions. An exception changes the normal flow of software
control. The processor uses Handler mode to handle all exceptions except for reset. For more information, see
2.5.3.7.1. Exception Entry and 2.5.3.7.2. Exception Return.

The NVIC registers control interrupt handling. For more information, see 2.4.1. Nested Vectored Interrupt Controller.

The following sections provide more information about the CMSIS.

• 2.5.5.5. Power Management Programming Hints
• 2.6.2. CMSIS Functions
• 2.7.1.2. Accessing the Cortex-M3 Processor NVIC Registers Using CMSIS
• 2.7.1.11.1. NVIC programming hints

2.5.1.5 Data types
The processor:

• Supports the following data types:
– 32-bit words
– 16-bit halfwords
– 8-bit bytes.

• Manages all data memory accesses as little-endian or big-endian. Instruction memory and Private Peripheral
Bus (PPB) accesses are always performed as little-endian. The Cortex-M3 processor configured for
SmartFusion 2 SoC FPGA MSS uses only little-endian. For more information, see 2.5.2.1. Memory Regions,
Types and Attributes.

2.5.1.6 The Cortex Microcontroller Software Interface Standard
For a Cortex-M3 processor system, the Cortex Microcontroller Software Interface Standard (CMSIS) defines:

Cortex-M3 Processor (Reference Material)

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 27

• a common way to:
– access peripheral registers
– define exception vectors

• the names of:
– the registers of the core peripherals
– the core exception vectors

• a device-independent interface for RTOS kernels, including a debug channel.

The CMSIS includes address definitions and data structures for the core peripherals in the Cortex-M3 processor. It
also includes optional interfaces for middleware components comprising a TCP/IP stack and a Flash file system.

CMSIS simplifies software development by enabling the reuse of template code and the combination of CMSIS-
compliant software components from various middleware vendors. Software vendors can expand the CMSIS to
include their peripheral definitions and access functions for those peripherals.

This document includes the register names defined by the CMSIS, and gives short descriptions of the CMSIS
functions that address the processor core and the core peripherals.

Note: This document uses the register short names defined by the CMSIS. In a few cases these differ from the
architectural short names that might be used in other documents.

2.5.2 Memory Model
This section describes the processor memory map, the behavior of memory accesses, and the
bit-banding features. The processor has a fixed memory map that provides up to 4GB of addressable memory. The
following illustration shows the processor memory map.

Figure 2-7. Processor Memory Map

Vendor-specific
memory

External device

External RAM

Peripheral

SRAM

Code

0xFFFFFFFF

Private peripheral
bus

0xE0100000
0xE00FFFFF

0x9FFFFFFF
0xA0000000

0x5FFFFFFF
0x60000000

0x3FFFFFFF
0x40000000

0x1FFFFFFF
0x20000000

0x00000000

0x40000000
 Bit band region

Bit band alias32MB

1MB
0x400FFFFF

0x42000000

0x43FFFFFF

 Bit band region

Bit band alias32MB

1MB
0x20000000

0x200FFFFF

0x22000000

0x23FFFFFF

1.0GB

1.0GB

0.5GB

0.5GB

0.5GB

0xDFFFFFFF
0xE0000000

1.0MB

511MB

The regions for SRAM and peripherals include bit-band regions. Bit-banding provides atomic operations to bit data,
see 2.5.2.5. Bit-Banding.

The processor reserves regions of the Private peripheral bus (PPB) address range for core peripheral registers, see
2.7. Cortex-M3 Processor Peripherals.

Cortex-M3 Processor (Reference Material)

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 28

2.5.2.1 Memory Regions, Types and Attributes
The memory map and the programming of the MPU splits the memory map into regions. Each region has a defined
memory type, and some regions have additional memory attributes. The memory type and attributes determine the
behavior of accesses to the region.

The memory types are:

Normal: The processor can re-order transactions for efficiency, or perform speculative reads.

Device: The processor preserves transaction order relative to other transactions to Device or Strongly-ordered
memory.

Strongly-ordered: The processor preserves transaction order relative to all other transactions Strongly-Ordered or
Device.

The different ordering requirements for Device and Strongly-ordered memory mean that the memory system can
buffer a write to Device memory, but must not buffer a write to Strongly-ordered memory.

The additional memory attributes include:

Shareable: For a shareable memory region, the memory system provides data synchronization between bus masters
in a system with multiple bus masters, for example, a processor with a DMA controller.

Strongly-ordered memory is always shareable.

If multiple bus masters can access a non-shareable memory region, software must ensure data coherency between
the bus masters.

Execute Never (XN): Means the processor prevents instruction accesses. A fault exception is generated only on
execution of an instruction executed from an XN region.

2.5.2.2 Memory System Ordering of Memory Accesses
For most memory accesses caused by explicit memory access instructions, the memory system does not ensure
that the order in which the accesses complete matches the program order of the instructions, providing this does
not affect the behavior of the instruction sequence. Normally, if correct program execution depends on two memory
accesses completing in program order, software must insert a memory barrier instruction between the memory
access instructions.

However, the memory system does ensure some ordering of accesses to Device and Strongly-ordered memory. The
following figure shows the ordering of the memory accesses caused by two instructions A1 and A2 if A1 occurs
before A2 in program order.

Figure 2-8. Memory Ordering Restrictions

Normal access

Device access, non-shareable

Device access, shareable

Strongly-ordered access

Normal
access Non-shareable Shareable

Strongly-
ordered
access

Device access

A1
A2

-

-

-

-

-

<

-

<

-

-

<

<

-

<

<

<

Where:

• - Means that the memory system does not ensure the ordering of the accesses.
• < Means that accesses are observed in program order, that is, A1 is always observed before A2.

2.5.2.3 Behavior of Memory Accesses
The following table provides information about the behavior of accesses to each region in the memory map.

Table 2-11. Memory Access Behavior

Address range Memory region Memory
Type1

XN1 Description

0x00000000-
0x1FFFFFFF

Code Normal — Executable region for program code. You can also
put data here.

Cortex-M3 Processor (Reference Material)

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 29

...........continued
Address range Memory region Memory

Type1
XN1 Description

0x20000000-
0x3FFFFFFF

SRAM Normal — Executable region for data. You can also put code
here. This region includes bit band and bit band
alias areas, see Table 2-13.

0x40000000-
0x5FFFFFFF

Peripheral Device XN This region includes bit band and bit band alias
areas, see Table 2-14.

0x60000000-
0x9FFFFFFF

External RAM Normal — Executable region for data.

0xA0000000-
0xDFFFFFFF

External device Device XN External Device memory.

0xE0000000-
0xE00FFFFF

Private
Peripheral Bus

Strongly-
ordered

XN This region includes the NVIC, System timer, and
system control block.

0xE0100000-
0xFFFFFFFF

Vendor specific Device XN Accesses to this region are to vendor-specific
peripherals.

Note: 
1. See 2.5.2.1. Memory Regions, Types and Attributes for more information.

The Code, SRAM, and external RAM regions can hold programs. However, Arm recommends that programs always
use the Code region. This is because the processor has separate buses that enable instruction fetches and data
accesses to occur simultaneously.

The MPU can override the default memory access behavior described in this section. For more information, see
2.4.4. Memory Protection Unit.

2.5.2.3.1 Additional memory access constraints for caches and shared memory
When a system includes caches or shared memory, some memory regions have additional access constraints, and
some regions are subdivided, as detailed in the following table.

Table 2-12. Memory Region Shareability and Cache Policies

Address range Memory region Memory type1 Shareability Cache
policy2

0x00000000- 0x1FFFFFFF Code Normal — WT

0x20000000- 0x3FFFFFFF SRAM Normal — WBWA

0x40000000- 0x5FFFFFFF Peripheral Device — —

0x60000000- 0x7FFFFFFF External RAM Normal — WBWA

0x80000000- 0x9FFFFFFF WT

0xA0000000- 0xBFFFFFFF External device Device Shareable —

0xC0000000- 0xDFFFFFFF Non-shareable

0xE0000000- 0xE00FFFFF Private Peripheral Bus Strongly- ordered Shareable —

0xE0100000- 0xFFFFFFFF Vendor-specific device Device — —

Notes: 
1. See 2.5.2.1. Memory Regions, Types and Attributes for more information.
2. WT = Write through, no write allocate. WBWA = Write back, write allocate.

2.5.2.3.2 Instruction Prefetch and Branch Prediction
The Cortex-M3 processor:

Cortex-M3 Processor (Reference Material)

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 30

• Prefetches instructions ahead of execution
• Speculatively prefetches from branch target addresses.

2.5.2.4 Software Ordering of Memory Accesses
The order of instructions in the program flow does not always guarantee the order of the corresponding memory
transactions. This is because:

• the processor can reorder some memory accesses to improve efficiency, providing this does not affect the
behavior of the instruction sequence.

• the processor has multiple bus interfaces
• memory or devices in the memory map have different wait states
• some memory accesses are buffered or speculative.

2.5.2.2. Memory System Ordering of Memory Accesses describes the cases where the memory system guarantees
the order of memory accesses. Otherwise, if the order of memory accesses is critical, software must include memory
barrier instructions to force that ordering. The processor provides the following memory barrier instructions:

DMB: The Data Memory Barrier (DMB) instruction ensures that outstanding memory transactions complete before
subsequent memory transactions. See 2.6.10.3. DMB.

DSB: The Data Synchronization Barrier (DSB) instruction ensures that outstanding memory transactions complete
before subsequent instructions execute. See 2.6.10.4. DSB.

ISB: The Instruction Synchronization Barrier (ISB) ensures that the effect of all completed memory transactions is
recognizable by subsequent instructions. See 2.6.10.5. ISB.

MPU programming

Use a DSB followed by an ISB instruction or exception return to ensure that the new MPU configuration is used by
subsequent instructions.

2.5.2.5 Bit-Banding
A bit-band region maps each word in a bit-band alias region to a single bit in the bit-band region. The bit-band
regions occupy the lowest 1MB of the SRAM and peripheral memory regions.

Important: The Cortex-M3 processor does not support exclusive accesses to bit-band regions.

The memory map has two 32MB alias regions that map to two 1MB bit-band regions:

• accesses to the 32MB SRAM alias region map to the 1MB SRAM bit-band region, as detailed in Table 2-13.
• accesses to the 32MB peripheral alias region map to the 1MB peripheral bit-band region, as detailed in Table

2-14.

Table 2-13. SRAM Memory Bit-banding Regions

Address Range Memory SRAM Region Instruction and Data Accesses

0x20000000-0x200FFFFF Bit-band region Direct accesses to this memory range behave as SRAM
memory accesses, but this region is also bit addressable
through bit-band alias.

0x22000000-0x23FFFFFF Bit-band alias Data accesses to this region are remapped to bit band
region. A write operation is performed as read-modify-write.
Instruction accesses are not remapped.

Cortex-M3 Processor (Reference Material)

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 31

Table 2-14. Peripheral Memory Bit-banding Regions

Address range Memory SRAM Region Instruction and Data Accesses

0x40000000-0x400FFFFF Bit-band alias Direct accesses to this memory range behave as peripheral
memory accesses, but this region is also bit addressable
through bit-band alias.

0x42000000-0x43FFFFFF Bit-band region Data accesses to this region are remapped to bit band
region. A write operation is performed as read-modify-write.
Instruction accesses are not permitted.

Important: 
• A word access to the SRAM or peripheral bit-band alias regions maps to a single bit in the SRAM or

peripheral bit-band region.
• Bit band accesses can use byte, halfword, or word transfers. The bit band transfer size matches the

transfer size of the instruction making the bit band access.

The following formula shows how the alias region maps onto the bit-band region:

• bit_word_offset = (byte_offset x 32) + (bit_number x 4)
• bit_word_addr = bit_band_base + bit_word_offset

where:

• Bit_word_offset is the position of the target bit in the bit-band memory region.
• Bit_word_addr is the address of the word in the alias memory region that maps to the targeted bit.
• Bit_band_base is the starting address of the alias region.
• Byte_offset is the number of the byte in the bit-band region that contains the targeted bit.
• Bit_number is the bit position, 0-7, of the targeted bit.

The following illustration shows examples of bit-band mapping between the SRAM bit-band alias region and the
SRAM bit-band region.

• The alias word at 0x23FFFFE0 maps to bit[0] of the bit-band byte at 0x200FFFFF:
0x23FFFFE0 = 0x22000000 + (0xFFFFF*32) + (0*4).

• The alias word at 0x23FFFFFC maps to bit[7] of the bit-band byte at 0x200FFFFF:
0x23FFFFFC = 0x22000000 + (0xFFFFF*32) + (7*4).

• The alias word at 0x22000000 maps to bit[0] of the bit-band byte at 0x20000000:
0x22000000 = 0x22000000 + (0*32) + (0 *4).

• The alias word at 0x2200001C maps to bit[7] of the bit-band byte at 0x20000000:
0x2200001C = 0x22000000+ (0*32) + (7*4).

Cortex-M3 Processor (Reference Material)

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 32

Figure 2-9. Bit-band Mapping

0x23FFFFE4

0x22000004

0x23FFFFE00x23FFFFE80x23FFFFEC0x23FFFFF00x23FFFFF40x23FFFFF80x23FFFFFC

0x220000000x220000140x220000180x2200001C 0x220000080x22000010 0x2200000C

32MB Alias Region

0

7 0

07

0x200000000x200000010x200000020x20000003

6 5 4 3 2 1 07 6 5 4 3 2 1 7 6 5 4 3 2 1 07 6 5 4 3 2 1

07 6 5 4 3 2 1 6 5 4 3 2 107 6 5 4 3 2 1 07 6 5 4 3 2 1

0x200FFFFC0x200FFFFD0x200FFFFE0x200FFFFF

1MB SRAM Bit-band Region

2.5.2.5.1 Directly Accessing an Alias Region
Writing to a word in the alias region updates a single bit in the bit-band region.

Bit[0] of the value written to a word in the alias region determines the value written to the targeted bit in the bit-band
region. Writing a value with bit[0] set to 1 writes a 1 to the bit-band bit, and writing a value with bit[0] set to 0 writes a
0 to the bit-band bit.

Bits[31:1] of the alias word have no effect on the bit-band bit. Writing 0x01 has the same effect as writing 0xFF.
Writing 0x00 has the same effect as writing 0x0E.

Reading a word in the alias region:

• 0x00000000 indicates that the targeted bit in the bit-band region is set to zero
• 0x00000001 indicates that the targeted bit in the bit-band region is set to 1.

2.5.2.5.2 Directly accessing a bit-band region
2.5.2.3. Behavior of Memory Accesses describes the behavior of direct byte, halfword, or word accesses to the
bit-band regions.

2.5.2.6 Memory Endianness
The processor views memory as a linear collection of bytes numbered in ascending order from zero. For example,
bytes 0-3 hold the first stored word, and bytes 4-7 hold the second stored word. Byte-invariant big-endian format or
Little-endian format describes how words of data are stored in memory.

2.5.2.6.1 Byte-invariant Big-endian Format
In byte-invariant big-endian format, the processor stores the most significant byte of a word at the lowest-numbered
byte, and the least significant byte at the highest-numbered byte. The following illustration shows the byte-invariant
big-endian format.

Figure 2-10. Byte-Invariant Big-Endian Format
Memory Register

Address A

A+1

msbyte

lsbyte

A+2

A+3

07

B3B2B0 B1
31 2423 1615 8 7 0

B0

B1

B2

B3

2.5.2.6.2 Little-Endian format
In little-endian format, the processor stores the least significant byte of a word at the lowest-numbered byte, and the
most significant byte at the highest-numbered byte. Cortex-M3 processor configured for SmartFusion 2 SoC FPGA
MSS uses only little endian. The following figure illustrates the little-endian format.

Cortex-M3 Processor (Reference Material)

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 33

Figure 2-11. Little Endian Format
Memory Register

Address A

A+1

lsbyte

msbyte

A+2

A+3

07

B0B1B3 B2
31 2423 1615 8 7 0

B0

B1

B2

B3

2.5.2.7 Synchronization Primitives
The Cortex-M3 processor instruction set includes pairs of synchronization primitives. These provide a non-blocking
mechanism that a thread or process can use to obtain exclusive access to a memory location. Software can use
them to perform a guaranteed read-modify-write memory update sequence, or for a semaphore mechanism.

A pair of synchronization primitives comprises.

2.5.2.7.1 A Load-Exclusive Instruction
Used to read the value of a memory location, requesting exclusive access to that location.

2.5.2.7.2 A Store-Exclusive Instruction
Used to attempt to write to the same memory location, returning a status bit to a register. If this bit is:

• 0: it indicates that the thread or process gained exclusive access to the memory, and the write succeeds.
• 1: it indicates that the thread or process did not gain exclusive access to the memory, and no write is performed.

The pairs of Load-Exclusive and Store-Exclusive instructions are:

• the word instructions LDREX and STREX
• the halfword instructions LDREXH and STREXH
• the byte instructions LDREXB and STREXB.

Software must use a Load-Exclusive instruction with the corresponding Store-Exclusive instruction.

To perform a guaranteed read-modify-write of a memory location, software must:

1. Use a Load-Exclusive instruction to read the value of the location.
2. Update the value, as required.
3. Use a Store-Exclusive instruction to attempt to write the new value back to the memory location, and tests the

returned status bit. If this bit is:
– 0: The read-modify-write completed successfully.
– 1: No write was performed. This indicates that the value returned at step 1 might be out of date. The

software must retry the read-modify-write sequence.

Software can use the synchronization primitives to implement a semaphores as follows:

1. Use a Load-Exclusive instruction to read from the semaphore address to check whether the semaphore is
free.

2. If the semaphore is free, use a Store-Exclusive to write the claim value to the semaphore address.
3. If the returned status bit from step2 indicates that the Store-Exclusive succeeded then the software has

claimed the semaphore. However, if the Store-Exclusive failed, another process might have claimed the
semaphore after the software performed step 1.

The Cortex-M3 processor includes an exclusive access monitor, that tags the fact that the processor has executed
a Load-Exclusive instruction. If the processor is part of a multiprocessor system, the system also globally tags the
memory locations addressed by exclusive accesses by each processor.

The processor removes its exclusive access tag if:

• It executes a CLREX instruction
• It executes a Store-Exclusive instruction, regardless of whether the write succeeds.
• An exception occurs. This means the processor can resolve semaphore conflicts between different threads.

Cortex-M3 Processor (Reference Material)

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 34

In a multiprocessor implementation:

• By executing a CLREX instruction removes only the local exclusive access tag for the processor
• By executing a Store-Exclusive instruction, or an exception, removes the local exclusive access tags, and all

global exclusive access tags for the processor.

For more information about the synchronization primitive instructions, see 2.6.4.8. LDREX and STREX and
2.6.4.9. CLREX.

2.5.2.8 Programming Hints for the Synchronization Primitives
ISO/IEC C cannot directly generate the exclusive access instructions. Some CMSIS provides intrinsic functions for
generation of these instructions. The following table lists the functions that CMSIS provides.

Table 2-15. CMSIS Functions for Exclusive Access Instructions

Instruction Intrinsic Function

LDREX, LDREXH, or LDREXB unsigned char__LDREXB(volatile char *ptr)
unsigned short __LDREXH(volatile short *ptr)

unsigned int __LDREXB(volatile int *ptr)

STREX, STREXH, or STREXB int __STREXB(unsigned char val, volatile char *ptr)
int __STREXB(unsigned short val, volatile short *ptr)

int __STREXB(unsigned int val, volatile int *ptr)

CLREX void __CLREX(void)

The actual exclusive access instruction generated depends on the data type of the pointer passed to the intrinsic
function.

2.5.3 Exception Model
This section describes the exception model.

2.5.3.1 Exception States
Each exception is in one of the following states:

• Inactive: The exception is not active and not pending.
• Pending: The exception is waiting to be serviced by the processor. An interrupt request from a peripheral or from

software can change the state of the corresponding interrupt to pending.
• Active: An exception that is being serviced by the processor but has not completed. An exception handler can

interrupt the execution of another exception handler. In this case both exceptions are in the active state.
• Active and pending: The exception is being serviced by the processor and there is a pending exception from the

same source.

2.5.3.2 Exception Types
The exception types are:

• Reset: Reset is invoked on power-up or a warm reset. The exception model treats reset as a special form of
exception. When reset is asserted, the operation of the processor stops, potentially at any point in an instruction.
When reset is deasserted, execution restarts from the address provided by the reset entry in the vector table.
Execution restarts as privileged execution in Thread mode.

• NMI: A Non-Maskable Interrupt (NMI) can be signaled by a peripheral or triggered by software. This is the
highest priority exception other than reset. It is permanently enabled and has a fixed priority of -2. NMIs cannot
be:

– Masked or prevented from activation by any other exception
– Preempted by any exception other than Reset

• HardFault: A HardFault is an exception that occurs because of an error during exception processing, or because
an exception cannot be managed by any other exception mechanism. HardFaults have a fixed priority of -1,
meaning they have higher priority than any exception with configurable priority.

Cortex-M3 Processor (Reference Material)

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 35

• MemManage: A MemManage fault is an exception that occurs because of a memory protection related fault.
The MPU or the fixed memory protection constraints determines this fault, for both instruction and data memory
transactions. This fault is always used to abort instruction accesses to Execute Never (XN) memory regions.

• BusFault: A BusFault is an exception that occurs because of a memory related fault for an instruction or data
memory transaction. This might be from an error detected on a bus in the memory system.

• UsageFault: A UsageFault is an exception that occurs because of a fault related to instruction execution.
This includes:

• An undefined instruction
• An illegal unaligned access
• Invalid state on instruction execution
• An error on exception return

The following can cause a UsageFault when the core is configured to report them:
• An unaligned address on word and halfword memory access
• Division by zero

• SVCall: A supervisor call (SVC) is an exception that is triggered by the SVC instruction. In an OS environment,
applications can use SVC instructions to access OS kernel functions and device drivers.

• PendSV: PendSV is an interrupt-driven request for system-level service. In an OS environment, use PendSV for
context switching when no other exception is active.

• SysTick: A SysTick exception is an exception the system timer generates when it reaches zero. Software can
also generate a SysTick exception. In an OS environment, the processor can use this exception as system tick.

• Interrupt (IRQ): A interrupt, or IRQ, is an exception signaled by a peripheral, or generated by a software
request. All interrupts are asynchronous to instruction execution. In the system, peripherals use interrupts to
communicate with the processor.

For an asynchronous exception, other than reset, the processor can execute another instruction between when the
exception is triggered and when the processor enters the exception handler.

Table 2-16. Properties of the Different Exception Types

Exception
number1

IRQ number1 Exception type Priority Vector address or
offset2

Activation

1 — Reset -3, the highest 0x00000004 Asynchronous

2 -14 NMI -2 0x00000008 Asynchronous

3 -13 HardFault -1 0x0000000C

4 -12 MemManage Configurable 0x00000010 Synchronous

5 -11 BusFault Configurable3 0x00000014 Synchronous when
precise, asynchronous
when imprecise

6 -10 UsageFault Configurable3 0x00000018 Synchronous

7-10 Reserved — — —

11 -5 SVCall Configurable3 0x0000002C Synchronous

12-13 Reserved — — —

14 -2 PendSV Configurable3 0x00000038 Asynchronous

15 -1 SysTick Configurable3 0x0000003C Asynchronous

16 and
above

0 and above Interrupt (IRQ) Configurable4 0x00000040 and
above5

Asynchronous

Cortex-M3 Processor (Reference Material)

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 36

Notes: 
1. To simplify the software layer, the CMSIS only uses IRQ numbers and therefore uses negative values for

exceptions other than interrupts. The IPSR returns the Exception number, see 2.5.1.3.7. Interrupt Program
Status Register.

2. See 2.5.3.4. Vector Table for more information.
3. See 2.7.2.8. System Handler Priority Registers.
4. See 2.7.1.8. Interrupt Priority Registers.
5. Increasing in steps of 4.

Privileged software can disable the exceptions that Table 2-16 shows as having configurable priority. See
2.7.2.9. System Handler Control and State Register and 2.7.1.4. Interrupt Clear-enable Registers.

For more information about HardFaults, MemManage faults, BusFaults, and UsageFaults, see 2.5.4. Fault Handling.

2.5.3.3 Exception Handlers
The processor handles exceptions using:

• Interrupt Service Routines (ISRs): Interrupts IRQ0 to IRQ239 are the exceptions handled by ISRs.
• Fault handlers: HardFault, MemManage, UsageFault and BusFault are fault exceptions handled by the fault

handlers.
• System handlers: NMI, PendSV, SVCall SysTick, and the fault exceptions are all system exceptions that are

handled by system handlers.

2.5.3.4 Vector Table
The vector table contains the reset value of the stack pointer, and the start addresses, also called exception
vectors, for all exception handlers. Figure 2-2 shows the order of the exception vectors in the vector table. The
least-significant bit of each vector must be 1, indicating that the exception handler is Thumb code.

Figure 2-12. Vector Table

Initial SP value

Reset

Hard fault

NMI

Memory management fault

Usage fault

Bus fault

0x0000

0x0004

0x0008

0x000C

0x0010

0x0014

0x0018

Reserved

SVCall

PendSV

Reserved for Debug

Systick

IRQ0

Reserved

0x002C

0x0038

0x003C

0x0040

OffsetException number

2

3

4

5

6

11

12

14

15

16

18

13

7

10

1

Vector

.

.

.

8

9

IRQ1

IRQ2

0x0044

IRQ239

17
0x0048

0x004C

255

.

.

.

.

.

.

0x03FC

IRQ number

-14

-13

-12

-11

-10

-5

-2

-1

0

2

1

239

On system reset, the vector table is fixed at address 0x00000000. Privileged software can write to the VTOR to
relocate the vector table start address to a different memory location, in the range 0x00000080 to 0x3FFFFF80, see
2.7.2.4. Vector Table Offset Register.

2.5.3.5 Exception Priorities
As Table 2-16 shows, all exceptions have an associated priority, with:

Cortex-M3 Processor (Reference Material)

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 37

• A lower priority value indicating a higher priority
• Configurable priorities for all exceptions except Reset, HardFault, and NMI

If software does not configure any priorities, then all exceptions with a configurable priority have a priority of
0. For information about configuring exception priorities see 2.7.2.8. System Handler Priority Registers and
2.7.1.8. Interrupt Priority Registers.

Important: Configurable priority values are in the range 0–255. This means that the Reset, HardFault,
and NMI exceptions, with fixed negative priority values, always have higher priority than any other
exception.

For example, assigning a higher priority value to IRQ[0] and a lower priority value to IRQ[1] means that IRQ[1] has
higher priority than IRQ[0]. If both IRQ[1] and IRQ[0] are asserted, IRQ[1] is processed before IRQ[0].

If multiple pending exceptions have the same priority, the pending exception with the lowest exception number
takes precedence. For example, if both IRQ[0] and IRQ[1] are pending and have the same priority, then IRQ[0] is
processed before IRQ[1].

When the processor is executing an exception handler, the exception handler is preempted if a higher priority
exception occurs. If an exception occurs with the same priority as the exception being handled, the handler is not
preempted, irrespective of the exception number. However, the status of the new interrupt changes to pending.

2.5.3.6 Interrupt Priority Grouping
To increase priority control in systems with interrupts, the NVIC supports priority grouping. This divides each interrupt
priority register entry into two fields:

• An upper field that defines the group priority
• A lower field that defines a subpriority within the group.

Only the group priority determines preemption of interrupt exceptions. When the processor is executing an interrupt
exception handler, another interrupt with the same group priority as the interrupt being handled does not preempt the
handler,

If multiple pending interrupts have the same group priority, the subpriority field determines the order in which they are
processed. If multiple pending interrupts have the same group priority and subpriority, the interrupt with the lowest
IRQ number is processed first.

For information about splitting the interrupt priority fields into group priority and subpriority, see 2.7.2.5. Application
Interrupt and Reset Control Register.

2.5.3.7 Exception Entry and Return
Descriptions of exception handling use the following terms:

• Preemption: When the processor is executing an exception handler, an exception can preempt the exception
handler if its priority is higher than the priority of the exception being handled. See 2.5.3.6. Interrupt Priority
Grouping for more information about preemption by an interrupt.
When one exception preempts another, the exceptions are called nested exceptions. See 2.5.3.7.1. Exception
Entry more information.

• Return: This occurs when the exception handler is completed, and:
– There is no pending exception with sufficient priority to be serviced
– The completed exception handler was not handling a late-arriving exception.

The processor pops the stack and restores the processor state to the state it had before the interrupt occurred.
See 2.5.3.7.2. Exception Return for more information.

• Tail-chaining: This mechanism speeds up exception servicing. On completion of an exception handler, if there
is a pending exception that meets the requirements for exception entry, the stack pop is skipped and control
transfers to the new exception handler.

• Late-arriving: This mechanism speeds up preemption. If a higher priority exception occurs during state saving
for a previous exception, the processor switches to handle the higher priority exception and initiates the vector
fetch for that exception. State saving is not affected by late arrival because the state saved is the same for
both exceptions. Therefore the state saving continues uninterrupted. The processor can accept a late arriving

Cortex-M3 Processor (Reference Material)

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 38

exception until the first instruction of the exception handler of the original exception enters the execute stage of
the processor. On return from the exception handler of the late-arriving exception, the normal tail-chaining rules
apply.

2.5.3.7.1 Exception Entry
Exception entry occurs when there is a pending exception with sufficient priority and either:

• The processor is in Thread mode
• The new exception is of higher priority than the exception being handled, in which case the new exception

preempts the exception being handled.

When one exception preempts another, the exceptions are nested.

Sufficient priority means the exception has greater priority than any limit set by the mask register, see
2.5.1.3.9. Exception Mask Registers. An exception with less priority than this is pending but is not handled by
the processor.

When the processor takes an exception, unless the exception is a tail-chained or a late-arriving exception, the
processor pushes information onto the current stack. This operation is referred to as stacking and the structure of
eight data words is referred as a stack frame. The following figure illustrates the information contained in the stack
frame.

Figure 2-13. Exception Entry Stack Contents
SP points here before interrupt

xPSR
PC
LR
R12
R3
R2
R1
R0

<previous>

SP points here after interrupt

SP + 0x1C

SP + 0x18

SP + 0x14

SP + 0x10

SP + 0x0C

SP + 0x08

SP + 0x04

SP + 0x00

Decreasing
memory
address

Immediately after stacking, the stack pointer indicates the lowest address in the stack frame. The alignment of the
stack frame is controlled via the STKALIGN bit of the Configuration Control Register (CCR).

The stack frame includes the return address. This is the address of the next instruction in the interrupted program.
This value is restored to the PC at exception return so that the interrupted program resumes.

The processor performs a vector fetch that reads the exception handler start address from the vector table. When
stacking is complete, the processor starts executing the exception handler. At the same time, the processor writes
an EXC_RETURN value to the LR. This indicates which stack pointer corresponds to the stack frame and what
operation mode the processor was in before the entry occurred.

If no higher priority exception occurs during exception entry, the processor starts executing the exception handler and
automatically changes the status of the corresponding pending interrupt to active.

If another higher priority exception occurs during exception entry, the processor starts executing the exception
handler for this exception and does not change the pending status of the earlier exception. This is the late arrival
case.

2.5.3.7.2 Exception Return
Exception return occurs when the processor is in Handler mode and execution of one of the following instructions
attempts to set the PC to an EXC_RETURN value:

• An LDM or POP instruction that loads the PC
• An LDR instruction with PC as the destination
• A BX instruction using any register

The processor saves an EXC_RETURN value to the LR on exception entry. The exception mechanism relies on this
value to detect when the processor has completed an exception handler. Bits[31:4] of an EXC_RETURN value are
0xFFFFFFF.

When the processor loads a value matching this pattern to the PC it detects that the operation is a not a normal
branch operation and, instead, that the exception is complete. Therefore, it starts the exception return sequence.
Bits[3:0] of the EXC_RETURN value indicate the required return stack and processor mode, as noted in the following
table.

Cortex-M3 Processor (Reference Material)

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 39

Table 2-17. Exception Return Behavior

EXC_RETURN Description

0xFFFFFFF1 • Return to Handler mode
• Exception return gets state from the main stack
• Execution uses MSP after return

0xFFFFFFF9 • Return to Thread mode
• Exception Return get state from the main stack
• Execution uses MSP after return

0xFFFFFFFD • Return to Thread mode
• Exception return gets state from the process stack
• Execution uses PSP after return

All other values Reserved

2.5.4 Fault Handling
Faults are a subset of the exceptions, see 2.5.3. Exception Model. The following generates a fault:

• a bus error on:
– an instruction fetch or vector table load
– a data access

• an internally-detected error such as an undefined instruction
• attempting to execute an instruction from a memory region marked as Non-Executable (XN).
• attempting to execute an instruction while the EPSR T-bit is clear. For example, as the result of an erroneous BX

instruction, or a vector fetch from a vector table entry with bit[0] clear.
• an MPU fault because of a privilege violation or an attempt to access an unmanaged region.

2.5.4.1 Fault Types
The following table shows the types of fault, the handler used for the fault, the corresponding fault status register, and
the register bit that indicates that the fault has occurred. For more information about the fault status registers, see
2.7.2.10. Configurable Fault Status Register.

Table 2-18. Faults

Fault Handler Bit name Fault status register

Bus error on a vector read HardFault VECTTBL HardFault Status Register

Fault escalated to a
HardFault

FORCED

MPU or default memory
map mismatch:

MemManage —

on instruction access IACCVIOL1  MemManage Fault Status Register

on data access DACCVIOL

during exception stacking MSTKERR

during exception unstacking MUNSKERR

Bus error: BusFault —

Cortex-M3 Processor (Reference Material)

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 40

...........continued
Fault Handler Bit name Fault status register

during exception stacking — STKERR BusFault Status Register

during exception unstacking — UNSTKERR

during instruction prefetch — IBUSERR

Precise data bus error — PRECISERR

Imprecise data bus error — IMPRECISERR

Attempt to access a
coprocessor

UsageFault NOCP UsageFault Status Register

Undefined instruction UNDEFINSTR

Attempt to enter an invalid
instruction set state2

INVSTATE

Invalid EXC_RETURN value UsageFault INVPC UsageFault Status Register

Illegal unaligned load or
store

UNALIGNED

Divide By 0 DIVBYZERO

Notes: 
1. Occurs on an access to an XN region even if the processor does not include an MPU or the MPU is disabled.
2. Attempting to use an instruction set other than the Thumb instruction set or returns to a non load/store-multiple

instruction with ICI continuation.

2.5.4.2 Fault Escalation and HardFaults
All faults exceptions except for HardFault have configurable exception priority, see 2.7.2.8. System Handler Priority
Registers. Software can disable execution of the handlers for these faults, see 2.7.2.9. System Handler Control and
State Register.

Usually, the exception priority, together with the values of the exception mask registers, determines whether the
processor enters the fault handler, and whether a fault handler can preempt another fault handler as described in
2.5.3. Exception Model.

In some situations, a fault with configurable priority is treated as a HardFault. This is called priority escalation, and the
fault is described as escalated to HardFault. Escalation to HardFault occurs when:

A fault handler causes the same kind of fault as the one it is servicing. This escalation to HardFault occurs because a
fault handler cannot preempt itself because it must have the same priority as the current priority level.

A fault handler causes a fault with the same or lower priority as the fault it is servicing. This is because the handler for
the new fault cannot preempt the currently executing fault handler.

An exception handler causes a fault for which the priority is the same as or lower than the currently executing
exception.

A fault occurs and the handler for that fault is not enabled.

If a BusFault occurs during a stack push when entering a BusFault handler, the BusFault does not escalate to a
HardFault. This means that if a corrupted stack causes a fault, the fault handler executes even though the stack push
for the handler failed. The fault handler operates but the stack contents are corrupted.

Only Reset and NMI can preempt the fixed priority HardFault. A HardFault can preempt any exception other than
Reset, NMI, or another HardFault.

2.5.4.3 Fault Status Registers and Fault Address Registers
The fault status registers indicate the cause of a fault. For BusFaults and MemManage faults, the fault address
register indicates the address accessed by the operation that caused the fault, as detailed in the following table.

Cortex-M3 Processor (Reference Material)

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 41

Table 2-19. Fault Status and Fault Address Registers

Handler Status Register
Name

Address Register
Name

Register Description

HardFault HFSR — HardFault Status Register

MemManage MMFSR MMFAR MemManage Fault Status Register
MemManage Fault Address Register

BusFault BFSR BFAR BusFault Status Register
BusFault Address Register

UsageFault UFSR — UsageFault Status Register

2.5.4.4 Lockup
The processor enters a lockup state if a fault occurs when executing the NMI or HardFault handlers. When the
processor is in lockup state it does not execute any instructions. The processor remains in lockup state until either:

• It is reset
• An NMI occurs
• It is halted by the debugger

Important: If lockup state occurs from the NMI handler a subsequent NMI does not cause the processor
to leave lockup state.

2.5.5 Power Management
The Cortex-M3 processor sleep modes reduce power consumption:

• Sleep mode stops the processor clock.
• Deep sleep mode stops the system clock and switches off the PLL and flash memory.

The SLEEPDEEP bit of the SCR selects which Sleep mode is used, see 2.7.2.6. System Control Register.

This section describes the mechanisms for entering Sleep mode, and the conditions for waking up from Sleep mode.

2.5.5.1 Entering Sleep Mode
This section describes the mechanisms software can use to put the processor into Sleep mode.

The system can generate spurious wakeup events, for example a debug operation wakes up the processor.
Therefore software must be able to put the processor back into Sleep mode after such an event. A program might
have an idle loop to put the processor back to Sleep mode.

2.5.5.1.1 Wait for Interrupt
The wait for interrupt instruction, WFI, causes immediate entry to sleep mode unless the wake-up condition is true,
see 2.5.5.2.1. Wakeup from WFI or sleep-on-exit. When the processor executes a WFI instruction it stops executing
instructions and enters sleep mode. For more information, see 2.5.5.2.2. Wakeup from WFE.

2.5.5.1.2 Wait for Event
The wait for event instruction, WFE, causes entry to sleep mode dependent on the value of a one-bit event register.
When the processor executes a WFE instruction, it checks the value of the event register:

0: The processor stops executing instructions and enters Sleep mode.

1: The processor clears the register to 0 and continues executing instructions without entering Sleep mode.

For more information, see 2.6.10.12. WFI.

If the event register is 1, this indicate that the processor must not enter Sleep mode on execution of a WFE
instruction. Typically, this is because an external event signal is asserted, or a processor in the system has executed
an SEV instruction, see 2.6.10.9. SEV. Software cannot access this register directly.

Cortex-M3 Processor (Reference Material)

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 42

2.5.5.1.3 Sleep-on-exit
If the SLEEPONEXIT bit of the SCR is set to 1, when the processor completes the execution of all exception handles
it returns to Thread mode and immediately enters Sleep mode. Use this mechanism in applications that only require
the processor to run when an exception occurs.

2.5.5.2 Wakeup from Sleep Mode
The conditions for the processor to wakeup depend on the mechanism that cause it to enter sleep mode.

2.5.5.2.1 Wakeup from WFI or sleep-on-exit
Normally, the processor wakes up only when it detects an exception with sufficient priority to cause exception entry.

Some embedded systems might have to execute system restore tasks after the processor wakes up, and before it
executes an interrupt handler. To achieve this set the PRIMASK bit to 1 and the FAULTMASK bit to 0. If an interrupt
arrives that is enabled and has a higher priority than current exception priority, the processor wakes up but does not
execute the interrupt handler until the processor sets PRIMASK to zero. For more information about PRIMASK and
FAULTMASK, see 2.5.1.3.9. Exception Mask Registers.

2.5.5.2.2 Wakeup from WFE
The processor wakes up if:

• It detects an exception with sufficient priority to cause exception entry
• It detects an external event signal, see 2.5.5.4. External Event Input
• In a multiprocessor system, another processor in the system executes an SEV instruction

In addition, if the SEVONPEND bit in the SCR is set to 1, any new pending interrupt triggers an event and wakes
up the processor, even if the interrupt is disabled or has insufficient priority to cause exception entry. For more
information about the SCR, see 2.7.2.6. System Control Register.

2.5.5.3 The Wakeup Interrupt Controller
The Wakeup Interrupt Controller (WIC) is a peripheral that can detect an interrupt and wake the processor from deep
sleep mode. The WIC is enabled only when the DEEPSLEEP bit in the SCR is set to 1, see 2.7.2.6. System Control
Register.

The WIC is not programmable, and does not have any registers or user interface. It operates entirely from hardware
signals.

When the WIC is enabled and the processor enters deep sleep mode, the power management unit in the system can
power down most of the Cortex-M3 processor. This has the side effect of stopping the SysTick timer. When the WIC
receives an interrupt, it takes a number of clock cycles to wakeup the processor and restore its state, before it can
process the interrupt. This means interrupt latency is increased in deep sleep mode.

Important: If the processor detects a connection to a debugger it disables the WIC.

2.5.5.4 External Event Input
The processor provides an external event input signal. Peripherals can drive this signal, either to wake the processor
from WFE, or to set the internal WFE event register to one to indicate that the processor must not enter Sleep mode
on a later WFE instruction. For more information, see 2.5.5.1.2. Wait for Event.

2.5.5.5 Power Management Programming Hints
ISO/IEC C cannot directly generate the WFI and WFE instructions. The CMSIS provides the following functions for
these instructions:

void __WFE(void) // Wait for Event

void __WFI(void) // Wait for Interrupt

2.6 Cortex-M3 Processor Instruction Set
This section is the reference material for the Cortex-M3 processor instruction set description in this user guide.

Cortex-M3 Processor (Reference Material)

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 43

2.6.1 Instruction Set Summary
The processor implements a version of the Thumb instruction set. The following table lists the supported instructions.

In the following table:

• angle brackets, <>, enclose alternative forms of the operand
• braces, {}, enclose optional operands
• the Operands column is not exhaustive
• Op2 is a flexible second operand that can be either a register or a constant
• most instructions can use an optional condition code suffix.

For more information on the instructions and operands, see the instruction descriptions.

Table 2-20. Cortex-M3 Processor Instructions

Mnemonic Operands Brief description Flags

ADC, ADCS {Rd,} Rn, Op2 Add with Carry N, Z, C, V

ADD, ADDS {Rd,} Rn, Op2 Add N, Z, C, V

ADD, ADDW {Rd,} Rn, #imm12 Add N, Z, C, V

ADR Rd, label Load PC-relative Address —

AND, ANDS {Rd,} Rn, Op2 Logical AND N, Z, C

ASR, ASRS Rd, Rm, <Rs|#n> Arithmetic Shift Right N, Z, C

B label Branch —

BFC Rd, #lsb, #width Bit Field Clear —

BFI Rd, Rn, #lsb, #width Bit Field Insert —

BIC, BICS {Rd,} Rn, Op2 Bit Clear N, Z, C

BKPT #imm Breakpoint —

BL label Branch with Link —

BLX Rm Branch indirect with Link —

BX Rm Branch indirect —

CBNZ Rn, label Compare and Branch if Non Zero

CBZ Rn, label Compare and Branch if Zero —

CLREX Clear Exclusive —

CLZ Rd, Rm Count Leading Zeros —

CMN Rn, Op2 Compare Negative N, Z, C, V

CMP Rn, Op2 Compare N, Z, C, V

CPSID i Change Processor State, Disable Interrupts —

CPSIE i Change Processor State, Enable Interrupts —

DMB Data Memory Barrier —

DSB Data Synchronization Barrier —

EOR, EORS {Rd,} Rn, Op2 Exclusive OR N, Z, C

ISB Instruction Synchronization Barrier —

IT If-Then condition block —

Cortex-M3 Processor (Reference Material)

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 44

...........continued
Mnemonic Operands Brief description Flags

LDM Rn{!}, reglist Load Multiple registers, increment after —

LDMDB, LDMEA Rn{!}, reglist Load Multiple registers, decrement before —

LDMFD, LDMIA Rn{!}, reglist Load Multiple registers, increment after —

LDR Rt, [Rn, #offset] Load Register with word —

LDRB, LDRBT Rt, [Rn, #offset] Load Register with byte —

LDRD Rt, Rt2, [Rn, #offset] Load Register with two bytes —

LDREX Rt, [Rn, #offset] Load Register Exclusive

LDREXB Rt, [Rn] Load Register Exclusive with Byte —

LDREXH Rt, [Rn] Load Register Exclusive with Halfword —

LDRH, LDRHT Rt, [Rn, #offset] Load Register with Halfword —

LDRSB,
LDRSBT

Rt, [Rn, #offset] Load Register with Signed Byte —

LDRSH,
LDRSHT

Rt, [Rn, #offset] Load Register with Signed Halfword —

LDRT Rt, [Rn, #offset] Load Register with word —

LSL, LSLS Rd, Rm, <Rs|#n> Logical Shift Left N, Z, C

LSR, LSRS Rd, Rm, <Rs|#n> Logical Shift Right N, Z, C

MLA Rd, Rn, Rm, Ra Multiply with Accumulate, 32-bit result —

MLS Rd, Rn, Rm, Ra Multiply and Subtract, 32-bit result —

MOV, MOVS Rd, Op2 Move N, Z, C

MOVT Rd, #imm16 Move Top —

MOVW, MOV Rd, #imm16 Move 16-bit constant N, Z, C

MRS Rd, spec_reg Move from Special Register to general register —

MSR spec_reg, Rm Move from general register to Special Register N, Z, C,V

MUL, MULS {Rd,} Rn, Rm Multiply, 32-bit result N, Z

MVN, MVNS Rd, Op2 Move NOT N, Z, C

NOP No Operation —

ORN, ORNS {Rd,} Rn, Op2 Logical OR NOT N, Z, C

ORR, ORRS {Rd,} Rn, Op2 Logical OR N, Z, C

POP reglist Pop registers from stack —

PUSH reglist Push registers onto stack —

RBIT Rd, Rn Reverse Bits —

REV Rd, Rn Reverse byte order in a word —

REV16 Rd, Rn Reverse byte order in each halfword —

REVSH Rd, Rn Reverse byte order in bottom halfword and sign
extend

—

Cortex-M3 Processor (Reference Material)

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 45

...........continued
Mnemonic Operands Brief description Flags

ROR, RORS Rd, Rm, <Rs|#n> Rotate Right N, Z, C

RRX, RRXS Rd, Rm Rotate Right with Extend N, Z, C

RSB, RSBS {Rd,} Rn, Op2 Reverse Subtract N, Z, C, V

SBC, SBCS {Rd,} Rn, Op2 Subtract with Carry N, Z, C, V

SBFX Rd, Rn, #lsb, #width Signed Bit Field Extract —

SDIV {Rd,} Rn, Rm Signed Divide —

SEV Send Event —

SMLAL RdLo, RdHi, Rn, Rm Signed Multiply with Accumulate (32 x 32 + 64), 64-
bit result

—

SMULL RdLo, RdHi, Rn, Rm Signed Multiply (32 x 32), 64-bit result —

SSAT Rd, #n, Rm {,shift #s} Signed Saturate Q

STM Rn{!}, reglist Store Multiple registers, increment after —

STMDB, STMEA Rn{!}, reglist Store Multiple registers, decrement before —

STMFD, STMIA Rn{!}, reglist Store Multiple registers, increment after —

STR Rt, [Rn, #offset] Store Register word —

STRB, STRBT Rt, [Rn, #offset] Store Register byte —

STRD Rt, Rt2, [Rn, #offset] Store Register two words —

STREX Rd, Rt, [Rn, #offset] Store Register Exclusive

STREXB Rd, Rt, [Rn] Store Register Exclusive Byte —

STREXH Rd, Rt, [Rn] Store Register Exclusive Halfword —

STRH, STRHT Rt, [Rn, #offset] Store Register Halfword —

STRT Rt, [Rn, #offset] Store Register word —

SUB, SUBS {Rd,} Rn, Op2 Subtract N, Z, C, V

SUB, SUBW {Rd,} Rn, #imm12 Subtract N, Z, C, V

SVC #imm Supervisor Call —

SXTB {Rd,} Rm {,ROR #n} Sign extend a byte —

SXTH {Rd,} Rm {,ROR #n} Sign extend a halfword —

TBB [Rn, Rm] Table Branch Byte —

TBH [Rn, Rm, LSL #1] Table Branch Halfword —

TEQ Rn, Op2 Test Equivalence N, Z, C

TST Rn, Op2 Test N, Z, C

UBFX Rd, Rn, #lsb, #width Unsigned Bit Field Extract —

UDIV {Rd,} Rn, Rm Unsigned Divide —

UMLAL RdLo, RdHi, Rn, Rm Unsigned Multiply with Accumulate
(32 x 32 + 64), 64-bit result

—

UMULL RdLo, RdHi, Rn, Rm Unsigned Multiply (32 x 32), 64-bit result —

Cortex-M3 Processor (Reference Material)

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 46

...........continued
Mnemonic Operands Brief description Flags

USAT Rd, #n, Rm {,shift #s} Unsigned Saturate Q

UXTB {Rd,} Rm {,ROR #n} Zero extend a Byte —

UXTH {Rd,} Rm {,ROR #n} Zero extend a Halfword —

WFE Wait for Event —

WFI Wait for Interrupt —

2.6.2 CMSIS Functions
ISO/IEC C code cannot directly access some Cortex-M3 processor instructions. This section describes intrinsic
functions that can generate these instructions, provided by the CMSIS and that might be provided by a C compiler.
If a C compiler does not support an appropriate intrinsic function, you might have to use inline assembler to access
some instructions.

The following table lists the intrinsic functions that the CMSIS provides to generate instructions that ISO/IEC C code
cannot directly access.

Table 2-21. CMSIS Functions to Generate some Cortex-M3 Processor instructions

Instruction CMSIS function

CPSIE I void __enable_irq(void)
CPSID I void __disable_irq(void)
CPSIE F void __enable_fault_irq(void)
CPSID F void __disable_fault_irq(void)
ISB void __ISB(void)
DSB void __DSB(void)
DMB void __DMB(void)
REV uint32_t __REV(uint32_t int value)
REV16 uint32_t __REV16(uint32_t int value)
REVSH uint32_t __REVSH(uint32_t int value)
RBIT uint32_t __RBIT(uint32_t int value)
SEV void __SEV(void)
WFE void __WFE(void)
WFI void __WFI(void)

The following table lists the functions that CMSIS provides for accessing the special registers using MRS and MSR
instructions.

Table 2-22. CMSIS Functions to Access the Special Registers

Special Register Access CMSIS function

PRIMASK Read uint32_t __get_PRIMASK (void)
Write void __set_PRIMASK (uint32_t value)

FAULTMASK Read uint32_t __get_FAULTMASK (void)
Write void __set_FAULTMASK (uint32_t value)

Cortex-M3 Processor (Reference Material)

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 47

...........continued
Special Register Access CMSIS function

BASEPRI Read uint32_t __get_BASEPRI (void)
Write void __set_BASEPRI (uint32_t value)

CONTROL Read uint32_t __get_CONTROL (void)
Write void __set_CONTROL (uint32_t value)

MSP Read uint32_t __get_MSP (void)
Write void __set_MSP (uint32_t TopOfMainStack)

PSP Read uint32_t __get_PSP (void)
Write void __set_PSP (uint32_t TopOfProcStack)

2.6.3 About the Instruction Descriptions
The following sections provide more information about using the instructions:

2.6.3.1 Operands
An instruction operand can be an ARM register, a constant, or another instruction-specific parameter. Instructions
act on the operands and often store the result in a destination register. When there is a destination register in the
instruction, it is usually specified before the operands.

Operands in some instructions are flexible in that they can either be a register or a constant. See 2.6.3.3. Flexible
Second Operand.

2.6.3.2 Restrictions when Using PC or SP
Many instructions have restrictions on whether you can use the Program Counter (PC) or Stack Pointer (SP) for the
operands or destination register. See instruction descriptions for more information.

Bit[0] of any address you write to the PC with a BX, BLX, LDM, LDR, or POP instruction must be 1 for correct
execution, because this bit indicates the required instruction set, and the Cortex-M3 processor only supports Thumb
instructions.

2.6.3.3 Flexible Second Operand
Many general data processing instructions have a flexible second operand. This is shown as Operand2 in the
descriptions of the syntax of each instruction.

Operand2 can be a constant or a register with optional shift.

2.6.3.3.1 Constant
You specify an Operand2 constant in the form:

#constant
where constant can be:

• any constant that can be produced by shifting an 8-bit value left by any number of bits within a 32-bit word
• any constant of the form 0x00XY00XY
• any constant of the form 0xXY00XY00
• any constant of the form 0xXYXYXYXY

In the constants shown above, X and Y are hexadecimal digits.

In addition, in a small number of instructions, constant can take a wider range of values. These are described in the
individual instruction descriptions.

When an Operand2 constant is used with the instructions MOVS, MVNS, ANDS, ORRS, ORNS, EORS, BICS, TEQ or TST,
the carry flag is updated to bit[31] of the constant, if the constant is greater than 255 and can be produced by shifting
an 8-bit value. These instructions do not affect the carry flag if Operand2 is any other constant.

Instruction substitution

Cortex-M3 Processor (Reference Material)

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 48

Your assembler might be able to produce an equivalent instruction in cases where you specify a constant that is not
permitted. For example, an assembler might assemble the instruction CMP Rd, #0xFFFFFFFE as the equivalent
instruction CMN Rd, #0x2.

2.6.3.3.2 Register with Optional Shift
You specify an Operand2 register in the form:

Rm {, shift}
where:

• Rm: is the register holding the data for the second operand.
• shift: is an optional shift to be applied to Rm. It can be one of:

– ASR #n: arithmetic shift right n bits, 1 ≤ n ≤ 32
– LSL #n: logical shift left n bits, 1 ≤ n ≤ 31
– LSR #n: logical shift right n bits, 1 ≤ n ≤ 32
– ROR #n: rotate right n bits, 1 ≤ n ≤ 31
– RRX: rotate right one bit, with extend

-: if omitted, no shift occurs, equivalent to LSL #0.

If you omit the shift, or specify LSL #0, the instruction uses the value in Rm.

If you specify a shift, the shift is applied to the value in Rm, and the resulting 32-bit value is used by the instruction.
However, the contents in the register Rm remains unchanged. Specifying a register with shift also updates the carry
flag when used with certain instructions. For information on the shift operations and how they affect the carry flag,
refer to 2.6.3.4. Shift Operations.

2.6.3.4 Shift Operations
Register shift operations move the bits in a register left or right by a specified number of bits, the shift length. Register
shift can be performed:

• directly by the instructions ASR, LSR, LSL, ROR, and RRX, and the result is written to a destination register
• during the calculation of Operand2 by the instructions that specify the second operand as a register with shift,

refer to 2.6.3.3. Flexible Second Operand. The result is used by the instruction.

The permitted shift lengths depend on the shift type and the instruction, refer to the individual instruction description
or 2.6.3.3. Flexible Second Operand. If the shift length is 0, no shift occurs. Register shift operations update the carry
flag except when the specified shift length is 0. The following sub-sections describe the various shift operations and
how they affect the carry flag. In these descriptions, Rm is the register containing the value to be shifted, and n is the
shift length.

2.6.3.4.1 ASR
Arithmetic shift right by n bits moves the left-hand 32-n bits of the register Rm, to the right by n places, into the
right-hand 32-n bits of the result. And it copies the original bit[31] of the register into the left-hand n bits of the result.
Refer to Figure 2-14.

You can use the ASR #n operation to divide the value in the register Rm by 2n, with the result being rounded towards
negative-infinity.

When the instruction is ASRS or when ASR #n is used in Operand2 with the instructions MOVS, MVNS, ANDS, ORRS,
ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit shifted out, bit[n-1], of the register Rm.

• If n is 32 or more, then all the bits in the result are set to the value of bit[31] of Rm.
• If n is 32 or more and the carry flag is updated, it is updated to the value of bit[31] of Rm.

Figure 2-14. ASR#3
Carry
Flag

031 5 4 3 2 1

Cortex-M3 Processor (Reference Material)

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 49

2.6.3.4.2 LSR
Logical shift right by n bits moves the left-hand 32-n bits of the register Rm, to the right by n places, into the right-hand
32-n bits of the result. And it sets the left-hand n bits of the result to 0. See the following figure.

You can use the LSR #n operation to divide the value in the register Rm by 2n, if the value is regarded as an unsigned
integer.

When the instruction is LSRS or when LSR #n is used in Operand2 with the instructions MOVS, MVNS, ANDS, ORRS,
ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit shifted out, bit[n-1], of the register Rm.

• If n is 32 or more, then all the bits in the result are cleared to 0.
• If n is 33 or more and the carry flag is updated, it is updated to 0.

Figure 2-15. LSR
Carry
Flag

031 5 4 3 2 1

000

2.6.3.4.3 LSL
Logical shift left by n bits moves the right-hand 32-n bits of the register Rm, to the left by n places, into the left-hand
32-n bits of the result. And it sets the right-hand n bits of the result to 0. See Figure 2-16.

You can use the LSL #n operation to multiply the value in the register Rm by 2n, if the value is regarded as an
unsigned integer or a two’s complement signed integer. Overflow can occur without warning.

When the instruction is LSLS or when LSL #n, with non-zero n, is used in Operand2 with the instructions MOVS,
MVNS, ANDS, ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit shifted out, bit[32-n], of
the register Rm. These instructions do not affect the carry flag when used with LSL #0.

• If n is 32 or more, then all the bits in the result are cleared to 0.
• If n is 33 or more and the carry flag is updated, it is updated to 0.

Figure 2-16. LSL

031 5 4 3 2 1

Carry
Flag

000

2.6.3.4.4 ROR
Rotate right by n bits moves the left-hand 32-n bits of the register Rm, to the right by n places, into the right-hand
32-n bits of the result. And it moves the right-hand n bits of the register into the left-hand n bits of the result. See the
following figure.

When the instruction is RORS or when ROR #n is used in Operand2 with the instructions MOVS, MVNS, ANDS,
ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit rotation, bit[n-1], of the register Rm.

• If n is 32, then the value of the result is same as the value in Rm, and if the carry flag is updated, it is updated to
bit[31] of Rm.

• ROR with shift length, n, more than 32 is the same as ROR with shift length n-32.

Figure 2-17. ROR
Carry
Flag

031 5 4 3 2 1

Cortex-M3 Processor (Reference Material)

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 50

2.6.3.4.5 RRX
Rotate right with extend moves the bits of the register Rm to the right by one bit. And it copies the carry flag into
bit[31] of the result. See the following figure.

When the instruction is RRXS or when RRX is used in Operand2 with the instructions MOVS, MVNS, ANDS, ORRS,
ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to bit[0] of the register Rm.

Figure 2-18. RRX

30

Carry
Flag

031 1

...

2.6.3.5 Address Alignment
An aligned access is an operation where a word-aligned address is used for a word, dual word, or multiple word
access, or where a halfword-aligned address is used for a halfword access. Byte accesses are always aligned.

The Cortex-M3 processor supports unaligned access only for the following instructions:

• LDR, LDRT
• LDRH, LDRHT
• LDRSH, LDRSHT
• STR, STRT
• STRH, STRHT

All other load and store instructions generate a UsageFault exception if they perform an unaligned access, and
therefore their accesses must be address aligned. For more information about UsageFaults, see 2.5.4. Fault
Handling.

Unaligned accesses are usually slower than aligned accesses. In addition, some memory regions might not support
unaligned accesses. Therefore, Arm recommends that programmers ensure that accesses are aligned. To trap
accidental generation of unaligned accesses, use the UNALIGN_TRP bit in the Configuration and Control Register,
see 2.7.2.7. Configuration and Control Register.

2.6.3.6 PC-relative Expressions
A PC-relative expression or label is a symbol that represents the address of an instruction or literal data. It is
represented in the instruction as the PC value plus or minus a numeric offset. The assembler calculates the required
offset from the label and the address of the current instruction. If the offset is too big, the assembler produces an
error.

• For B, BL, CBNZ, and CBZ instructions, the value of the PC is the address of the current instruction plus 4
bytes.

• For most other instructions that use labels, the value of the PC is the address of the current instruction plus 4
bytes, with bit[1] of the result cleared to 0 to make it word-aligned.

• Your assembler might permit other syntaxes for PC-relative expressions, such as a label plus or minus a
number, or an expression of the form [PC, #number].

2.6.3.7 Conditional Execution
Most data processing instructions can optionally update the condition flags in the Application Program Status
Register (APSR) according to the result of the operation; see 2.5.1.3.6. Application Program Status Register. Some
instructions update all flags, and some only update a subset. If a flag is not updated, the original value is preserved.
See the instruction descriptions for the flags they affect.

You can execute an instruction conditionally, based on the condition flags set in another instruction, either:

• Immediately after the instruction that updated the flags
• After any number of intervening instructions that have not updated the flags.

Conditional execution is available by using conditional branches or by adding condition code suffixes to instructions.
For a list of the suffixes to add to instructions to make them conditional instructions, see Table 2-23. The condition
code suffix enables the processor to test a condition based on the flags. If the condition test of a conditional
instruction fails, the instruction:

Cortex-M3 Processor (Reference Material)

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 51

• Does not execute
• Does not write any value to its destination register
• Does not affect any of the flags
• Does not generate any exception.

Conditional instructions, except for conditional branches, must be inside an If-Then instruction block. See 2.6.9.3. IT
for more information and restrictions when using the IT instruction. Depending on the vendor, the assembler might
automatically insert an IT instruction if you have conditional instructions outside the IT block.

Use the CBZ and CBNZ instructions to compare the value of a register against zero and branch on the result.

This section describes the condition flags and condition code suffixes.

2.6.3.7.1 Condition Flags
The APSR contains the following condition flags:

• N: Set to 1 when the result of the operation was negative, cleared to 0 otherwise.
• Z: Set to 1 when the result of the operation was zero, cleared to 0 otherwise.
• C: Set to 1 when the operation resulted in a carry, cleared to 0 otherwise.
• V: Set to 1 when the operation caused overflow, cleared to 0 otherwise.

For more information about the APSR, refer to 2.5.1.3.5. Program Status Register.

A carry occurs:

• If the result of an addition is greater than or equal to 232

• If the result of a subtraction is positive or zero
• As the result of an inline barrel shifter operation in a move or logical instruction

Overflow occurs when the sign of the result, in bit[31], does not match the sign of the result had the operation been
performed at infinite precision, for example:

• If adding two negative values results in a positive value
• If adding two positive values results in a negative value
• If subtracting a positive value from a negative value generates a positive value
• If subtracting a negative value from a positive value generates a negative value

The Compare operations are identical to subtracting, for CMP, or adding, for CMN, except that the result is discarded.
See the instruction descriptions for more information. Most instructions update the status flags only if the S suffix is
specified. See the instruction descriptions for more information.

2.6.3.7.2 Condition Code Suffixes
The instructions that can be conditional have an optional condition code, shown in syntax descriptions as {cond}.
Conditional execution requires a preceding IT instruction. An instruction with a condition code is only executed if the
condition code flags in the APSR meet the specified condition. The following table shows the condition codes to use.
You can use conditional execution with the IT instruction to reduce the number of branch instructions in code. The
table also shows the relationship between condition code suffixes and the N, Z, C, and V flags.

Table 2-23. Condition Code Suffixes

Suffix Flags Meaning

EQ Z = 1 Equal

NE Z = 0 Not equal

CS or HS C = 1 Higher or same, unsigned

CC or LO C = 0 Lower, unsigned

MI N = 1 Negative

PL N = 0 Positive or zero

VS V = 1 Overflow

Cortex-M3 Processor (Reference Material)

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 52

...........continued
Suffix Flags Meaning

VC V = 0 No overflow

HI C = 1 and Z = 0 Higher, unsigned

LS C = 0 or Z = 1 Lower or same, unsigned

GE N = V Greater than or equal, signed

LT N != V Less than, signed

GT Z = 0 and N = V Greater than, signed

LE Z = 1 and N != V Less than or equal, signed

AL Can have any value Always. This is the default when no suffix is specified.

The following example shows the use of a conditional instruction to find the absolute value of a number. R0 =
abs(R1).

Example 1

Absolute value

MOVS R0, R1 ; R0 = R1, setting flags

IT MI ; skipping next instruction if value 0 or positive

RSBMI R0, R0, #0 ; If negative, R0 = -R0

The following example shows the use of conditional instructions to update the value of R4 if the signed values R0 is
greater than R1 and R2 is greater than R3.

Example 2

Compare and update value

CMP R0, R1 ; Compare R0 and R1, setting flags

ITT GT ; Skip next two instructions unless GT condition holds

CMPGT R2, R3 ; If 'greater than', compare R2 and R3, setting flags

MOVGT R4, R5 ; If still 'greater than', do R4 = R5

2.6.3.8 Instruction Width Selection
There are many instructions that can generate either a 16-bit encoding or a 32-bit encoding depending on the
operands and destination register specified. For some of these instructions, you can force a specific instruction size
by using an instruction width suffix. The .W suffix forces a 32-bit instruction encoding. The .N suffix forces a 16-bit
instruction encoding.

If you specify an instruction width suffix and the assembler cannot generate an instruction encoding of the requested
width, it generates an error.

Important: In some cases it might be necessary to specify the .W suffix, for example if the operand is the
label of an instruction or literal data, as in the case of branch instructions. This is because the assembler
might not automatically generate the right size encoding.

To use an instruction width suffix, place it immediately after the instruction mnemonic and condition code, if any. The
following example shows instructions with the instruction width suffix.

Example 3

Instruction width selection

BCS.W label ; creates a 32-bit instruction even for a short branch

Cortex-M3 Processor (Reference Material)

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 53

ADDS.W R0, R0, R1 ; creates a 32-bit instruction even though the same operation can be done by a 16-bit
instruction

2.6.4 Memory Access Instructions
The following table provides memory access instructions:

Table 2-24. Memory Access Instructions

Mnemonic Brief Description See

ADR Generate PC-relative address 2.6.4.1. ADR

CLREX Clear Exclusive 2.6.4.9. CLREX

LDM{mode} Load Multiple registers 2.6.4.6. LDM and STM

LDR{type} Load Register using immediate offset 2.6.4.2. LDR and STR, Immediate Offset

LDR{type} Load Register using register offset 2.6.4.3. LDR and STR, Register Offset

LDR{type}T Load Register with unprivileged access 2.6.4.4. LDR and STR, Unprivileged

LDR Load Register using PC-relative address 2.6.4.5. LDR, PC-relative

LDREX{type} Load Register Exclusive 2.6.4.8. LDREX and STREX

POP Pop registers from stack 2.6.4.7. PUSH and POP

PUSH Push registers onto stack 2.6.4.7. PUSH and POP

STM{mode} Store Multiple registers 2.6.4.6. LDM and STM

STR{type} Store Register using immediate offset 2.6.4.2. LDR and STR, Immediate Offset

STR{type} Store Register using register offset 2.6.4.3. LDR and STR, Register Offset

STR{type}T Store Register with unprivileged access 2.6.4.4. LDR and STR, Unprivileged

STREX{type} Store Register Exclusive 2.6.4.8. LDREX and STREX

2.6.4.1 ADR
Generate PC-relative address.

2.6.4.1.1 Syntax
ADR{cond} Rd, label

where:

• cond is an optional condition code, see 2.6.3.7. Conditional Execution.
• Rd is the destination register
• label is a PC-relative expression. See 2.6.3.6. PC-relative Expressions.

2.6.4.1.2 Operation
ADR generates an address by adding an immediate value to the PC, and writes the result to the destination register.

ADR provides the means by which position-independent code can be generated, because the address is PC-relative.

If you use ADR to generate a target address for a BX or BLX instruction, you must ensure that bit[0] of the address
you generate is set to 1 for correct execution.

Values of label must be within the range of -4095 to +4095 from the address in the PC.

Note: You may have to use the .W suffix to get the maximum offset range or to generate addresses that are not
word-aligned. See 2.6.3.8. Instruction Width Selection.

2.6.4.1.3 Restrictions
Rd must not be SP and must not be PC.

Cortex-M3 Processor (Reference Material)

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 54

2.6.4.1.4 Condition flags
This instruction does not change the flags.

Examples

ADR R1, TextMessage ; Write address value of a location labelled as

; TextMessage to R1

2.6.4.2 LDR and STR, Immediate Offset
Load and Store with immediate offset, pre-indexed immediate offset, or post-indexed immediate offset.

2.6.4.2.1 Syntax
op{type}{cond} Rt, [Rn {, #offset}] ; immediate offset
op{type}{cond} Rt, [Rn, #offset]! ; pre-indexed
op{type}{cond} Rt, [Rn], #offset ; post-indexed
opD{cond} Rt, Rt2, [Rn {, #offset}] ; immediate offset, two words
opD{cond} Rt, Rt2, [Rn, #offset]! ; pre-indexed, two words
opD{cond} Rt, Rt2, [Rn], #offset ; post-indexed, two words

where:

• op is either LDR (load register) or STR (store register)
• type is one of:

– B: unsigned byte, zero extend to 32 bits on loads.
– SB: signed byte, sign extend to 32 bits (LDR only).
– H: unsigned halfword, zero extend to 32 bits on loads.
– SH: signed halfword, sign extend to 32 bits (LDR only).
– -: omit, for word.

• cond is an optional condition code; see 2.6.3.7. Conditional Execution.
• Rt is the register to load or store.
• Rn is the register on which the memory address is based.
• offset is an offset from Rn. If offset is omitted, the address is the contents of Rn.
• Rt2 is the additional register to load or store for two-word operations.

2.6.4.2.2 Operation
LDR instructions load one or two registers with a value from memory.

STR instructions store one or two register values to memory.

Load and store instructions with immediate offset can use the following addressing modes:

• Offset Addressing
The offset value is added to or subtracted from the address obtained from the register Rn. The result is used as
the address for the memory access. The register Rn is unaltered. The assembly language syntax for this mode
is:

[Rn, #offset]
• Pre-indexed addressing

The offset value is added to or subtracted from the address obtained from the register Rn. The result is used as
the address for the memory access and written back into the register Rn. The assembly language syntax for this
mode is:

[Rn, #offset]!
• Post-indexed addressing

The address obtained from the register Rn is used as the address for the memory access. The offset value is
added to or subtracted from the address, and written back into the register Rn. The assembly language syntax
for this mode is:

[Rn], #offset

The value to load or store can be a byte, halfword, word, or two words. Bytes and halfwords can either be signed or
unsigned. See 2.6.3.5. Address Alignment.

Cortex-M3 Processor (Reference Material)

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 55

The following table lists the ranges of offset for immediate, pre-indexed and post-indexed forms.

Table 2-25. Offset Ranges

Instruction Type Immediate Offset Pre-Indexed Post-Indexed

Word, halfword, signed halfword,
byte, or signed byte

-255 to 4095 -255 to 255 -255 to 255

Two words Multiple of 4 in the
range -1020 to 1020

Multiple of 4 in the
range -1020 to 1020

Multiple of 4 in the
range -1020 to 1020

2.6.4.2.3 Restrictions
For load instructions:

• Rt can be SP or PC for word loads only
• Rt must be different from Rt2 for two-word loads
• Rn must be different from Rt and Rt2 in the pre-indexed or post-indexed forms.

When Rt is PC in a word load instruction:

• bit[0] of the loaded value must be 1 for correct execution
• a branch occurs to the address created by changing bit[0] of the loaded value to 0
• if the instruction is conditional, it must be the last instruction in the IT block.

For store instructions:

• Rt can be SP for word stores only
• Rt must not be PC
• Rn must not be PC
• Rn must be different from Rt and Rt2 in the pre-indexed or post-indexed forms.

2.6.4.2.4 Condition flags
These instructions do not change the flags.

Examples

LDR R8, [R10] ; Loads R8 from the address in R10.
LDRNE R2, [R5, #960]! ; Loads (conditionally) R2 from a word
 ; 960 bytes above the address in R5, and
 ; increments R5 by 960
STR R2, [R9,#const-struc] ; const-struc is an expression evaluating
 ; to a constant in the range 0-4095.
STRH R3, [R4], #4 ; Store R3 as halfword data into address in
 ; R4, then increment R4 by 4
LDRD R8, R9, [R3, #0x20] ; Load R8 from a word 8 bytes above the
 ; address in R3, and load R9 from a word 9
 ; bytes above the address in R3
STRD R0, R1, [R8], #-16 ; Store R0 to address in R8, and store R1 to
 ; a word 4 bytes above the address in R8,
 ; and then decrement R8 by 16.

2.6.4.3 LDR and STR, Register Offset
Load and Store with register offset.

2.6.4.3.1 Syntax
op{type}{cond} Rt, [Rn, Rm {, LSL #n}]
where:

• op is either LDR (load register) or STR (store register)
• type is one of:

– B: unsigned byte, zero extend to 32 bits on loads.
– SB: signed byte, sign extend to 32 bits (LDR only).
– H: unsigned halfword, zero extend to 32 bits on loads.

Cortex-M3 Processor (Reference Material)

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 56

– SH: signed halfword, sign extend to 32 bits (LDR only).
– -: omit, for word.

• cond is an optional condition code, see 2.6.3.7. Conditional Execution.
• Rt is the register to load or store.
• Rn is the register on which the memory address is based.
• Rm is a register containing a value to be used as the offset.
• LSL #n is an optional shift, with n in the range 0 to 3.

2.6.4.3.2 Operation
LDR instructions load a register with a value from memory.

STR instructions store a register value into memory.

The memory address to load from or store to is at an offset from the register Rn. The offset is specified by the register
Rm and can be shifted left by up to 3 bits using LSL.

The value to load or store can be a byte, halfword, or word. For load instructions, bytes and halfwords can either be
signed or unsigned. See 2.6.3.5. Address Alignment.

2.6.4.3.3 Restrictions
In these instructions:

• Rn must not be PC
• Rm must not be SP and must not be PC
• Rt can be SP only for word loads and word stores
• Rt can be PC only for word loads.

When Rt is PC in a word load instruction:

• Bit[0] of the loaded value must be 1 for correct execution, and a branch occurs to this halfword-aligned address
• If the instruction is conditional, it must be the last instruction in the IT block.

2.6.4.3.4 Condition Flags
These instructions do not change the flags.

Examples

STR R0, [R5, R1] ; Store value of R0 into an address equal to
 ; sum of R5 and R1
LDRSB R0, [R5, R1, LSL #1] ; Read byte value from an address equal to
 ; sum of R5 and two times R1, sign extended it
 ; to a word value and put it in R0
STR R0, [R1, R2, LSL #2] ; Stores R0 to an address equal to sum of R1
 ; and four times R2.

2.6.4.4 LDR and STR, Unprivileged
Load and Store with unprivileged access.

2.6.4.4.1 Syntax
op{type}T{cond} Rt, [Rn {, #offset}] ; immediate offset
where:

• op is either LDR (load register) or STR (store register)
• type is one of:

– B: unsigned byte, zero extend to 32 bits on loads.
– SB: signed byte, sign extend to 32 bits (LDR only).
– H: unsigned halfword, zero extend to 32 bits on loads.
– SH: signed halfword, sign extend to 32 bits (LDR only).
– -: omit, for word.

• cond is an optional condition code, refer to 2.6.3.7. Conditional Execution.
• Rt is the register to load or store.

Cortex-M3 Processor (Reference Material)

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 57

• Rn is the register on which the memory address is based.
• offset is an offset from Rn and can be 0 to 255. If offset is omitted, the address is the value in Rn.

2.6.4.4.2 Operation
These load and store instructions perform the same function as the memory access instructions with immediate
offset, see 2.6.4.2. LDR and STR, Immediate Offset. The difference is that these instructions have only unprivileged
access even when used in privileged software.

When used in unprivileged software, these instructions behave in exactly the same way as normal memory access
instructions with immediate offset.

2.6.4.4.3 Restrictions
In these instructions:

• Rn must not be PC.
• Rt must not be SP and must not be PC.

2.6.4.4.4 Condition Flags
These instructions do not change the flags.

Examples

STRBTEQ R4, [R7] ; Conditionally store least significant byte in
 ; R4 to an address in R7, with unprivileged access
LDRHT R2, [R2, #8] ; Load halfword value from an address equal to
 ; sum of R2 and 8 into R2, with unprivileged access.

2.6.4.5 LDR, PC-relative
Load register from memory.

2.6.4.5.1 Syntax
LDR{type}{cond} Rt, label
LDRD{cond} Rt, Rt2, label ; Load two words

where:

• type is one of:
– B: unsigned byte, zero extend to 32 bits.
– SB: signed byte, sign extend to 32 bits.
– H: unsigned halfword, zero extend to 32 bits.
– SH: signed halfword, sign extend to 32 bits.
– -: omit, for word.

• cond is an optional condition code, see 2.6.3.7. Conditional Execution.
• Rt is the register to load or store.
• Rt2 is the second register to load or store.
• label is a PC-relative expression. See 2.6.3.6. PC-relative Expressions.

2.6.4.5.2 Operation
LDR loads a register with a value from a PC-relative memory address. The memory address is specified by a label or
by an offset from the PC.

The value to load or store can be a byte, halfword, or word. For load instructions, bytes and halfwords can either be
signed or unsigned. See 2.6.3.5. Address Alignment.

label must be within a limited range of the current instruction. The following table shows the possible offsets between
label and the PC.

Table 2-26. Offset Ranges

Instruction type Offset range

Word, halfword, signed halfword, byte, signed byte -4095 to 4095

Cortex-M3 Processor (Reference Material)

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 58

...........continued
Instruction type Offset range

Two words -1020 to 1020

Note: You might have to use the .W suffix to get the maximum offset range. See 2.6.3.8. Instruction Width Selection.

2.6.4.5.3 Restrictions
In these instructions:

• Rt can be SP or PC only for word loads
• Rt2 must not be SP and must not be PC
• Rt must be different from Rt2.

When Rt is PC in a word load instruction:

• bit[0] of the loaded value must be 1 for correct execution, and a branch occurs to this halfword-aligned address
• if the instruction is conditional, it must be the last instruction in the IT block.

2.6.4.5.4 Condition Flags
These instructions do not change the flags.

Examples

LDR R0, LookUpTable ; Load R0 with a word of data from an address
 ; labelled as LookUpTable
LDRSB R7, localdata ; Load a byte value from an address labelled
 ; as localdata, sign extend it to a word
 ; value, and put it in R7.

2.6.4.6 LDM and STM
Load and Store Multiple registers.

2.6.4.6.1 Syntax
op{addr_mode}{cond} Rn{!}, reglist
where:

• op is one of:
– LDM (Load Multiple registers)
– STM (Store Multiple registers)

• addr_mode is one of:
– IA (Increment address After each access.) This is the default.
– DB (Decrement address Before each access.)

• cond is an optional condition code, see 2.6.3.7. Conditional Execution.
• Rn is the register on which the memory addresses are based.
• ! is an optional writeback suffix. If ! is present the final address, that is loaded from or stored to, is written back

into Rn.
• reglist is a list of one or more registers to be loaded or stored, enclosed in braces. It can contain register ranges.

It must be comma separated if it contains more than one register or register range.

LDM and LDMFD are synonyms for LDMIA. LDMFD refers to its use for popping data from Full Descending stacks.

LDMEA is a synonym for LDMDB, and refers to its use for popping data from Empty Ascending stacks.

STM and STMEA are synonyms for STMIA. STMEA refers to its use for pushing data onto Empty Ascending stacks.

STMFD is s synonym for STMDB, and refers to its use for pushing data onto Full Descending stacks.

2.6.4.6.2 Operation
LDM instructions load the registers in reglist with word values from memory addresses based on Rn.

STM instructions store the word values in the registers in reglist to memory addresses based on Rn.

Cortex-M3 Processor (Reference Material)

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 59

For LDM, LDMIA, LDMFD, STM, STMIA, and STMEA the memory addresses used for the accesses are at 4-byte
intervals ranging from Rn to Rn + 4 * (n-1), where n is the number of registers in reglist. The accesses happens
in order of increasing register numbers, with the lowest numbered register using the lowest memory address and the
highest number register using the highest memory address. If the writeback suffix is specified, the value of Rn + 4 *
(n-1) is written back to Rn.

For LDMDB, LDMEA, STMDB, and STMFD the memory addresses used for the accesses are at 4-byte intervals ranging
from Rn to Rn - 4 * (n-1), where n is the number of registers in reglist. The accesses happen in order of
decreasing register numbers, with the highest numbered register using the highest memory address and the lowest
number register using the lowest memory address. If the writeback suffix is specified, the value of Rn - 4 * (n-1) is
written back to Rn.

The PUSH and POP instructions can be expressed in this form. For more information, see 2.6.4.7. PUSH and POP.

2.6.4.6.3 Restrictions
In these instructions:

• Rn must not be PC
• reglist must not contain SP
• In any STM instruction, reglist must not contain PC
• In any LDM instruction, reglist must not contain PC if it contains LR
• reglist must not contain Rn if you specify the writeback suffix.

When PC is in reglist in an LDM instruction:

• Bit[0] of the value loaded to the PC must be 1 for correct execution, and a branch occurs to this halfword-aligned
address

• If the instruction is conditional, it must be the last instruction in the IT block.

2.6.4.6.4 Condition Flags
These instructions do not change the flags.

Examples

LDM R8,{R0,R2,R9} ; LDMIA is a synonym for LDM
TMDB R1!,{R3-R6,R11,R12}

Incorrect Examples

STM R5!,{R5,R4,R9} ; Value stored for R5 is unpredictable
LDM R2, {} ; There must be at least one register in the list.

2.6.4.7 PUSH and POP
Push registers onto, and pop registers off a full-descending stack.

2.6.4.7.1 Syntax
PUSH{cond} reglist
POP{cond} reglist
where:

cond is an optional condition code, see 2.6.3.7. Conditional Execution.

reglist is a non-empty list of registers, enclosed in braces. It can contain register ranges. It must be comma
separated if it contains more than one register or register range.

PUSH and POP are synonyms for STMDB and LDM (or LDMIA) with the memory addresses for the access based on SP,
and with the final address for the access written back to the SP. PUSH and POP are the preferred mnemonics in these
cases.

2.6.4.7.2 Operation
PUSH stores registers on the stack, with the lowest numbered register using the lowest memory address and the
highest numbered register using the highest memory address.

Cortex-M3 Processor (Reference Material)

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 60

POP loads registers from the stack, with the lowest numbered register using the lowest memory address and the
highest numbered register using the highest memory address.

PUSH uses the value in the SP register minus four as the highest memory address, POP uses the value in the SP
register as the lowest memory address, implementing a full-descending stack. On completion, PUSH updates the
SP register to point to the location of the lowest stored value, POP updates the SP register to point to the location
immediately above the highest location loaded.

If a POP instruction includes PC in its reglist, a branch to this location is performed when the POP instruction has
completed. Bit[0] of the value read for the PC is used to update the APSR T-bit. This bit must be 1 to ensure correct
operation.

For more information, see 2.6.4.6. LDM and STM for more information.

2.6.4.7.3 Restrictions
The following is a list of restrictions in these instructions:

• reglist must not contain SP
• For the PUSH instruction, reglist must not contain PC
• For the POP instruction, reglist must not contain PC if it contains LR.

When PC is in reglist in a POP instruction:

• bit[0] of the value loaded for PC must be 1 for correct execution
• if the instruction is conditional, it must be the last instruction in the IT block.

2.6.4.7.4 Condition Flags
These instructions do not change the flags.

Examples

PUSH {R0,R4-R7} ; Push R0,R4,R5,R6,R7 onto the stack
PUSH {R2,LR} ; Push R2 and the link-register onto the stack
POP {R0,R6,PC} ; Pop r0,r6 and PC from the stack, then branch to the new PC

2.6.4.8 LDREX and STREX
Load and Store Register Exclusive.

2.6.4.8.1 Syntax
LDREX{cond} Rt, [Rn {, #offset}]
STREX{cond} Rd, Rt, [Rn {, #offset}]
LDREXB{cond} Rt, [Rn]
STREXB{cond} Rd, Rt, [Rn]
LDREXH{cond} Rt, [Rn]
STREXH{cond} Rd, Rt, [Rn]

where:

cond is an optional condition code, see 2.6.3.7. Conditional Execution.

Rd is the destination register for the returned status.

Rt is the register to load or store.

Rn is the register on which the memory address is based.

offset is an optional offset applied to the value in Rn. If offset is omitted, the address is the value in Rn.

2.6.4.8.2 Operation
LDREX, LDREXB, and LDREXH load a word, byte, and halfword respectively from a memory address.

STREX, STREXB, and STREXH attempt to store a word, byte, and halfword respectively to a memory address. The
address used in any Store-Exclusive instruction must be the same as the address in the most recently executed
Load-exclusive instruction. The value stored by the Store-Exclusive instruction must also have the same data
size as the value loaded by the preceding Load-exclusive instruction. This means software must always use a

Cortex-M3 Processor (Reference Material)

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 61

Load-exclusive instruction and a matching Store-Exclusive instruction to perform a synchronization operation, see
2.5.2.7. Synchronization Primitives.

If an Store-Exclusive instruction performs the store, it writes 0 to its destination register. If it does not perform the
store, it writes 1 to its destination register. If the Store-Exclusive instruction writes 0 to the destination register, it is
ensured that no other process in the system has accessed the memory location between the Load-exclusive and
Store-Exclusive instructions.

For reasons of performance, keep the number of instructions between corresponding Load-Exclusive and Store-
Exclusive instruction to a minimum.

Important: The result of executing a Store-Exclusive instruction to an address that is different from that
used in the preceding Load-Exclusive instruction is unpredictable.

2.6.4.8.3 Restrictions
The following is a list of restrictions in these instructions:

• Do not use PC
• Do not use SP for Rd and Rt
• For STREX, Rd must be different from both Rt and Rn
• The value of offset must be a multiple of four in the range 0-1020

2.6.4.8.4 Condition Flags
These instructions do not change the flags.

Examples

MOV R1, #0x1 ; Initialize the ‘lock taken’ value
try
 LDREX R0, [LockAddr] ; Load the lock value
 CMP R0, #0 ; Is the lock free?
 ITT EQ ; IT instruction for STREXEQ and CMPEQ
 STREXEQ R0, R1, [LockAddr] ; Try and claim the lock
 CMPEQ R0, #0 ; Did this succeed?
 BNE try ; No – try again
 ; Yes – we have the lock.

2.6.4.9 CLREX
Clear Exclusive.

2.6.4.9.1 Syntax
CLREX{cond}
where:

cond is an optional condition code, see 2.6.3.7. Conditional Execution.

2.6.4.9.2 Operation
Use CLREX to make the next STREX, STREXB, or STREXH instruction write 1 to its destination register and fail to
perform the store. It is useful in exception handler code to force the failure of the store exclusive if the exception
occurs between a load exclusive instruction and the matching store exclusive instruction in a synchronization
operation.

For more information, see 2.5.2.7. Synchronization Primitives.

2.6.4.9.3 Condition Flags
These instructions do not change the flags.

Examples

CLREX

Cortex-M3 Processor (Reference Material)

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 62

2.6.5 General Data processing instructions
The following table shows the data processing instructions.

Table 2-27. Data Processing Instructions

Mnemonic Brief Description See

ADC Add with Carry 2.6.5.1. ADD, ADC, SUB, SBC, and RSB

ADD Add 2.6.5.1. ADD, ADC, SUB, SBC, and RSB

ADDW Add 2.6.5.1. ADD, ADC, SUB, SBC, and RSB

AND Logical AND 2.6.5.2. AND, ORR, EOR, BIC, and ORN

ASR Arithmetic Shift Right 2.6.5.3. ASR, LSL, LSR, ROR, and RRX

BIC Bit Clear 2.6.5.2. AND, ORR, EOR, BIC, and ORN

CLZ Count leading zeros 2.6.5.4. CLZ

CMN Compare Negative 2.6.5.5. CMP and CMN

CMP Compare 2.6.5.5. CMP and CMN

EOR Exclusive OR 2.6.5.2. AND, ORR, EOR, BIC, and ORN

LSL Logical Shift Left 2.6.5.3. ASR, LSL, LSR, ROR, and RRX

LSR Logical Shift Right 2.6.5.3. ASR, LSL, LSR, ROR, and RRX

MOV Move 2.6.5.6. MOV and MVN

MOVT Move Top 2.6.5.7. MOVT

MOVW Move 16-bit constant 2.6.5.6. MOV and MVN

MVN Move NOT 2.6.5.6. MOV and MVN

ORN Logical OR NOT 2.6.5.2. AND, ORR, EOR, BIC, and ORN

ORR Logical OR 2.6.5.2. AND, ORR, EOR, BIC, and ORN

RBIT Reverse Bits 2.6.5.8. REV, REV16, REVSH, and RBIT

REV Reverse byte order in a word 2.6.5.8. REV, REV16, REVSH, and RBIT

REV16 Reverse byte order in each halfword 2.6.5.8. REV, REV16, REVSH, and RBIT

REVSH Reverse byte order in bottom halfword and
sign extend

2.6.5.8. REV, REV16, REVSH, and RBIT

ROR Rotate Right 2.6.5.3. ASR, LSL, LSR, ROR, and RRX

RRX Rotate Right with Extend 2.6.5.3. ASR, LSL, LSR, ROR, and RRX

RSB Reverse Subtract 2.6.5.1. ADD, ADC, SUB, SBC, and RSB

SBC Subtract with Carry 2.6.5.1. ADD, ADC, SUB, SBC, and RSB

SUB Subtract 2.6.5.1. ADD, ADC, SUB, SBC, and RSB

SUBW Subtract 2.6.5.1. ADD, ADC, SUB, SBC, and RSB

TEQ Test Equivalence 2.6.5.9. TST and TEQ

TST Test 2.6.5.9. TST and TEQ

2.6.5.1 ADD, ADC, SUB, SBC, and RSB
Add, Add with carry, Subtract, Subtract with carry, and Reverse Subtract.

Cortex-M3 Processor (Reference Material)

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 63

2.6.5.1.1 Syntax
op{S}{cond} {Rd,} Rn, Operand2
op{cond} {Rd,} Rn, #imm12 ; ADD and SUB only
where:

• op is one of:
– ADD: Add
– ADC: Add with Carry
– SUB: Subtract
– SBC: Subtract with Carry
– RSB: Reverse Subtract

• S is an optional suffix. If S is specified, the condition code flags are updated on the result of the operation, see
2.6.3.7. Conditional Execution.

• cond is an optional condition code, see 2.6.3.7. Conditional Execution.
• Rd is the destination register. If Rd is omitted, the destination register is Rn.
• Rn is the register holding the first operand.
• Operand2 is a flexible second operand. For more information about the options, see 2.6.3.3. Flexible Second

Operand.
• imm12 is any value in the range 0-4095

2.6.5.1.2 Operation
The ADD instruction adds the value of Operand2 or imm12 to the value in Rn.

The ADC instruction adds the values in Rn and Operand2, together with the carry flag.

The SUB instruction subtracts the value of Operand2 or imm12 from the value in Rn.

The SBC instruction subtracts the value of Operand2 from the value in Rn. If the carry flag is clear, the result is
reduced by one.

The RSB instruction subtracts the value in Rn from the value of Operand2. This is useful because of the wide range of
options for Operand2.

Use ADC and SBC to synthesize multiword arithmetic, see 2.6.5.1.5. Multiword Arithmetic Examples.

See also 2.6.4.1. ADR.

Important: ADDW is equivalent to the ADD syntax that uses the imm12 operand. SUBW is equivalent to the
SUB syntax that uses the imm12 operand.

2.6.5.1.3 Restrictions
In these instructions:

• Operand2 must not be SP and must not be PC
• Rd can be SP only in ADD and SUB, and only with the additional restrictions:

– Rn must also be SP
– Any shift in Operand2 must be limited to a maximum of 3 bits using LSL

• Rn can be SP only in ADD and SUB
• Rd can be PC only in the ADD{cond} PC, PC, Rm instruction where:

– You must not specify the S suffix
– Rm must not be PC and must not be SP
– If the instruction is conditional, it must be the last instruction in the IT block

• with the exception of the ADD{cond} PC, PC, Rm instruction, Rn can be PC only in ADD and SUB, and only
with the additional restrictions:

Cortex-M3 Processor (Reference Material)

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 64

– You must not specify the S suffix
– The second operand must be a constant in the range 0 to 4095
– When using the PC for an addition or a subtraction, bits[1:0] of the PC are rounded to b00 before

performing the calculation, making the base address for the calculation word-aligned.
– If you want to generate the address of an instruction, you have to adjust the constant based on the value of

the PC. Arm recommends that you use the ADR instruction instead of ADD or SUB with Rn equal to the PC,
because your assembler automatically calculates the correct constant for the ADR instruction.

When Rd is PC in the ADD{cond} PC, PC, Rm instruction:

• Bit[0] of the value written to the PC is ignored
• A branch occurs to the address created by forcing bit[0] of that value to 0

2.6.5.1.4 Condition Flags
If S is specified, these instructions update the N, Z, C and V flags according to the result.

Examples

ADD R2, R1, R3
SUBS R8, R6, #240 ; Sets the flags on the result
RSB R4, R4, #1280 ; Subtracts contents of R4 from 1280
ADCHI R11, R0, R3 ; Only executed if C flag set and Z
 ; flag clear.

2.6.5.1.5 Multiword Arithmetic Examples
The following example shows two instructions that add a 64-bit integer contained in R2 and R3 to another 64-bit
integer contained in R0 and R1, and place the result in R4 and R5.

• Example 4: 64-bit addition
ADDS R4, R0, R2 ; add the least significant words
ADC R5, R1, R3 ; add the most significant words with carry

Multiword values do not have to use consecutive registers. The following example shows instructions that
subtract a 96-bit integer contained in R9, R1, and R11 from another contained in R6, R2, and R8. The example
stores the result in R6, R9, and R2.

• Example 5: 96-bit subtraction
SUBS R6, R6, R9 ; subtract the least significant words
SBCS R9, R2, R1 ; subtract the middle words with carry
SBC R2, R8, R11 ; subtract the most significant words with carry

2.6.5.2 AND, ORR, EOR, BIC, and ORN
Logical AND, OR, Exclusive OR, Bit Clear, and OR NOT.

2.6.5.2.1 Syntax
op{S}{cond} {Rd,} Rn, Operand2
where:

• op is one of:
– AND: logical AND.
– ORR: logical OR, or bit set.
– EOR: logical Exclusive OR.
– BIC: logical AND NOT, or bit clear.
– ORN: logical OR NOT.

• S is an optional suffix. If S is specified, the condition code flags are updated on the result of the operation, see
2.6.3.7. Conditional Execution.

• cond is an optional condition code, see 2.6.3.7. Conditional Execution.
• Rd is the destination register.
• Rn is the register holding the first operand.

Cortex-M3 Processor (Reference Material)

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 65

• Operand2 is a flexible second operand. For more information about the options, see 2.6.3.3. Flexible Second
Operand.

2.6.5.2.2 Operation
The AND, EOR, and ORR instructions perform bitwise AND, Exclusive OR, and OR operations on the values in Rn and
Operand2.

The BIC instruction performs an AND operation on the bits in Rn with the complements of the corresponding bits in
the value of Operand2.

The ORN instruction performs an OR operation on the bits in Rn with the complements of the corresponding bits in the
value of Operand2.

2.6.5.2.3 Restrictions
Do not use SP and do not use PC.

2.6.5.2.4 Condition Flags
If S is specified, these instructions:

• Update the N and Z flags according to the result
• Can update the C flag during the calculation of Operand2, see 2.6.3.3. Flexible Second Operand
• Do not affect the V flag.

Examples

AND R9, R2, #0xFF00
ORREQ R2, R0, R5
ANDS R9, R8, #0x19
EORS R7, R11, #0x18181818
BIC R0, R1, #0xab
ORN R7, R11, R14, ROR #4
ORNS R7, R11, R14, ASR #32

2.6.5.3 ASR, LSL, LSR, ROR, and RRX
Arithmetic Shift Right, Logical Shift Left, Logical Shift Right, Rotate Right, and Rotate Right with Extend.

2.6.5.3.1 Syntax
op{S}{cond} Rd, Rm, Rs
op{S}{cond} Rd, Rm, #n
RRX{S}{cond} Rd, Rm
where:

• op is one of:
– ASR: Arithmetic Shift Right.
– LSL: Logical Shift Left.
– LSR: Logical Shift Right.
– ROR: Rotate Right.

• S is an optional suffix. If S is specified, the condition code flags are updated on the result of the operation, see
2.6.3.7. Conditional Execution.

• Rd is the destination register.
• Rm is the register holding the value to be shifted.
• Rs is the register holding the shift length to apply to the value in Rm. Only the least significant byte is used and

can be in the range 0 to 255.
• n is the shift length. The range of shift length depends on the instruction:

– ASR shift length from 1 to 32
– LSL shift length from 0 to 31
– LSR shift length from 1 to 32
– ROR shift length from 1 to 31

Cortex-M3 Processor (Reference Material)

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 66

Important: MOVS Rd, Rm is the preferred syntax for LSLS Rd, Rm, #0.

2.6.5.3.2 Operation
ASR, LSL, LSR, and ROR move the bits in the register Rm to the left or right by the number of places specified by
constant n or register Rs.

RRX moves the bits in register Rm to the right by 1.

In all these instructions, the result is written to Rd, but the value in register Rm remains unchanged. For more
information about the result generated by the different instructions, see 2.6.3.4. Shift Operations.

2.6.5.3.3 Restrictions
Do not use SP and do not use PC.

2.6.5.3.4 Condition Flags
If S is specified:

• These instructions update the N and Z flags according to the result
• The C flag is updated to the last bit shifted out, except when the shift length is 0, see 2.6.3.4. Shift Operations.

Examples

ASR R7, R8, #9 ; Arithmetic shift right by 9 bits
LSLS R1, R2, #3 ; Logical shift left by 3 bits with flag update
LSR R4, R5, #6 ; Logical shift right by 6 bits
ROR R4, R5, R6 ; Rotate right by the value in the bottom byte of R6
RRX R4, R5 ; Rotate right with extend.

2.6.5.4 CLZ
Count Leading Zeros.

2.6.5.4.1 Syntax
CLZ{cond} Rd, Rm
where:

cond is an optional condition code, see 2.6.3.7. Conditional Execution.

Rd is the destination register.

Rm is the operand register.

2.6.5.4.2 Operation
The CLZ instruction counts the number of leading zeros in the value in Rm and returns the result in Rd. The result
value is 32 if no bits are set and zero if bit[31] is set.

2.6.5.4.3 Restrictions
Do not use SP, and do not use PC.

2.6.5.4.4 Condition Flags
This instruction does not change the flags.

Examples

CLZ R4,R9
CLZNE R2,R3

2.6.5.5 CMP and CMN
Compare and Compare Negative.

2.6.5.5.1 Syntax
CMP{cond} Rn, Operand2

Cortex-M3 Processor (Reference Material)

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 67

CMN{cond} Rn, Operand2
where:

cond is an optional condition code, see 2.6.3.7. Conditional Execution.

Rn is the register holding the first operand.

Operand2 is a flexible second operand. See 2.6.3.3. Flexible Second Operand for details of the options.

2.6.5.5.2 Operation
These instructions compare the value in a register with Operand2. They update the condition flags on the result, but
do not write the result to a register.

The CMP instruction subtracts the value of Operand2 from the value in Rn. This is the same as a SUBS instruction,
except that the result is discarded.

The CMN instruction adds the value of Operand2 to the value in Rn. This is the same as an ADDS instruction, except
that the result is discarded.

2.6.5.5.3 Restrictions
In these instructions:

• do not use PC
• Operand2 must not be SP.

2.6.5.5.4 Condition Flags
These instructions update the N, Z, C and V flags according to the result.

Examples

CMP R2, R9
CMN R0, #6400
CMPGT SP, R7, LSL #2

2.6.5.6 MOV and MVN
Move and Move NOT.

2.6.5.6.1 Syntax
MOV{S}{cond} Rd, Operand2
MOV{cond} Rd, #imm16
MVN{S}{cond} Rd, Operand2
where:

S is an optional suffix. If S is specified, the condition code flags are updated on the result of the operation, see
2.6.3.7. Conditional Execution.

cond is an optional condition code, see 2.6.3.7. Conditional Execution.

Rd is the destination register.

Operand2 is a flexible second operand. See 2.6.3.3. Flexible Second Operand for details of the options.

imm16 is any value in the range 0-65535.

2.6.5.6.2 Operation
The MOV instruction copies the value of Operand2 into Rd.

When Operand2 in a MOV instruction is a register with a shift other than LSL #0, the preferred syntax is the
corresponding shift instruction:

• ASR{S}{cond} Rd, Rm, #n is the preferred syntax for MOV{S}{cond} Rd, Rm, ASR #n
• LSL{S}{cond} Rd, Rm, #n is the preferred syntax for MOV{S}{cond} Rd, Rm, LSL #n if n != 0
• LSR{S}{cond} Rd, Rm, #n is the preferred syntax for MOV{S}{cond} Rd, Rm, LSR #n
• ROR{S}{cond} Rd, Rm, #n is the preferred syntax for MOV{S}{cond} Rd, Rm, ROR #n

Cortex-M3 Processor (Reference Material)

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 68

• RRX{S}{cond} Rd, Rm is the preferred syntax for MOV{S}{cond} Rd, Rm, RRX.

Also, the MOV instruction permits additional forms of Operand2 as synonyms for shift instructions:

• MOV{S}{cond} Rd, Rm, ASR Rs is a synonym for ASR{S}{cond} Rd, Rm, Rs
• MOV{S}{cond} Rd, Rm, LSL Rs is a synonym for LSL{S}{cond} Rd, Rm, Rs
• MOV{S}{cond} Rd, Rm, LSR Rs is a synonym for LSR{S}{cond} Rd, Rm, Rs
• MOV{S}{cond} Rd, Rm, ROR Rs is a synonym for ROR{S}{cond} Rd, Rm, Rs

See 2.6.5.3. ASR, LSL, LSR, ROR, and RRX.

The MVN instruction takes the value of Operand2, performs a bitwise logical NOT operation on the value, and places
the result into Rd.

Note: The MOVW instruction provides the same function as MOV, but is restricted to using the imm16 operand.

2.6.5.6.3 Restrictions
You can use SP and PC only in the MOV instruction, with the following restrictions:

• the second operand must be a register without shift
• you must not specify the S suffix.

When Rd is PC in a MOV instruction:

• bit[0] of the value written to the PC is ignored
• a branch occurs to the address created by forcing bit[0] of that value to 0.

Note: Though it is possible to use MOV as a branch instruction, Arm strongly recommends the use of a BX or
BLX instruction to branch for software portability to the Arm instruction set.

2.6.5.6.4 Condition Flags
• If S is specified, these instructions:
• update the N and Z flags according to the result
• can update the C flag during the calculation of Operand2, see 2.6.3.3. Flexible Second Operand
• do not affect the V flag.

Example

MOVS R11, #0x000B ; Write value of 0x000B to R11, flags get updated
MOV R1, #0xFA05 ; Write value of 0xFA05 to R1, flags are not updated
MOVS R10, R12 ; Write value in R12 to R10, flags get updated
MOV R3, #23 ; Write value of 23 to R3
MOV R8, SP ; Write value of stack pointer to R8
MVNS R2, #0xF ; Write value of 0xFFFFFFF0 (bitwise inverse of 0xF)
 ; to the R2 and update flags.

2.6.5.7 MOVT
Move Top.

2.6.5.7.1 Syntax
MOVT{cond} Rd, #imm16
where:

cond is an optional condition code, see 2.6.3.7. Conditional Execution.

Rd is the destination register.

imm16 is a 16-bit immediate constant.

2.6.5.7.2 Operation
MOVT writes a 16-bit immediate value, imm16, to the top halfword, Rd[31:16], of its destination register. The write
does not affect Rd[15:0].

The MOV, MOVT instruction pair enables you to generate any 32-bit constant.

2.6.5.7.3 Restrictions
Rd must not be SP and must not be PC.

Cortex-M3 Processor (Reference Material)

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 69

2.6.5.7.4 Condition Flags
This instruction does not change the flags.

Examples

MOVT R3, #0xF123 ; Write 0xF123 to upper halfword of R3, lower halfword
 ; and APSR are unchanged.

2.6.5.8 REV, REV16, REVSH, and RBIT
Reverse bytes and Reverse bits.

2.6.5.8.1 Syntax
op{cond} Rd, Rn
where:

• op is any of:
– REV: Reverse byte order in a word.
– REV16: Reverse byte order in each halfword independently.
– REVSH: Reverse byte order in the bottom halfword, and sign extend to 32 bits.
– RBIT: Reverse the bit order in a 32-bit word.

• cond is an optional condition code, see 2.6.3.7. Conditional Execution.
• Rd is the destination register.
• Rn is the register holding the operand.

2.6.5.8.2 Operation
Use these instructions to change endianness of data:

• REV: converts 32-bit big-endian data into little-endian data or 32-bit little-endian data into big-endian data.
• REV16: converts 16-bit big-endian data into little-endian data or 16-bit little-endian data into big-endian data.
• REVSH: converts either:

– 16-bit signed big-endian data into 32-bit signed little-endian data
– 16-bit signed little-endian data into 32-bit signed big-endian data.

2.6.5.8.3 Restrictions
Do not use SP and do not use PC.

2.6.5.8.4 Condition Flags
These instructions do not change the flags.

Examples

REV R3, R7 ; Reverse byte order of value in R7 and write it to R3
REV16 R0, R0 ; Reverse byte order of each 16-bit halfword in R0
REVSH R0, R5 ; Reverse Signed Halfword
REVHS R3, R7 ; Reverse with Higher or Same condition
RBIT R7, R8 ; Reverse bit order of value in R8 and write the result to R7.

2.6.5.9 TST and TEQ
Test bits and Test Equivalence.

2.6.5.9.1 Syntax
TST{cond} Rn, Operand2
TEQ{cond} Rn, Operand2
where:

cond is an optional condition code, see 2.6.3.7. Conditional Execution.

Rn is the register holding the first operand.

Operand2 is a flexible second operand. See 2.6.3.3. Flexible Second Operand for details of the options.

Cortex-M3 Processor (Reference Material)

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 70

2.6.5.9.2 Operation
These instructions test the value in a register against Operand2. They update the condition flags based on the result,
but do not write the result to a register.

The TST instruction performs a bitwise AND operation on the value in Rn and the value of Operand2. This is the
same as the ANDS instruction, except that it discards the result.

To test whether a bit of Rn is 0 or 1, use the TST instruction with an Operand2 constant that has that bit set to 1 and
all other bits cleared to 0.

The TEQ instruction performs a bitwise Exclusive OR operation on the value in Rn and the value of Operand2. This is
the same as the EORS instruction, except that it discards the result.

Use the TEQ instruction to test if two values are equal without affecting the V or C flags.

TEQ is also useful for testing the sign of a value. After the comparison, the N flag is the logical Exclusive OR of the
sign bits of the two operands.

2.6.5.9.3 Restrictions
Do not use SP and do not use PC.

2.6.5.9.4 Condition Flags
These instructions:

• update the N and Z flags according to the result
• can update the C flag during the calculation of Operand2, see 2.6.3.3. Flexible Second Operand
• do not affect the V flag.

Examples

TST R0, #0x3F8 ; Perform bitwise AND of R0 value to 0x3F8,
 ; APSR is updated but result is discarded
TEQEQ R10, R9 ; Conditionally test if value in R10 is equal to
 ; value in R9, APSR is updated but result is discarded.

2.6.6 Multiply and Divide Instructions
The following table shows the multiply and divide instructions:

Table 2-28. Multiply and Divide Instructions

Mnemonic Brief Description See

MLA Multiply with Accumulate, 32-bit result 2.6.6.1. MUL, MLA, and MLS

MLS Multiply and Subtract, 32-bit result 2.6.6.1. MUL, MLA, and MLS

MUL Multiply, 32-bit result 2.6.6.1. MUL, MLA, and MLS

SDIV Signed Divide 2.6.6.3. SDIV and UDIV

SMLAL Signed Multiply with Accumulate
(32x32+64), 64-bit result

2.6.6.3. SDIV and UDIV

SMULL Signed Multiply (32x32), 64-bit result 2.6.6.2. UMULL, UMLAL, SMULL, and SMLAL

UDIV Unsigned Divide 2.6.6.3. SDIV and UDIV

UMLAL Unsigned Multiply with Accumulate
(32x32+64), 64-bit result

2.6.6.2. UMULL, UMLAL, SMULL, and SMLAL

UMULL Unsigned Multiply (32x32), 64-bit result 2.6.6.2. UMULL, UMLAL, SMULL, and SMLAL

2.6.6.1 MUL, MLA, and MLS
Multiply, Multiply with Accumulate, and Multiply with Subtract, using 32-bit operands, and producing a
32-bit result.

Cortex-M3 Processor (Reference Material)

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 71

2.6.6.1.1 Syntax
MUL{S}{cond} {Rd,} Rn, Rm ; Multiply
MLA{cond} Rd, Rn, Rm, Ra ; Multiply with accumulate
MLS{cond} Rd, Rn, Rm, Ra ; Multiply with subtract

where:

cond is an optional condition code, see 2.6.3.7. Conditional Execution.

S is an optional suffix. If S is specified, the condition code flags are updated on the result of the operation, see
2.6.3.7. Conditional Execution.

Rd is the destination register. If Rd is omitted, the destination register is Rn.

Rn, Rm are registers holding the values to be multiplied.

Ra is a register holding the value to be added or subtracted from.

2.6.6.1.2 Operation
The MUL instruction multiplies the values from Rn and Rm, and places the least significant 32 bits of the result in Rd.

The MLA instruction multiplies the values from Rn and Rm, adds the value from Ra, and places the least significant
32 bits of the result in Rd.

The MLS instruction multiplies the values from Rn and Rm, subtracts the product from the value from Ra, and places
the least significant 32 bits of the result in Rd.

The results of these instructions do not depend on whether the operands are signed or unsigned.

2.6.6.1.3 Restrictions
In these instructions, do not use SP and do not use PC.

If you use the S suffix with the MUL instruction:

• Rd, Rn, and Rm must all be in the range R0 to R7
• Rd must be the same as Rm
• you must not use the cond suffix.

2.6.6.1.4 Condition Flags
If S is specified, the MUL instruction:

• updates the N and Z flags according to the result
• does not affect the C and V flags.

Examples

MUL R10, R2, R5 ; Multiply, R10 = R2 x R5
MLA R10, R2, R1, R5 ; Multiply with accumulate, R10 = (R2 x R1) + R5
MULS R0, R2, R2 ; Multiply with flag update, R0 = R2 x R2
MULLT R2, R3, R2 ; Conditionally multiply, R2 = R3 x R2
MLS R4, R5, R6, R7 ; Multiply with subtract, R4 = R7 - (R5 x R6).

2.6.6.2 UMULL, UMLAL, SMULL, and SMLAL
Signed and Unsigned Long Multiply, with optional Accumulate, using 32-bit operands and producing a 64-bit result.

2.6.6.2.1 Syntax
op{cond} RdLo, RdHi, Rn, Rm
where:

• op is one of:
– UMULL: Unsigned Long Multiply
– UMLAL: Unsigned Long Multiply, with Accumulate
– SMULL: Signed Long Multiply
– SMLAL: Signed Long Multiply, with Accumulate

• cond is an optional condition code, see 2.6.3.7. Conditional Execution.

Cortex-M3 Processor (Reference Material)

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 72

• RdHi, RdLo are the destination registers. For UMLAL and SMLAL they also hold the accumulating value.
• Rn, Rm are registers holding the operands.

2.6.6.2.2 Operation
The UMULL instruction interprets the values from Rn and Rm as unsigned integers. It multiplies these integers and
places the least significant 32 bits of the result in RdLo, and the most significant 32 bits of the result in RdHi.

The UMLAL instruction interprets the values from Rn and Rm as unsigned integers. It multiplies these integers, adds
the 64-bit result to the 64-bit unsigned integer contained in RdHi and RdLo, and writes the result back to RdHi and
RdLo.

The SMULL instruction interprets the values from Rn and Rm as two’s complement signed integers. It multiplies
these integers and places the least significant 32 bits of the result in RdLo, and the most significant 32 bits of the
result in RdHi.

The SMLAL instruction interprets the values from Rn and Rm as two’s complement signed integers. It multiplies
these integers, adds the 64-bit result to the 64-bit signed integer contained in RdHi and RdLo, and writes the result
back to RdHi and RdLo.

2.6.6.2.3 Restrictions
In these instructions:

• do not use SP and do not use PC
• RdHi and RdLo must be different registers.

2.6.6.2.4 Condition Flags
These instructions do not affect the condition code flags.

Examples

UMULL R0, R4, R5, R6 ; Unsigned (R4,R0) = R5 x R6
SMLAL R4, R5, R3, R8 ; Signed (R5,R4) = (R5,R4) + R3 x R8

2.6.6.3 SDIV and UDIV
Signed Divide and Unsigned Divide.

2.6.6.3.1 Syntax
SDIV{cond} {Rd,} Rn, Rm
UDIV{cond} {Rd,} Rn, Rm

where:

cond is an optional condition code, see 2.6.3.7. Conditional Execution.

Rd is the destination register. If Rd is omitted, the destination register is Rn.

Rn is the register holding the value to be divided.

Rm is a register holding the divisor.

2.6.6.3.2 Operation
SDIV performs a signed integer division of the value in Rn by the value in Rm.

UDIV performs an unsigned integer division of the value in Rn by the value in Rm.

For both instructions, if the value in Rn is not divisible by the value in Rm, the result is rounded towards zero.

2.6.6.3.3 Restrictions
Do not use SP and do not use PC.

2.6.6.3.4 Condition Flags
These instructions do not change the flags.

Examples

SDIV R0, R2, R4 ; Signed divide, R0 = R2/R4
UDIV R8, R8, R1 ; Unsigned divide, R8 = R8/R1.

Cortex-M3 Processor (Reference Material)

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 73

2.6.7 Saturating Instructions
This section describes the saturating instructions, SSAT and USAT.

2.6.7.1 SSAT and USAT
Signed Saturate and Unsigned Saturate to any bit position, with optional shift before saturating.

2.6.7.1.1 Syntax
op{cond} Rd, #n, Rm {, shift #s}
where:

• op is one of:
– SSAT: Saturates a signed value to a signed range.
– USAT: Saturates a signed value to an unsigned range.

• cond is an optional condition code, see 2.6.3.7. Conditional Execution.
• Rd is the destination register.
• n specifies the bit position to saturate to:

– n ranges from 1 to 32 for SSAT
– n ranges from 0 to 31 for USAT.

• Rm is the register containing the value to saturate.
• shift #s is an optional shift applied to Rm before saturating. It must be one of the following:

– ASR #s where s is in the range 1 to 31
– LSL #s where s is in the range 0 to 31

2.6.7.1.2 Operation
These instructions saturate to a signed or unsigned n-bit value.

The SSAT instruction applies the specified shift, then saturates to the signed range -2n–1 ≤ x ≤ 2n–1-1.

The USAT instruction applies the specified shift, then saturates to the unsigned range 0 ≤ x ≤ 2n-1.

For signed n-bit saturation using SSAT, this means that:

• if the value to be saturated is less than -2n-1, the result returned is -2n-1

• if the value to be saturated is greater than 2n-1-1, the result returned is 2n-1-1
• otherwise, the result returned is the same as the value to be saturated.

For unsigned n-bit saturation using USAT, this means that:

• if the value to be saturated is less than 0, the result returned is 0
• if the value to be saturated is greater than 2n-1, the result returned is 2n-1
• otherwise, the result returned is the same as the value to be saturated.

If the returned result is different from the value to be saturated, it is called saturation. If saturation occurs, the
instruction sets the Q flag to 1 in the APSR. Otherwise, it leaves the Q flag unchanged. To clear the Q flag to 0, you
must use the MSR instruction, see 2.6.10.7. MSR.

To read the state of the Q flag, use the MRS instruction, see 2.6.10.6. MRS.

2.6.7.1.3 Restrictions
Do not use SP and do not use PC.

2.6.7.1.4 Condition Flags
These instructions do not affect the condition code flags.

If saturation occurs, these instructions set the Q flag to 1.

Examples

SSAT R7, #16, R7, LSL #4 ; Logical shift left value in R7 by 4, then
 ; saturate it as a signed 16-bit value and
 ; write it back to R7
USATNE R0, #7, R5 ; Conditionally saturate value in R5 as an
 ; unsigned 7 bit value and write it to R0.

Cortex-M3 Processor (Reference Material)

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 74

2.6.8 Bitfield instructions
The following table shows the instructions that operate on adjacent sets of bits in registers or bitfields:

Table 2-29. Packing and Unpacking Instructions

Mnemonic Brief description See

BFC Bit Field Clear 2.6.8.1. BFC and BFI

BFI Bit Field Insert 2.6.8.1. BFC and BFI

SBFX Signed Bit Field Extract 2.6.8.2. SBFX and UBFX

SXTB Sign extend a byte 2.6.8.3. SXT and UXT

SXTH Sign extend a halfword 2.6.8.3. SXT and UXT

UBFX Unsigned Bit Field Extract 2.6.8.2. SBFX and UBFX

UXTB Zero extend a byte 2.6.8.3. SXT and UXT

UXTH Zero extend a halfword 2.6.8.3. SXT and UXT

2.6.8.1 BFC and BFI
Bit Field Clear and Bit Field Insert.

2.6.8.1.1 Syntax
BFC{cond} Rd, #lsb, #width
BFI{cond} Rd, Rn, #lsb, #width

where:

cond is an optional condition code, see 2.6.3.7. Conditional Execution.

Rd is the destination register.

Rn is the source register.

lsb is the position of the least significant bit of the bitfield. lsb must be in the range 0 to 31.

width is the width of the bitfield and must be in the range 1 to 32-lsb.

2.6.8.1.2 Operation
BFC clears a bitfield in a register. It clears width bits in Rd, starting at the low bit position lsb. Other bits in Rd are
unchanged.

BFI copies a bitfield into one register from another register. It replaces width bits in Rd starting at the low bit position
lsb, with width bits from Rn starting at bit[0]. Other bits in Rd are unchanged.

2.6.8.1.3 Restrictions
Do not use SP and do not use PC.

2.6.8.1.4 Condition Flags
These instructions do not affect the flags.

Examples

BFC R4, #8, #12 ; Clear bit 8 to bit 19 (12 bits) of R4 to 0
BFI R9, R2, #8, #12 ; Replace bit 8 to bit 19 (12 bits) of R9 with
 ; bit 0 to bit 11 from R2.

2.6.8.2 SBFX and UBFX
Signed Bit Field Extract and Unsigned Bit Field Extract.

2.6.8.2.1 Syntax
SBFX{cond} Rd, Rn, #lsb, #width
UBFX{cond} Rd, Rn, #lsb, #width

Cortex-M3 Processor (Reference Material)

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 75

where:

cond is an optional condition code, see 2.6.3.7. Conditional Execution.

Rd is the destination register.

Rn is the source register.

lsb is the position of the least significant bit of the bitfield. lsb must be in the range 0 to 31.

width is the width of the bitfield and must be in the range 1 to 32-lsb.

2.6.8.2.2 Operation
SBFX extracts a bitfield from one register, sign extends it to 32 bits, and writes the result to the destination register.

UBFX extracts a bitfield from one register, zero extends it to 32 bits, and writes the result to the destination register.

2.6.8.2.3 Restrictions
Do not use SP and do not use PC.

2.6.8.2.4 Condition Flags
These instructions do not affect the flags.

Examples

SBFX R0, R1, #20, #4 ; Extract bit 20 to bit 23 (4 bits) from R1 and sign
 ; extend to 32 bits and then write the result to R0.
UBFX R8, R11, #9, #10 ; Extract bit 9 to bit 18 (10 bits) from R11 and zero
 ; extend to 32 bits and then write the result to R8.

2.6.8.3 SXT and UXT
Sign extend and Zero extend.

2.6.8.3.1 Syntax
SXTextend{cond} {Rd,} Rm {, ROR #n}
UXTextend{cond} {Rd}, Rm {, ROR #n}
where:

• extend is one of:
– B: Extends an 8-bit value to a 32-bit value.
– H: Extends a 16-bit value to a 32-bit value.

• cond is an optional condition code, see 2.6.3.7. Conditional Execution.
• Rd is the destination register.
• Rm is the register holding the value to extend.
• ROR #n is one of:

– ROR #8: Value from Rm is rotated right 8 bits.
– ROR #16: Value from Rm is rotated right 16 bits.
– ROR #24: Value from Rm is rotated right 24 bits.
– If ROR #n is omitted, no rotation is performed.

2.6.8.3.2 Operation
These instructions do the following:

Rotate the value from Rm right by 0, 8, 16 or 24 bits.

Extract bits from the resulting value:

• SXTB extracts bits [7:0] and sign extends to 32 bits.
• UXTB extracts bits [7:0] and zero extends to 32 bits.
• SXTH extracts bits [15:0] and sign extends to 32 bits.
• UXTH extracts bits [15:0] and zero extends to 32 bits.

2.6.8.3.3 Restrictions
Do not use SP and do not use PC.

Cortex-M3 Processor (Reference Material)

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 76

2.6.8.3.4 Condition Flags
These instructions do not affect the flags.

Examples

SXTH R4, R6, ROR #16 ; Rotate R6 right by 16 bits, then obtain the lower
 ; halfword of the result and then sign extend to
 ; 32 bits and write the result to R4.
UXTB R3, R10 ; Extract lowest byte of the value in R10 and zero
 ; extend it, and write the result to R3.

2.6.9 Branch and Control Instructions
The following table lists the branch and control instructions:

Table 2-30. Branch and Control Instructions

Mnemonic Brief description See

B Branch 2.6.9.1. B, BL, BX, and BLX

BL Branch with Link 2.6.9.1. B, BL, BX, and BLX

BLX Branch indirect with Link 2.6.9.1. B, BL, BX, and BLX

BX Branch indirect 2.6.9.1. B, BL, BX, and BLX

CBNZ Compare and Branch if Non Zero 2.6.9.2. CBZ and CBNZ

CBZ Compare and Branch if Zero 2.6.9.2. CBZ and CBNZ

IT If-Then 2.6.9.3. IT

TBB Table Branch Byte 2.6.9.4. TBB and TBH

TBH Table Branch Halfword 2.6.9.4. TBB and TBH

2.6.9.1 B, BL, BX, and BLX
Branch instructions.

2.6.9.1.1 Syntax
B{cond}
labelBL{cond}
labelBX{cond}
RmBLX{cond} Rm

where:

• B is branch (immediate).
• BL is branch with link (immediate).
• BX is branch indirect (register).
• BLX is branch indirect with link (register).
• cond is an optional condition code, see 2.6.3.7. Conditional Execution.
• label is a PC-relative expression. See 2.6.3.6. PC-relative Expressions.
• Rm is a register that indicates an address to branch to. Bit[0] of the value in Rm must be 1, but the address to

branch to is created by changing bit[0] to 0.

2.6.9.1.2 Operation
All these instructions cause a branch to label, or to the address indicated in Rm. In addition:

• The BL and BLX instructions write the address of the next instruction to LR (the link register, R14).
• The BX and BLX instructions result in a UsageFault exception if bit[0] of Rm is 0.

Bcond label is the only conditional instruction that can be either inside or outside an IT block. All other branch
instructions can only be conditional inside an IT block, and are always unconditional otherwise, see 2.6.9.3. IT.

Cortex-M3 Processor (Reference Material)

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 77

The following table lists the ranges for the various branch instructions.

Table 2-31. Branch Ranges

Instruction Branch Range

B label -16 MB to +16 MB

Bcond label (outside IT block) -1 MB to +1 MB

Bcond label (inside IT block) -16 MB to +16 MB

BL{cond} label -16 MB to +16 MB

BX{cond} Rm Any value in register

BLX{cond} Rm Any value in register

You may have to use the .W suffix to get the maximum branch range. See 2.6.3.8. Instruction Width Selection.

2.6.9.1.3 Restrictions
The restrictions are:

• do not use PC in the BLX instruction
• for BX and BLX, bit[0] of Rm must be 1 for correct execution but a branch occurs to the target address created

by changing bit[0] to 0
• when any of these instructions is inside an IT block, it must be the last instruction of the IT block.

Note: Bcond is the only conditional instruction that is not required to be inside an IT block. However, it has a
longer branch range when it is inside an IT block.

2.6.9.1.4 Condition Flags
These instructions do not change the flags.

Examples

B loopA ; Branch to loopA
BLE ng ; Conditionally branch to label
ngB.W target ; Branch to target within 16MB range
BEQ target ; Conditionally branch to target
BEQ.W target ; Conditionally branch to target within 1 MB
BL funC ; Branch with link (Call) to function funC, return address
 ; stored in LR
BX LR ; Return from function call
BXNE R0 ; Conditionally branch to address stored in R0
BLX R0 ; Branch with link and exchange (Call) to a address stored
 ; in R0.

2.6.9.2 CBZ and CBNZ
Compare and Branch on Zero, Compare and Branch on Non-Zero.

2.6.9.2.1 Syntax
CBZ Rn, label
CBNZ Rn, label

where:

• Rn is the register holding the operand.
• label is the branch destination.

2.6.9.2.2 Operation
Use the CBZ or CBNZ instructions to avoid changing the condition code flags and to reduce the number of
instructions.

CBZ Rn, label does not change condition flags but is otherwise equivalent to:

CMP Rn, #0

BEQ label

Cortex-M3 Processor (Reference Material)

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 78

CBNZ Rn, label does not change condition flags but is otherwise equivalent to:

CMP Rn, #0

BNE label

2.6.9.2.3 Restrictions
The restrictions are:

Rn must be in the range of R0 to R7

the branch destination must be within 4 to 130 bytes after the instruction

these instructions must not be used inside an IT block.

2.6.9.2.4 Condition Flags
These instructions do not change the flags.

Examples

CBZ R5, target ; Forward branch if R5 is zero
CBNZ R0, target ; Forward branch if R0 is not zero.

2.6.9.3 IT
If-Then condition instruction.

2.6.9.3.1 Syntax
IT{x{y{z}}} cond
where:

• x specifies the condition switch for the second instruction in the IT block.
• y specifies the condition switch for the third instruction in the IT block.
• z specifies the condition switch for the fourth instruction in the IT block.
• cond specifies the condition for the first instruction in the IT block. The condition switch for the second, third and

fourth instruction in the IT block can be either:

• T: Then. Applies the condition cond to the instruction.
• E: Else. Applies the inverse condition of cond to the instruction.

Important: It is possible to use AL (the always condition) for cond in an IT instruction. If this is done,
all of the instructions in the IT block must be unconditional, and each of x, y, and z must be T or
omitted but not E.

2.6.9.3.2 Operation
The IT instruction makes up to four following instructions conditional. The conditions can be all the same, or some
of them can be the logical inverse of the others. The conditional instructions following the IT instruction form the IT
block.

The instructions in the IT block, including any branches, must specify the condition in the {cond} part of their syntax.

Note: Your assembler might be able to generate the required IT instructions for conditional instructions automatically,
so that you do not need to write them yourself. See your assembler documentation for details.

A BKPT instruction in an IT block is always executed, even if its condition fails.

Exceptions can be taken between an IT instruction and the corresponding IT block, or within an IT block. Such an
exception results in entry to the appropriate exception handler, with suitable return information in LR and stacked
PSR.

Instructions designed for use for exception returns can be used as normal to return from the exception, and execution
of the IT block resumes correctly. This is the only way that a PC-modifying instruction is permitted to branch to an
instruction in an IT block.

Cortex-M3 Processor (Reference Material)

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 79

2.6.9.3.3 Restrictions
The following instructions are not permitted in an IT block:

• IT
• CBZ and CBNZ
• CPSID and CPSIE
• MOVS.N Rd, Rm.

Other restrictions when using an IT block are:

• a branch or any instruction that modifies the PC must either be outside an IT block or must be the last instruction
inside the IT block. These are:

– ADD PC, PC, Rm
– MOV PC, Rm
– B, BL, BX, BLX
– any LDM, LDR, or POP instruction that writes to the PC
– TBB and TBH

• do not branch to any instruction inside an IT block, except when returning from an exception handler
• all conditional instructions except Bcond must be inside an IT block. Bcond can be either outside or inside an IT

block but has a larger branch range if it is inside one
• each instruction inside the IT block must specify a condition code suffix that is either the same or logical inverse

as for the other instructions in the block.
Note: Your assembler might place extra restrictions on the use of IT blocks, such as prohibiting the use of
assembler directives within them.

2.6.9.3.4 Condition Flags
This instruction does not change the flags.

Example

ITTE NE ; Next 3 instructions are conditional
ANDNE R0, R0, R1 ; ANDNE does not update condition flags
ADDSNE R2, R2, #1 ; ADDSNE updates condition flags
MOVEQ R2, R3 ; Conditional move
CMP R0, #9 ; Convert R0 hex value (0 to 15) into ASCII
 ; ('0'-'9', 'A'-'F')
ITE GT ; Next 2 instructions are conditional
ADDGT R1, R0, #55 ; Convert 0xA -> 'A'
ADDLE R1, R0, #48 ; Convert 0x0 -> '0'

IT GT ; IT block with only one conditional instruction
ADDGT R1, R1, #1 ; Increment R1 conditionally

ITTEE EQ ; Next 4 instructions are conditional
MOVEQ R0, R1 ; Conditional move
ADDEQ R2, R2, #10 ; Conditional add
ANDNE R3, R3, #1 ; Conditional AND
BNE.W dloop ; Branch instruction can only be used in the last
 ; instruction of an IT block

IT NE ; Next instruction is conditional
ADD R0, R0, R1 ; Syntax error: no condition code used in IT block.

2.6.9.4 TBB and TBH
Table Branch Byte and Table Branch Halfword.

2.6.9.4.1 Syntax
TBB [Rn, Rm]

TBH [Rn, Rm, LSL #1]
where:

Cortex-M3 Processor (Reference Material)

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 80

• Rn is the register containing the address of the table of branch lengths. If Rn is PC, then the address of the table
is the address of the byte immediately following the TBB or TBH instruction.

• Rm is the index register. This contains an index into the table. For halfword tables, LSL #1 doubles the value in
Rm to form the right offset into the table.

2.6.9.4.2 Operation
These instructions cause a PC-relative forward branch using a table of single byte offsets for TBB, or halfword offsets
for TBH. Rn provides a pointer to the table, and Rm supplies an index into the table. For TBB the branch offset is
twice the unsigned value of the byte returned from the table. and for TBH the branch offset is twice the unsigned
value of the halfword returned from the table. The branch occurs to the address at that offset from the address of the
byte immediately after the TBB or TBH instruction.

2.6.9.4.3 Restrictions
The restrictions are:

• Rn must not be SP
• Rm must not be SP and must not be PC
• when any of these instructions is used inside an IT block, it must be the last instruction of the IT block.

2.6.9.4.4 Condition Flags
These instructions do not change the flags.

Examples

ADR.W R0, BranchTable_Byte
TBB [R0, R1] ; R1 is the index, R0 is the base address of the
 ; branch table
Case1
; an instruction sequence follows
Case2
; an instruction sequence follows
Case3
; an instruction sequence follows
BranchTable_Byte
 DCB 0 ; Case1 offset calculation
 DCB ((Case2-Case1)/2) ; Case2 offset calculation
 DCB ((Case3-Case1)/2) ; Case3 offset calculation

TBH [PC, R1, LSL #1] ; R1 is the index, PC is used as base of the
 ; branch table
BranchTable_H
DCI ((CaseA - BranchTable_H)/2) ;CaseA offset calculation
DCI ((CaseB - BranchTable_H)/2) ; CaseB offset calculation
DCI ((CaseC - BranchTable_H)/2) ; CaseC offset calculation

CaseA

; an instruction sequence follows

CaseB

; an instruction sequence follows

CaseC

; an instruction sequence follows

2.6.10 Miscellaneous Instructions
The following table lists the remaining Cortex-M3 processor instructions:

Table 2-32. Miscellaneous Instructions

Mnemonic Brief Description See

BKPT Breakpoint 2.6.10.1. BKPT

Cortex-M3 Processor (Reference Material)

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 81

...........continued
Mnemonic Brief Description See

CPSID Change Processor State, Disable Interrupts 2.6.10.2. CPS

CPSIE Change Processor State, Enable Interrupts 2.6.10.2. CPS

DMB Data Memory Barrier 2.6.10.3. DMB

DSB Data Synchronization Barrier 2.6.10.4. DSB

ISB Instruction Synchronization Barrier 2.6.10.5. ISB

MRS Move from special register to register 2.6.10.6. MRS

MSR Move from register to special register 2.6.10.7. MSR

NOP No Operation 2.6.10.8. NOP

SEV Send Event 2.6.10.9. SEV

SVC Supervisor Call 2.6.10.10. SVC

WFE Wait For Event 2.6.10.11. WFE

WFI Wait For Interrupt 2.6.10.12. WFI

2.6.10.1 BKPT
Breakpoint.

2.6.10.1.1 Syntax
BKPT #imm

where:

imm is an expression evaluating to an integer in the range 0-255 (8-bit value).

2.6.10.1.2 Operation
The BKPT instruction causes the processor to enter Debug state. Debug tools can use this to investigate system
state when the instruction at a particular address is reached.

imm is ignored by the processor. If required, a debugger can use it to store additional information about the
breakpoint.

The BKPT instruction can be placed inside an IT block, but it executes unconditionally, unaffected by the condition
specified by the IT instruction.

2.6.10.1.3 Condition Flags
This instruction does not change the flags.

Examples

BKPT #0x3 ; Breakpoint with immediate value set to 0x3 (debugger can

; extract the immediate value by locating it using the PC)

Note: Arm does not recommend the use of the BKPT instruction with an immediate value set to 0xAB for any
purpose other than Semi-hosting.

2.6.10.2 CPS
Change Processor State.

2.6.10.2.1 Syntax
CPSeffect iflags

where:

• effect is one of:
– IE: Clears the special purpose register.

Cortex-M3 Processor (Reference Material)

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 82

– ID: Sets the special purpose register.
• iflags is a sequence of one or more flags:

– i: Set or clear PRIMASK.
– f: Set or clear FAULTMASK.

2.6.10.2.2 Operation
CPS changes the PRIMASK and FAULTMASK special register values. See 2.5.1.3.9. Exception Mask Registers for
more information about these registers.

2.6.10.2.3 Restrictions
The restrictions are:

• use CPS only from privileged software, it has no effect if used in unprivileged software
• CPS cannot be conditional and so must not be used inside an IT block.

2.6.10.2.4 Condition Flags
This instruction does not change the condition flags.

Examples

CPSID i ; Disable interrupts and configurable fault handlers (set PRIMASK)

CPSID f ; Disable interrupts and all fault handlers (set FAULTMASK)

CPSIE i ; Enable interrupts and configurable fault handlers (clear PRIMASK)

CPSIE f ; Enable interrupts and fault handlers (clear FAULTMASK).

2.6.10.3 DMB
Data Memory Barrier.

2.6.10.3.1 Syntax
DMB{cond}

where:

cond is an optional condition code, see 2.6.3.7. Conditional Execution.

2.6.10.3.2 Operation
DMB acts as a data memory barrier. It ensures that all explicit memory accesses that appear, in program order,
before the DMB instruction are completed before any explicit memory accesses that appear, in program order, after
the DMB instruction. DMB does not affect the ordering or execution of instructions that do not access memory.

2.6.10.3.3 Condition Flags
This instruction does not change the flags.

Examples

DMB ; Data Memory Barrier

2.6.10.4 DSB
Data Synchronization Barrier.

2.6.10.4.1 Syntax
DSB{cond}

where:

cond is an optional condition code, see 2.6.3.7. Conditional Execution.

2.6.10.4.2 Operation
DSB acts as a special data synchronization memory barrier. Instructions that come after the DSB, in program
order, do not execute until the DSB instruction completes. The DSB instruction completes when all explicit memory
accesses before it complete.

2.6.10.4.3 Condition Flags
This instruction does not change the flags.

Cortex-M3 Processor (Reference Material)

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 83

Examples

DSB ; Data Synchronisation Barrier

2.6.10.5 ISB
Instruction Synchronization Barrier.

2.6.10.5.1 Syntax
ISB{cond}

where:

cond is an optional condition code, see 2.6.3.7. Conditional Execution.

2.6.10.5.2 Operation
ISB acts as an instruction synchronization barrier. It flushes the pipeline of the processor, so that all instructions
following the ISB are fetched from cache or memory again, after the ISB instruction has been completed.

2.6.10.5.3 Condition Flags
This instruction does not change the flags.

Examples

ISB ; Instruction Synchronisation Barrier

2.6.10.6 MRS
Move the contents of a special register to a general-purpose register.

2.6.10.6.1 Syntax
MRS{cond} Rd, spec_reg

where:

cond is an optional condition code, see 2.6.3.7. Conditional Execution.

Rd is the destination register.

spec_reg can be any of: APSR, IPSR, EPSR, IEPSR, IAPSR, EAPSR, PSR, MSP, PSP, PRIMASK, BASEPRI,
BASEPRI_MAX, FAULTMASK, or CONTROL.

Note: All the EPSR and IPSR fields are zero when read by the MRS instruction.

2.6.10.6.2 Operation
Use MRS in combination with MSR as part of a read-modify-write sequence for updating a PSR, for example to clear
the Q flag.

Note: BASEPRI_MAX is an alias of BASEPRI when used with the MRS instruction. See 2.6.10.7. MSR.

2.6.10.6.3 Restrictions
Rd must not be SP and must not be PC.

2.6.10.6.4 Condition Flags
This instruction does not change the flags.

Examples

MRS R0, PRIMASK ; Read PRIMASK value and write it to R0.

2.6.10.7 MSR
Move the contents of a general-purpose register into the specified special register.

2.6.10.7.1 Syntax
MSR{cond} spec_reg, Rn

where:

cond is an optional condition code, see 2.6.3.7. Conditional Execution.

Rn is the source register.

Cortex-M3 Processor (Reference Material)

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 84

spec_reg can be any of: APSR, IPSR, EPSR, IEPSR, IAPSR, EAPSR, PSR, MSP, PSP, PRIMASK, BASEPRI,
BASEPRI_MAX, FAULTMASK, or CONTROL.

Note: The processor ignores MSR writes to the EPSR and IPSR fields.

2.6.10.7.2 Operation
The register access operation in MSR depends on the privilege level. Unprivileged software can only access the
APSR, see Table 2-4. Privileged software can access all special registers.

In unprivileged software writes to unallocated or execution state bits in the PSR are ignored.

Notes: When you write to BASEPRI_MAX, the instruction writes to BASEPRI only if either:
• Rn is non-zero and the current BASEPRI value is 0
• Rn is non-zero and less than the current BASEPRI value.

See 2.6.10.6. MRS

2.6.10.7.3 Restrictions
Rn must not be SP and must not be PC.

2.6.10.7.4 Condition Flags
This instruction updates the flags explicitly based on the value in Rn.

Examples

MSR CONTROL, R1 ; Read R1 value and write it to the CONTROL register.

2.6.10.8 NOP
No Operation.

2.6.10.8.1 Syntax
NOP{cond}

where:

cond is an optional condition code, see 2.6.3.7. Conditional Execution.

2.6.10.8.2 Operation
NOP does nothing. NOP is not necessarily a time-consuming NOP. The processor might remove it from the pipeline
before it reaches the execution stage.

Use NOP for padding, for example to adjust the alignment of a following instruction.

2.6.10.8.3 Condition Flags
This instruction does not change the flags.

Examples

NOP ; No operation

2.6.10.9 SEV
Send Event.

2.6.10.9.1 Syntax
SEV{cond}

where:

cond is an optional condition code, see 2.6.3.7. Conditional Execution.

2.6.10.9.2 Operation
SEV is a hint instruction that causes an event to be signaled to all processors within a multiprocessor system. It also
sets the local event register to 1, see 2.5.5. Power Management.

2.6.10.9.3 Condition Flags
This instruction does not change the flags.

Examples

SEV ; Send Event

Cortex-M3 Processor (Reference Material)

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 85

2.6.10.10 SVC
Supervisor Call.

2.6.10.10.1 Syntax
SVC{cond} #imm

where:

cond is an optional condition code, see 2.6.3.7. Conditional Execution.

imm is an expression evaluating to an integer in the range 0-255 (8-bit value).

2.6.10.10.2 Operation
The SVC instruction causes the SVC exception.

imm is ignored by the processor. If required, it can be retrieved by the exception handler to determine what service is
being requested.

2.6.10.10.3 Condition Flags
This instruction does not change the flags.

Examples

SVC #0x32 ; Supervisor Call (SVCall handler can extract the immediate value

; by locating it via the stacked PC)

2.6.10.11 WFE
Wait For Event.

2.6.10.11.1 Syntax
WFE{cond}

where:

cond is an optional condition code, see 2.6.3.7. Conditional Execution.

2.6.10.11.2 Operation
WFE is a hint instruction.

If the event register is 0, WFE suspends execution until one of the following events occurs:

an exception, unless masked by the exception mask registers or the current priority level

an exception enters the Pending state, if SEVONPEND in the System Control Register is set

a Debug Entry request, if Debug is enabled

an event signaled by a peripheral or another processor in a multiprocessor system using the SEV instruction.

If the event register is 1, WFE clears it to 0 and returns immediately.

For more information see 2.5.5. Power Management.

Condition flags

This instruction does not change the flags.

Examples

WFE ; Wait for event

2.6.10.12 WFI
Wait for Interrupt.

2.6.10.12.1 Syntax
WFI{cond}

where:

cond is an optional condition code, see 2.6.3.7. Conditional Execution.

Cortex-M3 Processor (Reference Material)

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 86

2.6.10.12.2 Operation
WFI is a hint instruction that suspends execution until one of the following events occurs:

• a non-masked interrupt occurs and is taken
• an interrupt masked by PRIMASK becomes pending
• a Debug Entry request.

2.6.10.12.3 Condition Flags
This instruction does not change the flags.

Examples

WFI ; Wait for interrupt

2.7 Cortex-M3 Processor Peripherals
The following sections are the reference material for the Cortex-M3 processor core peripherals descriptions in this
user guide.

2.7.1 About the Cortex-M3 Processor Peripherals
The following table provides the address map of the Private peripheral bus (PPB).

Table 2-33. Core Peripheral Register Regions

Address Core Peripheral See

0xE000E008-0xE000E00F System control block Table 2-44

0xE000E010-0xE000E01F System timer Table 2-65

0xE000E100-0xE000E4EF Nested Vectored Interrupt Controller Table 2-34

0xE000ED00-0xE000ED3F System control block Table 2-44

0xE000ED90-0xE000ED93 MPU Type Register Reads as zero, indicating no MPU
is implemented1

0xE000ED90-0xE000EDB8 Memory protection unit Table 2-71

0xE000EF00-0xE000EF03 Nested Vectored Interrupt Controller Table 2-34

Note: 
1. Software can read the MPU Type Register at 0xE000ED90 to test for the presence of a memory protection unit

(MPU).

In register descriptions:

• the register type is described as follows:
– RW: Read and write.
– RO: Read-only.
– WO: Write-only.

• the required privilege gives the privilege level required to access the register, as follows:
– Privileged: Only privileged software can access the register.
– Unprivileged: Both unprivileged and privileged software can access the register.

2.7.1.1 Nested Vectored Interrupt Controller
This section describes the Nested Vectored Interrupt Controller (NVIC) and the registers it uses. The NVIC supports:

• 1 to 240 interrupts.
• A programmable priority level of 0-255 for each interrupt. A higher level corresponds to a lower priority, so level

0 is the highest interrupt priority.
• Level and pulse detection of interrupt signals.

Cortex-M3 Processor (Reference Material)

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 87

• Dynamic reprioritization of interrupts.
• Grouping of priority values into group priority and subpriority fields.
• Interrupt tail-chaining.
• An external Non-maskable interrupt (NMI).

The processor automatically stacks its state on exception entry and unstacks this state on exception exit, with
no instruction overhead. This provides low latency exception handling. The hardware implementation of the NVIC
registers is:

Table 2-34. NVIC Register Summary

Address Name Type Required
privilege

Reset
value

See

0xE000E100 -
0xE000E11C

NVIC_ISER0-
NVIC_ISER7

RW Privileged 0x00000000 2.7.1.3. Interrupt Set-enable Registers

0XE000E180-
0xE000E19C

NVIC_ICER0-
NVIC_ICER7

RW Privileged 0x00000000 2.7.1.4. Interrupt Clear-enable Registers

0XE000E200-
0xE000E21C

NVIC_ISPR0-
NVIC_ISPR7

RW Privileged 0x00000000 2.7.1.5. Interrupt Set-pending Registers

0XE000E280-
0xE000E29C

NVIC_ICPR0-
NVIC_ICPR7

RW Privileged 0x00000000 2.7.1.6. Interrupt Clear-Pending Registers

0xE000E300-
0xE000E31C

NVIC_IABR0-
NVIC_IABR7

RO Privileged 0x00000000 2.7.1.7. Interrupt Active Bit Registers

0xE000E400-
0xE000E4EF

NVIC_IPR0-
NVIC_IPR59

RW Privileged 0x00000000 2.7.1.8. Interrupt Priority Registers

0xE000EF00 STIR WO Configurable 
1

0x00000000 2.7.1.9. Software Trigger Interrupt
Register

Note: 
1. See the register description for more information.

2.7.1.2 Accessing the Cortex-M3 Processor NVIC Registers Using CMSIS
CMSIS functions enable software portability between different Cortex-M3 profile processors. To access the NVIC
registers when using CMSIS, use the following functions:

Table 2-35. CMSIS Access NVIC Functions

CMSIS Function Description

void NVIC_EnableIRQ(IRQn_Type IRQn)1 Enables an interrupt or exception.

void NVIC_DisableIRQ(IRQn_Type IRQn)a Disables an interrupt or exception.

void NVIC_SetPendingIRQ(IRQn_Type IRQn)a Sets the pending status of interrupt or exception to 1.

void NVIC_ClearPendingIRQ(IRQn_Type IRQn)a Clears the pending status of interrupt or exception to 0.

uint32_t NVIC_GetPendingIRQ(IRQn_Type IRQn)a Reads the pending status of interrupt or exception.
This function returns non-zero value if the pending status is
set to 1.

void NVIC_SetPriority(IRQn_Type IRQn, uint32_t
priority)a

Sets the priority of an interrupt or exception with configurable
priority level to 1.

uint32_t NVIC_GetPriority(IRQn_Type IRQn)a Reads the priority of an interrupt or exception with
configurable priority level.
This function return the current priority level.

Cortex-M3 Processor (Reference Material)

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 88

Note: 
1. The input parameter IRQn is the IRQ number, see Table 22 on page 34 for more information.

2.7.1.3 Interrupt Set-enable Registers
The NVIC_ISER0-NVIC_ISER7 registers enable interrupts, and show which interrupts are enabled. See the register
summary in Table 2-34 for the register attributes.

The bit assignments are:

Figure 2-19. ISER Register Bit Assignments

SETENA bits

31 0

Table 2-36. NVIC_ISER Bit Assignments

Bits Name Function

[31:0] SETENA Interrupt set-enable bits.
Write:

0: no effect

1: enable interrupt.

Read:

0: interrupt disabled

1: interrupt enabled.

If a pending interrupt is enabled, the NVIC activates the interrupt based on its priority. If an interrupt is not enabled,
asserting its interrupt signal changes the interrupt state to pending, but the NVIC never activates the interrupt,
regardless of its priority.

2.7.1.4 Interrupt Clear-enable Registers
The NVIC_ICER0-NVIC_ICER7 registers disable interrupts, and show which interrupts are enabled. See the register
summary in Table 2-34 for the register attributes.

The bit assignments are:

Figure 2-20. ICER Register Bit Assignments

CLRENA bits

31 0

Table 2-37. NVIC_ICER Bit Assignments

Bits Name Function

[31:0] CLRENA Interrupt clear-enable bits.
Write:

0: no effect

1: disable interrupt.

Read:

0: interrupt disabled

1: interrupt enabled.

2.7.1.5 Interrupt Set-pending Registers
The NVIC_ISPR0-NVIC_ISPR7 registers force interrupts into the pending state, and show which interrupts are
pending. See the register summary in Table 2-34 for the register attributes.

Cortex-M3 Processor (Reference Material)

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 89

The bit assignments are:

Figure 2-21. ISPR Register Bit Assignments

SETPEND bits

31 0

Table 2-38. NVIC_ISPR Bit Assignments

Bits Name Function

[31:0] SETPEND Interrupt set-pending bits.
Write:

0: No effect

1: Changes interrupt state to pending.

Read:

0: Interrupt is not pending

1: Interrupt is pending.

Important: Writing 1 to the NVIC_ISPR bit corresponding to:
• An interrupt that is pending has no effect.
• A disabled interrupt sets the state of that interrupt to pending.

2.7.1.6 Interrupt Clear-Pending Registers
The NVIC_ICPR0-NVIC_ICPR7 registers remove the pending state from interrupts, and show which interrupts are
pending. See the register summary in Table 2-34 for the register attributes.

The bit assignments are:

Figure 2-22. ICPR Register Bit Assignments

CLRPEND bits

31 0

Table 2-39. NVIC_ICPR bit assignments

Bits Name Function

[31:0] CLRPEND Interrupt clear-pending bits.
Write:

0: no effect

1: removes pending state an interrupt.

Read:

0: interrupt is not pending

1: interrupt is pending.

Important: Writing 1 to an NVIC_ICPR bit does not affect the active state of the corresponding interrupt.

Cortex-M3 Processor (Reference Material)

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 90

2.7.1.7 Interrupt Active Bit Registers
The NVIC_IABR0-NVIC_IABR7 registers indicate which interrupts are active. See the register summary in Table 2-34
for the register attributes.

The bit assignments are:

Figure 2-23. IABR Register Bit Assignments

ACTIVE bits

31 0

Table 2-40. NVIC_IABR Bit Assignments

Bits Name Function

[31:0] ACTIVE Interrupt active flags:
0: interrupt not active

1: interrupt active.

A bit reads as one if the status of the corresponding interrupt is active or active and pending.

2.7.1.8 Interrupt Priority Registers
The NVIC_IPR0-NVIC_IPR59 registers provide an 8-bit priority field for each interrupt. These registers are byte-
accessible. See the register summary in Table 2-34 for their attributes. Each register holds four priority fields as
shown:

Figure 2-24. IPR Register Bit Assignments

PRI_239

31 24 23 16 15 8 7 0

PRI_238 PRI_237 PRI_236IPR59

PRI_4n+3 PRI_4n+2 PRI_4n+1 PRI_4nIPRn

PRI_3 PRI_2 PRI_1 PRI_0IPR0

. .
 .

. .
 .

. .
 .

. .
 .

Table 2-41. NVIC_IPR Bit Assignments

Bits Name Function

[31:24] Priority, byte offset 3 Each priority field holds a priority value, 0-255. The lower the value,
the greater the priority of the corresponding interrupt. The processor
implements only bits [7:n] of each field, bits [n-1:0] read as zero and
ignore writes.

[23:16] Priority, byte offset 2

[15:8] Priority, byte offset 1

[7:0] Priority, byte offset 0

See 2.7.1.2. Accessing the Cortex-M3 Processor NVIC Registers Using CMSIS for more information about the
access to the interrupt priority array, which provides the software view of the interrupt priorities.

Find the IPR number and byte offset for interrupt m as follows:

• the corresponding IPRn number (see the preceding table), n is given by n = m DIV 4
• the byte offset of the required Priority field in this register is m MOD 4, where:

– byte offset 0 refers to register bits [7:0]
– byte offset 1 refers to register bits [15:8]
– byte offset 2 refers to register bits [23:16]
– byte offset 3 refers to register bits [31:24].

Cortex-M3 Processor (Reference Material)

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 91

2.7.1.9 Software Trigger Interrupt Register
Write to the STIR to generate an interrupt from software. See the register summary in Table 2-34 for the STIR
attributes.

When the USERSETMPEND bit in the SCR is set to 1, unprivileged software can access the STIR, see
2.7.2.6. System Control Register.

Important: Only privileged software can enable unprivileged access to the STIR.

The bit assignments are:

Figure 2-25. IABR Register Bit Assignments
931 0

Reserved INTID

8

Table 2-42. STIR Bit Assignments

Bits Field Function

[31:9] Reserved.

[8:0] INTID Interrupt ID of the interrupt to trigger, in the range 0-239. For example, a value of 0x03
specifies interrupt IRQ3.

2.7.1.10 Level-sensitive and Pulse Interrupts
The processor supports both level-sensitive and pulse interrupts. Pulse interrupts are also described as edge-
triggered interrupts.

A level-sensitive interrupt is held asserted until the peripheral de-asserts the interrupt signal. Typically this happens
because the ISR accesses the peripheral, causing it to clear the interrupt request. A pulse interrupt is an interrupt
signal sampled synchronously on the rising edge of the processor clock. To ensure the NVIC detects the interrupt, the
peripheral must assert the interrupt signal for at least one clock cycle, during which the NVIC detects the pulse and
latches the interrupt.

When the processor enters the ISR, it automatically removes the pending state from the interrupt, see
2.7.1.10.1. Hardware and Software Control of Interrupts. For a level-sensitive interrupt, if the signal is not deasserted
before the processor returns from the ISR, the interrupt becomes pending again, and the processor must execute its
ISR again. This means that the peripheral can hold the interrupt signal asserted until it no longer needs servicing.

See <reference required> for details of which interrupts are level-sensitive and which are pulsed.

2.7.1.10.1 Hardware and Software Control of Interrupts
The Cortex-M3 processor latches all interrupts. A peripheral interrupt becomes pending for one of the following
reasons:

• the NVIC detects that the interrupt signal is HIGH and the interrupt is not active
• the NVIC detects a rising edge on the interrupt signal
• software writes to the corresponding interrupt set-pending register bit, see 2.7.1.5. Interrupt Set-pending

Registers, or to the STIR to make an interrupt pending, see 2.7.1.9. Software Trigger Interrupt Register.

A pending interrupt remains pending until one of the following occurs:

• The processor enters the ISR for the interrupt. This changes the state of the interrupt from pending to active.
Then:

– For a level-sensitive interrupt, when the processor returns from the ISR, the NVIC samples the interrupt
signal. If the signal is asserted, the state of the interrupt changes to pending, which might cause the
processor to immediately re-enter the ISR. Otherwise, the state of the interrupt changes to inactive.

Cortex-M3 Processor (Reference Material)

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 92

– For a pulse interrupt, the NVIC continues to monitor the interrupt signal, and if this is pulsed the state of the
interrupt changes to pending and active. In this case, when the processor returns from the ISR the state of
the interrupt changes to pending, which might cause the processor to immediately re-enter the ISR.
If the interrupt signal is not pulsed while the processor is in the ISR, when the processor returns from the
ISR the state of the interrupt changes to inactive.

• Software writes to the corresponding interrupt clear-pending register bit.
For a level-sensitive interrupt, if the interrupt signal is still asserted, the state of the interrupt does not change.
Otherwise, the state of the interrupt changes to inactive.

For a pulse interrupt, state of the interrupt changes to:

– inactive, if the state was pending
– active, if the state was active and pending.

2.7.1.11 NVIC Design Hints and Tips
Ensure software uses correctly aligned register accesses. The processor does not support unaligned accesses to
NVIC registers. See the individual register descriptions for the supported access sizes.

An interrupt can enter pending state even if it is disabled. Disabling an interrupt only prevents the processor from
taking that interrupt.

Before programming VTOR to relocate the vector table, ensure the vector table entries of the new vector table are
setup for fault handlers, NMI and all enabled exception like interrupts. For more information see 2.7.2.4. Vector Table
Offset Register.

2.7.1.11.1 NVIC programming hints
Software uses the CPSIE I and CPSID I instructions to enable and disable interrupts. The CMSIS provides the
following intrinsic functions for these instructions:

void __disable_irq(void) // Disable Interrupts

void __enable_irq(void) // Enable Interrupts

In addition, the CMSIS provides a number of functions for NVIC control, including those listed in the following table.

Table 2-43. CMSIS Functions for NVIC Control

CMSIS interrupt control function Description

void NVIC_SetPriorityGrouping(uint32_t priority_grouping) Set the priority grouping

void NVIC_EnableIRQ(IRQn_t IRQn) Enable IRQn

void NVIC_DisableIRQ(IRQn_t IRQn) Disable IRQn

uint32_t NVIC_GetPendingIRQ (IRQn_t IRQn) Return true (IRQ-Number) if IRQn is pending

void NVIC_SetPendingIRQ (IRQn_t IRQn) Set IRQn pending

void NVIC_ClearPendingIRQ (IRQn_t IRQn) Clear IRQn pending status

uint32_t NVIC_GetActive (IRQn_t IRQn) Return the IRQ number of the active interrupt

void NVIC_SetPriority (IRQn_t IRQn, uint32_t priority) Set priority for IRQn

uint32_t NVIC_GetPriority (IRQn_t IRQn) Read priority of IRQn

void NVIC_SystemReset (void) Reset the system

The input parameter IRQn is the IRQ number, see Table 2-16. For more information about these functions see the
CMSIS documentation.

2.7.2 System Control Block
The System control block (SCB) provides system implementation information, and system control. This includes
configuration, control, and reporting of the system exceptions. The following table lists the SCB registers.

Cortex-M3 Processor (Reference Material)

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 93

Table 2-44. Summary of the System Control Block Registers

Address Name Type Required
privilege

Reset
value

See

0xE000E008 ACTLR RW Privileged 0x00000000 2.7.2.1. Auxiliary Control Register

0xE000ED00 CPUID RO Privileged 0x412FC230 2.7.2.2. CPUID Base Register

0xE000ED04 ICSR RW 1 Privileged 0x00000000 2.7.2.3. Interrupt Control and State Register

0xE000ED08 VTOR RW Privileged 0x00000000 2.7.2.4. Vector Table Offset Register

0xE000ED0C AIRCR RW a Privileged 0xFA050000 2.7.2.5. Application Interrupt and Reset Control
Register

0xE000ED10 SCR RW Privileged 0x00000000 2.7.2.6. System Control Register

0xE000ED14 CCR RW Privileged 0x00000200 2.7.2.7. Configuration and Control Register

0xE000ED18 SHPR1 RW Privileged 0x00000000 2.7.2.8. System Handler Priority Registers

0xE000ED1C SHPR2 RW Privileged 0x00000000 2.7.2.8. System Handler Priority Registers

0xE000ED20 SHPR3 RW Privileged 0x00000000 2.7.2.8. System Handler Priority Registers

0xE000ED24 SHCRS RW Privileged 0x00000000 2.7.2.9. System Handler Control and State
Register

0xE000ED28 CFSR RW Privileged 0x00000000 2.7.2.10. Configurable Fault Status Register

0xE000ED28 MMSR 2 RW Privileged 0x00 2.7.2.11. MemManage Fault Status Register

0xE000ED29 BFSR b RW Privileged 0x00 2.7.2.12. BusFault Status Register

0xE000ED2A UFSR b RW Privileged 0x0000 2.7.2.13. UsageFault Status Register

0xE000ED2C HFSR RW Privileged 0x00000000 2.7.2.12. BusFault Status Register

0xE000ED34 MMAR RW Privileged Unknown 2.7.2.13. UsageFault Status Register

0xE000ED38 BFAR RW Privileged Unknown 2.7.2.14. HardFault Status Register

0xE000ED3C AFSR RW Privileged 0x00000000 2.7.2.15. MemManage Fault Address Register

Notes: 
1. See the register description for more information.
2. A sub-register of the CFSR.

2.7.2.1 Auxiliary Control Register
The ACTLR provides disable bits for the following processor functions:

• IT folding
• write buffer use for accesses to the default memory map
• interruption of multi-cycle instructions.

By default this register is set to provide optimum performance from the Cortex-M3 processor, and does not normally
require modification.

See the register summary in the preceding table for the ACTLR attributes. The bit assignments are:

Cortex-M3 Processor (Reference Material)

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 94

Figure 2-26. ACTLR Bit Assignments

DISFOLD
DISDEFWBUF
DISMCYCINT

31 3 2 1 0

Reserved

Table 2-45. ACTLR Bit Assignments

Bits Name Function

[31:3] Reserved

[2] DISFOLD When set to 1, disables the ability of the Cortex-M3 processor to execute an IT
instruction in parallel with a neighboring instruction.

[1] DISDEFWBUF When set to 1, disables write buffer use during default memory map accesses.
This causes all BusFaults to be precise BusFaults but decreases performance
because any store to memory must complete before the processor can execute
the next instruction. This bit only affects write buffers implemented in the Cortex-M3
processor.

[0] DISMCYCINT When set to 1, disables interruption of load multiple and store multiple instructions.
This increases the interrupt latency of the processor because any LDM or STM must
complete before the processor can stack the current state and enter the interrupt
handler.

2.7.2.2 CPUID Base Register
The CPUID register contains the processor part number, version, and implementation information. See the register
summary in Table 2-44 for its attributes. The bit assignments are:

Figure 2-27. CPUID Register Bit Assignments
31 16 15 4 3 0

Implementer RevisionPartNo

24 23 20 19

Variant Constant

Table 2-46. CPUID register Bit Assignments

Bits Name Function

[31:24] Implementer Implementer code:
0x41 = Arm

[23:20] Variant Variant number, the r value in the rnpn product revision identifier:
0x2 = Revision 2

[19:16] Constant Reads as 0xF

[15:4] PartNo Part number of the processor:
0xC23 = Cortex-M3

[3:0] Revision Revision number, the p value in the rnpn product revision identifier:
0x0 = Patch 0

2.7.2.3 Interrupt Control and State Register
The ICSR:

• Provides:
– A set-pending bit for the Non-Maskable Interrupt (NMI) exception
– Set-pending and clear-pending bits for the PendSV and SysTick exceptions

• Indicates:

Cortex-M3 Processor (Reference Material)

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 95

– The exception number of the exception being processed
– Whether there are preempted active exceptions
– The exception number of the highest priority pending exception
– Whether any interrupts are pending

See the register summary in Table 2-44, and the Type descriptions in the following table, for the ICSR attributes. The
bit assignments are:

Figure 2-28. ICSR Bit Assignments
31 28 22 21 910 0

VECTACTIVE

30 29 27 26 2324 12 11

VECTPENDING

NMIPENDSET

PENDSVSET
PENDSVCLR

Reserved for Debug
ISRPENDING Reserved

RETTOBASE

25

PENDSTSET
PENDSTCLR

8

Reserved

Reserved

Table 2-47. ICSR Bit Assignments

Bits Name Type Function

[31] NMIPENDSET RW NMI set-pending bit.
Write:

• 0: no effect
• 1: changes NMI exception state to pending.

Read:

• 0: NMI exception is not pending
• 1: NMI exception is pending.

Because NMI is the highest-priority exception, normally the processor enter
the NMI exception handler as soon as it registers a write of 1 to this bit, and
entering the handler clears this bit to 0. A read of this bit by the NMI exception
handler returns 1 only if the NMI signal is reasserted while the processor is
executing that handler.

[30:29] Reserved.

[28] PENDSVSET RW PendSV set-pending bit.
Write:

• 0: no effect
• 1: changes PendSV exception state to pending

Read:

• 0: PendSV exception is not pending
• 1: PendSV exception is pending

Writing 1 to this bit is the only way to set the PendSV exception state to
pending.

[27] PENDSVCLR WO PendSV clear-pending bit.
Write:

• 0: no effect
• 1: removes the pending state from the PendSV exception

Cortex-M3 Processor (Reference Material)

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 96

...........continued
Bits Name Type Function

[26] PENDSTSET RW SysTick exception set-pending bit.
Write:

• 0: no effect
• 1: changes SysTick exception state to pending

Read:

• 0: SysTick exception is not pending
• 1: SysTick exception is pending

[25] PENDSTCLR WO SysTick exception clear-pending bit.
Write:

• 0: no effect
• 1: removes the pending state from the SysTick exception

This bit is WO. On a register read its value is Unknown.

[24] Reserved.

[23] Reserved for
Debug use

RO This bit is reserved for Debug use and reads-as-zero when the processor is
not in Debug.

[22] ISRPENDING RO Interrupt pending flag, excluding NMI and Faults:
• 0: interrupt not pending
• 1: interrupt pending

[21:18] Reserved.

[17:12] VECTPENDIN
G

RO Indicates the exception number of the highest priority pending enabled
exception:

• 0: no pending exceptions
• Nonzero: the exception number of the highest priority pending enabled

exception

The value indicated by this field includes the effect of the BASEPRI and
FAULTMASK registers, but not any effect of the PRIMASK register.

[11] RETTOBASE RO Indicates whether there are preempted active exceptions:
• 0: there are preempted active exceptions to execute
• 1: there are no active exceptions, or the currently-executing exception is

the only active exception

[10:9] Reserved.

[8:0] VECTACTIVEa RO Contains the active exception number:
• 0: Thread mode
• Nonzero: The exception number1 of the currently active exception.

Subtract 16 from this value to obtain the CMSIS IRQ number required to index
into the Interrupt Clear-Enable, Set-Enable, Clear-Pending, Set-Pending, or
Priority Registers, see Table 2-5.

Note: 
1. This is the same value as IPSR bits[8:0], see 2.5.1.3.7. Interrupt Program Status Register.

When you write to the ICSR, the effect is unpredictable if you:

• Write 1 to the PENDSVSET bit and write 1 to the PENDSVCLR bit

Cortex-M3 Processor (Reference Material)

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 97

• Write 1 to the PENDSTSET bit and write 1 to the PENDSTCLR bit

2.7.2.4 Vector Table Offset Register
The VTOR indicates the offset of the vector table base address from memory address 0x00000000. For its attributes,
see the register summary in Table 2-44.

The bit assignments are:

Figure 2-29. VTOR Bit Assignments
31 30 29 6 0

TBLOFF Reserved

Reserved

7

Table 2-48. VTOR Bit Assignments

Bits Name Function

[31:30] Reserved.

[29:7] TBLOFF Vector table base offset field. It contains bits[29:7] of the offset of the table base from the
bottom of the memory map.
Bit [29] determines whether the vector table is in the code or SRAM memory region:

0: Code

1: SRAM.

Bit [29] is sometimes called the TBLBASE bit.

[6:0] Reserved.

When setting TBLOFF, you must align the offset to the number of exception entries in the vector table. <Configure
the next statement to give the information required for your implementation, the statement reminds you of how to
determine the alignment requirement.> The minimum alignment is 32 words, enough for up to 16 interrupts. For more
interrupts, adjust the alignment by rounding up to the next power of two. For example, if you require 21 interrupts, the
alignment must be on a 64-word boundary because the required table size is 37 words, and the next power of two is
64.

Table alignment requirements mean that bits [6:0] of the table offset are always zero.

2.7.2.5 Application Interrupt and Reset Control Register
The AIRCR provides priority grouping control for the exception model, endian status for data accesses, and reset
control of the system. See the register summary in Table 2-44 and Table 2-49 for its attributes.

To write to this register, you must write 0x5FA to the VECTKEY field, otherwise the processor ignores the write.

The bit assignments are:

Figure 2-30. AIRCR Bit Assignments

On read: VECTKEYSTAT
On write: VECTKEY

31 16 15 14 11 10 8 7 3 2 1 0

Reserved Reserved

ENDIANNESS PRIGROUP SYSRESETREQ
VECTCLRACTIVE

VECTRESET
Reserved for Debug use

Cortex-M3 Processor (Reference Material)

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 98

Table 2-49. AIRCR Bit Assignments

Bits Name Type Function

[31:16] Write:
VECTKEYSTAT
Read: VECTKEY

RW Register key:
Reads as 0xFA05.

On writes, write 0x05FA to VECTKEY, otherwise the write is ignored.

[15] ENDIANNESS RO Data endianness bit:
0: Little-endian

1: Big-endian.

ENDIANNESS is set from the BIGEND configuration signal during reset.

[14:11] Reserved

[10:8] PRIGROUP R/W Interrupt priority grouping field. This field determines the split of group
priority from subpriority, see 2.7.2.5.1. Binary Point.

[7:3] Reserved.

[2] SYSRESETREQ WO System reset request:
0: no system reset request

1: asserts a signal to the outer system that requests a reset.

This is intended to force a large system reset of all major components
except for debug.

This bit reads as 0.

[1] VECTCLRACTIVE WO Reserved for Debug use. This bit reads as 0. When writing to the register
you must write 0 to this bit, otherwise behavior is Unpredictable.

[0] VECTRESET WO Reserved for Debug use. This bit reads as 0. When writing to the register
you must write 0 to this bit, otherwise behavior is Unpredictable.

2.7.2.5.1 Binary Point
The PRIGROUP field indicates the position of the binary point that splits the PRI_n fields in the Interrupt Priority
Registers into separate group priority and subpriority fields. The following table shows how the PRIGROUP value
controls this split. If you implement fewer than 8 priority bits you might require more explanation here, and want to
remove invalid rows from the table, and modify the entries in the number of columns.

Table 2-50. Priority Grouping

PRIGROUP Interrupt priority level value, PRI_N[7:0] Number of

Binary point 1 Group priority bits Subpriority bits Group priorities Subpriorities

b000 bxxxxxxx.y [7:1] [0] 128 2

b001 bxxxxxx.yy [7:2] [1:0] 64 4

b010 bxxxxx.yyy [7:3] [2:0] 32 8

b011 bxxxx.yyyy [7:4] [3:0] 16 16

b100 bxxx.yyyyy [7:5] [4:0] 8 32

b101 bxx.yyyyyy [7:6] [5:0] 4 64

b110 bx.yyyyyyy [7] [6:0] 2 128

b111 b.yyyyyyyy None [7:0] 1 256

Cortex-M3 Processor (Reference Material)

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 99

Note: 
1. PRI_n[7:0] field showing the binary point. x denotes a group priority field bit, and y denotes a subpriority field

bit.

Determining preemption of an exception uses only the group priority field, see 2.5.3.6. Interrupt Priority Grouping.

2.7.2.6 System Control Register
The SCR controls features of entry to and exit from low power state. See the register summary in Table 2-44 for its
attributes. The bit assignments are:

Figure 2-31. SCR Bit Assignments
31 4 3 2 1 0

Reserved

Reserved
SLEEPDEEP

SLEEPONEXIT
Reserved

5

SEVONPEND

Table 2-51. SCR Bit Assignments

Bits Name Function

[31:5] Reserved.

[4] SEVONPEND Send Event on Pending bit:
0: only enabled interrupts or events can wakeup the processor, disabled interrupts are
excluded

1: enabled events and all interrupts, including disabled interrupts, can wakeup the
processor.

When an event or interrupt enters pending state, the event signal wakes up the
processor from WFE. If the processor is not waiting for an event, the event is registered
and affects the next WFE.

The processor also wakes up on execution of an SEV instruction or an external event.

[3] Reserved.

[2] SLEEPDEEP Controls whether the processor uses sleep or deep sleep as its low power mode:
0: sleep

1: deep sleep

[1] SLEEPONEXIT Indicates sleep-on-exit when returning from Handler mode to Thread mode:
0: do not sleep when returning to Thread mode.

1: enter sleep, or deep sleep, on return from an ISR.

Setting this bit to 1 enables an interrupt driven application to avoid returning to an
empty main application.

[0] Reserved.

2.7.2.7 Configuration and Control Register
The CCR controls entry to Thread mode and enables:

• the handlers for NMI, HardFault and faults escalated by FAULTMASK to ignore BusFaults
• trapping of divide by zero and unaligned accesses
• access to the STIR by unprivileged software, see 2.7.1.9. Software Trigger Interrupt Register.

See the register summary in Table 2-44 for the CCR attributes.

Cortex-M3 Processor (Reference Material)

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 100

The bit assignments are:

Figure 2-32. CCR Bit Assignments

DIV_0_TRP

Reserved
UNALIGN_TRP

NONBASETHRDENA
USERSETMPEND

BFHFNMIGN
STKALIGN

Reserved

31 10 9 8 7 5 4 3 2 1 0

Reserved

Table 2-52. CCR Bit Assignments

Bits Name Function

[31:10] Reserved.

[9] STKALIGN Indicates stack alignment on exception entry:
0: 4-byte aligned

1: 8-byte aligned.

On exception entry, the processor uses bit[9] of the stacked PSR to indicate the
stack alignment. On return from the exception it uses this stacked bit to restore
the correct stack alignment.

[8] BFHFNMIGN Enables handlers with priority -1 or -2 to ignore data BusFaults caused by load
and store instructions. This applies to the HardFault, NMI, and FAULTMASK
escalated handlers:
0: data BusFaults caused by load and store instructions cause a lock-up

1: data BusFaults caused by load and store instructions are ignored.

Set this bit to 1 only when the handler and its data are in absolutely safe
memory. The normal use of this bit is to probe system devices and bridges to
detect problems.

[7:5] Reserved.

[4] DIV_0_TRP Enables faulting or halting when the processor executes an SDIV or UDIV
instruction with a divisor of 0:
0: do not trap divide by 0

1: trap divide by 0.

When this bit is set to 0, a divide by zero returns a quotient of 0.

[3] UNALIGN_TRP Enables unaligned access traps:
0: do not trap unaligned halfword and word accesses

1: trap unaligned halfword and word accesses.

If this bit is set to 1, an unaligned access generates a UsageFault.

Unaligned LDM, STM, LDRD, and STRD instructions always fault irrespective
of whether UNALIGN_TRP is set to 1.

[2] Reserved.

Cortex-M3 Processor (Reference Material)

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 101

...........continued
Bits Name Function

[1] USERSETMPEND Enables unprivileged software access to the STIR, see 2.7.1.9. Software
Trigger Interrupt Register:
0: disable

1: enable

[0] NONBASETHRDEN
A

Indicates how the processor enters Thread mode:
0: processor can enter Thread mode only when no exception is active.

1: processor can enter Thread mode from any level using the appropriate
EXC_RETURN value, see 2.5.3.7.2. Exception Return.

2.7.2.8 System Handler Priority Registers
The SHPR1-SHPR3 registers set the priority level, 0 to 255 of the exception handlers that have configurable priority.

SHPR1-SHPR3 are byte accessible. See the register summary in Table 2-44 for their attributes.

The system fault handlers and the priority field and register for each handler are:

Table 2-53. System Fault Handler Priority Fields

Handler Field See

MemManage PRI_4 2.7.2.8.2. System Handler Priority Register 2

BusFault PRI_5

UsageFault PRI_6

SVCall PRI_11 2.7.2.8.2. System Handler Priority Register 2

PendSV PRI_14 2.7.2.8.2. System Handler Priority Register 2

SysTick PRI_15

Each PRI_N field is 8 bits wide, but the processor implements only bits [7:M] of each field, and bits [M-1:0] read as
zero and ignore writes.

2.7.2.8.1 System Handler Priority Register 1
The bit assignments are:

Figure 2-33. SHPR1 Bit Assignments
31 24 23 0

Reserved PRI_6 PRI_5 PRI_4

16 15 8 7

Table 2-54. SHPR1 Bit Assignments

Bits Name Function

[31:24] PRI_7 Reserved

[23:16] PRI_6 Priority of system handler 6, UsageFault

[15:8] PRI_5 Priority of system handler 5, BusFault

[7:0] PRI_4 Priority of system handler 4, MemManage

2.7.2.8.2 System Handler Priority Register 2
The bit assignments are:

Cortex-M3 Processor (Reference Material)

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 102

Figure 2-34. SHPR2 Bit Assignments
31 24 23 0

PRI_11 Reserved

Table 2-55. SHPR2 Bit Assignments

Bits Name Function

[31:24] PRI_11 Priority of system handler 11, SVCall

[23:0] Reserved

2.7.2.8.3 System Handler Priority Register 3
The bit assignments are:

Figure 2-35. SHPR3 Bit Assignments

PRI_15

31 15 01624 23

PRI_14 Reserved

Table 2-56. SHPR3 Bit Assignments

Bits Name Function

[31:24] PRI_15 Priority of system handler 15, SysTick exception

[23:16] PRI_14 Priority of system handler 14, PendSV

[15:0] Reserved

2.7.2.9 System Handler Control and State Register
The SHCSR enables the system handlers, and indicates:

• the pending status of the BusFault, MemManage fault, and SVC exceptions
• the active status of the system handlers.

See the register summary in Table 2-44 for the SHCSR attributes. The bit assignments are:

Figure 2-36. SHCSR Bit Assignments

USGFAULTENA

SVCALLPENDED

BUSFAULTENA
MEMFAULTENA

BUSFAULTPENDED

SYSTICKACT
PENDSVACT

MONITORACT
SVCALLACT

USGFAULTACT

BUSFAULTACT
MEMFAULTACT

MEMFAULTPENDED
USGFAULTPENDED

Reserved

Reserved

Reserved

Reserved

31 19 18 17 16 15 14 13 12 11 10 9 8 7 6 4 3 2 1 0

Table 2-57. SHCSR Bit Assignments

Bits Name Function

[31:19] — Reserved

[18] USGFAULTENA UsageFault enable bit, set to 1 to enable1

Cortex-M3 Processor (Reference Material)

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 103

...........continued
Bits Name Function

[17] BUSFAULTENA BusFault enable bit, set to 1 to enable a

[16] MEMFAULTENA MemManage enable bit, set to 1 to enable a

[15] SVCALLPENDED SVCall pending bit, reads as 1 if exception is pending2 

[14] BUSFAULTPENDED BusFault exception pending bit, reads as 1 if exception is pending b

[13] MEMFAULTPENDED MemManage fault exception pending bit, reads as 1 if exception is pending b

[12] USGFAULTPENDED UsageFault exception pending bit, reads as 1 if exception is pending b

[11] SYSTICKACT SysTick exception active bit, reads as 1 if exception is active3

[10] PENDSVACT PendSV exception active bit, reads as 1 if exception is active

[9] — Reserved

[8] MONITORACT Debug monitor active bit, reads as 1 if Debug monitor is active

[7] SVCALLACT SVCall active bit, reads as 1 if SVC call is active

[6:4] — Reserved

[3] USGFAULTACT UsageFault exception active bit, reads as 1 if exception is active

[2] — Reserved

[1] BUSFAULTACT BusFault exception active bit, reads as 1 if exception is active

[0] MEMFAULTACT MemManage exception active bit, reads as 1 if exception is active

Notes: 
1. Enable bits, set to 1 to enable the exception, or set to 0 to disable the exception.
2. Pending bits, read as 1 if the exception is pending, or as 0 if it is not pending. You can write to these bits to

change the pending status of the exceptions.
3. Active bits, read as 1 if the exception is active, or as 0 if it is not active. You can write to these bits to change

the active status of the exceptions, but see the Caution in this section.

If you disable a system handler and the corresponding fault occurs, the processor treats the fault as a HardFault.

You can write to this register to change the pending or active status of system exceptions. An OS kernel can write to
the active bits to perform a context switch that changes the current exception type.

• Software that changes the value of an active bit in this register without correct adjustment to the stacked content
can cause the processor to generate a fault exception. Ensure software that writes to this register retains and
subsequently restores the current active status.

• After you have enabled the system handlers, if you have to change the value of a bit in this register you must
use a read-modify-write procedure to ensure that you change only the required bit.

2.7.2.10 Configurable Fault Status Register
The CFSR indicates the cause of a MemManage fault, BusFault, or UsageFault. See the register summary in Table
2-44 for its attributes. The bit assignments are:

Figure 2-37. CFSR Bit Assignments

Memory Management
Fault Status Register

31 16 15 8 7 0

Usage Fault Status Register Bus Fault Status
Register

UFSR BFSR MMFSR

The following subsections describe the sub-registers that make up the CFSR:

The CFSR is byte accessible. You can access the CFSR or its sub-registers as follows:

Cortex-M3 Processor (Reference Material)

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 104

• access the complete CFSR with a word access to 0xE000ED28
• access the MMFSR with a byte access to 0xE000ED28
• access the MMFSR and BFSR with a halfword access to 0xE000ED28
• access the BFSR with a byte access to 0xE000ED29
• access the UFSR with a halfword access to 0xE000ED2A

2.7.2.11 MemManage Fault Status Register
The flags in the MMFSR indicate the cause of memory access faults. The bit assignments are:

Figure 2-38. MMFSR Bit Assignments

MMARVALID

MSTKERR
MUNSTKERR

DACCVIOL
IACCVIOL

Reserved

Reserved

7 6 5 4 3 2 1 0

Table 2-58. MMFSR Bit Assignments

Bits Name Function

[7] MMARVALID MemManage Fault Address Register (MMFAR) valid flag:
0: value in MMAR is not a valid fault address

1: MMAR holds a valid fault address.

If a MemManage fault occurs and is escalated to a HardFault because of priority, the
HardFault handler must set this bit to 0. This prevents problems on return to a stacked
active MemManage fault handler whose MMAR value has been overwritten.

[6:5] Reserved.

[4] MSTKERR MemManage fault on stacking for exception entry:
0: no stacking fault

1: stacking for an exception entry has caused one or more access violations.

When this bit is 1, the SP is still adjusted but the values in the context area on the
stack might be incorrect. The processor has not written a fault address to the MMAR.

[3] MUNSTKERR MemManage fault on unstacking for a return from exception:
0: no unstacking fault

1: unstack for an exception return has caused one or more access violations.

This fault is chained to the handler. This means that when this bit is 1, the original
return stack is still present. The processor has not adjusted the SP from the failing
return, and has not performed a new save. The processor has not written a fault
address to the MMAR.

[2] Reserved

Cortex-M3 Processor (Reference Material)

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 105

...........continued
Bits Name Function

[1] DACCVIOL Data access violation flag:
0: no data access violation fault

1: the processor attempted a load or store at a location that does not permit the
operation.

When this bit is 1, the PC value stacked for the exception return points to the faulting
instruction. The processor has loaded the MMAR with the address of the attempted
access.

[0] IACCVIOL Instruction access violation flag:
0: no instruction access violation fault

1: the processor attempted an instruction fetch from a location that does not permit
execution.

This fault occurs on any access to an XN region, even when the MPU is disabled or
not present.

When this bit is 1, the PC value stacked for the exception return points to the faulting
instruction. The processor has not written a fault address to the MMAR.

2.7.2.12 BusFault Status Register
The flags in the BFSR indicate the cause of a bus access fault. The bit assignments are:

Table 2-59. BFSR Bit Assignments

Bits Name Function

[7] BFARVALID BusFault Address Register (BFAR) valid flag:
0: value in BFAR is not a valid fault address

1: BFAR holds a valid fault address.

The processor sets this bit to 1 after a BusFault where the address is known. Other
faults can set this bit to 0, such as a MemManage fault occurring later.

If a BusFault occurs and is escalated to a HardFault because of priority, the
HardFault handler must set this bit to 0. This prevents problems if returning to a
stacked active BusFault handler whose BFAR value has been overwritten.

[6:5] Reserved.

[4] STKERR BusFault on stacking for exception entry:
0: no stacking fault

1: stacking for an exception entry has caused one or more BusFaults.

When the processor sets this bit to 1, the SP is still adjusted but the values in the
context area on the stack might be incorrect. The processor does not write a fault
address to the BFAR.

[3] UNSTKERR BusFault on unstacking for a return from exception:
0: no unstacking fault

1: unstack for an exception return has caused one or more BusFaults.

This fault is chained to the handler. This means that when the processor sets this bit
to 1, the original return stack is still present. The processor does not adjust the SP
from the failing return, does not performed a new save, and does not write a fault
address to the BFAR.

Cortex-M3 Processor (Reference Material)

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 106

...........continued
Bits Name Function

[2] IMPRECISERR Imprecise data bus error:
0: no imprecise data bus error

1: a data bus error has occurred, but the return address in the stack frame is not
related to the instruction that caused the error.

When the processor sets this bit to 1, it does not write a fault address to the BFAR.

This is an asynchronous fault. Therefore, if it is detected when the priority of
the current process is higher than the BusFault priority, the BusFault becomes
pending and becomes active only when the processor returns from all higher priority
processes. If a precise fault occurs before the processor enters the handler for the
imprecise BusFault, the handler detects both IMPRECISERR set to 1 and one of the
precise fault status bits set to 1.

[1] PRECISERR Precise data bus error:
0: no precise data bus error

1: a data bus error has occurred, and the PC value stacked for the exception return
points to the instruction that caused the fault.

When the processor sets this bit is 1, it writes the faulting address to the BFAR.

[0] IBUSERR Instruction bus error:
0: no instruction bus error

1: instruction bus error.

The processor detects the instruction bus error on prefetching an instruction, but it
sets the IBUSERR flag to 1 only if it attempts to issue the faulting instruction.

When the processor sets this bit is 1, it does not write a fault address to the BFAR.

7 6 5 4 3 2 1 0

BFARVALID
Reserved
STKERR

UNSTKERR
IMPRECISERR

PRECISERR
IBUSERR

2.7.2.13 UsageFault Status Register
The UFSR indicates the cause of a UsageFault. The bit assignments are:
Figure 2-39. UFSR Bit Assignments

NOCP
INVPC

INVSTATE
UNDEFINSTR

DIVBYZERO
UNALIGNED

15 10 9 8 7 4 3 2 1 0

Reserved Reserved

Cortex-M3 Processor (Reference Material)

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 107

Table 2-60. UFSR Bit Assignments

Bits Name Function

[15:10] Reserved.

[9] DIVBYZERO Divide by zero UsageFault:
0: no divide by zero fault, or divide by zero trapping not enabled

1: the processor has executed an SDIV or UDIV instruction with a divisor of 0.

When the processor sets this bit to 1, the PC value stacked for the exception return
points to the instruction that performed the divide by zero.

Enable trapping of divide by zero by setting the DIV_0_TRP bit in the CCR to 1, see
2.7.2.7. Configuration and Control Register.

[8] UNALIGNED Unaligned access UsageFault:
0: no unaligned access fault, or unaligned access trapping not enabled

1: the processor has made an unaligned memory access.

Enable trapping of unaligned accesses by setting the UNALIGN_TRP bit in the CCR
to 1, see 2.7.2.7. Configuration and Control Register.

Unaligned LDM, STM, LDRD, and STRD instructions always fault irrespective of the
setting of UNALIGN_TRP.

[7:4] Reserved.

[3] NOCP No coprocessor UsageFault. The processor does not support coprocessor
instructions:
0: no UsageFault caused by attempting to access a coprocessor

1: the processor has attempted to access a coprocessor.

[2] INVPC Invalid PC load UsageFault, caused by an invalid PC load by EXC_RETURN:
0: no invalid PC load UsageFault

1: the processor has attempted an illegal load of EXC_RETURN to the PC, as a
result of an invalid context, or an invalid EXC_RETURN value.

When this bit is set to 1, the PC value stacked for the exception return points to the
instruction that tried to perform the illegal load of the PC.

[1] INVSTATE Invalid state UsageFault:
0: no invalid state UsageFault

1: the processor has attempted to execute an instruction that makes illegal use of the
EPSR.

When this bit is set to 1, the PC value stacked for the exception return points to the
instruction that attempted the illegal use of the EPSR.

This bit is not set to 1 if an undefined instruction uses the EPSR.

[0] UNDEFINSTR Undefined instruction UsageFault:
0: no undefined instruction UsageFault

1: the processor has attempted to execute an undefined instruction.

When this bit is set to 1, the PC value stacked for the exception return points to the
undefined instruction.

An undefined instruction is an instruction that the processor cannot decode.

The UFSR bits are sticky. This means as one or more fault occurs, the associated bits are set to 1. A bit that is set to
1 is cleared to 0 only by writing 1 to that bit, or by a reset.

Cortex-M3 Processor (Reference Material)

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 108

2.7.2.14 HardFault Status Register
The HFSR gives information about events that activate the HardFault handler. See the register summary in Table
2-44 for its attributes.

This register is read, write to clear. This means that bits in the register read normally, but writing 1 to any bit clears
that bit to 0. The bit assignments are:

Figure 2-40. HFSR Bit Assignments
31 30 2 1 0

Reserved

29

DEBUGEVT
FORCED VECTTBL

Reserved

Table 2-61. HFSR Bit Assignments

Bits Name Function

[31] DEBUGEVT Reserved for Debug use. When writing to the register you must write 0 to this bit,
otherwise behavior is Unpredictable.

[30] FORCED Indicates a forced HardFault, generated by escalation of a fault with configurable priority
that cannot be handles, either because of priority or because it is disabled:
0: no forced HardFault

1: forced HardFault.

When this bit is set to 1, the HardFault handler must read the other fault status registers
to find the cause of the fault.

[29:2] Reserved.

[1] VECTTBL Indicates a BusFault on a vector table read during exception processing:
0: no BusFault on vector table read

1: BusFault on vector table read.

This error is always handled by the HardFault handler.

When this bit is set to 1, the PC value stacked for the exception return points to the
instruction that was preempted by the exception.

[0] Reserved.

The HFSR bits are sticky. This means as one or more fault occurs, the associated bits are set to 1. A bit that is set to
1 is cleared to 0 only by writing 1 to that bit, or by a reset.

2.7.2.15 MemManage Fault Address Register
The MMFAR contains the address of the location that generated a MemManage fault. See the register summary in
Table 2-44 for its attributes. The bit assignments are:

Table 2-62. MMFAR Bit Assignments

Bits Name Function

[31:0] ADDRESS When the MMARVALID bit of the MMFSR is set to 1, this field holds the address of the
location that generated the MemManage fault

When an unaligned access faults, the address is the actual address that faulted. Because a single read or write
instruction can be split into multiple aligned accesses, the fault address can be any address in the range of the
requested access size.

Flags in the MMFSR indicate the cause of the fault, and whether the value in the MMFAR is valid. See
2.7.2.11. MemManage Fault Status Register.

Cortex-M3 Processor (Reference Material)

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 109

2.7.2.16 BusFault Address Register
The BFAR contains the address of the location that generated a BusFault. See the register summary in Table 2-44 for
its attributes. The bit assignments are:

Table 2-63. BFAR Bit Assignments

Bits Name Function

[31:0] ADDRESS When the BFARVALID bit of the BFSR is set to 1, this field holds the address of the
location that generated the BusFault

When an unaligned access faults the address in the BFAR is the one requested by the instruction, even if it is not the
address of the fault.

Flags in the BFSR indicate the cause of the fault, and whether the value in the BFAR is valid. See 2.7.2.12. BusFault
Status Register.

2.7.2.17 Auxiliary Fault Status Register
The AFSR contains additional system fault information. See the register summary in Table 2-44 for its attributes.

This register is read, write to clear. This means that bits in the register read normally, but writing 1 to any bit clears
that bit to 0.

The bit assignments are:

Table 2-64. AFSR Bit Assignments

Bits Name Function

[31:0] IMPDEF Implementation defined. The bits map to the AUXFAULT input signals.

Each AFSR bit maps directly to an AUXFAULT input of the processor, and a single-cycle HIGH signal on the input
sets the corresponding AFSR bit to one. It remains set to 1 until you write 1 to the bit to clear it to zero.

When an AFSR bit is latched as one, an exception does not occur. Use an interrupt if an exception is required.

2.7.2.18 System Control Block Design - Hints and Tips
Ensure software uses aligned accesses of the correct size to access the system control block registers:

• except for the CFSR and SHPR1-SHPR3, it must use aligned word accesses.
• for the CFSR and SHPR1-SHPR3 it can use byte or aligned halfword or word accesses.

The processor does not support unaligned accesses to system control block registers.

In a fault handler. to determine the true faulting address:

• Read and save the MMFAR or BFAR value.
• Read the MMARVALID bit in the MMFSR, or the BFARVALID bit in the BFSR. The MMFAR or BFAR address is

valid only if this bit is 1.

Software must follow this sequence because another higher priority exception might change the MMFAR or BFAR
value. For example, if a higher priority handler preempts the current fault handler, the other fault might change the
MMFAR or BFAR value.

2.7.3 System Timer, SysTick
The processor has a 24-bit system timer, SysTick, that counts down from the reload value to zero, reloads (wraps to)
the value in the SYST_RVR register on the next clock edge, then counts down on subsequent clocks.

When the processor is halted for debugging the counter does not decrement.

The system timer registers are:

Cortex-M3 Processor (Reference Material)

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 110

Table 2-65. System Timer Registers Summary

Address Name Type Required
Privilege

Reset Value See

0xE000E010 SYST_CTRL RW Privileged 0x00000004 2.7.3.1. SysTick Control and Status
Register

0xE000E014 SYST_RVR RW Privileged 0x00000000 2.7.3.2. SysTick Reload Value Register

0xE000E018 SYST_CVR RW Privileged 0x00000000 2.7.3.3. SysTick Current Value Register

0xE000E01C SYST_CALIB RO Privileged 0xC0000000 1 2.7.3.4. SysTick Calibration Value Register

Note: 
1. SysTick calibration value.

2.7.3.1 SysTick Control and Status Register
The SYST_CTRL register enables the SysTick features. See the register summary in the preceding table for its
attributes. The bit assignments are:

Figure 2-41. SYST_CTRL Register Bit Assignments

0Reserved

31 17 16 15 3 2 1 0

Reserved 0 0

COUNTFLAG CLKSOURCE
TICKINT
ENABLE

Table 2-66. SYST_CTRL Register Bit Assignments

Bits Name Function

[31:17] Reserved.

[16] COUNTFLAG Returns 1 if timer counted to 0 since last time this was read.

[15:3] Reserved.

[2] CLKSOURCE Selects the SysTick timer clock source:
1: processor clock. Determined by STCLK_DIVISOR bits in 21.5.20. M3
Configuration Register register.

[1] TICKINT Enables SysTick exception request:
0: counting down to zero does not assert the SysTick exception request

1: counting down to zero to asserts the SysTick exception request.

Software can use COUNTFLAG to determine if SysTick has ever counted to zero.

[0] ENABLE Enables the counter:
0: counter disabled

1: counter enabled.

When ENABLE is set to 1, the counter loads the RELOAD value from the SYST_RVR register and then counts down.
On reaching 0, it sets the COUNTFLAG to 1 and optionally asserts the SysTick depending on the value of TICKINT. It
then loads the RELOAD value again, and begins counting.

2.7.3.2 SysTick Reload Value Register
The SYST_RVR register specifies the start value to load into the SYST_CVR register. See the register summary in
Table 2-65 for its attributes. The bit assignments are:

Cortex-M3 Processor (Reference Material)

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 111

Figure 2-42. SYST_RVR Register Bit Assignments
31 0

RELOADReserved

2324

Table 2-67. SYST_RVR Register Bit Assignments

Bits Name Function

[31:24] Reserved.

[23:0] RELOAD Value to load into the SYST_CVR register when the counter is enabled and when it
reaches 0, see 2.7.3.2.1. Calculating the RELOAD Value.

2.7.3.2.1 Calculating the RELOAD Value
The RELOAD value can be any value in the range 0x00000001-0x00FFFFFF. A start value of 0 is possible, but has
no effect because the SysTick exception request and COUNTFLAG are activated when counting from 1 to 0.

The RELOAD value is calculated according to its use. To generate a multi-shot timer with a period of N processor
clock cycles, use a RELOAD value of N-1. For example, if the SysTick interrupt is required every 100 clock pulses,
set RELOAD to 99.

2.7.3.3 SysTick Current Value Register
The SYST_CVR register contains the current value of the SysTick counter. See the register summary in Table 2-65
for its attributes. The bit assignments are:

Figure 2-43. SYST_CVR Register Bit Assignments
31 0

CURRENTReserved

2324

Table 2-68. SYST_CVR Register Bit Assignments

Bits Name Function

[31:24] Reserved.

[23:0] CURRENT Reads return the current value of the SysTick counter.
A write of any value clears the field to 0, and also clears the SysTick
CTRL.COUNTFLAG bit to 0.

2.7.3.4 SysTick Calibration Value Register
The SYST_CALIB register indicates the SysTick calibration properties. See the register summary in Table 2-65 for its
attributes. The bit assignments are:

Figure 2-44. SYST_CALIB Register Bit Assignments
31 0

TENMSReserved

232430

SKEW
NOREF

29

Table 2-69. SYST_CALIB Register Bit Assignments

Bits Name Function

[31] NOREF Reads as one. Indicates that no separate reference clock is provided.

Cortex-M3 Processor (Reference Material)

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 112

...........continued
Bits Name Function

[30] SKEW Reads as one. Calibration value for the 10ms inexact timing is not known because
TENMS is not known. This can affect the suitability of SysTick as a software real time
clock.

[29:24] Reserved.

[23:0] TENMS Reads as zero. Indicates calibration value is not known.

If calibration information is not known, calculate the calibration value required from the frequency of the processor
clock or external clock.

2.7.3.5 SysTick Design Hints and Tips
The SysTick counter runs on the processor clock. If this clock signal is stopped for Low-power mode, the SysTick
counter stops.

Ensure software uses aligned word accesses to access the SysTick registers.

The SysTick counter reload and current value are undefined at reset, the correct initialization sequence for the
SysTick counter is:

Program reload value.

Clear current value.

Program Control and Status register.

2.7.4 Memory Protection Unit
This section describes the Memory protection unit (MPU).

The MPU divides the memory map into a number of regions, and defines the location, size, access permissions, and
memory attributes of each region. It supports:

• independent attribute settings for each region
• overlapping regions
• export of memory attributes to the system.

The memory attributes affect the behavior of memory accesses to the region. The Cortex-M3 processor MPU
defines:

• eight separate memory regions, 0-7
• a background region.

When memory regions overlap, a memory access is affected by the attributes of the region with the highest number.
For example, the attributes for region 7 take precedence over the attributes of any region that overlaps region 7.

The background region has the same memory access attributes as the default memory map, but is accessible from
privileged software only.

The Cortex-M3 processor MPU memory map is unified. This means instruction accesses and data accesses have
same region settings.

If a program accesses a memory location that is prohibited by the MPU, the processor generates a MemManage
fault. This causes a fault exception, and might cause termination of the process in an OS environment.

In an OS environment, the kernel can update the MPU region setting dynamically based on the process to be
executed. Typically, an embedded OS uses the MPU for memory protection.

Configuration of MPU regions is based on memory types, see 2.5.2.1. Memory Regions, Types and Attributes.

The following table shows the possible MPU region attributes. These include shareability and cache behavior
attributes that are not relevant to most microcontroller implementations. See 2.7.4.9.1. MPU Configuration for a
Microcontroller for guidelines for programming such an implementation.

Cortex-M3 Processor (Reference Material)

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 113

Table 2-70. Memory Attributes Summary

Memory Type Shareability Other Attributes Description

Strongly-
ordered

All accesses to Strongly-ordered memory
occur in program order. All Strongly-ordered
regions are assumed to be shared.

Device Shared Memory-mapped peripherals that several
processors share.

Non-shared Memory-mapped peripherals that only a
single processor uses.

Normal Shared Non-cacheable Write-through
Cacheable Write-back Cacheable

Normal memory that is shared between
several processors.

Non-shared Non-cacheable Write-through
Cacheable Write-back Cacheable

Normal memory that only a single processor
uses.

Use the MPU registers to define the MPU regions and their attributes. The MPU registers are:

Table 2-71. MPU Registers Summary

Address Name Type Required
privilege

Reset
value

See

0xE000ED90 MPU_TYPE RO Privileged 0x00000800 2.7.4.1. MPU Type Register

0xE000ED94 MPU_CTRL RW Privileged 0x00000000 2.7.4.2. MPU Control Register

0xE000ED98 MPU_RNR RW Privileged 0x00000000 2.7.4.3. MPU Region Number
Register

0xE000ED9C MPU_RBAR RW Privileged 0x00000000 2.7.4.4. MPU Region Base Address
Register

0xE000EDA0 MPU_RASR RW Privileged 0x00000000 2.7.4.5. MPU Region Attribute and
Size Register

0xE000EDA4 MPU_RBAR_A1 RW Privileged 0x00000000 Alias of MPU_RBAR, see
2.7.4.4. MPU Region Base Address
Register

0xE000EDA8 MPU_RASR_A1 RW Privileged 0x00000000 Alias of MPU_RASR, see
2.7.4.5. MPU Region Attribute and
Size Register

0xE000EDAC MPU_RBAR_A2 RW Privileged 0x00000000 Alias of MPU_RBAR, see
2.7.4.4. MPU Region Base Address
Register

0xE000EDB0 MPU_RASR_A2 RW Privileged 0x00000000 Alias of MPU_RASR, see
2.7.4.5. MPU Region Attribute and
Size Register

0xE000EDB4 MPU_RBAR_A3 RW Privileged 0x00000000 Alias of MPU_RBAR, see
2.7.4.4. MPU Region Base Address
Register

0xE000EDB8 MPU_RASR_A3 RW Privileged 0x00000000 Alias of MPU_RASR, see
2.7.4.5. MPU Region Attribute and
Size Register

Cortex-M3 Processor (Reference Material)

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 114

2.7.4.1 MPU Type Register
The MPU_TYPE register indicates whether the MPU is present, and if so, how many regions it supports. See the
register summary in Table 2-71 for its attributes. The bit assignments are:

Figure 2-45. MPU_TYPE Register Bit Assignments

Reserved

31 24 23 16 15 8 7 1 0

IREGION DREGION Reserved

SEPARATE

Table 2-72. MPU_TYPE Register Bit Assignments

Bits Name Function

[31:24] Reserved.

[23:16] IREGION Indicates the number of supported MPU instruction regions.
Always contains 0x00. The MPU memory map is unified and is described by the
DREGION field.

[15:8] DREGION Indicates the number of supported MPU data regions:
0x08=Eight MPU regions.

[7:0] Reserved.

[0] SEPARATE Indicates support for unified or separate instruction and date memory maps:
0: unified

2.7.4.2 MPU Control Register
The MPU_CTRL register:

• enables the MPU
• enables the default memory map background region
• enables use of the MPU when in the HardFault, Non-maskable Interrupt (NMI), and FAULTMASK escalated

handlers.

See the register summary in Table 2-71 for the MPU_CTRL attributes. The bit assignments are:

Figure 2-46. MPU_CTRL Register Bit Assignments (continued)
31 1 0

Reserved

HFNMIENA
ENABLE

2

PRIVDEFENA

3

Table 2-73. MPU_CTRL Register Bit Assignments

Bits Name Function

[31:3] — Reserved.

Cortex-M3 Processor (Reference Material)

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 115

...........continued
Bits Name Function

[2] PRIVDEFENA Enables privileged software access to the default memory map:
0: If the MPU is enabled, disables use of the default memory map. Any memory access
to a location not covered by any enabled region causes a fault.

1: If the MPU is enabled, enables use of the default memory map as a background
region for privileged software accesses.

When enabled, the background region acts as if it is region number -1. Any region that is
defined and enabled has priority over this default map.

If the MPU is disabled, the processor ignores this bit.

[1] HFNMIENA Enables the operation of MPU during HardFault, NMI, and FAULTMASK handlers.
When the MPU is enabled:

0: MPU is disabled during HardFault, NMI, and FAULTMASK handlers, regardless of the
value of the ENABLE bit

1: the MPU is enabled during HardFault, NMI, and FAULTMASK handlers.

When the MPU is disabled, if this bit is set to 1 the behavior is Unpredictable.

[0] ENABLE Enables the MPU:
0: MPU disabled

1: MPU enabled

When ENABLE and PRIVDEFENA are both set to 1:

• For privileged accesses, the default memory map is as described in 2.5.2. Memory Model. Any access by
privileged software that does not address an enabled memory region behaves as defined by the default memory
map.

• Any access by unprivileged software that does not address an enabled memory region causes a MemManage
fault.

XN and Strongly-ordered rules always apply to the System Control Space regardless of the value of the ENABLE bit.

When the ENABLE bit is set to 1, at least one region of the memory map must be enabled for the system to function
unless the PRIVDEFENA bit is set to 1. If the PRIVDEFENA bit is set to 1 and no regions are enabled, then only
privileged software can operate.

When the ENABLE bit is set to 0, the system uses the default memory map. This has the same memory attributes
as if the MPU is not implemented, see Table 2-11. The default memory map applies to accesses from both privileged
and unprivileged software.

When the MPU is enabled, accesses to the System Control Space and vector table are always permitted. Other
areas are accessible based on regions and whether PRIVDEFENA is set to 1.

Unless HFNMIENA is set to 1, the MPU is not enabled when the processor is executing the handler for an exception
with priority –1 or –2. These priorities are only possible when handling a HardFault or NMI exception, or when
FAULTMASK is enabled. Setting the HFNMIENA bit to 1 enables the MPU when operating with these two priorities.

2.7.4.3 MPU Region Number Register
The MPU_RNR selects which memory region is referenced by the MPU_RBAR and MPU_RASR registers. See the
register summary in Table 2-71 for its attributes. The bit assignments are:

Figure 2-47. SYST_CVR Register Bit Assignments

Reserved

31 8 7 0

REGION

Cortex-M3 Processor (Reference Material)

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 116

Table 2-74. MPU_RNR Bit Assignments

Bits Name Function

[31:8] Reserved.

[7:0] REGION Indicates the MPU region referenced by the MPU_RBAR and MPU_RASR registers.
The MPU supports 8 memory regions, so the permitted values of this field are 0-7.

Normally, you write the required region number to this register before accessing the MPU_RBAR or MPU_RASR.
However you can change the region number by writing to the MPU_RBAR with the VALID bit set to 1, see
2.7.4.4. MPU Region Base Address Register. This write updates the value of the REGION field.

2.7.4.4 MPU Region Base Address Register
The MPU_RBAR defines the base address of the MPU region selected by the MPU_RNR, and can update the value
of the MPU_RNR. See the register summary in Table 2-71 for its attributes.

Write MPU_RBAR with the VALID bit set to 1 to change the current region number and update the MPU_RNR. The
bit assignments are:

Figure 2-48. MPU_RBAR Bit Assignments

VALID

ADDR

31 N N-1 5 4 3 0

Reserved REGION

If the region size is 32B, the ADDR field is bits [31:5] and there is no Reserved field

Table 2-75. MPU_RBAR Bit Assignments

Bits Name Function

[31:N] ADDR Region base address field. The value of N depends on the region size. For more
information see 2.7.4.4.1. ADDR Field.

[(N-1):5] Reserved.

[4] VALID MPU Region Number valid bit:
Write:

0 = MPU_RNR not changed, and the processor:

updates the base address for the region specified in the MPU_RNR

ignores the value of the REGION field

1 = the processor:

updates the value of the MPU_RNR to the value of the REGION field

updates the base address for the region specified in the REGION field.

Always reads as zero.

[3:0] REGION MPU region field:
For the behavior on writes, see the description of the VALID field.

On reads, returns the current region number, as specified by the MPU_RNR.

2.7.4.4.1 ADDR Field
The ADDR field is bits[31:N] of the MPU_RBAR. The region size, as specified by the SIZE field in the MPU_RASR,
defines the value of N:

 N = Log2(Region size in bytes),

If the region size is configured to 4GB, in the MPU_RASR, there is no valid ADDR field. In this case, the region
occupies the complete memory map, and the base address is 0x00000000.

Cortex-M3 Processor (Reference Material)

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 117

The base address is aligned to the size of the region. For example, a 64KB region must be aligned on a multiple of
64KB, for example, at 0x00010000 or 0x00020000.

2.7.4.5 MPU Region Attribute and Size Register
The MPU_RASR defines the region size and memory attributes of the MPU region specified by the MPU_RNR, and
enables that region and any subregions. See the register summary in Table 2-71 for its attributes.

MPU_RASR is accessible using word or halfword accesses:

• the most significant halfword holds the region attributes
• the least significant halfword holds the region size and the region and subregion enable bits.

The bit assignments are:

Figure 2-49. MPU_RASR Bit Assignments

XN
Reserved

31 29 28 27 26 24 23 22 21 19 18 17 16 15 8 7 6 5 1 0

AP TEX S C B SRD SIZE

ENABLE
Reserved

Reserved

Reserved

Table 2-76. MPU_RASR Bit Assignments

Bits Name Function

[31:29] Reserved.

[28] XN Instruction access disable bit:
0: instruction fetches enabled

1: instruction fetches disabled.

[27] Reserved.

[26:24] AP Access permission field, see Table 2-80.

[23:22] Reserved.

[21:19, 17, 16] TEX, C, B Memory access attributes, see Table 2-78.

[18] S Shareable bit, see Table 2-78.

[15:8] SRD Subregion disable bits. For each bit in this field:
0: corresponding sub-region is enabled

1: corresponding sub-region is disabled

See 2.7.4.8.1. Subregions for more information.

Region sizes of 128 bytes and less do not support subregions. When writing the
attributes for such a region, write the SRD field as 0x00.

[7:6] Reserved.

[5:1] SIZE Specifies the size of the MPU protection region. The minimum permitted value is 3
(b00010), see See 2.7.4.5.1. SIZE Field Values for more information.

[0] ENABLE Region enable bit.

For information about access permission, refer to 2.7.4.6. MPU Access Permission Attributes.

2.7.4.5.1 SIZE Field Values
The SIZE field defines the size of the MPU memory region specified by the MPU_RNR. as follows:

 (Region size in bytes) = 2(SIZE+1)

Cortex-M3 Processor (Reference Material)

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 118

The smallest permitted region size is 32B, corresponding to a SIZE value of 4. The following table provides example
SIZE values, with the corresponding region size and value of N in the MPU_RBAR.

Table 2-77. Example SIZE Field Values

SIZE value Region size Value of N 1 Note

b00100 (4) 32B 5 Minimum permitted size

b01001 (9) 1KB 10

b10011 (19) 1MB 20

b11101 (29) 1GB 30

b11111 (31) 4GB 32 Maximum possible size

Note: 
1. In the MPU_RBAR, see 2.7.4.4. MPU Region Base Address Register.

2.7.4.6 MPU Access Permission Attributes
This section describes the MPU access permission attributes. The access permission bits, TEX, C, B, S, AP, and XN,
of the MPU_RASR, control access to the corresponding memory region. If an access is made to an area of memory
without the required permissions, then the MPU generates a permission fault.

The following table shows the encodings for the TEX, C, B, and S access permission bits.

Table 2-78. TEX, C, B, and S Encoding

TEX C B S Memory type Shareability Other attributes

b000 0 0 x 1 Strongly-ordered Shareable —

1 x a Device Shareable —

1 0 0 Normal Not shareable Outer and inner write-through. No write
allocate.

1 Shareable

1 0 Normal Not shareable Outer and inner write-back. No write
allocate.

1 Shareable

b001 0 0 0 Normal Not shareable Outer and inner non-cacheable.

1 Shareable

1 x a Reserved encoding —

1 0 x a Implementation defined attributes. —

1 0 Normal Not shareable Outer and inner write-back. Write and
read allocate.

1 Shareable

b010 0 0 x a Device Not shareable Nonshared Device.

1 x a Reserved encoding —

1 x a x a Reserved encoding —

b1BB A A 0 Normal Not shareable Cached memory2, BB = outer policy,
AA = inner policy.

1 Shareable

Notes: 
1. The MPU ignores the value of this bit.
2. See Table 2-79 for the encoding of the AA and BB bits.

Cortex-M3 Processor (Reference Material)

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 119

The following table describes the cache policy for memory attribute encodings with a TEX value is in the range 4-7.

Table 2-79. Cache Policy for Memory Attribute Encoding

Encoding, AA or BB Corresponding cache policy

00 Non-cacheable

01 Write back, write and read allocate

10 Write through, no write allocate

11 Write back, no write allocate

The following table lists the AP encodings that define the access permissions for privileged and unprivileged
software.

Table 2-80. AP Encoding

AP[2:0] Privileged
Permissions

Unprivileged
Permissions

Description

000 No access No access All accesses generate a permission fault

001 RW No access Access from privileged software only

010 RW RO Writes by unprivileged software generate a permission fault

011 RW RW Full access

100 Unpredictable Unpredictable Reserved

101 RO No access Reads by privileged software only

110 RO RO Read only, by privileged or unprivileged software

111 RO RO Read only, by privileged or unprivileged software

2.7.4.7 MPU Mismatch
When an access violates the MPU permissions, the processor generates a MemManage fault, see
2.5.1.4. Exceptions and Interrupts. The MMFSR indicates the cause of the fault. See 2.7.2.17. Auxiliary Fault
Status Register for more information.

2.7.4.8 Updating an MPU Region
To update the attributes for an MPU region, update the MPU_RNR, MPU_RBAR and MPU_RASR registers. You can
program each register separately, or use a multiple-word write to program all of these registers. You can use the
MPU_RBAR and MPU_RASR aliases to program up to four regions simultaneously using an STM instruction.

Updating an MPU region using separate words

Simple code to configure one region:

; R1 = region number
; R2 = size/enable
; R3 = attributes
; R4 = address
LDR R0,=MPU_RNR ; 0xE000ED98, MPU region number register
STR R1, [R0, #0x0] ; Region Number
STR R4, [R0, #0x4] ; Region Base Address
STRH R2, [R0, #0x8] ; Region Size and Enable
STRH R3, [R0, #0xA] ; Region Attribute

Disable a region before writing new region settings to the MPU if you have previously enabled the region being
changed. For example:

; R1 = region number
; R2 = size/enable
; R3 = attributes

Cortex-M3 Processor (Reference Material)

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 120

; R4 = address
LDR R0,=MPU_RNR ; 0xE000ED98, MPU region number register
STR R1, [R0, #0x0] ; Region Number
BIC R2, R2, #1 ; Disable
STRH R2, [R0, #0x8] ; Region Size and Enable
STR R4, [R0, #0x4] ; Region Base Address
STRH R3, [R0, #0xA] ; Region Attribute
ORR R2, #1 ; Enable
STRH R2, [R0, #0x8] ; Region Size and Enable

Software must use memory barrier instructions:

• before MPU setup if there might be outstanding memory transfers, such as buffered writes, that might be
affected by the change in MPU settings

• after MPU setup if it includes memory transfers that must use the new MPU settings.

However, memory barrier instructions are not required if the MPU setup process starts by entering an exception
handler, or is followed by an exception return, because the exception entry and exception return mechanism cause
memory barrier behavior.

Software does not need any memory barrier instructions during MPU setup, because it accesses the MPU through
the PPB, which is a Strongly-Ordered memory region.

For example, if you want all of the memory access behavior to take effect immediately after the programming
sequence, use a DSB instruction and an ISB instruction. A DSB is required after changing MPU settings, such as at
the end of context switch. An ISB is required if the code that programs the MPU region or regions is entered using a
branch or call. If the programming sequence is entered using a return from exception, or by taking an exception, then
you do not require an ISB.

Updating an MPU region using multi-word writes

You can program directly using multi-word writes, depending on how the information is divided. Consider the following
reprogramming:

; R1 = region number
; R2 = address
; R3 = size, attributes in one
LDR R0, =MPU_RNR ; 0xE000ED98, MPU region number register
STR R1, [R0, #0x0] ; Region Number
STR R2, [R0, #0x4] ; Region Base Address
STR R3, [R0, #0x8] ; Region Attribute, Size and Enable

You can do this in two words for pre-packed information. This means that the MPU_RBAR contains the required
region number and had the VALID bit set to 1, see 2.7.4.4. MPU Region Base Address Register. Use this when the
data is statically packed, for example in a boot loader:

; R1 = address and region number in one
; R2 = size and attributes in one
LDR R0, =MPU_MPU_RBAR ; 0xE000ED9C, MPU Region Base register
STR R1, [R0, #0x0] ; Region base address and
 ; region number combined with VALID (bit 4) set to 1
STR R2, [R0, #0x4] ; Region Attribute, Size and Enable

2.7.4.8.1 Subregions
Regions of 256 bytes or more are divided into eight equal-sized subregions. Set the corresponding bit in the SRD
field of the MPU_RASR to disable a subregion, see 2.7.4.5. MPU Region Attribute and Size Register. The least
significant bit of SRD controls the first subregion, and the most significant bit controls the last subregion. Disabling a
subregion means another region overlapping the disabled range matches instead. If no other enabled region overlaps
the disabled subregion the MPU issues a fault.

Regions of 32, 64, and 128 bytes do not support subregions, With regions of these sizes, you must set the SRD field
to 0x00, otherwise the MPU behavior is Unpredictable.

Example of SRD use

Two regions with the same base address overlap. Region one is 128 KB, and region two is 512 KB. To ensure the
attributes from region one apply to the first 128 KB region, set the SRD field for region two to b00000011 to disable
the first two subregions, as shown in the following figure.

Cortex-M3 Processor (Reference Material)

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 121

Figure 2-50. SRD Field

Region 1

Disabled subregion
Disabled subregion

Region 2, with
subregions

Base address of both regions

Offset from
base address

0
64KB

128KB
192KB
256KB
320KB
384KB
448KB
512KB

2.7.4.9 MPU Design Hints and Tips
To avoid unexpected behavior, disable the interrupts before updating the attributes of a region that the interrupt
handlers might access.

Ensure software uses aligned accesses of the correct size to access MPU registers:

• except for the MPU_RASR, it must use aligned word accesses
• for the MPU_RASR it can use byte or aligned halfword or word accesses.

The processor does not support unaligned accesses to MPU registers.

When setting up the MPU, and if the MPU has previously been programmed, disable unused regions to prevent any
previous region settings from affecting the new MPU setup.

2.7.4.9.1 MPU Configuration for a Microcontroller
Usually, a microcontroller system has only a single processor and no caches. In such a system, program the MPU as
indicated in the following table.

Table 2-81. Memory Region Attributes for a Microcontroller

Memory region TEX C B S Memory type and attributes

Flash memory b000 1 0 0 Normal memory, Non-shareable, write-through

Internal SRAM b000 1 0 1 Normal memory, Shareable, write-through

External SRAM b000 1 1 1 Normal memory, Shareable, write-back, write-allocate

Peripherals b000 0 1 1 Device memory, Shareable

In most microcontroller implementations, the shareability and cache policy attributes do not affect the system
behavior. However, using these settings for the MPU regions can make the application code more portable. The
values given are for typical situations. In special systems, such as multiprocessor designs or designs with a separate
DMA engine, the shareability attribute might be important. In these cases refer to the recommendations of the
memory device manufacturer.

Cache Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 122

3. Cache Controller
The SmartFusion 2 SoC FPGA has an instruction cache. The Arm® Cortex® -M3 processor interfaces to this
instruction cache through the Cache Controller. The Cache Controller treats embedded SRAM (eSRAM), embedded
nonvolatile memory (eNVM), or DDR memory as main memory.

3.1 Features
• 8 KB of cache size
• Four-way set associativity: Cache Controller has a four-way set associative cache subsystem with 32 byte

cache lines organized as 64 sets of 4 cache lines, with a total of 256 locations.
• Cache line size is 32 bytes, fixed irrespective of DDR burst.
• Least recently used (LRU) cache line replacement policy.
• Fill mechanism: Full cache line refill and critical word first.
• The Cortex-M3 processor can write to Cache Memory through the System bus (SBUS).
• Zero wait state in case of a hit (instruction in Cache Memory) and can run up to the maximum system frequency.
• Supports Cache locked mode
• Cache is constructed of latches

The following figure depicts the connectivity of the Cache Controller in a SmartFusion 2 device.

Figure 3-1. Cache Controller Interfaces to Cortex-M3 Processor, AHB Bus Matrix, and MDDR Bridge

AHB Bus Matrix

eSRAM_0System
Controller

Cache
Controller

S D IC

Arm® Cortex®-M3
Processor

S D I

MSS DDR
Bridge

PDMA

MS6

MM3

AHB To AHB Bridge with Address Decoder
USB OTG

HPDMA

MDDR

APB_0SYSREGTriple Speed
Ethernet MAC

FIC_0

MM4 MS4

MS2 MS3 MS0

MS5

MS1

MM5 MM6

MM7

MM8

MM2 MM1 MM0 MM9

IDC
D/S eNVM_0 eNVM_1 eSRAM_1

FIC_2 (Peripheral
Initialization) APB_1

MMUART_0

SPI_0

I2C_0

PDMA
Configuration

WATCHDOG

FIIC

TIMERx2

MMUART_1

SPI_1

I2C_1

GPIO

CAN

RTC

COMM_BLK

FIC_1

M
SS

_F
IC

M
S6

_U
SB

MS5_MAC MS5_SR MS5_APB0 MS5_FIC2 MS5_APB1

3.2 Functional Description
The following figure depicts all sub-blocks in the Cache Controller block.

Cache Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 123

Figure 3-2. Cache Controller Block Diagram

32 32 32

32 32 32 128 32

Cortex-M3 Microcontroller

AHB Bus Matrix
MSS DDR Bridge

MM 0
D

MM 1
I

MM 2
S

MM 3
C

D (RW)
MS0

S(RW)
MS1

IC (R)
MS2

Cache Matrix (4 x 7)

Cache Engine AHB to
MEM DEC

D (RW) System Controller
Bus (RW)

IC(R) IDC (R) D(W)/SG (RW)

To cache memory

MM - Mirrored Master MS - Mirrored Slave DSG - Data System and System Controller Bus
IDC - Icode and DCode Cacheable I - Instruction D - Data S- System R - Read W - Write

D(R)
MS3

D(W)/
S(RW)
MS5

S(RW)
MS6

I(R)
MS4

The Cache Controller consists of two primary components:

• Cache Matrix
• Cache Engine

3.2.1 Cache Matrix
The cache matrix is a multi-layer AHB-Lite switch matrix. It takes care of the connectivity between masters and
slaves, arbitration for slaves, memory mapping between main memory (eNVM, eSRAM, or DDR), and Cache
Memory. The masters and slaves in the AHB matrix are referred to as mirrored masters (MM) and mirrored slaves
(MS).

One master can access a slave at the same time another master accesses another slave. If more than one master
attempts to access the same slave simultaneously, arbitration is performed. Each of the slave devices contains an
arbiter, which manages accesses when more than one master attempts to access a slave at the same time.

3.2.2 Memory Mapping
The following sections explain memory mapping for eNVM, eSRAM, and DDR address spaces to cache regions.

3.2.2.1 eNVM Mapping
The cache matrix decodes the code region addresses by any master accessing a targeted slave. By default, the
eNVM slave is mapped to the cache.

The following table shows the default memory map of the MSS digital subsystem - eNVM Remapped mode.

Cache Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 124

Table 3-1. Default (eNVM Remapped Mode)

Data/Code Region Space Address

CM3 Data Region Reserved 0xE000_0000 to 0xFFFF_FFFF

DDR _SPACE 3 (256 MB) 0xD000_0000 to 0xDFFF_FFFF

DDR _SPACE 2 (256 MB) 0xC000_0000 to 0xCFFF_FFFF

DDR_ SPACE 1 (256 MB) 0xB000_0000 to 0xBFFF_FFFF

DDR _SPACE 0 (256 MB) 0xA000_0000 to 0xAFFF_FFFF

eNVM, Remap Area etc (1 GB) 0x6000_0000 to 0x9FFF_FFFF

Peripheral [SPI, UART, CAN, Fabric etc.] (0.5 GB) 0x4000_0000 to 0x5FFF_FFFF

Reserved 0x2001_0000 to 0x3FFF_FFFF

eSRAM-1 (32 KB) 0x2000_8000 to 0x2000_FFFF

eSRAM-0 (32 KB) 0x2000_0000 to 0x2000_7FFF

CM3 Code Region Reserved 0x0008_0000 to 0x1FFF_FFFF

eNVM (Virtual View) [512 KB] 0x0000_0000 to 0x0007_FFFF

The address range of the eNVM_0 is from 0x60000000 to 0x6003FFFF and the address range of eNVM_1 is from
0x60040000 to 0x6007FFFF. The full eNVM (0x60000000 to 0x6007FFFF) is accessible (read/write) in the system
space (0x00000000 to 0x0007FFFF). The eNVM AHB controller maps a specified segment of eNVM to this range.
This allows multiple firmware images to be stored in eNVM.

Important: Not all devices fully populate either or both eNVM address spaces. Please refer to the
SmartFusion 2 data sheet for the available eNVM for the device.

3.2.2.2 eSRAM Mapping
The cache matrix supports the ability of re-mapping eSRAM into code space. The two eSRAM blocks are re-mapped
to appear at the bottom of the Cortex-M3 processor code space as shown in the following table using eSRAM
Remapped mode.

Table 3-2. eSRAM Remapped Mode (Memory Map)

Data/Code Region Space Address

CM3 Data Region Reserved 0xE000_0000 to 0xFFFF_FFFF

DDR _SPACE 3 (256 MB) 0xD000_0000 to 0xDFFF_FFFF

DDR _SPACE 2 (256 MB) 0xC000_0000 to 0xCFFF_FFFF

DDR_ SPACE 1 (256 MB) 0xB000_0000 to 0xBFFF_FFFF

DDR _SPACE 0 (256 MB) [MIRRORED] 0xA000_0000 to 0xAFFF_FFFF

eNVM, Remap Area etc (1 GB) 0x6000_0000 to 0x9FFF_FFFF

Peripheral [SPI, UART, CAN, Fabric etc.] (0.5 GB) 0x4000_0000 to 0x5FFF_FFFF

Reserved 0x2001_0000 to 0x3FFF_FFFF

eSRAM-1 (32 KB) [MIRRORED] 0x2000_8000 to 0x2000_FFFF

eSRAM-0 (32 KB) [MIRRORED] 0x2000_0000 to 0x2000_7FFF

Cache Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 125

...........continued
Data/Code Region Space Address

CM3 Code Region DDR_SPACE 0 (256 MB) 0x1000_0000 to 0x1FFF_FFFF

Reserved 0x0018_0000 to 0x0FFF_FFFF

eNVM (Remap View) [512 KB] 0x0010_0000 to 0x0017_FFFF

Reserved 0x0001_0000 to 0x000F_FFFF

eSRAM0 & eSRAM1 [64 KB] 0x0000_0000 to 0x0000_FFFF

3.2.2.3 DDR Mapping
In DDR Remapping, the user boot code is present in the DDR. DDR remapping is also used for debugging purposes.
This can give high performance execution in systems where DDR is present. The DDR is also used as the main
memory for the Cache Controller. In case the of DDR remapping, the cacheable region can be configured to 128
MB, 256 MB, or 512 MB. The Cache Controller generates the appropriate DDR address as per remap configuration
settings before putting the address on the MDDR bridge.

Table 3-3. DDR Remap

Data/Code Region Space Address

CM3 Data Region Reserved 0xE000_0000 to 0xFFFF_FFFF

DDR _SPACE 3 (256 MB) 0xD000_0000 to 0xDFFF_FFFF

DDR _SPACE 2 (256 MB) 0xC000_0000 to 0xCFFF_FFFF

DDR _SPACE 1 (256 MB) 0xB000_0000 to 0xBFFF_FFFF

DDR _SPACE 0 (256 MB) 0xA000_0000 to 0xAFFF_FFFF

eNVM, Remap Area etc (1 GB) 0x6000_0000 to 0x9FFF_FFFF

Peripheral [SPI, UART, CAN, Fabric etc.] (0.5 GB) 0x4000_0000 to 0x5FFF_FFFF

Reserved 0x2001_0000 to 0x3FFF_FFFF

eSRAM-1 (32 KB) 0x2000_8000 to 0x2000_FFFF

eSRAM-0 (32 KB) 0x2000_0000 to 0x2000_7FFF

CM3 Code Region DDR_SPACE 1 (256 MB) 0x1000_0000 to 0x1FFF_FFFF

DDR_SPACE 0 (256 MB) 0x0000_0000 to 0x0FFF_FFFF

3.2.3 Memory Maps and Transaction Mapping
The following table depicting transaction mapping depends upon the Memory map mode selected and the possible
destination slave for the transaction.

For example, the case eNVM Remapped mode is selected—the condition mentioned in the first row in the table—If
the cacheable transaction comes on ICode bus it will be targeted for the eNVM. This transaction initiates on mirrored
slave 2 (MS2). The transaction flow will be (MS4 – MM3 – MS2) and it will be routed through AHB Bus Matrix. As
shown in the Figure 3-2, all the instruction fetch are first checked in the Cache Engine that is MS4 and from there to
Cache Memory. If not present, then as shown in the following table, the corresponding routing slave will be selected
(For eNVM Remap mode it is switch MS2). The following are the abbreviations used in the table:

IC: Instruction CODE (ICODE) Cacheable

INC: ICODE Non Cacheable

NC: Non Cacheable

DC: Data CODE (DCODE) Cacheable

DNC: DCODE Non Cacheable

Cache Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 126

(W): Write

(R): Read

Table 3-4. Data Path for Various Maps

Memory Map
Mode

Buses Supported
Trans

Region Destination
Slave

Routed Through

1 Default Memory Map - eNVM Remapped

ICODE IC eNVM MS2 AHB Bus Matrix

INC eNVM MS2 AHB Bus Matrix

DCODE DC eNVM MS2 AHB Bus Matrix

DNC eNVM MS0 AHB Bus Matrix

System Bus NC DDR MS5 MSS DDR Bridge

NC NON
DDR

MS1 AHB Bus Matrix

System
Controller Bus

NC DDR MS5 MSS DDR Bridge

NC NON
DDR

MS1 AHB Bus Matrix

2 eSRAM Remapped

ICODE INC eNVM MS2 AHB Bus Matrix

INC DDR MS3 MSS DDR Bridge

INC eSRAM MS2 AHB Bus Matrix

DCODE DNC eNVM MS0 AHB Bus Matrix

DNC (R) DDR MS3 MSS DDR Bridge

DNC (W) DDR MS5 MSS DDR Bridge

DNC eSRAM MS0 AHB Bus Matrix

SBUS NC DDR MS5 MSS DDR Bridge

NC NON
DDR

MS1 AHB Bus Matrix

GBUS NC DDR MS5 MSS DDR Bridge

NC NON
DDR

MS1 AHB Bus Matrix

3 DDR Remapped

ICODE IC DDR MS3 MSS DDR Bridge

INC DDR MS3 MSS DDR Bridge

DCODE DC DDR MS3 MSS DDR Bridge

DNC(R) DDR MS3 MSS DDR Bridge

DNC(W) DDR MS5 MSS DDR Bridge

SBUS NC DDR MS5 MSS DDR Bridge

Cache Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 127

...........continued
Memory Map

Mode
Buses Supported

Trans
Region Destination

Slave
Routed Through

NC NON
DDR

MS1 AHB Bus Matrix

GBUS NC DDR MS5 MSS DDR Bridge

NC NON
DDR

MS1 AHB Bus Matrix

3.2.3.1 Unimplemented Address Space
The cache matrix performs address decoding based on the memory map defined, and also to decide which slave is
addressed. Any access to RESERVED memory space in code region is considered “unimplemented” from the point
of view of the Cache Matrix.

3.2.3.2 Other Features of the Cache Matrix
• If any master attempts a write access to an unimplemented address space, the cache matrix completes the

handshake with the master, with HRESP error indication. No write occurs to any slave.
• If any master attempts a read access from an unimplemented address space, the cache matrix completes the

handshake with the master, with HRESP error indication. Garbage data is returned in this case.
• The cache matrix supports locked transactions from the SBUS towards the eSRAM AHB controller, through

the switch, by monitoring HMASTLOCK. The cache matrix initiates IDLE on the AHB bus after every LOCKED
transfer. SmartFusion2 SoC FPGA - Cache Controller Configuration Application Note

• The cache matrix handshakes correctly with masters performing AHB-Lite bursts to any slave. The ICache slave
on the cache matrix supports bursts from the cache master.

3.2.3.3 Cache Engine
The Cache Engine takes care of address generation logic using a four-way set associative, hit and miss generation
logic, cache line filling/replacement, a temporary local buffer for cache line while writing, and arbitration logic for
ICode and DCode buses.

The Cache Controller has a four-way set associative cache subsystem with 32-byte cache lines organized as 64 sets
of 4 cache lines. Eight bits from the memory address (shown in the following figure) select one of these 256 different
locations. The Cache Controller can map a block of 32 data bytes to any of the cache lines, replacing the LRU block.
As one location of the memory contains 64-bit information the required data can be selected by using the second bit
from the memory address as shown in the figure.

Cache Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 128

Figure 3-3. General Cache Architecture and Addressing

31 …… 11 10 … 3 2 1 0

256

Tag Data V

64 Bits

=

Hit

MUX

32

32

32

Data

21 8 Tag

Index Block Offset

21

64

[10:5] [10:3]

The Cache Engine has two buses interacting with the ICode and DCode buses through interfaces MS3 and MS4. It
supports the following functionalities:

1. Only read transfers from ICode and DCode bus are cached
2. 32 bytes local buffering of cache line read from slave
3. Support 32-/128-bit local interface on the AHB master side
4. All miss non-cacheable transactions targeted for eNVM are routed through MM4
5. Arbitration: In case of simultaneous access from ICode and DCode, all transactions from DCode are

processed before ICode is processed.
– a. Supports full cache flush or index-based flushing
– b. Supports hit/miss generation mechanism for Cache Memory and local buffer
– c. One of the following types of transaction will come to the Cache Engine:

• Transaction for cacheable region in DDR
• Transaction for non-cacheable region in DDR
• Transaction for cacheable region in eNVM

6. Supports Cache Disable mode where all transactions will be treated as non-cacheable and replicated “as is”
on DDR or switch-side

3.2.3.3.1 Accessing I and D Buses Concurrently
Accessing the I and D buses concurrently are not allowed. In rare cases, accessing the I and D buses concurrently
might result in an invalid value returned to the internal registers from the cache causing the firmware to not function
properly. To overcome this behavior, there are few workarounds such as turning off the cache, avoiding D-Bus literals,
and moving variables including constants to eSRAM.

IAR tool chain users can do a work around for this problem by preventing the Cortex-M3 processor from issuing
concurrent I and D buses access through the cache. To implement this work-around, updates are required to the IAR
tool chains. All libraries must be fully rebuilt from the source code to avoid this interaction by preventing the cache
D-Bus accesses. The user's linker scripts are required to locate constants and data variables outside the memory
regions accessed by the cache to prevent conflicts. Consequently, IAR compilation requires using the -no_literal_pool

Cache Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 129

option to prevent the compiler/assembler from locating variables close to instructions known as literal pools. Refer to
the following two figures. This option prevents literal pool data generation of instructions that used D-bus accesses.

Important: There is no known workaround for SoftConsole, Keil, or GCC (Linux) tool chains.

Figure 3-4. IAR Compiler Options

Figure 3-5. IAR Assembler Options

3.2.4 Cache Locked Mode
Cache Locked mode is a special mode that provides predictable execution required for some specific applications
like avionics and certain security applications. Before enabling Cache Locked mode, the software should ensure that
the code is copied to the Cache Memory by simulating a sequential location cache miss through DCode or writes
through SBUS by enabling SBUS Write mode. After copying the complete the 8 KB, Cache Locked mode is enabled.

Cache Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 130

After Cache Locked mode is enabled, any access from 0 to 8 KB is directly read from the cache and the cache is
not invalidated or refilled for normal operations. The memory region beyond 8 KB is treated as non-cacheable and
accessed as per the prevailing memory map.

In Cache Locked mode if an uncorrectable error is detected for cacheable address (0 to 8 KB), then the cache line
is fetched from the main memory using the cache lock base address and the entire cache line in Cache Memory is
replaced with new data from main memory. Cache Locked mode can only be used in either DDR or eNVM remap
modes and the lock base address should be used in the code region of CM3. In Cache Locked mode the least
recently used (LRU) cache update algorithm will be deactivated.

Important: CC_CACHE_LOCK bit of CC_CR system register (Table 21-12) is used to lock or unlock the
entire 8 KB of Cache memory.

3.2.5 Interfaces
The following figure shows the Cache Controller interface in the MSS subsystem. There are two interfaces through
which the Cache Controller is connected to the main memories:

Interface towards MDDR bridge: 128-bit AHB-Lite, this interface is read-only for instruction/data reads and 32-bit
AHB-Lite to access DDR memory through DDR bridge and system bus (read and write access)

Interface towards AHB bus matrix: There are three 32-bit AHB-Lite modes:

• Read/write for non-cacheable data access to eSRAM/eNVM
• Read/write from SBus
• Read/write from ICode bus

Figure 3-6. Cache Controller Interface

Cortex-M3
Processor

Cache Controller MSS DDR
Bridge

MDDR
Subsystem

AHB Bus Matrix

S

S D

D I

IC
DS

IDC
D
D
R
I
O

eNVM eSRAM

DDR
SDRAM

64-Bit
AXI

FPGA Fabric

Fabric SRAM

FIC_0

32 32 32

32 32 32

32

128

MSS

FIC_1

32 32

32 32

Cache Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 131

3.3 How to Use Cache Controller
Cache Controller can be configured statically by using the Libero design software. The following figure shows the
Cache Controller enable option, cache region size selection.

Figure 3-7. MSS Configurator with Cache Controller Configuration Options

The following figure shows how to select the main memory from memory blocks eNVM, eSRAM, and DDR SDRAM.

Figure 3-8. MSS Configurator with Remapping Options for eNVM, eSRAM, and MDDR

The selection of the main memory for the Cache Controller can also be made using the system builder flow of the
Libero SoC software. This procedure is explained in the following figure.

Cache Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 132

Figure 3-9. System Builder with Remapping Options for eNVM, eSRAM, and MDDR

Cache Controller configurations like enable/disable, selecting the main memory, and Cache Locked mode can also
be performed using the firmware/application code with the register settings provided in the 3.3.1. System Registers
Used for Cache Operations.

See the following application notes for more details on the Cache Controller configurations:

• AC389: SmartFusion2 SoC FPGA - Cache Controller Configuration Application Note
• AC390: SmartFusion2 SoC FPGA – Remapping eNVM, eSRAM, and DDR/SDR SDRAM Memories Application

Note

Important: Create or modify the linker scripts/linker settings of the application in such a way that all
read and write data sections are in non-cacheable memory regions or accessed through the system bus
address space. This note has to be strictly followed if eSRAM or DDR SDRAM are selected as the main
memory for the cache.

3.3.1 System Registers Used for Cache Operations
Table 3-5. System Registers for Cache Operations

Register Name Registe
r Type

Flash
Write
Protect

Reset Source Description

Table 21-12 RW-P Register SYSRESET_N Used to configure cache options like cache
enable/disable, cache lock enable/disable,
Debug mode system bus read & write.

Table 21-13 RW-P Register SYSRESET_N Defines the cache region size

Table 21-14 RW-P Register SYSRESET_N Used when Cache Memory index is to be
flushed or invalidated.

Table 21-112 RW N/A SYSRESET_N Used to flush the Cache Memory

Detailed bit-level descriptions of the cache registers are provided in the 21. System Register Block.

Embedded NVM (eNVM) Controllers

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 133

4. Embedded NVM (eNVM) Controllers
The SmartFusion 2 SoC FPGA devices have one or two embedded nonvolatile memory (eNVM) blocks (depending
on the device) for user non-volatile memory. The eNVM controller interfaces these eNVM blocks to the advanced
high-performance bus (AHB) bus matrix.

4.1 Features
• Single error correction and dual error detection (SECDED) protected
• Based on the selected SmartFusion 2 device, the total size of eNVM memory ranges from 128 KB, 256 KB, and

512 KB.
– M2S005 has a single block of 128 KB.
– M2S010, M2S025, M2S050, and M2S060 have a single block of 256 KB.
– M2S090 and M2S150 have two blocks of 256 KB each. The total eNVM size is 512 KB.

• In devices with two blocks present, any two masters can accesses the eNVM blocks (eNVM_0 and eNVM_1) in
parallel, which improves the overall performance of the system.

As shown in the following figure, the eNVM block(s) is connected as slave to the AHB bus matrix.

Figure 4-1. eNVM Connection to AHB Bus Matrix

AHB Bus Matrix

eSRAM_0System
Controller

Cache
Controller

S D IC

Arm® Cortex®-M3
Processor

S D I

MSS DDR
Bridge

PDMA

MS6

MM3

AHB To AHB Bridge with Address Decoder
USB OTG

HPDMA

MDDR

APB_0SYSREGTriple Speed
Ethernet MAC

FIC_0

MM4 MS4

MS2 MS3 MS0

MS5

MS1

MM5 MM6

MM7

MM8

MM2 MM1 MM0 MM9

IDC
D/S eNVM_0 eNVM_1 eSRAM_1

FIC_2 (Peripheral
Initialization) APB_1

MMUART_0

SPI_0

I2C_0

PDMA
Configuration

WATCHDOG

FIIC

TIMERx2

MMUART_1

SPI_1

I2C_1

GPIO

CAN

RTC

COMM_BLK

FIC_1

M
SS

_F
IC

M
S6

_U
SB

MS5_MAC MS5_SR MS5_APB0 MS5_FIC2 MS5_APB1

4.2 Functional Description
The address range of eNVM_0 is 0×60000000 to 0×6003FFFF and the address range of eNVM_1 is 0×60040000 to
0×6007FFFF. The location of eNVM_1 always follows eNVM_0 in the system memory map. The following table gives
the eNVM_0 and eNVM_1 addresses for different devices.

Embedded NVM (eNVM) Controllers

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 134

Table 4-1. eNVM Address Locations

Device eNVM_0 eNVM_1 Total NVM

M2S005 0x60000000 None 128 KB

M2S010 0x60000000 None 256 KB

M2S025 0x60000000 None 256 KB

M2S050 0x60000000 None 256 KB

M2S060 0x60000000 None 256 KB

M2S090 0x60000000 0x60040000 512 KB

M2S150 0x60000000 0x60040000 512 KB

Both eNVMs and embedded NVM controllers are identical and the eNVM controller consists of three components:

• eNVM Array
• eNVM Controller
• eNVM to AHB Controller

Figure 4-2. eNVM Controller Block Diagram

Sector 0

.

.

.

.
Sector n-1

Sector n

eNVM to
AHB

Controller

eNVM Array

AHBL Interface

eNVM Controller

ECC

Write
Data

Buffer

Assembly
Buffer

Read
Buffer

HINT

FREQRNG

FREQRNG

DPD
NVM_BLOCK_SIZE
NVM_G4C_INT

NVM_BUSY

Commands and
64-Bit Data

Interface
Address Interface

Write data

Read data

32-Bit

32-Bit

32-Bit

64-Bit

M3_CLK is used within the MSS to clock the AHB bus matrix. Refer to UG0449: SmartFusion2 and IGLOO2 Clocking
Resources User Guide for more information on M3_CLK.

eNVM Array: The eNVM array is connected to a 25 MHz internal oscillator. This 25 MHz internal oscillator is used
during device start-up to initialize the NVM controller. It is also used for eNVM program operation. For other eNVM
operations (Read and Verify), the eNVM controller operates at the M3_CLK. During eNVM read operations, the NVM
controller uses the NV_FREQRNG input to insert wait states to match with the eNVM array access times. The eNVM
array stores the data. Table 4-2 shows the eNVM memory organization and the total size of the eNVM.

eNVM Controller: Decodes all transactions from the AHBL master and issues the commands to the eNVM array.

ECC: The error-correcting code (ECC) block in eNVM Controller performs the SECDED. The ECC stores error
correction information with each block to perform SECDED on each 64-bit data word. ECC does not consume any
eNVM array bits. Refer to Table 4-21 for ECC status information. ECC block in eNVM Controller is enabled by
default. The user has no access to control the ECC block.

Embedded NVM (eNVM) Controllers

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 135

Read Data Buffer: Contains four 64-bit data words. It functions as a small cache by reading NVM data as four
consecutive 64-bit data words. Data read from the eNVM is stored in read data buffer (RDBUFF) and presented to
AHB read data bus (HRDATA) corresponding to HADDR.

If the data is not available, an eNVM read cycle is invoked to retrieve data from the eNVM array. To support an 8-bit
fixed length wrapping burst, four eNVM read cycles are automatically invoked and data read from the eNVM is stored
in RDBUFF. Read data is presented to HRDATA when the data for the current read address becomes available.

Assembly Buffer (AB): The eNVM is page-based Flash memory. Only one page of data (1,024 bits) can be written at
a time. The assembly buffer stores thirty-two 32-bit data words for programming. During programming, the assembly
buffer cannot be updated. If more than one page is to be written, the page programming function needs to be called
as many times as the number of pages.

Write Data Buffer: The write data buffer provides a secondary 32-word data buffer. This can be updated with the next
32 words to be programmed during eNVM programming.

eNVM to AHB Controller: This block interfaces the eNVM Controller with the AHB-Lite (AHBL) master as shown in
Figure 4-2.

4.2.1 Memory Organization
The eNVM is divided into sectors based on the eNVM size. Each sector is divided into 32 pages. Each page holds
1,024 bits of data. The following table lists the total available memory and its organization.

Table 4-2. Memory Organization

Device NVM Size Number of
Sectors

Pages per
Sector

Bytes per
Page

Words per
Page

64-Bit Locations
per Page

Total
Bytes

M2S005 128 KB 32 32 128 32 16 131072

M2S010 256 KB 64 32 128 32 16 262, 144

M2S025 256 KB 64 32 128 32 16 262, 144

M2S050 256 KB 64 32 128 32 16 262, 144

M2S060 256 KB 64 32 128 32 16 262, 144

M2S090 512 KB
(two eNVMs,
each 256 KB)

64 per NVM 32 per NVM
per sector

128 32 16 262, 144
per NVM

M2S150 512 KB
(two eNVMs,
each 256 KB)

64 per NVM 32 per NVM
per sector

128 32 16 262, 144
per NVM

4.2.2 Data Retention Time
The following table shows the retention time of the eNVM with respect to the number of programming cycles. The
same values are applicable for both commercial and industrial SmartFusion 2 product grades. Refer to IGLOO2
FPGA and SmartFusion2 SoC FPGA Datasheet for more information on Programming cycles and retention time.

Table 4-3. Data Retention Time

Programming Cycles Per eNVM Page Retention

< 1000 20 years

< 10000 10 years

Important: The eNVM is not prevented from programming, even if a page exceeds the write count
threshold. The eNVM Controller generates a flag through Status register.

Embedded NVM (eNVM) Controllers

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 136

4.2.3 eNVM Access Time
Refer to the Embedded NVM (eNVM) Characteristics section from IGLOO2 FPGA and SmartFusion2 SoC FPGA
Datasheet for eNVM Maximum Read Frequency and eNVM Page Programming Time.

4.2.4 Theory of Operation
The eNVM AHB Controller supports the following operations:

• Interface from AHBL for read, and writeoperations
• Issues all eNVM commands through AHBL read and write bus operation. The data width to and from AHBL bus

is 32 bits, and data to and from eNVM is 64 bits.
• AB can be read directly from AHBL bus.
• eNVMs treated as ROM. AHBL write transactions to eNVM user data array receive errors on HRESP and write

will be ignored.
• Page Program command is used to write the NVM user data array.
• AB can be written directly or loaded from the write data buffer (WDBUFF). Data can be written to WDBUFF in

byte, half-word or word AHB transfers.
• Data for Page Program comes from WDBUFF or user data previously written into AB.
• Command code in Table 4-6 determines the NVM commands to be issued. The eNVM user data array is treated

as ROM, so any program operations must be performed by submitting relevant commands to the controller. Any
AHBL writes to NVM user data without a valid NVM command will cause the HRESP signal to be asserted on
the AHBL bus. Any data that needs to be written into the NVM user array must be uploaded first to the WDBUFF
and then written into the NVM user array through the assembly buffer. Program operation for the NVM user
array occurs at the page boundaries.

4.2.4.1 Write Control
The data to be programmed into eNVM must first be uploaded into WDBUFF due to the width difference between
the AHBL bus and the eNVM. Data can be written into WDBUFF by word, half-word, or byte from the AHBL bus.
ProgramDa and ProgramADS commands take care of uploading data into AB from WDBUFF before programming
eNVM.

Data is sent to eNVM from WDBUFF in chunks of double words (64 bits). Subsequent data transfer commands to
the AB and then to eNVM array, or commands such as ProgramAd, ProgramDa, and ProgramStart, must specify the
page address and upload data to AB to start eNVM array programming. For more information, see Table 4-6.

Figure 4-3. Write Path

Sector 0

.

.

.

.
Sector n-1

Sector n

eNVM to
AHB

Controller

eNVM Array

AHBL Interface

eNVM Controller

ECC Write
Data

Buffer

Assembly
Buffer

Commands and
64 -Bit Data

Interface

Address Interface

Write data

32-Bit

32-Bit

64-Bit

4.2.4.2 Read Control
The following steps describe eNVM read control.

• The read transaction from the eNVM user array to AHBL bus uses the read data buffer as a mini cache.
• If the requested 32-bit word exists in the read data buffer, it will be returned immediately on the AHB bus;

otherwise a 64-bit read access of the eNVM is initiated and will take several clock cycles as configured by Table
4-12 register.

• The eNVM data is stored in the read data buffer and provided to the AHB bus. Assuming that the eNVM address
is incremented, the data value stored in the read data buffer is available for the next AHB read cycle.

Embedded NVM (eNVM) Controllers

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 137

The following figure shows the eNVM array read path.

The AHB Controller also supports WRAP4 burst operations, which are initiated by the cache controller. In this case,
the AHB eNVM controller will automatically perform four 64-bit read operations (critical word first) and fill the read
data buffer in advance to the AHB read transactions to increase system throughput.

Embedded NVM (eNVM) Controllers

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 138

Figure 4-4. Read Path

Sector 0

.

.

.

.
Sector n -1

Sector n

eNVM to
AHB

Controller

eNVM Array

AHBL Interface

ECC

Read
Buffer

4-64 Bit
Registers

Commands and Data
Interface

Address Interface

Read data

32-Bit 64-Bit

Embedded NVM (eNVM) Controllers

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 139

In the eNVM array, the addresses are 64-bit locations; therefore each page of 1,024 bits (16 double words = 32
words) requires an AHBL address map, as specified in the following table.

Table 4-4. AHBL Address Map to NVM

Sector Number Page Number in Sector Address in Page Byte Number in 64-Bit Data

HADDR[17:12] HADDR[11:7] HADDR[6:3] HADDR[2:0]

When programming the eNVM, sector and page addresses must be programmed into the command (CMD) register,
as specified in Table 4-6.

4.2.4.3 eNVM Commands
The eNVM commands are explained in the Table 4-6. The eNVM Command register is used to program the eNVM
commands. The following section explains the details of the eNVM Command register.

4.2.5 eNVM Command Register
The following table shows the Command register bit definitions.

Table 4-5. Command (CMD) Register

Bit Description

31:24 Command code

23:0 Address field; to supply address for NVM operation, refer to Table 4-6.

The Command register is located at offset 0x148 in the Control register. Refer to Table 4-6 for more information. By
writing to CMD when HADDR[18:0] = 0×148, any eNVM operation may be invoked. The eNVM goes into a busy state
and HREADY is set High until it finishes the write operation. Any further invoking of the eNVM operation will cause
HREADY to go Low until it finishes the previous operation.

Before using the eNVM read command, ensure to check the ready bit of the ENVM_SR register. The value 0 of
the ready bit indicates that the eNVM controller is not busy. To execute eNVM reads/writes via FIC, ensure that the
HREADY signal is LOW.

The following steps describe when to write to the Command Register, decoding of commands and command
execution.

• The command register should only be written when the NVM is non-busy (Status Register bit 0). Refer to Table
4-21 for the Status Register definitions

• If the Command register is written when the NVM is still busy from a previous command then the logic will
prevent the new command and all future commands, the access_denied bit in the STATUS register will be set.
To recover from this state, 1 should be written to bit 1 in the Table 4-25 register to clear the access_denied bit.
This mechanism is used to detect the improper NVM command sequences and protect the NVM data until the
firmware recovers.

• When the AHBL triggers a write transaction with HADDR[18:0] = 0×148, HWDATA is treated as a command
(CMD).

• CMD[31:24] will be decoded as the eNVM operation, as mentioned in Figure 4-4.
• The value from CMD[23:3] will be decoded as the NVM array address for the eNVM operation. Depending

on the command code, some LSB bits of CMD[23:0] will be ignored. For example, to submit a program
address, only the page address CMD[17:7] is significant. Therefore CMD[17:7] is taken as the NVM address and
CMD[6:0] is ignored. Refer to Table 4-6 for more information.

For masters, which are only capable of byte access, four cycles of write may be needed to fill the Command (CMD)
register, by writing to 0×14b, 0×14a, 0×149, and 0×148.

Embedded NVM (eNVM) Controllers

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 140

Table 4-6. Command Table

Name HADDR HWDATA Transaction
Type

Description

18 17:0 31:24 23:0

Read Page 0 AA X X Read

ProgramAd 1 ACMD 05 PGA Write Submit page address for programming.
CMD[17:7] is considered as the eNVM
address and CMD[6:0] is ignored.

ProgramDa 1 ACMD 06 AAB Write Submit data to assembly buffer for
programming, up to 16 dwords can be
written to the assembly buffer as specified
by DWSIZE. ProgramDa must be preceded
by ProgramAd. CMD[17:7] is considered
as the eNVM address and CMD[6:0] is
ignored.

ProgramStart 1 ACMD 07 X Write Start program NVM operation

ProgramADS 1 ACMD 08 PGA Write Start whole program page procedure,
includes sending page address, sending
entire content of write data buffer to
assembly buffer, then starting the NVM
operation.

VerifyAd 1 ACMD 0D PGA Write Submit page address for standalone verify.
CMD[17:7] is taken as the eNVM address
and CMD[6:0] is ignored.

VerifyDa 1 ACMD 0E AAB Write Submit data to assembly buffer for
standalone verify. Up to 16 dwords can
be written to the assembly buffer, as
specified by DWSIZE. VerifyDa must be
proceeded by the VerifyAd. CMD[6:3] is
taken as the starting double word address
and CMD[23:7] is ignored.

VerifyStart 1 ACMD 0F X Write Start standalone verify NVM operation

VerifyADS 1 ACMD 10 PGA Write Start whole standalone verify procedure;
includes sending page address, sending
entire content of write data buffer to
assembly buffer, and then starting NVM
operation.

User Unlock 13 X Write Submit a User Unlock NVM command
before Program NVM.

Notes: 
• AA = NVM Array address. Refer to Table 4-1.
• AAB = Address of assembly buffer. Refer to Table 4-20 for address values.
• ACMD = Address of CMD register. The Command register is located at offset 0x148 in the Control register.

Refer to Table 4-20 for more information.
• PGA = Page address
• SEA = Sector address
• X = Not used

Embedded NVM (eNVM) Controllers

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 141

4.2.5.1 Read Page
Data read from eNVM is stored in the read data buffer (eight 32-bit memory blocks) and presented to HRDATA based
on HADDR[2:0]. For non-sequential reads, the read data buffer is checked first. If the data is available, it is presented
to HRDATA; otherwise an eNVM read cycle is invoked to read the data from the eNVM array and data is presented to
HRDATA as soon as corresponding data is available.

To support 8-byte fixed length burst (that is, to read the complete read data buffer, which consists of eight 32-bit
memory blocks), 4 eNVM read cycles (each 64-bit) are automatically invoked. Data read from the eNVM is stored in
the read data buffer.

4.2.5.2 Page Program
This mode allows writing the page with pre-erase. In Page Program there are three stages:

• ProgramAd: This command is used to submit the page address to be programmed.
• ProgramDa: Once the ProgramAd command is issued, data can be written to AB.
• ProgramStart: After ProgramAd and ProgramDa (optional), ProgramStart can be used to start the NVM

operation. Once the NVM operation starts and until it finishes, any further NVM accessing AHBL transaction
will result in HREADYOUT going Low until the operation is done.
If the command ProgramDa is not issued after the ProgramAd operation, the current data in the assembly buffer
will be programmed to the NVM array.

4.2.5.2.1 Program Page with a Single AHBL Write
ProgramADS: During the command ProgramADS, a single AHBL write transaction can be used to start and
complete the program page procedure. By default, all WDBUFF content is written to AB and internal program
operation automatically begins. Once the NVM operation starts and until it finishes, any further NVM accessing AHBL
transaction will result in HREADYOUT going Low until the operation is done.

Note: eNVM frequency range (NV_FREQRNG field of Table 4-12 system register) value must be set to maximum
value 15 to ensure the correct programming of the eNVM. After programming eNVM, restore the original frequency
range value for eNVM read or verify operations.

4.2.5.3 Standalone Verify
This mode allows verifying the operation of a page. In verify there are three stages:

• VerifyAd: This command is used to submit the page address to be verified.
• VerifyDa: Once the VerifyAd command is issued, data can be written to AB.
• VerifyStart: After VerifyAd and VerifyDa (optional), VerifyStart can be used to start the NVM operation. Once

the NVM operation starts and until it finishes, any further NVM accessing AHBL transaction will result in
HREADYOUT going Low until the operation is done. If the VerifyDa command is not issued after the VerifyAd
operation, the current data in assembly buffer is verified with the NVM array.

4.2.5.3.1 Standalone-Verify with a Single AHBL Write
VerifyADS: With the command VerifyADS, a single AHBL write transaction can be used to start and complete
the verify page procedure. By default, all WDBUFF content is written to AB and the internal Standalone-Verify
operation automatically starts. Once the NVM operation starts and until it finishes, any further NVM accessing AHBL
transaction will result in HREADYOUT going Low until the operation is done.

4.2.5.4 Set Lock Bit and User Unlock Commands
There is a user page lock bit to lock the page for writing. The Control Register PAGE_LOCK_SET[0] is used
to set the user lock bit of the page. Refer to PAGE_LOCK_SET register in Table 4-20 for more information. If
PAGE_LOCK_SET[0] == 1, then nv_s_page_lock_set will be asserted when submitting the address for Program.

To program a page, the User Unlock command must be submitted before submitting ProgramAd or ProgramADS.

4.2.5.5 eNVM Read Operations with Timing Diagrams
The following are the example eNVM read operations with the Cortex-M3 processor operating at 166 MHz. The
eNVM NV_FREQRNG is set to 6.

4.2.5.5.1 Single Word Read
The following figure shows the AHB read command to 0x60001000 starting at the first cursor, and data being
returned at the second cursor 9 clock cycles later.

Embedded NVM (eNVM) Controllers

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 142

Figure 4-5. Timing Diagram Showing Single Word Read Operation

4.2.5.5.2 Consecutive Reads Incrementing through Memory
In this case, four reads from addresses 0x60000010, 0x60000014, 0x60000018, and 0x6000001C are initiated by the
AHB master in succession. The first word is returned 9 clock cycles later (as shown in the preceding figure), but the
second word occurs in the following cycle, 9 clock cycles later the third word is provided and the fourth word occurs in
the next clock cycle. This pattern is repeated as the memory is incremented as shown in the following figure.

Figure 4-6. Timing Diagram Showing Consecutive Reads Incrementing through Memory

4.2.5.5.3 Cache Fill Operation Utilizing Bursts
The internal cache fill operations using AHB wrapping can utilize bursts to optimize the cache fill operations. The
AHB-NVM controller always returns 8 words in a burst. The first word returns after 9 clock cycles, and second word
in the following cycle as shown in the preceding figure. But the third word occurs 7 clock cycles later, and the fourth
word occurs a cycle later with a repeating pattern for the remaining words as shown in following figure. This burst
transfer is 8 clock cycles quicker than a non-burst sequence of read commands.

Embedded NVM (eNVM) Controllers

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 143

Figure 4-7. Timing Diagram Showing Cache Fill Read Operations Utilizing Bursts

4.2.5.6 eNVM Program and Verify Operations Timing Diagrams
Timing diagrams in this section illustrate eNVM Program and Verify operations at the AHB bus transfer level with the
Cortex-M3 processor operating at 166 MHz. The eNVM NV_FREQRNG is set to 15. The sample eNVM operation
programs the eNVM sector 0 page 4 with random data and verifies the eNVM sector 0 page 4.

Note: In all the waveforms, the eNVM controller register offset is shown in AHB address line (HADDR). Refer to
4.6. eNVM Control Registers for more information.

4.2.5.6.1 Sequence of eNVM Program and Verify Operations when using ProgramADS and VerifyADS Commands
The following figure shows the following sequence of eNVM ProgramADS and VerifyADS commands:

Cortex-M3 master requests for exclusive register access by writing 0x1 to the REQACCESS register.

Fills the WDBUFF (Write Data Buffer) register with the data to be written to the eNVM array.

Issues ProgramADS command.

Completes the eNVM Program operation and starts the eNVM Verification by issuing a VerifyADS command.

Completes the eNVM verify operation.

Releases the exclusive register access by writing 0x0 to the REQACCESS register.

The status of the eNVM operations are monitored by polling the Status register response.

For a description of the registers, see Table 4-20.

The following figure shows the complete eNVM program (ProgramADS) and eNVM verify (VerifyADS) operations.

Figure 4-8. eNVM Program (ProgramADS) and Verify (VerifyADS) Operations

At cursor 1, steps 1 and 2 in the sequence are performed. At cursor 2, the eNVM Program operation gets completed
and Verify operation gets started. At Cursor 3, the verify operation is completed. Refer to the preceding figure.

eNVM commands sequence is shown in waveforms. See Figure 4-9 through Figure 4-12.

Embedded NVM (eNVM) Controllers

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 144

The Cortex-M3 processor gets the exclusive register access by writing 0x1 to the REQACCESS register. It reads the
value 0x5 from AHB read data line (HRDATA), it means the exclusive register access is issued. Then the WDBUFF
(Write Data Buffer) register is filled with the random data, as shown in the following figure.

Figure 4-9. Exclusive Register Access and Filling Data in WDBUFF

The following figure shows issue of ProgramADS command by writing 0x08 to the CMD register in Table 4-20.

Figure 4-10. Issuing the ProgramADS Command

Important: HWDATA[31:24] holds the ProgramADS command and HWDATA[23:0] holds the eNVM page
address. Refer to Table 4-5.

The following figure shows completion of ProgramADS and issue of VerifyADS command.

Embedded NVM (eNVM) Controllers

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 145

Figure 4-11. Completion of ProgramADS and Issue of VerifyADS Command

The ProgramADS command completion can be confirmed by polling Status register response. The following figure
shows the completion of eNVM verify operation.

Figure 4-12. Completion of eNVM Verify Operation

4.2.5.6.2 Sequence of eNVM Program and Verify Operations when Using ProgramAD, ProgramDA, ProgramStart,
VerifyAD, VerifyDA, and VerifyStart Commands
Figure 4-13 through Figure 4-17 show the sequence of eNVM program operation:

1. Cortex-M3 master requests for exclusive register access by writing 0x1 to the REQACCESS register. Refer to
Figure 4-14.

2. Fills the WDBUFF (Write Data Buffer) register with the data to be written to the eNVM array. Refer to Figure
4-14.

3. Issues ProgramAD command. Refer to Figure 4-15.
4. Completes the ProgramAD command and Issues the ProgramDA command. Refer to Figure 4-16.
5. Completes the ProgramDA command and Issues ProgramStart command. Refer to Figure 4-17.
6. Completes the eNVM Program operation and starts the eNVM verification by issuing a VerifyAD command.
7. Completes the VerifyAD command and Issues the VerifyDA command.
8. Completes the VerifyDA command and Issue the VerifyStart command.
9. Completes the eNVM verify operation.
10. Releases the exclusive register access by writing 0x0 to the REQACCESS register.

The status of the eNVM operations are monitored by polling the Status register response.

The following figure shows the complete eNVM program and eNVM verify operations.

Embedded NVM (eNVM) Controllers

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 146

Figure 4-13. Complete eNVM Program and Verify Operations Waveform

At cursor 1,steps 1 and 2 in the sequence are performed. At cursor 2, the eNVM ProgramStart operation is
completed and VerifyAD operation is started. At cursor 3, the verify operation is completed. Refer to the preceding
figure. The eNVM commands sequence is explained in waveforms in Figure 4-14 through Figure 4-17.

The following figure shows the Cortex-M3 master requesting for exclusive register access and filling WDBUFF (Write
Data Buffer).

Figure 4-14. Exclusive Register Access and Filling Data in WDBUFF

The following figure shows the issuance of the ProgramAD command.

Figure 4-15. ProgramAD Command

The following figure shows the completion of ProgramAD command and the issuance of the ProgramDA command.

Embedded NVM (eNVM) Controllers

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 147

Figure 4-16. ProgramDA Command

The following figure shows the completion of the ProgramDA command and the issuance of the ProgramStart
command.

Figure 4-17. ProgramStart Command

The completion of the eNVM command is confirmed by monitoring the eNVM status register for eNVM ready
and the next command in sequence is sent. VerifyAD, VerifyDA, and VerifyStart commands are issued by writing
corresponding command value into CMD register.

4.2.6 Error Response
The error response, which is indicated by the HRESP signal, is asserted if any of the following conditions occur:

• AHBL burst read is terminated early or address sequence is not as expected. This should never occur within the
system during normal operation.

• AHBL write transaction addressed to read-only user data array
• AHBL read or write transaction to a protected memory area. Refer to 4.3. Security.

Data on HRDATA with error response is zero. A write transaction addressed to read-only Control register such as RD
or RDT will not trigger an error response. However, the data in these registers will not be affected.

4.2.7 Interrupt to Cortex-M3 Processor
Setting the Control registers Table 4-24, as shown in Table 4-20, allows the user to configure HINT (INTISR[17]
and INTISR[18] of Cortex-M3 processor) to assert an interrupt on any active status events from eNVM, such as the
assertion of any status bit from eNVM or when an internal eNVM operation ends.

After HINT is asserted, the Cortex-M3 processor determines the next steps. The Cortex-M3 processor can respond to
the interrupt and then clear HINT by writing 1 to bit 0 of the write-only register Table 4-25 (HADDR = 0x158) in Table
4-20. If the Cortex-M3 processor decides to ignore the interrupt (by masking it out), the interrupt is cleared if read or
write continues and the interrupt-triggering events are not re-occurring. If the same triggering event happens again,
HINT will remain asserted.

Embedded NVM (eNVM) Controllers

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 148

4.3 Security
The eNVM is protected using four levels of security features:

• The eNVM page protection uses two levels: factory lock and user lock. Factory lock is not accessible for the
user. Refer to the 4.2.5.4. Set Lock Bit and User Unlock Commands.

• There are two or four special sectors per eNVM array that can be protected for read and write, depending on
which entity is accessing the region as shown in Figure 4-18 through Figure 4-22. On devices with smaller
or bigger eNVMs, the upper 4 KB special sector is aligned to the top 4 KB region of the eNVM. These
user-protectable 4 KB special sectors can be configured by Libero software, see Figure 4-29.

• There are two private regions in M2S060, M2S090, and M2S150 as shown in Figure 4-21 and Figure 4-22 which
are reserved for storing device certificate, eNVM digest, security keys and so on. Only system controller can
access the private regions. See 4.3.2. eNVM Pages for Special Purpose Storage

• Using AHB bus master access control, the eNVM can be protected from different masters connected on the
AHB bus matrix. Refer to the 6. AHB Bus Matrix.

• User-defined regions can be protected from the FPGA fabric.

4.3.1 User Protectable 4K Regions
Figure 4-18. eNVM Special Sectors for the M2S050TS Device with 256 KB eNVM_0

0x6003F000 to 0x6003FFFF

0x60000000 to 0x60000FFF

eNVM_0
Total 256 KB

Special Sector Upper 4 KB Region (U0)

Special Sector Lower 4 KB Region (L0)

248 KB

M2S050TS

Embedded NVM (eNVM) Controllers

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 149

Figure 4-19. eNVM Special Sectors for the M2S005S Device with 128 KB eNVM_0

0x6001F000 to 0x6001FFFF

0x60000000 to 0x60000FFF

eNVM_0
Total 128 KB

Special Sector Upper 4 KB Region (U0)

Special Sector Lower 4 KB Region (L0)

112 KB

M2S005S

0x6001E000 to 0x6001EFFF

0x6001D000 to 0x6001DFFF

Special Sector Lower 4 KB Region (L1)

Special Sector Upper 4 KB Region (U1)

Figure 4-20. eNVM Special Sectors for the M2S010TS, M2S025TS Devices with 256 KB eNVM_0

0x6003F000 to 0x6003FFFF

0x60000000 to 0x60000FFF

eNVM_0
Total 256 KB

Special Sector Upper 4 KB Region (U0)

Special Sector Lower 4 KB Region (L0)

240 KB

M2S010TS, M2S025TS

0x6003E000 to 0x6003EFFF

0x6003D000 to 0x6003DFFF

Special Sector Lower 4 KB Region (L1)

Special Sector Upper 4 KB Region (U1)

Embedded NVM (eNVM) Controllers

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 150

Figure 4-21. eNVM Special Sectors for the M2S060TS Devices with 256 KB eNVM_0

0x6003F000 to 0x6003FFFF

0x60000000 to 0x60000FFF

eNVM_0
Total 256 KB

Private Region 4 KB

Special Sector Lower 4 KB Region (L0)

240 KB

M2S060TS

0x6003E000 to 0x6003EFFF

0x6003D000 to 0x6003DFFF

Private Region 4 KB

Special Sector Upper 4 KB Region (U0)

Figure 4-22. eNVM Special Sectors for the M2S090TS, M2S150TS Devices with 512 KB

0x6007F000 to 0x6007FFFF

0x60000000 to 0x60000FFF

Total
eNVM
512 KB

Special Sector Upper 4 KB Region (U0)

Special Sector Lower 4 KB Region (L0)

488 KB

M2S090TS, M2S150TS

0x6007E000 to 0x6007EFFF

0x6007D000 to 0x6007DFFF

Special Sector Lower 4 KB Region (L1)

Special Sector Upper 4 KB Region (U1)
eNVM_1
256 KB

eNVM_0
256 KB

0x6007C000 to 0x6007CFFF

0x6007B000 to 0x6007BFFF

Private Region 4 KB

Private Region 4 KB

The security configuration is provided as input to the eNVM Controller from system registers as per the Table 4-16
register described in Table 4-11 for configuration of upper and lower regions of NVM. The following table shows user
protection regions for different masters.

Table 4-7. User Protection Regions

Master Function

Cortex-M3 processor Cortex-M3 processor can access the protected memory regions. Access bit defines the read
accessibility. Write allowed bit indicates that the masters which have read access can also
have write access.

Fabric master FIC_0 can access the protected memory regions. Access bit defines the read accessibility.
Write allowed bit indicates that the masters which have read access can also have write
access.

Embedded NVM (eNVM) Controllers

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 151

...........continued
Master Function

Other masters (PDMA
and HPDMA)

All other masters are allowed access. Access bit defines the read accessibility.

4.3.1.1 Read Protection
When AHB masters other than the system controller issue read transactions to protected regions, the address and
protection configuration is checked to determine whether the read is targeted to the protected region and if the read
is allowed. If the read is not allowed, eNVM read command is not sent to the eNVM and an error is generated. For
a specific AHB master to read a protected region, both the factory and user allowed bits must be set. Refer to Table
4-16 for information on eNVM access controls for AHB masters.

4.3.1.2 Write Protection
When AHB masters other than system controller issue write transactions (which may be one of the program
commands supported by this interface) to protected regions, the address and protection configuration is checked to
determine whether the transaction is targeted to the protected region. If the transaction is not allowed, no command
is sent to eNVM and the Status bit is asserted.

4.3.1.3 Power-Down
During device start-up, the eNVM(s) will be powered up as the fabric is powered up. As soon as the fabric is active,
if the user sets the deep power-down (DPD) bit, the NVM(s) will be powered down. Each eNVM block can be put into
deep power-down mode by configuring the SYSREG. The eNVM can permanently be switched on or switched off.
Refer to the ENVM_CR register (Table 4-11) for configuration settings.

During Flash*Freeze, users may want to put the NVM(s) into deep power-down mode, to save power. The user
should not enter power-down while the NVM is in use. DPD is not entered automatically when Flash*Freeze is
entered.

Important: Flash*Freeze applies mainly to the fabric.

4.3.2 eNVM Pages for Special Purpose Storage
A few pages in the final sector (N-1) of the last eNVM module are used for special purpose storage like device
certificate and eNVM digest. Some special purpose pages are reserved and protected. Refer below tables for
more information on eNVM special purpose storage based on SmartFusion 2 device density. The system controller
performs read/write operations on unreserved eNVM pages using system controller services. It only reads data from
reserved eNVM pages. 16 pages in the final sector of eNVM_0 module for M2S005, M2S010, M2S025, and M2S050
devices are used for special purpose storage as listed in the following table.

Table 4-8. Special Purpose Storage Regions

Device eNVM module Sector Page Type Usage

M2S005/M2S010/
M2S025/M2S050

eNVM_0 N-1 16-24 Reserved Reserved for future
use

25-30 Reserved Device Certificate

31 Unreserved Digest for eNVM_0

64 pages of eNVM in the final 2 sectors (private regions) of the last eNVM module for M2S060, M2S090, and
M2S150 devices are used as special purpose storage. See the following table for more information. M2S060 device
has 2 private regions in eNVM_0 and M2S090/M2S150 device has 2 private regions in eNVM_1.

Embedded NVM (eNVM) Controllers

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 152

Table 4-9. Special Purpose Storage Regions for M2S060, M2S090, and M2S150 Devices

Sector
in
eNVM

Page Type Usage Offset in
page
(Bytes)

Range
(Bytes)

N-2 20-0 Unreserved User Key Code#2 to User Key Code #N.
N can be maximum 58.

Maximum 56 Key Codes (KC#2 to KC#58),each
occupies 48 Bytes

Minimum 5 Key Codes (KC#2 to KC#7), each
occupies 528 Bytes

0 2687:0

29-21 Unreserved User Activation Code 0 1151:0

30 Unreserved User Activation Code (Total 1192 bytes across
page 21 to page 30)

0 39:0

30 Unreserved User Defined (Key sizes + Exported bit + Valid bit)
byte array: 56 bytes holds 56 key sizes along with
exported and valid bit flags.

40 55:0

30 Unreserved Reserved for future use 96 31:0

31 Unreserved User PK-X (384-bit User PUF ECC Public Key) 0 47:0

31 Unreserved User PK-Y (384-bit User PUF ECC Public Key) 48 47:0

31 Unreserved User Activation Code exported flag (Digests Valid,
Activation Code missing)

96 1 byte

31 Unreserved User Activation Code valid flag 97 1 byte

31 Unreserved User Key Code #0 exported flag (Digests Valid,
Key Code missing)

98 1 byte

31 Unreserved User Key Code #0 valid flag 99 1 byte

31 Unreserved User Key Code #1 exported flag (Digests Valid,
Key Code missing)

100 1 byte

31 Unreserved User Key Code #1 valid flag 101 1 byte

31 Unreserved User Public Key valid flag 102 1 byte

31 Unreserved Reserved for future use 103 24:0

Embedded NVM (eNVM) Controllers

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 153

...........continued
Sector
in
eNVM

Page Type Usage Offset in
page
(Bytes)

Range
(Bytes)

N-1 0 Unreserved User Key Code #0 (256-bit User AES Key) 0 43:0

0 Unreserved User Key Code#1 (384-bit User PUF ECC Key)
(76 bytes)

44 75:0

0 Unreserved Reserved for future use 120 7:0

9-1 Reserved Factory Activation Code 0 1151:0

10 Reserved Factory Activation Code (Total 1192 bytes across
page 1 to page 10)

0 1191:1152

10 Reserved Factory Key Code (384 bit Factory ECC Key
Code)

40 75:0

10 Reserved Reserved for future use 116 11:0

15-11 Reserved Second ECC Key Certificate 0 639:0

21-16 Reserved Reserved for future use 0 767:0

22 Unreserved eNVM_1 Private User Digest of page 0 of N-1 and
all pages of N-2

0 127:0

23 Reserved eNVM_1 Private Factory Digest of pages from 1 to
30 of N-1 except pages 22, 23, and 24

0 127:0

24 Unreserved eNVM_1 Public Digest 0 127:0

30-25 Reserved Device Certificate 0 767:0

31 Unreserved eNVM_0 Digest 0 127:0

Important: 
• Refer to UG0443: SmartFusion2 SoC FPGA and IGLOO2 FPGA Security Best Practices for more

information on the certificates, key codes, and digests.
• The system controller performs read/write operations on unreserved eNVM pages using system

controller services. It only reads data from reserved eNVM pages.

4.4 How to Use eNVM
This section describes how to use the eNVM in the SmartFusion 2 devices. To configure the SmartFusion 2 device
features and then build a complete system, use the System Builder graphical design wizard in the Libero® SoC
software.

4.4.1 Data Storage in eNVM Using the Libero eNVM Client
The Libero eNVM client creates the eNVM data that the FlashPro software uses to initialize the eNVM during
programming. The programmed eNVM can be accessed by the Cortex-M3 processor, High Performance Direct
Memory Access (HPDMA), Peripheral Direct Memory Access (PDMA), or the FPGA fabric master connected to the
AHB bus matrix.

The following figure shows the initial System Builder window where the required device features can be selected. For
more information on how to launch the System Builder and how to use it, see SmartFusion2 System Builder User
Guide.

Embedded NVM (eNVM) Controllers

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 154

Figure 4-23. System Builder Window

The following steps describe how to generate a programming file with the eNVM client in an application using System
Builder.

1. Check the MSS On-chip Flash Memory (eNVM) check box under the Device Features tab and leave the
other check boxes unchecked. The following figure shows the System Builder > Device Features tab.

Embedded NVM (eNVM) Controllers

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 155

2. Figure 4-24. System Builder - Device Features Tab

3. Click Next to navigate to the Memories tab. The following figure shows the System Builder > Memories tab.

Embedded NVM (eNVM) Controllers

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 156

4. Figure 4-25. System Builder - Memories Tab

5. Select Data Storage under Available Client Types and click Add to System.
The following figure shows the Add Data Storage Client dialog box. It supports the following file formats:

– Intel-Hex
– Motorola-S
– Microsemi-Hex
– Microsemi-Binary

i. Create the memory file in any one of the above formats with the executable code or data.
Memory file can be created for the code using the SoftConsole v3.4 or later with the linker
script production-execute-in-place.ld. For more information on using the SoftConsole,
see SoftConsole Documentation.

ii. Enter the Client name, navigate to the Memory file location, and select it. Give the rest of
the parameters according to the requirements and click OK to add the eNVM client. For more
information on Use absolute addressing, Use as ROM, and other options, click Help.

The following figure shows the Add Data Storage Client Dialog box.

Embedded NVM (eNVM) Controllers

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 157

Figure 4-26. Add Data Storage Client Dialog

The eNVM client data is populated in the System Builder > Memories tab. The following figure shows the
System Builder > Memories tab with two eNVM clients.

Embedded NVM (eNVM) Controllers

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 158

Figure 4-27. System Builder - Memories Tab with Two eNVM Clients

6. Navigate to the Microcontroller tab in the System Builder and select AHB Bus Matrix to confirm the
remapping of eNVM to the Cortex-M3 code space. eNVM is remapped to the Cortex-M3 code space, by
default. For more information on eNVM Remap Region Size and Base Address, click Help and select AHB
Bus Matrix to access the help document, as shown in the following figure. See AC390: SmartFusion2 SoC
FPGA – Remapping eNVM, eSRAM, and DDR/SDR SDRAM Memories Application Note.

Embedded NVM (eNVM) Controllers

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 159

Figure 4-28. System Builder - Microcontroller Tab

Important: 
• The code executing from eNVM can program the other regions of eNVM memory. Ensure that

the code executing region is not overwritten.
• Configure “eNVM Remap Region Size” and “eNVM Remap Base Address (Cortex-M3)” such

that the end address of the eNVM remap region is less than 0x00040000. The end address is
obtained by adding the eNVM Remap Region Size to the eNVM Remap Base Address. This is
applicable to SmartFusion 2 M2S090 and M2S150 devices only.

• If the user design is using the FPGA fabric based master, the Cortex-M3 processor requires
a valid program in eNVM (from eNVM start address 0x60000000) to execute at power-up or
Power-on Reset. The valid program can be a simple user boot code or a simple loop program.
You can select a .hex file of a valid program for eNVM data client using the System Builder.
The read and write permission options for different masters are available for data and design
security enabled devices like M2S050TS only.

For more information on configuring the security options, see SmartFusion2 MSS Security
Configuration User Guide.

7. Navigate to the Security tab to select the read and write access permissions of eNVM including protected
regions for different masters, as shown in the following figure.

Embedded NVM (eNVM) Controllers

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 160

Figure 4-29. System Builder - Security Tab

8. Navigate to the Memory Map tab giving the required data in the rest of the System Builder tabs and click
Finish to proceed with creating the MSS Subsystem.

9. Do required Pin connections and Save the project. Generate the SmartDesign in Libero by clicking Generate
Component.

10. Double click Run PROGRAM Action in the Libero Design Flow window to program the SmartFusion 2
device to initialize the eNVM with the memory file.

Important: 
• The MSS eNVM supports full behavioral simulation models. For information on how to simulate the

eNVM operations, see SmartFusion2 MSS Embedded Nonvolatile Memory (eNVM) Simulation User
Guide.

• For information on how to access the eNVM using FPGA fabric logic, see AC429: SmartFusion2 and
IGLOO2 - Accessing eNVM and eSRAM from FPGA Fabric Application Note.

• For more information on how to add multiple eNVM data storage clients using the Libero SoC
software, see AC426: Implementing Production Release Mode Programming for SmartFusion2
Application Note.

4.4.2 Reading the eNVM Block
Any master connected on the AHB bus matrix (for example, Cortex-M3 processor, HPDMA, PDMA, user logic in
FPGA) can access the eNVM blocks using the address range provided in Table 4-1 for read operations.

4.4.3 Writing to the eNVM Block
Writing to eNVM by using the Cortex-M3 processor can be done by the API provided in the eNVM driver. The eNVM
driver is available in the Firmware Catalog. FPGA fabric user logic can implement the state machine to write into the
eNVM by implementing the commands sequence explained in the eNVM commands section.

Embedded NVM (eNVM) Controllers

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 161

For information about reading and writing to the eNVM block using the Cortex-M3, see AC391: SmartFusion2 SoC
FPGA - eNVM Initialization Application Note.

4.4.4 Firmware and Sample Project
Microchip provides eNVM firmware drivers to use with the application development. The SmartFusion 2 eNVM
firmware drivers can be downloaded from the Firmware Catalog. The eNVM firmware driver provides APIs to unlock
and write to eNVM features. For the list of APIs and their descriptions, see the SmartFusion 2 eNVM Driver User
Guide from Open Documentation.

The eNVM driver package includes sample projects to show the usage of eNVM. The sample projects are available
for three different tool chains: IAR Embedded Work, Keil-MDK, and SoftConsole. The sample project can be
generated by right-clicking the eNVM driver and selecting Generate..., as shown in the following figure.

Figure 4-30. Generating a Sample Project for eNVM

Embedded NVM (eNVM) Controllers

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 162

The following table lists the available APIs for eNVM in the eNVM firmware drivers

Table 4-10. Available APIs for eNVM

API Description

NVM_unlock Unlock the eNVM Block

NVM_write The function NVM_write() is used to program data in to the eNVM. This function treats the
two eNVM blocks contiguously, hence 512 KB of memory can be accessed linearly. The starting
address and ending address of the memory to be written need not be page aligned. This
function supports programming data that spawns across multiple pages, and does not support
writing or programming eNVM without input data. This function is a blocking function.
The NVM_write() function performs a verify operation on each page programmed to ensure
that the NVM is programmed with the expected content.

4.5 SYSREG Control Registers
The System Control registers control eNVM behavior. These registers are located in the SYSREG section and are
listed in the following tables for clarity. For more information on each register and bit, see 4. Embedded NVM (eNVM)
Controllers.

Table 4-11. SYSREG Control Registers

Register Name Registe
r Type

Flash Write
Protect

Reset
Source

Description

Table 4-12 (0x4003800C) RW-P Register sysreset_n eNVM Configuration register.

Table 4-14
(0x40038010)

RW-P Register sysreset_n eNVM remap Configuration register for the
Cortex®-M3 processor.

Table 4-15
(0x40038014)

RW-P Register sysreset_n eNVM remap configuration register for a soft
processor in the FPGA.

Table 4-16
(0x40038144)

RO-U N/A sysreset_n Configuration for accessibility of protected
regions of eNVM_0 and eNVM_1 by different
masters on the AHB bus matrix. This register
gets updated by Flash bit configuration set
during device programming. This configuration
can be done through the System Builder using
settings on the Security tab.

Table 4-17
(0x40038148)

RO-U N/A sysreset_n Code shadow Status register.

Table 4-18
(0x40038158)

RO N/A sysreset_n Indicates busy status for eNVM_0 and
eNVM_1.

Table 4-12. ENVM_CR

Bit
Number

Name Reset
Value

Description

[31:17] Reserved 0 —

Embedded NVM (eNVM) Controllers

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 163

...........continued
Bit
Number

Name Reset
Value

Description

16 ENVM_SENSE_ON 0 Turns On or Off the sense amps for both NVM0 and NVM1.
The sense amp switching feature is useful to decrease the eNVM
access time.

0: Normal Operation - The sense amp turns Off after every read
cycle if an idle cycle follows. This saves power but slightly increases
access time on the next read cycle.

1: The sense amp is turned ON. This increases power but decreases
access times.

15 ENVM_PERSIST 0 Reset control for NVM0 and NVM1.
0: NVM0, NVM1 will get reset on SYSRESET_N and PORESET_N.

1: NVM0, NVM1 will get reset on PORESET_N.

14 NV_DPD1 0 Deep power-down control for NVM1.
0: Normal operation

1: NVM deep power-down

13 NV_DPD0 0 Deep power-down control for NVM0.
0: Normal operation

1: NVM deep power-down

Embedded NVM (eNVM) Controllers

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 164

...........continued
Bit
Number

Name Reset
Value

Description

[12:5] NV_FREQRNG 0x7 Setting of NV_FREQRNG[8:5] or NV_FREQRNG[12:9] determines
the behavior of eNVM BUSY_B with respect to the AHB Bus interface
clock. It can be used to accommodate various frequencies of the
external interface clock, M3_CLK, or it can be used to advance
or delay the data capture due to variation of read access time
of the NVM core. It sets the number of wait states to match
with the Cortex®-M3 or Fabric master operating frequency for read
operations. The small counter in the NVM Controller uses this value
to advance or delay the data capture before sampling data.
0000: Not Supported

0001: Not Supported

0010: Page Read = 3, All other modes (Page program and Page
verify) = 2

0011: Page Read = 4, All other modes (Page program and Page
verify) = 2

0100: Page Read = 5, All other modes (Page program and Page
verify) = 2

0101: Page Read = 6, All other modes (Page program and Page
verify) = 3

0110: Page Read = 7, All other modes (Page program and Page
verify) = 3

0111: Page Read = 8, All other modes (Page program and Page
verify) = 4

1000: Page Read = 9, All other modes (Page program and Page
verify) = 4

1001: Page Read = 10, All other modes (Page program and Page
verify) = 4

1010: Page Read = 11, All other modes (Page program and Page
verify) = 5

1011: Page Read = 12, All other modes (Page program and Page
verify) = 5

1100: Page Read = 13, All other modes (Page program and Page
verify) = 6

1101: Page Read = 14, All other modes (Page program and Page
verify) = 6

1110: Page Read = 15, All other modes (Page program and Page
verify) = 6

1111: Page Read = 16, All other modes (Page program and Page
verify) = 7

NV_FREQRNG[8:5] is used for NVM0 and NV_FREQRNG[12:9] is
used for NVM1.

4:0 SW_ENVMREMAPSIZE 0x11 Size of the segment in eNVM, which is to be remapped to location
0x00000000. This logically splits eNVM into a number of segments,
each of which may be used to store a different firmware image, for
example. The region sizes are shown in Table 4-13.

Embedded NVM (eNVM) Controllers

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 165

Table 4-13. SW_ENVMREMAPSIZE

Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Remap Size

0 0 0 0 0 Reserved

0 0 0 0 1 Reserved

0 0 0 1 0 Reserved

0 0 0 1 1 Reserved

0 0 1 0 0 Reserved

0 0 1 0 1 Reserved

0 0 1 1 0 Reserved

0 0 1 1 1 Reserved

0 1 0 0 0 Reserved

0 1 0 0 1 Reserved

0 1 0 1 0 Reserved

0 1 0 1 1 Reserved

0 1 1 0 0 Reserved

0 1 1 0 1 16 KB

0 1 1 1 0 32 KB

0 1 1 1 1 64 KB

1 0 0 0 0 128 KB

1 0 0 0 1 256 KB

1 0 0 1 0 512 KB, reset value

Table 4-14. ENVM_REMAP_BASE_CR

Bit
Number

Name Reset
Value

Description

[31:19] Reserved 0 Reserved.

[18:1] SW_ENVMREMAPBASE 0 Offset address of eNVM for remapping.
SW_ENVMREMAPBASE indicates the offset within eNVM
address space of the base address of the segment in eNVM,
which is to be remapped to the location 0x00000000.

Bit 0 of this register is defined as SW_ENVMREMAPENABLE
and must be set to get the remapping done with new
addresses filled in this register.

0 SW_ENVMREMAPENABLE 0 0: eNVM remap not enabled. Bottom of eNVM is mapped to
address 0x00000000.
1: eNVM remap enabled. eNVM visible at 0x00000000 is a
remapped segment of the eNVM.

Embedded NVM (eNVM) Controllers

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 166

Table 4-15. ENVM_REMAP_FAB_CR

Bit
Number

Name Reset
Value

Description

[31:19] Reserved 0 —

[18:1] SW_ENVMFABREMAPBASE 0 Offset within eNVM address space of the base address of
the segment in eNVM, which is to be remapped to location
0x00000000 for use by a soft processor in the FPGA fabric.
The base address of the remapped segment of eNVM is
determined by the value of this register. Bit 0 of this register
is defined as SW_ENVMFABREMAPENABLE. Bit 0 must be
set to remap the NVM.

0 SW_ENVMFABREMAPENABLE 0 0: eNVM fabric remap not enabled for access by fabric master/
soft processor. The portion of eNVM visible in the eNVM
window at location 0x00000000 of a soft processor’s memory
space corresponds to the memory locations at the bottom of
eNVM.
1: eNVM fabric remap enabled. The portion of eNVM visible at
location 0x00000000 of a soft processor’s memory space of is
a remapped segment of eNVM.

Table 4-16. ENVM_PROTECT_USER

Bit
Number

Name Reset
Value

Description

[31:16] Reserved 0 —

15 NVM1_UPPER_WRITE_ALLOWED 0x1 When set indicates that the masters who have read
access can have write access to the upper protection
region of eNVM1. This is updated by the user Flash row
bit.

14 NVM1_UPPER_OTHERS_ACCESS 0x1 When set indicates that the other masters can access the
upper protection region of eNVM1. This is set by the user
Flash row bit.

13 NVM1_UPPER_FABRIC_ACCESS 0x1 When set indicates that the fabric can access the upper
protection region of eNVM1. This is set by the user Flash
row bit.

12 NVM1_UPPER_M3ACCESS 0x1 When this bit is set, it indicates that the Cortex®-M3
processor can access the upper protection region of
eNVM1. This is updated by the user Flash row bit.

11 NVM1_LOWER_WRITE_ALLOWED 0x1 When set indicates that the masters who have read
access can have write access to the lower protection
region of eNVM1. This is set by the user Flash row bit.

10 NVM1_LOWER_OTHERS_ACCESS 0x1 When set indicates that the other masters can access the
lower protection region of eNVM1. This is set by the user
Flash row bit.

9 NVM1_LOWER_FABRIC_ACCESS 0x1 When set indicates that the fabric can access the lower
protection region of eNVM1. This is set by user Flash row
bit.

8 NVM1_LOWER_M3ACCESS 0x1 When this bit is set, it indicates that the M3 can access
the lower protection region of eNVM1. This will be set by
the user Flash row bit.

Embedded NVM (eNVM) Controllers

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 167

...........continued
Bit
Number

Name Reset
Value

Description

7 NVM0_UPPER_WRITE_ALLOWED 0x1 When set indicates that the masters who have read
access can have write access to the upper protection
region of eNVM0. This will be set by the user Flash row
bit.

6 NVM0_UPPER_OTHERS_ACCESS 0x1 When set indicates that the other masters can access the
upper protection region of eNVM0.

5 NVM0_UPPER_FABRIC_ACCESS 0x1 When set indicates that the fabric can access the upper
protection region of eNVM0. This will be set by the user
Flash row bit.

4 NVM0_UPPER_M3ACCESS 0x1 When this bit is set, it indicates that the M3 can access
the upper protection region of eNVM0. This will be set by
the user Flash row bit.

3 NVM0_LOWER_WRITE_ALLOWED 0x1 When set indicates that the masters who have read
access can have write access to the lower protection
region of eNVM0. This will be set by the user Flash row
bit.

2 NVM0_LOWER_OTHERS_ACCESS 0x1 When set indicates that the other masters can access the
lower protection region of eNVM0. This will be set by the
user Flash row bit.

1 NVM0_LOWER_FABRIC_ACCESS 0x1 When set indicates that the fabric can access the lower
protection region of eNVM0. This will be set by the user
Flash row bit.

0 NVM0_LOWER_M3ACCESS 0x1 When this bit is set, it indicates that the M3 can access
the lower protection region of eNVM0. This will be set by
the user Flash row bit.

Important: For information on different masters, see Table 4-7.

Table 4-17. ENVM_STATUS

Bit
Number

Name Reset
Value

Description

[31:1] Reserved 0 —

0 CODE_SHADOW_EN 0 Read by the system controller during device start-up,
to indicate whether the user has configured the device
such that code shadowing is to be performed by system
controller firmware.

Table 4-18. ENVM_SR

Bit
Number

Name Reset
Value

Description

[31:2] Reserved 0 —

Embedded NVM (eNVM) Controllers

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 168

...........continued
Bit
Number

Name Reset
Value

Description

[1:0] ENVM_BUSY 0 Active high signals indicate a busy state per eNVM for CLK-driven
operations and for internal operations triggered by the program/
transfer command.
ENVM_BUSY[1] = Busy indication from ENVM1

ENVM_BUSY[0] = Busy indication from ENVM0

4.6 eNVM Control Registers
To perform any transaction with the NVM array, the Control registers must be configured appropriately as per Table
4-7.

To access or update the Control register, the AHBL master must first get access to the register set. Without access
rights, all writes to the Control register will be ignored and the read will return zero from REQACC and the Table 4-21.

This access rights system ensures that while a master is programming the NVM array, no other master can interfere
or see what data is being programmed.

To obtain access rights, the master writes 0x1 to the REQACC register and then reads the register to check whether
access is granted. If access is granted the Control register is set.

The following table shows the base address of the eNVM Control registers for eNVM_0 and eNVM_1.

Table 4-19. eNVM Control Registers Base Address

eNVM Block Control Registers Base Address

eNVM_0 0×60080000

eNVM_1 0×600C0000

Table 4-20. Control Registers Description

OFFSET
HADDR[8:0]

Register Name Width Type Default Access Rights Description

0×000-0×07F Assembly Buffer 1023:0
32 × 32bits

R — Exclusive
access to the
requested
master

Reads from these address
will return data read from
assembly buffer within the
NVM array.

0×080-0×0FF WDBUFF (Write
Data Buffer)

1023:0
32 × 32bits

R/W 0 Any master on
AHB bus matrix

Write data buffer
This register is cleared
when exiting normal mode.

This register is not
cleared when the System
Controller grabs ownership
by writing 0x03 to
REQACCESS.

0x120 Status 31:0 R — Any master on
AHB bus matrix

See Table 4-21.

0x128 Table 4-23 1:0 R/W 0 Exclusive
access to the
requested
master

See Table 4-23.

Embedded NVM (eNVM) Controllers

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 169

...........continued
OFFSET
HADDR[8:0]

Register Name Width Type Default Access Rights Description

0x12C NV_FREQRNG[7:0] 7:0 R SYSREG Exclusive
access to the
requested
master

eNVM interface frequency
range setting:
Bits [3:0] set the number
of wait cycles required for
each NVM access cycles.

This is read-only register.
The ENVM_CR system
register NV_FREQRNG
field needs to be set with
value as calculated below.

NV_FREQRNG =
roundup(40 ns / M3_CLK
clock period in ns)

The NV_FREQRNG[3:0] is
for NVM0 wait states and
NV_FREQRNG[7:4] is for
NVM1 wait states.

See Table
4-22 NV_FREQRNG
calculations at different
M3_CLK frequencies for all
SmartFusion® 2 devices.

Bits [7:4] are unused
with the AHB-NVM block
when the device has only
eNVM_0.

This controls the
NV_FREQRNG[3:0] input
on the NVMCTRL function
that sets the required
number of clock cycles
required for NVM accesses
relative to the operating
frequency.

0x130 NV_DPD_B 1-bit R SYSREG Exclusive
access to the
requested
master

NV_DPD_B[0] describes
NVM deep power-down
state.
0: NVM operational

1: NVM In deep power-
down

Embedded NVM (eNVM) Controllers

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 170

...........continued
OFFSET
HADDR[8:0]

Register Name Width Type Default Access Rights Description

0x134 NV_CE 2-bit R/W 1 Exclusive
access to the
requested
master

NV_CE[0] = 0: NVM
disabled
NV_CE[0] = 1: NVM
enabled

NV_CE [1] = 1; The
internal read cache is
disabled. All reads will
directly read the eNVM
array, or AB space. When
set NVM access latency
will increase. By default
this bit is set to '0'.

0x140 PAGE_LOCK_SET 1 R/W 0 Exclusive
access to the
requested
master

PAGE_LOCK_SET[0] = 1:
Page is locked.
PAGE_LOCK_SET[0] = 0:
Page is unlocked.

If the page is locked, then
before writing the page
must be unlocked.

0x144 DWSIZE 3:0 R/W 0 Exclusive
access to the
requested
master

Write size in number of
double words, to be written
to assembly buffer from
Write Data buffer during
NVM commands. See
description for individual
commands.
0000 = 1 dword

1111 = 16 dwords

0x148 CMD 31:0 R/W 0 Exclusive
access to the
requested
master

Write to CMD and
if command field in
HWDATA decoded to be
a command, then NVM
command will be initiated.
See description of Table
4-11: CMD register and
individual commands.

0x154 INTEN[10:0] 10:0 R/W 0 Exclusive
access to the
requested
master

Writing '1' to each bit will
enable the corresponding
interrupt.

0x158 Table 4-25 2:0 W 0 Exclusive
access to the
requested
master

Clear interrupts/flag/busy
bit by writing 1 to the
corresponding bit.

Embedded NVM (eNVM) Controllers

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 171

...........continued
OFFSET
HADDR[8:0]

Register Name Width Type Default Access Rights Description

0x1FC REQACCESS 2:0 R/W 000 Any master on
AHB bus matrix.
This register can
only be
accessed using
word, half or
byte accesses to
address
0×01FC.

Accesses to
addresses
0×1FD, 0×1FE,
and 0×1F must
not be used.

Request register access
When written with 0x01,
it will request exclusive
access.

Read indicates whether
access has granted or not
or which entity currently
has been granted access.

Read Value [2:0]

0XX: No entity has access

The XX value indicates
who had last access.

100: System controller

101: M3

110: Fabric

111: Other master (such
as, PDMA or HDMA)

To release access rights,
write 0x00.

The System Controller may
gain immediate access
by writing 0x03 to this
register.

When access is
relinquished, the WDBUFF
buffer, and RDBUFF
buffers are cleared.

Important: Addresses that are not mentioned in the register range are either reserved or exclusively for
System Controller usage.

4.6.1 Status Register Bit Definitions
The following table list the Status register bit definitions.

Table 4-21. Status Register Bit Definitions

Bit Description

[31:29] Value of locked state of the AHB interface. These bits contain the same information as REQACCESS[2:0].

[28:20] Reserved

19 Command when Busy. Indicates that a command was loaded while the controller was busy and is ignored.
Once set all command operations are disabled.
Cleared by writing 1 to bit 2 in Table 4-25.

Embedded NVM (eNVM) Controllers

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 172

...........continued
Bit Description

18 Access denied. Indicates that read or write operations were denied due to protection systems, or that an
illegal command was loaded. Once set all command operations are disabled.
Cleared by writing 1 to bit 1 in the Table 4-25.

17 NVM deep power-down state, indicates NVM has entered DPD mode
• 0: NVM operational
• 1: NVM In deep power-down

There is delay of ~5 µs for the NVM to enter power-down and assert this bit from requesting power-down.

[16:15] RDBUFF3 (Read data buffer 3 = Read data buffer[255:192]) ECC status (2-bit error, 1 bit corrected)
• 00: no error
• 01: 1 bit corrected
• 10: 2 bit detected
• 11: 3 or more bits detected

[14:13] RDBUFF2 (Read data buffer 2 = Read data buffer[191:128]) ECC status (2-bit error, 1 bit corrected)
• 00: no error
• 01: 1 bit corrected
• 10: 2 bit detected
• 11: 3 or more bits detected

[12:11] RDBUFF1 (Read data buffer 1 = Read data buffer[127:64]) ECC status (2-bit error, 1 bit corrected)
• 00: no error
• 01: 1 bit corrected
• 10: 2 bit detected
• 11: 3 or more bits detected

[10:9] RDBUFF0 (Read data buffer 0 = Read data buffer[63:0]) ECC status (2-bit error, 1 bit corrected)
• 00: no error
• 01: 1 bit corrected
• 10: 2 bit detected
• 11: 3 or more bits detected

8 Asserted for ECC2 (2 bit error). Valid after read and read assembly buffer.

7 Asserted for ECC1 (1 bit correction). Valid after read and read assembly buffer.

6 Asserted for refresh required. Valid after program operation.

5 Asserted when write count is over threshold. Valid after program, verify, and read page status. The
threshold value per eNVM page is 1000 or 10000 depending on the data retention period. For more
information on programming cycles and retention time, see IGLOO® 2 FPGA and SmartFusion® 2 SoC
FPGA Datasheet.

4 Asserted for program failure due to page lock. Valid after program operation.

3 Asserted for write verify failure. Valid after program operation.

2 Asserted for erase verify failure. Valid after program operation.

1 Asserted for verify failure. Valid only after verify operation.

0 NVM Ready/busy
• 0: Busy
• 1: Ready

Embedded NVM (eNVM) Controllers

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 173

Table 4-22. NV_FREQRNG Calculations at Different M3_CLK Frequencies for All SmartFusion® 2 Devices

Standard MSS Frequencies

M3_CLK in MHz 166 142 133 100 66 50 33

NV_FREQRNG[3:0] 0x7 0x6 0x 5 0x 4 0x 3 0x 2 0x 2

NV_FREQRNG[7:4] 0x7 0x6 0x 5 0x 4 0x 3 0x 2 0x 2

NV_FREQRNG[7:0] 0x77 0x66 0x55 0x44 0x33 0x22 0x22

Important: If M3_CLK is 166 MHz, clock period is 6.024 ns. NV_FREQRNG[3:0] = roundup(40 ns/6.024
ns) = 7.

Table 4-23. NV_PAGE_STATUS

Bit Description

1 R/W page status select

0 Reserved

Table 4-24. INTEN[10:0]

Bit Description

10 Command loaded when busy

9 NVM command denied by protection

8 NVM internal program operation is complete

7 ECC2 (2-bit error)

6 ECC1 (1-bit correction)

5 Refresh required

4 Write count is over threshold

3 Program failure due to page lock.

2 Reserved

1 Reserved

0 Verify failure

Table 4-25. CLRHINT[2:0]

Bit Description

2 Clear the internal command when busy bit

1 Clear the internal access denied flag

0 Clear HINTERRUPT output

Embedded SRAM (eSRAM) Controllers

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 174

5. Embedded SRAM (eSRAM) Controllers
SmartFusion 2 SoC FPGAs have two embedded SRAM (eSRAM) blocks of 32 KB each for data read and write
operations. These eSRAM blocks are interfaced through eSRAM controllers to the AHB bus matrix.

5.1 Features
• Each eSRAM controller supports single bit error correction and dual bit error detection (SECDED).
• Two modes of operation: SECDED-ON and SECDED-OFF.
• The total amount of available eSRAM in each device is 64 KB in SECDED-ON mode and 80 KB in SECDED-

OFF mode.
• Each individual eSRAM block is 32 KB in SECDED-ON mode and 40 KB in

SECDED-OFF mode, organized in a 2 × 4096 × 40 fashion.
• Having two blocks (eSRAM_0 and eSRAM_1) maximizes hardware parallelism. For example, at the same

instant that the Cortex-M3 processor is reading from eSRAM_0, the Ethernet controller can read from eSRAM_1
independently.

• The eSRAM address space is byte, half-word (16-bit), and word (32-bit) addressable.
• A pipeline is provided to address the latency issues at higher speeds of operation.

As shown in the following figure, the total available size of the eSRAM is divided into two equal-sized blocks:
eSRAM_0 and eSRAM_1. eSRAM_0 and eSRAM_1 are connected to slave 0 and slave 1 on the AHB bus matrix
through eSRAM controller 0 and eSRAM controller 1.

The eSRAM controller is designed to interface with an 8192 × 40 RAM, which is organized in a
2 × 4096 × 40 fashion with five 8-bit byte lanes in total. The Cortex-M3 processor and other masters find the eSRAMs
available as one contiguous area of memory.

The following figure depicts the connectivity of eSRAM_0 and eSRAM_1 to the AHB bus matrix.

Figure 5-1. eSRAM_0 and eSRAM_1 Connection to AHB Bus Matrix

AHB Bus Matrix

eSRAM_0System
Controller

Cache
Controller

S D IC

Arm® Cortex®-M3
Processor

S D I

MSS DDR
Bridge

PDMA

MS6

MM3

AHB To AHB Bridge with Address Decoder
USB OTG

HPDMA

MDDR

APB_0SYSREGTriple Speed
Ethernet MAC

FIC_0

MM4 MS4

MS2 MS3 MS0

MS5

MS1

MM5 MM6

MM7

MM8

MM2 MM1 MM0 MM9

IDC
D/S eNVM_0 eNVM_1 eSRAM_1

FIC_2 (Peripheral
Initialization) APB_1

MMUART_0

SPI_0

I2C_0

PDMA
Configuration

WATCHDOG

FIIC

TIMERx2

MMUART_1

SPI_1

I2C_1

GPIO

CAN

RTC

COMM_BLK

FIC_1

M
SS

_F
IC

M
S6

_U
SB

MS5_MAC MS5_SR MS5_APB0 MS5_FIC2 MS5_APB1

Embedded SRAM (eSRAM) Controllers

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 175

5.2 Functional Description
The following table lists the sizes of the eSRAM blocks and their address range.

Table 5-1. eSRAM Block Sizes and Address Ranges

eSRAM Block Physical
RAM4096X40
Block

Size and Address Range
with SECDED ON

Size and Address Range with SECDED OFF

eSRAM_0 RAM4096X40_0 16 KB from 0x20000000 to
0x20003FFF and ECC from
0x20010000 to 0x20010FFF

16 KB from 0x20000000 to 0x20003FFF and
4 KB from 0x20010000 to 0x20010FFF

RAM4096X40_1 16 KB from 0x20004000 to
0x20007FFF and ECC from
0x20011000 to 0x20011FFF

16 KB from 0x20004000 to 0x20007FFF and
4 KB from 0x20011000 to 0x20011FFF

eSRAM_1 RAM4096X40_2 16 KB from 0x20008000 to
0x2000BFFF and ECC from
0x20012000 to 0x20012FFF

16 KB from 0x20008000 to 0x2000BFFF and
4 KB from 0x20012000 to 0x20012FFF

RAM4096X40_3 16 KB from 0x2000C000 to
0x2000FFFF and ECC from
0x20013000 to 0x20013FFF

16 KB from 0x2000C000 to 0x2000FFFF and
4 KB from 0x20013000 to 0x20013FFF

The following figure shows the eSRAM controller blocks and their connectivity in SmartFusion 2 FPGAs. Both
eSRAMs and eSRAM controllers are identical in all design aspects.

Figure 5-2. eSRAM Controller Block Diagram

AHBL
INTERFACE

ECC
GENERATOR
& DATA MUX

ADDRESS
MUX

FSM

PIPELINE

ECC
CHECKER &

HRDATA
GENERATOR

RAM
4096X40_0

RAM
4096X40_1

ERROR
STATUS
SIGNAL

EDAC_AD

EDAC_1E

EDAC_2E

HWDATA

ADDR
HADDRU

HSEL

HREADY

HTRANS

HREADYOUT

HRDATA

HRESP

WEB_0

CSB

DO

S

E
LE

C
T

DO_0

DO_1

DI_0

DI_1

WEB_1

DO

D
O

HADDR

ESRAM_PIPELI
NE_ENABLE

AHBL InterfaceAHB
BUS

Matrix

M3_CLK

M3_CLK is used within the MSS to clock the AHB bus matrix. For more information on M3_CLK, UG0449:
SmartFusion2 and IGLOO2 Clocking Resources User Guide.

Embedded SRAM (eSRAM) Controllers

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 176

AHBL Interface: Each eSRAM controller is an AHB-Lite (AHBL) slave that provides access to the eSRAM block from
the AHB bus matrix.

ECC Generator and Data MUX: In SECDED-ON mode, the ECC Generator generates the check bits for 32-bit data.
For a 32-bit write from the AHBL interface, the input data AHB write data bus (HWDATA) is used to generate check
bits. These check bits are appended to HWDATA and written to the memory. For 8-bit and 16-bit writes from the
AHBL interface, a read-modify-write operation is used. This reads data from the 32-bit word, corrects if necessary,
and then writes the new data value and ECC check bits.

In SECDED-OFF mode, if the memory access is within 32 KB memory, HWDATA is sent directly to the memory input.
If the access is for additional 8 KB memory, then the address for a particular byte of HWDATA will be selected based
on the shift address.

Address MUX: This utilizes the AHB address bus (HADDR) and HADDRU (an additional HADDR bit) for selecting
upper 8 K bank of the RAM. Based on the FSM internal signals, output ADDR is generated and passed to the
memory. The shifted address is also generated and used for multiplexing data.

FSM: This generates output signal HREADYOUT and internal signals that are used for multiplexing an address.

Pipeline: A pipeline stage in the read path of eSRAM and the master that accesses this path is configurable using the
ESRAM_PIPELINE_ENABLE signal. When ESRAM_PIPELINE_ENABLE is High, there is an extra one clock cycle
delay for the read operation to maximize operational frequency. At higher frequencies (> 100 MHz) of Cortex-M3 or
other masters accessing eSRAM, the eSRAM operations need an extra clock cycle for the correct data transactions.

ECC Checker and AHB Read Data Bus (HRDATA) Generator: In SECDED-ON mode, the ECC Checker takes data
(DO) from the memory as the input during the read or read-modify-write cycle and checks for errors. One-bit errors
detected are corrected.

If errors of more than one bit are detected, they are not corrected. In SECDED-OFF mode, the read out data is
directly given as output from this block. Error Status Signals are set if any errors are detected.

Error Status Signals: Error bits are inputs from the ECC Checker. If one error bit is High, it causes the EDAC_1E
signal to be High. In this case, there is no HRESP as the error is corrected. If there are 2-bit errors, it cause the
EDAC_2E signal to be High. In this case, HRESP is set High because the error is not corrected. The EDAC_1E and
EDAC_2E signals are used to increment the ECC error counters within the SYSREG block (and the failing address
is also passed to the SYSREG block). When the HRESET to ESRAMTOAHB is applied, it resets the EDAC address
register which is maintained in ESRAMTOAHB and it does not clear the contents of SRAM. EDAC error counters are
maintained in System Register, which can be cleared either through same HRESET or by setting the Table 5-19.

5.2.1 Memory Organization
The 40 KB of eSRAM memory is divided into two banks: 32 KB and 8 KB, to store 32 bits of data and 7 check bits in
SECDED-ON mode. Physically, however, the memory is organized as
4096 × 40, which is 4096 × 5 bytes. When ECC is enabled, the fifth byte stores ECC values for the 32 bits of data.
When ECC is disabled, the fifth byte location is used to create an additional 2 KB of user memory. Four locations are
used for each 32-bit word.

The following table shows the organization of 4096 × 40 bits in SECDED-ON mode. The total size of the SRAM in the
table is 40 KB. The locations show the memory used for the 32 KB block. ECC represents the 7-bit ECC.

Table 5-2. SRAM Organization in SECDED-ON Mode

RAM 4096X40_1
4096 x 40 Bits

RAM 4096X40_0
4096 x 40 Bits

Location Byte 4 Byte 3 Byte 2 Byte 1 Byte 0 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0

0 ECC 4003 4002 4001 4000 ECC 0003 0002 0001 0000

1 ECC 4007 4006 4005 4004 ECC 0007 0006 0005 0004

2046 ECC 5FFB 5FFA 5FF9 5FF8 ECC 1FFB 1FFA 1FF9 1FF8

2047 ECC 5FFF 5FFE 5FFD 5FFC ECC 1FFF 1FFE 1FFD 1FFC

2048 ECC 6003 6002 6001 6000 ECC 2003 2002 2001 2000

Embedded SRAM (eSRAM) Controllers

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 177

...........continued
RAM 4096X40_1
4096 x 40 Bits

RAM 4096X40_0
4096 x 40 Bits

2049 ECC 6007 6006 6005 6004 ECC 2007 2006 2005 2004

4094 ECC 7FFB 7FFA 7FF9 7FF8 ECC 3FFB 3FFA 3FF9 3FF8

4095 ECC 7FFF 7FFE 7FFD 7FFC ECC 3FFF 3FFE 3FFD 3FFC

The following table shows the organization of 4096 × 40 bits in SECDED-OFF mode. The total size of the SRAM in
the table is 40 KB. The red locations show the memory used for the 32 KB block. The green locations show memory
used for the upper 8 KB block.

Table 5-3. SRAM Organization in SECDED-OFF Mode

RAM 4096X40_1
4096 x 40 Bits

RAM 4096X40_0
4096 x 40 Bits

Location Byte 4 Byte 3 Byte 2 Byte 1 Byte 0 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0

0 0001 4003 4002 4001 4000 0000 0003 0002 0001 0000

1 0005 4007 4006 4005 4004 0004 0007 0006 0005 0004

2046 1FF9 5FFB 5FFA 5FF9 5FF8 1FF8 1FFB 1FFA 1FF9 1FF8

2047 1FFD 5FFF 5FFE 5FFD 5FFC 1FFC 1FFF 1FFE 1FFD 1FFC

2048 0003 6003 6002 6001 6000 0002 2003 2002 2001 2000

2049 0007 6007 6006 6005 6004 0006 2007 2006 2005 2004

4094 1FFB 7FFB 7FFA 7FF9 7FF8 1FFA 3FFB 3FFA 3FF9 3FF8

4095 1FFF 7FFF 7FFE 7FFD 7FFC 1FFE 3FFF 3FFE 3FFD 3FFC

5.2.2 Modes of Operation
eSRAM controller has two modes of operations: SECDED-ON and SECDED-OFF.

5.2.2.1 SECDED-ON
SECDED mode can be turned ON by configuring the Table 5-21 register. The total available memory for each
eSRAM in this mode is 32 KB. The eSRAM controller generates 7 check bits for every 32 bits of data, so for every
32 bits of data there will be 7 bits of encoded data. The 7 bits of ECC allow 1-bit correction and 2-bit detection on the
user data and ECC field. The 32 data bits and 7 bits of ECC are written to the memory with zero wait states. Byte and
half-word write operations are done using a
read-modify-write operation. The read-modify-write operation requires an additional wait state for byte and half-word
write operations.

For a 1-bit error, the previous 32 bits of data and ECC value are read and corrected automatically. The complete 32
bits plus ECC is rewritten. For byte and half-word write operations, there is one wait state required as the ECC value
is read and corrected for the byte/half-word.

When a 2-bit error is detected during a read cycle for 32-bit data, HRESP is asserted High for two clock cycles and at
the same time HREADYOUT goes Low for one clock cycle to indicate an error.

When a 2-bit error is detected during the read part of a read-modify-write byte or half-word operation, HRESP is
asserted High.

5.2.2.2 SECDED-OFF
SECDED mode can be turned OFF by configuring the Table 5-21 register. The total available memory for each
eSRAM is 40 KB. 1-bit correction and 2-bit detection on the user data is not applicable in this mode.

Embedded SRAM (eSRAM) Controllers

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 178

5.2.3 Pipeline Modes and WAIT States for Read and Write Operations
When any master on the AHB bus matrix operates at a high frequency greater than 100 MHz, and is accessing
eSRAM, an extra clock cycle is needed for transactions. An optional pipeline can be enabled on the Read data
bus; this adds a clock cycle to all read operations. The pipeline is enabled in both SECDED-ON and SECDED-OFF
modes, by default. When the master on the AHB bus matrix operates at low frequency, less than 100 MHz, the
pipeline can be turned Off. For information on pipeline enable/ disable, see Table 5-9.

The actual frequency at which this is possible is specified in the AC characteristics table of
IGLOO2 and SmartFusion2 Datasheet. When the pipeline is disabled, the number of WAIT states is less, increasing
throughput of read operations.

The following table describes the wait states in different operation modes. These values indicate the number of wait
states inserted by eSRAM controllers and apply to the reads and writes from masters within the MSS. Accessing
eSRAM blocks from the FPGA fabric is performed through the fabric interface controller (FIC) interfaces. The FIC
interface supports Bypass mode and Pipeline mode.

In Pipeline mode, the FIC interface adds one extra clock cycle for read and write, so the overall latency for accessing
the eSRAM increases.

Table 5-4. Wait States in Different Operation Modes

Pipeline eSRA
M

SECDED
Mode

Operation Size Number of Wait
States

Number of Wait States
(Reads following a Write)

Enabled 32 KB
RAM

SECDED-
ON Mode

Write 32-bit 0 1

16-bit 1 3

8-bit 1 3

Read 32-bit 1 2

16-bit 1 2

8-bit 1 2

SECDED-
OFF Mode

Write 32-bit 0 0

16-bit 0 0

8-bit 0 0

Read 32-bit 1 2

16-bit 1 2

8-bit 1 2

8 KB
RAM

SECDED-
OFF Mode

Write 32-bit 1 1

16-bit 0 0

8-bit 0 0

Read 32-bit 2 3

16-bit 1 2

8-bit 1 2

Embedded SRAM (eSRAM) Controllers

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 179

...........continued
Pipeline eSRA

M
SECDED
Mode

Operation Size Number of Wait
States

Number of Wait States
(Reads following a Write)

Disabled 32 KB
RAM

SECDED-
ON Mode

Write 32-bit 0 0

16-bit 1 3

8-bit 1 3

Read 32-bit 0 1

16-bit 0 1

8-bit 0 1

SECDED-
OFF Mode

Write 32-bit 0 0

16-bit 0 0

8-bit 0 0

Read 32-bit 0 1

16-bit 0 1

8-bit 0 1

8 KB
RAM

SECDED-
OFF Mode

Write 32-bit 1 1

16-bit 0 0

8-bit 0 0

Read 32-bit 1 2

16-bit 0 1

8-bit 0 1

5.3 How to Use eSRAM
This section describes how to use eSRAM in the SmartFusion 2 devices. To configure the SmartFusion 2 device
features and then build a complete system, use the System Builder graphical design wizard in the Libero SoC
software.

The following figure shows the initial System Builder window where the required device features can be selected.
For information on how to launch the System Builder wizard and a detailed information on how to use it, see
SmartFusion2 System Builder User Guide.

Embedded SRAM (eSRAM) Controllers

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 180

Figure 5-3. System Builder Window

Any master (for example, Cortex-M3 processor, FPGA fabric master, HPDMA, or PDMA) connected to the AHB bus
matrix can access the eSRAM blocks using the address range provided in Table 5-1 for read and write operations.

The following steps are used to configure Programmable Slave Maximum Latency for eSRAM_0 and eSRAM_1
blocks and eSRAM SECDED feature in the application using System Builder.

1. Navigate to the Microcontroller tab in the System Builder window to configure Programmable Slave
Maximum Latency for eSRAM_0 and eSRAM_1 blocks. The following figure shows the System Builder >
Microcontroller tab. For more information on the Programmable Slave Maximum Latency configuration and
remapping eSRAM to Cortex-M3 code space, click Help and select AHB Bus Matrix document, as shown in
the following figure. See
AC390: SmartFusion2 SoC FPGA – Remapping eNVM, eSRAM, and DDR/SDR SDRAM Memories
Application Note.

Embedded SRAM (eSRAM) Controllers

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 181

Figure 5-4. System Builder - Microcontroller Tab

2. Navigate to the SECDED tab in the System Builder window to configure SECDED options for eSRAM_0 and
eSRAM_1. The following figure shows the SECDED tab. For more information on SECDED, click Help and
select SECDED document. See
DG0388: SmartFusion2 SoC FPGA Error Detection and Correction of eSRAM Memory Demo Guide.

Embedded SRAM (eSRAM) Controllers

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 182

Figure 5-5. System Builder - SECDED Tab

The SECDED feature can be enabled or disabled by selecting Enable EDAC for eSRAM_0 and eSRAM_1.
The interrupts for 1-bit error or 2-bit error, or both 1-bit and 2-bit errors can be enabled.

3. Navigate to the Security tab to select the read and write access permissions of eSRAM for different masters,
as shown in the following figure. The read and write permission for different masters are available for data and
design security enabled devices like M2S050TS only. For more information on configuring the security options,
see SmartFusion2 MSS Security Configuration.

Embedded SRAM (eSRAM) Controllers

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 183

Figure 5-6. System Builder - Security Tab

4. Navigate to the Memory Map tab giving the required data in the rest of the System Builder tabs and click
Finish to proceed with creating the MSS Subsystem.

5. Do required Pin connections and Save the project. Click Generate Component to generate the SmartDesign
in Libero.

6. Double click Run PROGRAM Action in the Libero Design Flow window to program the SmartFusion 2 device.

Important: For information on how to access the eSRAM using FPGA fabric logic, see AC429: Accessing
eNVM and eSRAM from the FPGA Fabric Logic Application Note.

5.4 SYSREG Control Registers
The registers listed in the following table control the behavior of the eSRAM. For more information on these registers,
see Table 21-2. For a detailed description of each register and bit, see 21. System Register Block.

Table 5-5. SYSREG Control Registers

Register Name Register
Type

Flash Write
Protect

Reset Source Description

Table 5-6 (0x40038000) RW-P Register SYSRESET_N Controls address mapping of the
eSRAMs.

Embedded SRAM (eSRAM) Controllers

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 184

...........continued
Register Name Register

Type
Flash Write
Protect

Reset Source Description

Table 5-7
(0x40038004)

RW-P Register SYSRESET_N Configuration of maximum latency for
accessing eSRAM_0 and eSRAM_1
slaves. This register gets updated
by Flash bit configuration set
during device programming. This
configuration can be done through the
System Builder also using settings on
the Microcontroller Tab.

Table 5-9
(0x40038080)

RW-P Register SYSRESET_N Controls the pipeline present in the
memory read path of eSRAM memory.

Table 5-10
(0x400380F0)

RO N/A SYSRESET_N Represents 1-bit error count of
eSRAM_0.

Table 5-11
(0x400380F4)

RO N/A SYSRESET_N Represents 1-bit error count of
eSRAM_1.

Table 5-12
(0x4003810C)

RO N/A SYSRESET_N Address from eSRAM_0 on which 1-bit
ECC error has occurred.

Table 5-13
(0x40038110)

RO N/A SYSRESET_N Address from eSRAM_1 on which 1-bit
ECC error has occurred.

Table 5-14
(0x40038124)

RO-U N/A SYSRESET_N Read and Write security for Mirrored
Master (MM) 0, 1, and 2 to eSRAM_0
and eSRAM_1.

Table 5-15(0x40038128) RO-U N/A SYSRESET_N Read and Write security for Mirrored
Master (MM) 4, 5, and DDR_FIC to
eSRAM_0 and eSRAM_1. This register
gets updated by Flash bit configuration
set during device programming. This
configuration can be done through the
System Builder using settings on the
Security tab.

Table 5-16
(0x4003812C)

RO-U N/A SYSRESET_N Read and Write security for Mirrored
Master (MM) 3, 6, 7, and 8 to
eSRAM_0 and eSRAM_1. This register
gets updated by Flash bit configuration
set during device programming. This
configuration can be done through the
System Builder using settings on the
Security tab.

Table 5-17
(0x40038130)

RO-U N/A SYSRESET_N Read and Write security for Mirrored
Master (MM) 9 to eSRAM_0 and
eSRAM_1. This register gets updated
by Flash bit configuration set
during device programming. This
configuration can be done through the
System Builder using settings on the
Security tab.

Embedded SRAM (eSRAM) Controllers

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 185

...........continued
Register Name Register

Type
Flash Write
Protect

Reset Source Description

Table 5-18
(0x40038190)

SW1C N/A SYSRESET_N Status of 1-bit ECC error detection
and correction (EDAC), 2-bit ECC
error detection for eSRAM_0 and
eSRAM_1. Individual register bits are
set (1) when related input is asserted.
Bits are individually cleared when
corresponding register bit is written
High.

Table 5-19
(0x400381A4)

W1P N/A SYSRESET_N This is used to clear the 16-bit counter
value in eSRAM_0 and eSRAM_1
corresponding to the count value of
EDAC 1-bit and 2-bit errors.

Table 5-20
(0x40038078)

RW-P Register SYSRESET_N Enable/disable of 1-bit error, 2-bit
error status update for eSRAM_0 and
eSRAM_1. This can be set by the
System Builder using settings on the
SECDED tab.

Table 5-21
(0x40038038)

RW-P Register SYSRESET_N EDAC enable/disable and soft reset
for eSRAM_0 and eSRAM_1. This can
be set by the System Builder using
settings on the SECDED tab.

Table 5-6. ESRAM_CR

Bit
Number

Name Reset
Value

Description

[31:2] Reserved 0 Reserved

1 SW_CC_ESRAM1FWREMAP 0 Defines the locations of eSRAM_0 and eSRAM_1, if eSRAM
remap is enabled (if SW_CC_ESRAMFWREMAP is asserted).
If SW_CC_ESRAMFWREMAP is 0, this bit has no meaning.
If SW_CC_ESRAMFWREMAP is 1, this bit has the following
definition:

• 0: eSRAM_0 is located at address 0x00000000 in the
ICODE/DCODE space of Cortex®-M3 processor and
eSRAM_1 is located just above eSRAM_0 (adjacent to it).

• 1: eSRAM_1 is located at address 0x00000000 in ICODE/
DCODE space of Cortex-M3 processor and eSRAM_0 is
located just above eSRAM_1 (adjacent to it).

Embedded SRAM (eSRAM) Controllers

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 186

...........continued
Bit
Number

Name Reset
Value

Description

0 SW_CC_ESRAMFWREMAP 0 This bit indicates that eSRAM_0 and eSRAM_1 are remapped
to lCODE/DCODE space of the Cortex-M3 processor. If this bit
is 1 and SW_CC_ESRAM1FWREMAP is 0, then eSRAM_0 is at
location 0x00000000 and eSRAM_1 is always remapped to be
just above eSRAM_0 (the two eSRAMs are adjacent in ICODE/
DCODE space). Both eSRAMs also remain visible in SYSTEM
space of the Cortex-M3 processor and remain visible at this
location to all other (non-Cortex-M3 processor) masters. The bit
definitions:

• 0: No eSRAM remap is enabled. This means that eNVM (or
MDDR) is present at location 0x00000000.

• 1: eSRAM_0 and eSRAM_1 are remapped to location
0x00000000 of Cortex-M3 processor ICODE/DCODE
space.

Table 5-7. ESRAM_MAX_LAT

Bit
Number

Name Reset
Value

Description

[31:6] Reserved 0 Reserved

[5:3] SW_MAX_LAT_ESRAM1 0x1 Defines the maximum number of cycles the processor bus will
wait for eSRAM1 when it is being accessed by a master with a
weighted round robin (WRR) priority scheme. The latency values
are given in Table 5-8.

[2:0] SW_MAX_LAT_ESRAM0 0x1 Defines the maximum number of cycles the processor bus will
wait for eSRAM0 when it is being accessed by a master with
a WRR priority scheme. It is configurable from 1 to 8 (8, by
default). The latency values are given in Table 5-8.

The following table gives eSRAM maximum latency values, where x is either 0 or 1.

Table 5-8. eSRAM Maximum Latency Values

SW_MAX_LAT_ESRAM<X> Latency

0 8 (default)

1 1

2 2

3 3

4 4

5 5

6 6

7 7

Embedded SRAM (eSRAM) Controllers

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 187

Table 5-9. ESRAM_PIPELINE_CR

Bit
Number

Name Reset
Value

Description

[31:1] Reserved 0 Reserved

0 ESRAM_PIPELINE_ENABLE 0x1 Controls the pipeline present in the read path of eSRAM
memory. Allowed values:
0: Pipeline will be bypassed.

1: Pipeline will be present in the memory read path.

Table 5-10. ESRAM0_EDAC_CNT

Bit
Number

Name Reset
Value

Description

[31:16] ESRAM0_EDAC_CNT_2E 0 16-bit counter that counts the number of 2-bit uncorrected
errors for eSRAM0. The counter will not roll back and will stay
at its maximum value.

[15:0] ESRAM0_EDAC_CNT_1E 0 16-bit counter that counts the number of 1-bit corrected errors
for eSRAM0. The counter will not roll back and will stay at its
maximum value.

Important: See Table 5-19 to clear the counter.

Table 5-11. ESRAM1_EDAC_CNT

Bit
Number

Name Reset
Value

Description

[31:16] ESRAM1_EDAC_CNT_2E 0 16-bit counter that counts the number of 2-bit uncorrected
errors for eSRAM1. The counter will not roll back and will stay
at its maximum value.

[15:0] ESRAM1_EDAC_CNT_1E 0 16-bit counter that counts the number of 1-bit corrected errors
for eSRAM1. The counter will not roll back and will stay at its
maximum value.

Important: See Table 5-19 to clear the counter.

Table 5-12. ESRAM0_EDAC_ADR

Bit
Number

Name Reset
Value

Description

[31:25] Reserved 0 Reserved

[25:13] ESRAM0_EDAC_2E_AD 0 Stores the address from eSRAM0 on which a 2-bit SECDED
error has occurred.

[12:0] ESRAM0_EDAC_1E_AD 0 Stores the address from eSRAM0 on which a 1-bit SECDED
error has occurred.

Embedded SRAM (eSRAM) Controllers

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 188

Table 5-13. ESRAM1_EDAC_ADR

Bit
Number

Name Reset
Value

Description

[31:25] Reserved 0 Reserved

[25:13] ESRAM1_EDAC_2E_AD 0 Stores the address from eSRAM1 on which a 2-bit SECDED
error has occurred.

[12:0] ESRAM1_EDAC_1E_AD 0 Stores the address from eSRAM1 on which a 1-bit SECDED
error has occurred.

Table 5-14. MM0_1_2_SECURITY

Bit
Number

Name Reset
Value

Description

[31:10] Reserved 0 Reserved

9 MM0_1_2_MS6_ALLOWED_W 1 Write security bits for Masters 0, 1, and 2 to Slave 6 (MSS
DDR bridge). If not set, Masters 0, 1, and 2 will not have
write access to Slave 6.

8 MM0_1_2_MS6_ALLOWED_R 1 Read security bits for Masters 0, 1, and 2 to Slave 6 (MSS
DDR bridge). If not set, Masters 0, 1, and 2 will not have
read access to Slave 6.

7 MM0_1_2_MS3_ALLOWED_W 1 Write security bits for Masters 0, 1, and 2 to Slave 3
(eNVM1). If not set, Masters 0, 1, and 2 will not have write
access to Slave 3.

6 MM0_1_2_MS3_ALLOWED_R 1 Read security bits for Masters 0, 1 and 2 to Slave 3
(eNVM1). If not set, Masters 0, 1, and 2 will not have read
access to Slave 3.

5 MM0_1_2_MS2_ALLOWED_W 1 Write security bits for Masters 0, 1, and 2 to Slave 2
(eNVM0]) If not set, Masters 0, 1, and 2 will not have write
access to Slave 2.

4 MM0_1_2_MS2_ALLOWED_R 1 Read security bits for Masters 0, 1, and 2 to Slave 2
(eNVM0). If not set, Masters 0, 1, and 2 will not have read
access to Slave 2.

3 MM0_1_2_MS1_ALLOWED_W 1 Write security bits for Masters 0, 1, and 2 to Slave 1
(eSRAM1). If not set, Masters 0, 1, and 2 will not have write
access to Slave 1.

2 MM0_1_2_MS1_ALLOWED_R 1 Read security bits for Masters 0, 1, and 2 to Slave 1
(eSRAM1). If not set, Masters 0, 1, and 2 will not have read
access to Slave 1.

1 MM0_1_2_MS0_ALLOWED_W 1 Write security bits for Masters 0, 1, and 2 to Slave 0
(eSRAM0). If not set, Masters 0, 1, and 2 will not have write
access to Slave 0.

0 MM0_1_2_MS0_ALLOWED_R 1 Read security bits for Masters 0, 1, and 2 to Slave 0
(eSRAM0). If not set, Masters 0, 1, and 2 will not have read
access to Slave 0.

Important: For more information on AHB Bus Matrix masters and slaves, see Figure 6-1.

Embedded SRAM (eSRAM) Controllers

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 189

Table 5-15. MM4_5_DDR_FIC_SECURITY/MM4_5_FIC64_SECURITY

Bit
Number

Name Reset
Value

Description

[31:10] Reserved 0 Reserved

9 MM4_5_DDR_FIC_MS6_ALLOWED_W 1 Write security bits for masters 4, 5, and DDR_FIC to
slave 6 (MSS DDR bridge). If not set, masters 4, 5
and DDR_FIC will not have write access to slave 6.

8 MM4_5_DDR_FIC_MS6_ALLOWED_R 1 Read security bits for masters 4, 5, and DDR_FIC to
slave 6 (MSS DDR bridge). If not set, masters 4, 5,
and DDR_FIC will not have read access to slave 6.

7 MM4_5_DDR_FIC_MS3_ALLOWED_W 1 Write security bits for masters 4, 5, and DDR_FIC
to slave 3 (eNVM1). If not set, masters 4, 5, and
DDR_FIC will not have write access to slave 3.

6 MM4_5_DDR_FIC_MS3_ALLOWED_R 1 Read security bits for masters 4, 5, and DDR_FIC
to slave 3 (eNVM1). If not set, masters 4, 5, and
DDR_FIC will not have read access to slave 3.

5 MM4_5_DDR_FIC_MS2_ALLOWED_W 1 Write Security Bits for masters 4, 5, and DDR_FIC
to slave 2 (eNVM0). If not set, masters 4, 5, and
DDR_FIC will not have write access to slave 2.

4 MM4_5_DDR_FIC_MS2_ALLOWED_R 1 Read security bits for masters 4, 5, and DDR_FIC
to slave 2 (eNVM0). If not set, masters 4, 5, and
DDR_FIC will not have read access to slave 2.

3 MM4_5_DDR_FIC_MS1_ALLOWED_W 1 Write security bits for masters 4, 5, and DDR_FIC
to slave 1 (eSRAM1). If not set, masters 4, 5, and
DDR_FIC will not have write access to slave 1.

2 MM4_5_DDR_FIC_MS1_ALLOWED_R 1 Read security bits for masters 4, 5, and DDR_FIC
to slave 1 (eSRAM1). If not set, masters 4, 5, and
DDR_FIC will not have read access to slave 1.

1 MM4_5_DDR_FIC_MS0_ALLOWED_W 1 Write security bits for masters 4, 5, and DDR_FIC
to slave 0 (eSRAM0). If not set, masters 4, 5, and
DDR_FIC will not have write access to slave 0.

0 MM4_5_DDR_FIC_MS0_ALLOWED_R 1 Read security bits for masters 4, 5, and DDR_FIC
to slave 0 (eSRAM0). If not set, masters 4, 5, and
DDR_FIC will not have read access to slave 0.

Important:  For more information on AHB Bus Matrix masters and slaves, see Figure 6-1.

Table 5-16. MM3_6_7_8_SECURITY

Bit
Number

Name Reset
Value

Description

[31:10] Reserved 0 Reserved

9 MM3_6_7_8_MS6_ALLOWED_W 1 Write security bits for masters 3, 6, 7, and 8 to slave 6
(MSS DDR bridge). If not set, masters 3, 6, 7, and 8 will
not have write access to slave 6.

Embedded SRAM (eSRAM) Controllers

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 190

...........continued
Bit
Number

Name Reset
Value

Description

8 MM3_6_7_8_MS6_ALLOWED_R 1 Read security bits for masters 3, 6, 7, and 8 to slave 6
(MSS DDR bridge). If not set, masters 3, 6, 7, and 8 will
not have read access to slave 6.

7 MM3_6_7_8_MS3_ALLOWED_W 1 Write security bits for masters 3, 6, 7, and 8 to slave 3
(eNVM1). If not set, masters 3, 6, 7, and 8 will not have
write access to slave 3.

6 MM3_6_7_8_MS3_ALLOWED_R 1 Read security bits for masters 3, 6, 7, and 8 to slave 3
(eNVM1). If not set, masters 3, 6, 7, and 8 will not have
read access to slave 3.

5 MM3_6_7_8_MS2_ALLOWED_W 1 Write security bits for masters 3, 6, 7, and 8 to slave 2
(eNVM0). If not set, masters 3, 6, 7, and 8 will not have
write access to slave 2.

4 MM3_6_7_8_MS2_ALLOWED_R 1 Read security bits for masters 3, 6, 7, and 8 to slave 2
(eNVM0). If not set, masters 3, 6, 7, and 8 will not have
read access to slave 2.

3 MM3_6_7_8_MS1_ALLOWED_W 1 Write security bits for masters 3, 6, 7, and 8 to slave 1
(eSRAM1). If not set, masters 3, 6, 7, and 8 will not have
write access to slave 1.

2 MM3_6_7_8_MS1_ALLOWED_R 1 Read security bits for masters 3, 6, 7, and 8 to slave 1
(eSRAM1). If not set, masters 3, 6, 7, and 8 will not have
read access to slave 1.

1 MM3_6_7_8_MS0_ALLOWED_W 1 Write security bits for masters 3, 6, 7, and 8 to slave 0
(eSRAM0). If not set, masters 3, 6, 7, and 8 will not have
write access to slave 0.

0 MM3_6_7_8_MS0_ALLOWED_R 1 Read security bits for masters 3, 6, 7, and 8 to slave 0
(eSRAM0). If not set, masters 3, 6, 7, and 8 will not have
read access to slave 0.

Important: For more information on AHB Bus Matrix masters and slaves, see Figure 6-1.

Table 5-17. MM9_SECURITY

Bit
Number

Name Reset
Value

Description

[31:10] Reserved 0 Reserved

9 MM9_MS6_ALLOWED_W 1 Write security bits for master 9 to slave 6 (MSS DDR bridge).
If not set, master 9 will not have write access to slave 6.

8 MM9_MS6_ALLOWED_R 1 Read security bits for master 9 to slave 6 (MSS DDR bridge).
If not set, master 9 will not have read access to slave 6.

7 MM9_MS3_ALLOWED_W 1 Write security bits for master 9 to slave 3 (eNVM1). If not set,
master 9 will not have write access to slave 3.

6 MM9_MS3_ALLOWED_R 1 Read security bits for master 9 to slave 3 (eNVM1). If not set,
master 9 will not have read access to slave 3.

Embedded SRAM (eSRAM) Controllers

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 191

...........continued
Bit
Number

Name Reset
Value

Description

5 MM9_MS2_ALLOWED_W 1 Write security bits for master 9 to slave 2 (eNVM0). If not set,
master 9 will not have write access to slave 2.

4 MM9_MS2_ALLOWED_R 1 Read security bits for master 9 to slave 2 (eNVM0). If not set,
master 9 will not have read access to slave 2.

3 MM9_MS1_ALLOWED_W 1 Write security bits for master 9 to slave 1 (eSRAM1]) If not
set, master 9 will not have write access to slave 1.

2 MM9_MS1_ALLOWED_R 1 Read security bits for master 9 to slave 1 (eSRAM1). If not
set, master 9 will not have read access to slave 1.

1 MM9_MS0_ALLOWED_W 1 Write security bits for master 9 to slave 0 (eSRAM0). If not
set, master 9 will not have write access to slave 0.

0 MM9_MS0_ALLOWED_R 1 Read security bits for master 9 to slave 0 (eSRAM0). If not
set, master 9 will not have read access to slave 0.

Important: For more information on AHB Bus Matrix masters and slaves, see Figure 6-1.

Table 5-18. EDAC_SR

Bit
Number

Name Reset
Value

Description

[31:14] Reserved 0 Reserved

13 CAN_EDAC_2E 0 Updated by CAN when a 2-bit SECDED error has been detected for
RAM memory.

12 CAN_EDAC_1E 0 Updated by CAN when a 1-bit SECDED error has been detected
and is corrected for RAM memory.

11 USB_EDAC_2E 0 Updated by USB when a 2-bit SECDED error has been detected for
RAM memory.

10 USB_EDAC_1E 0 Updated by USB when a 1-bit SECDED error has been detected
and is corrected for RAM memory.

9 MAC_EDAC_RX_2E 0 Updated by Ethernet when a 2-bit SECDED error has been detected
for Rx RAM memory.

8 MAC_EDAC_RX_1E 0 Updated by Ethernet when a 1-bit SECDED error has been detected
and is corrected for Rx RAM memory.

7 MAC_EDAC_TX_2E 0 Updated by Ethernet when a 2-bit SECDED error has been detected
for Tx RAM memory.

6 MAC_EDAC_TX_E 0 Updated by Ethernet when a 1-bit SECDED error has been detected
and is corrected for Tx RAM memory.

5 Reserved 0 Reserved

4 Reserved 0 Reserved

3 ESRAM1_EDAC_2E 0 Updated by the eSRAM_1 controller when a 2-bit SECDED error
has been detected for eSRAM1 memory.

Embedded SRAM (eSRAM) Controllers

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 192

...........continued
Bit
Number

Name Reset
Value

Description

2 ESRAM1_EDAC_1E 0 Updated by the eSRAM_1 Controller when a 1-bit SECDED error
has been detected and is corrected for eSRAM1 memory.

1 ESRAM0_EDAC_2E 0 Updated by the eSRAM_0 controller when a 2-bit SECDED error
has been detected for eSRAM0 memory.

0 ESRAM0_EDAC_1E 0 Updated by the eSRAM_0 controller when a 1-bit SECDED error
has been detected and is corrected for eSRAM0 memory.

Table 5-19. CLR_EDAC_COUNTERS

Bit
Numbe
r

Name Reset
Value

Description

[31:14] Reserved 0 Reserved

13 CAN_EDAC_CNTCLR_2E 0 Generated to clear the 16-bit counter value in CAN
corresponding to the count value of EDAC 2-bit errors. This in
turn clears the upper 16 bits of the CAN_EDAC_CNT register.

12 CAN_EDAC_CNTCLR_1E 0 Generated to clear the 16-bit counter value in CAN
corresponding to the count value of EDAC 1-bit errors. This in
turn clears the lower 16 bits of the CAN_EDAC_CNT register.

11 USB_EDAC_CNTCLR_2E 0 Generated to clear the 16-bit counter value in USB
corresponding to the count value of EDAC 2-bit errors. This in
turn clears the upper 16 bits of the USB_EDAC_CNT register.

10 USB_EDAC_CNTCLR_1E 0 Generated to clear the 16-bit counter value in USB
corresponding to the count value of EDAC 1-bit errors. This in
turn clears the lower 16 bits of the USB_EDAC_CNT register.

9 MAC_EDAC_RX_CNTCLR_2E 0 Generated to clear the 16-bit counter value in Ethernet
MAC Rx RAM corresponding to the count value of EDAC
2-bit errors. This in turn clears the upper 16 bits of the
MAC_EDAC_RX_CNT register.

8 MAC_EDAC_RX_CNTCLR_1E 0 Generated to clear the 16-bit counter value in Ethernet
MAC Rx RAM corresponding to the count value of EDAC
1-bit errors. This in turn clears the lower 16 bits of the
MAC_EDAC_RX_CNT register.

7 MAC_EDAC_TX_CNTCLR_2E 0 Generated to clear the 16-bit counter value in Ethernet
MAC Tx RAM corresponding to the count value of EDAC
2-bit errors. This in turn clears the upper 16 bits of the
MAC_EDAC_TX_CNT register.

6 MAC_EDAC_TX_CNTCLR_1E 0 Generated to clear the 16-bit counter value in Ethernet
MAC Tx RAM corresponding to the count value of EDAC
1-bit errors. This in turn clears the lower 16 bits of the
MAC_EDAC_TX_CNT register.

5 Reserved 0 Reserved

4 Reserved 0 Reserved

3 ESRAM1_EDAC_CNTCLR_2E 0 Generated to clear the 16-bit counter value in ESRAM1
corresponding to the count value of EDAC 2-bit errors. This
in turn clears the upper 16 bits of the Table 5-11 register.

Embedded SRAM (eSRAM) Controllers

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 193

...........continued
Bit
Numbe
r

Name Reset
Value

Description

2 ESRAM1_EDAC_CNTCLR_1E 0 Generated to clear the 16-bit counter value in eSRAM1
corresponding to count value of EDAC 1-bit errors. This in turn
clears the lower 16 bits of the Table 5-11 register.

1 ESRAM0_EDAC_CNTCLR_2E 0 Generated to clear the 16-bit counter value in ESRAM0
corresponding to count value of EDAC 2bit Errors. This in turn
clears the upper 16 bits of the Table 5-10 register.

0 ESRAM0_EDAC_CNTCLR_1E 0 Generated to clear the 16-bit counter value in ESRAM0
corresponding to the count value of EDAC 1-bit errors. This
in turn clears the lower 16 bits of the Table 5-10 register.

Table 5-20. EDAC_IRQ_ENABLE_CR

Bit
Number

Name Reset
Value

Description

[31:15] Reserved 0 Reserved

14 MDDR_ECC_INT_EN 0 Allows the error EDAC for MDDR status update to be disabled.
Allowed values:
0: MDDR_EDAC_2E_EN is disabled.

1: MDDR_EDAC_2E_EN is enabled.

13 CAN_EDAC_2E_EN 0 Allows the 2-bit error EDAC for CAN status update to be
disabled. Allowed values:
0: CAN_EDAC_2E_EN is disabled.

1: CAN_EDAC_2E_EN is enabled.

12 CAN_EDAC_1E_EN 0 Allows the 1-bit error EDAC for CAN status update to be
disabled. Allowed values:
0: CAN_EDAC_1E_EN is disabled.

1: CAN_EDAC_1E_EN is enabled.

11 USB_EDAC_2E_EN 0 Allows the 2-bit error EDAC for USB status update to be
disabled. Allowed values:
0: USB_EDAC_2E_EN is disabled.

1: USB_EDAC_2E_EN is enabled.

10 USB_EDAC_1E_EN 0 Allows the 1-bit error EDAC for USB status update to be
disabled. Allowed values:
0: USB_EDAC_1E_EN is disabled.

1: USB_EDAC_1E_EN is enabled.

9 MAC_EDAC_RX_2E_EN 0 Allows the 2-bit error EDAC for Ethernet Rx RAM status update
to be disabled. Allowed values:
0: MAC_EDAC_RX_2E_EN is disabled.

1: MAC_EDAC_RX_2E_EN is enabled.

Embedded SRAM (eSRAM) Controllers

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 194

...........continued
Bit
Number

Name Reset
Value

Description

8 MAC_EDAC_RX_1E_EN 0 Allows the 1-bit error EDAC for Ethernet Rx RAM status update
to be disabled. Allowed values:
0: MAC_EDAC_RX_1E_EN is disabled.

1: MAC_EDAC_RX_1E_EN is enabled.

7 MAC_EDAC_TX_2E_EN 0 Allows the 2-bit error EDAC for Ethernet Tx RAM status update
to be disabled. Allowed values:
0: MAC_EDAC_TX_2E_EN is disabled.

1: MAC_EDAC_TX_2E_EN is enabled.

6 MAC_EDAC_TX_1E_EN 0 Allows the 1-bit error EDAC for Ethernet Tx RAM status update
to be disabled. Allowed values:
0: MAC_EDAC_TX_1E_EN is disabled.

1: MAC_EDAC_TX_1E_EN is enabled.

5 Reserved 0 Reserved

4 Reserved 0 Reserved

3 ESRAM1_EDAC_2E_EN 0 Allows the 2-bit error EDAC for eSRAM1 status update to be
disabled. Allowed values:
0: ESRAM1_EDAC_2E_EN is disabled.

1: ESRAM1_EDAC_2E_EN is enabled.

2 ESRAM1_EDAC_1E_EN 0 Allows the 1-bit error EDAC for eSRAM1 status update to be
disabled. Allowed values:
0: ESRAM1_EDAC_1E_EN is disabled.

1: ESRAM1_EDAC_1E_EN is enabled.

1 ESRAM0_EDAC_2E_EN 0 Allows the 2-bit error EDAC for eSRAM0 status update to be
disabled. Allowed values:
0: ESRAM0_EDAC_2E_EN is disabled.

1: ESRAM0_EDAC_2E_EN is enabled.

0 ESRAM0_EDAC_1E_EN 0 Allows the 1-bit error EDAC for eSRAM0 status update to be
disabled. Allowed values:
0: ESRAM0_EDAC_1E_EN is disabled.

1: ESRAM0_EDAC_1E_EN is enabled.

Table 5-21. EDAC_CR

Bit Number Name Reset
Value

Description

[31:7] Reserved 0 Reserved.

6 CAN_EDAC_EN 0 Allows the EDAC for CAN to be disabled. Allowed values:
0: EDAC disabled

1: EDAC enabled

Embedded SRAM (eSRAM) Controllers

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 195

...........continued
Bit Number Name Reset

Value
Description

5 USB_EDAC_EN 0 Allows the EDAC for USB to be disabled. Allowed values:
0: EDAC disabled

1: EDAC enabled

4 MAC_EDAC_RX_EN 0 Allows the EDAC for Ethernet Rx RAM to be disabled. Allowed
values:
0: Rx RAM EDAC disabled

1: Rx RAM EDAC enabled

3 MAC_EDAC_TX_EN 0 Allows the EDAC for Ethernet Tx RAM to be disabled. Allowed
values:
0: Tx RAM EDAC disabled

1: Tx RAM EDAC enabled

2 Reserved 0 Reserved

1 ESRAM1_EDAC_EN 0 Allows the EDAC for eSRAM1 to be disabled. Allowed values:
0: EDAC disabled

1: EDAC enabled

0 ESRAM0_EDAC_EN 0 Allows the EDAC for eSRAM0 to be disabled. Allowed values:
0: EDAC disabled

1: EDAC enabled

AHB Bus Matrix

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 196

6. AHB Bus Matrix
The AHB bus matrix is a multi-layer AHB matrix. It is not a full crossbar switch, but a customized subset of a full
switch. It works purely as an AHB-Lite matrix. The SmartFusion 2 SoC FPGA AHB bus matrix has 10 masters and
seven direct slaves as depicted in the following figure. One master is permitted to access a slave at the same
time another master is accessing a different slave. If more than one master is attempting to access the same slave
simultaneously, arbitration for that slave is performed. Arbitration is not purely round robin or weighted round robin
(WRR), but it is a combination of priority, round robin for processor-related masters, and WRR for non-processor
masters.

Figure 6-1. AHB Bus Matrix Masters and Slaves

AHB Bus Matrix

eSRAM_0System
Controller

Cache
Controller

S D IC

Arm® Cortex®-M3
Processor

S D I

MSS DDR
Bridge

PDMA

MS6

MM3

AHB To AHB Bridge with Address Decoder
USB OTG

HPDMA

MDDR

APB_0SYSREGTriple Speed
Ethernet MAC

FIC_0

MM4 MS4

MS2 MS3 MS0

MS5

MS1

MM5 MM6

MM7

MM8

MM2 MM1 MM0 MM9

IDC
D/S eNVM_0 eNVM_1 eSRAM_1

FIC_2 (Peripheral
Initialization) APB_1

MMUART_0

SPI_0

I2C_0

PDMA
Configuration

WATCHDOG

FIIC

TIMERx2

MMUART_1

SPI_1

I2C_1

GPIO

CAN

RTC

COMM_BLK

FIC_1

M
SS

_F
IC

M
S6

_U
SB

MS5_MAC MS5_SR MS5_APB0 MS5_FIC2 MS5_APB1

The preceding figure depicts the connectivity of masters and slaves in the AHB bus matrix. MM0 and MS0 refers to a
mirrored master and a mirrored slave. A mirrored master port in the matrix connects directly to an AHB master; it has
the same set of signals, but the direction of the signals is described relative to the other end of the connection.

A mirrored slave port in the matrix connects directly to an AHB slave. Only a subset of the full set of theoretical paths
is implemented within the AHB bus matrix. The AHB bus matrix performs the address decoding of all slaves except
for slaves that connect to the AHB-to-AHB bridge.

6.1 Functional Description
This section provides a detailed description of the AHB bus matrix.

6.1.1 Architecture Overview
Figure 6-2 depicts the interconnection between the master stage blocks and the slave stage blocks. The basic
building blocks of the AHB bus matrix are the master stage block with an address decoder and the slave stage block
with a slave arbiter. Each master interfaces with the master stage block and each slave interfaces with the slave
stage block. The masters and slaves connect as shown in Figure 6-1.

AHB Bus Matrix

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 197

An address decoder sub-block in each master stage generates the slave select signal to the corresponding slave. A
slave arbiter sub-block in each slave stage generates the address-ready signal to the selected master.

Table 6-1. AHB Bus Matrix Connectivity

Masters

M3
DCode
Bus

M3
ICode Bus

M3
System
Bus

System
Controller

HPDMA FIC_0 FIC_1 MAC PDMA USB

MM1 MM0 MM2 MM9 MM3 MM4 MM5 MM6 MM7 MM8

Priority 1 2 3 4 4 4 4 4 4 4

Arbitration Fixed Fixed Fixed Fixed WRR WRR WRR WRR WRR WRR

Sl
av
es

eSRAM0 MS0 RW RW RW RW RW RW RW RW RW RW

eSRAM1 MS1 RW RW RW RW RW RW RW RW RW RW

eNVM_0 MS2 RW1 R1 RW1 RW1 R1 RW1 RW1 — RW1 —

eNVM_1 MS3 RW1 R1 RW1 RW1 R1 RW1 RW1 — RW1 —

FIC_0 MS4 — — RW RW RW RW RW RW RW RW

MAC MS5 — — RW RW — RW RW — — —

FIC_1 — — RW RW RW RW RW RW RW RW

SYSREG — — RW RW — RW RW — — —

APB_0 — RW RW — RW RW — RW —

APB_1 — RW RW — RW RW — RW —

APB_2 — RW RW — RW RW — — —

USB — RW RW — RW RW — — —

MSS DDR
Bridge

MS6 — — RW — RW RW RW RW RW

Notes: 
1. Exercise caution while commanding the eNVM to program data. Other masters in the system may not be

aware that the eNVM is unavailable if it is in a program cycle. Microchip recommends you use some form of
software semaphore to control access.

2. Low numbers in priority represent higher priority, with 1 being the highest priority.

Reads or writes to areas not allowed cause the AHB bus matrix to complete the transaction with an HRESP error
indication. An error bit is set in the SW_ERRORSTATUS field of the MSS_EXTERNAL_SR register. The following
types of errors can occur:

• Write by an enabled master to a slave that is not RW
• Write by an enabled master to addresses not corresponding to a slave
• Write by the fabric master to the protected region
• Write by a disabled master to any location
• Read by an enabled master to any slave that is not R or RW
• Read by an enabled master to addresses not corresponding to a slave
• Read by the fabric master to the protected region
• Read by a disabled master to any location

AHB Bus Matrix

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 198

Figure 6-2. Master Stage and Slave Stage Interconnection

Master Stage 0

Slave Stage 1

Slave Stage 6 Master Stage 9

Master Stage 1

Slave Stage 0

Address
Decoder

Slave
Arbiter

Slave
Arbiter

Slave
Arbiter

Address
Decoder

Address
Decoder

AHB

AHB

AHB

AHB

AHB

AHB

To reduce the load on the AHB bus matrix, some of the low-performance peripherals are connected through the
synchronous AHB-to-AHB bridge with an address decoder. The AHB bus matrix is constructed of combinatorial logic,
except for the AHB-to-AHB bridge, which inserts a one-cycle delay in each direction.

The following figure shows the block diagram of all the APB peripherals connected to AHB bus matrix using the
AHB-to-AHB bridge. The MSS APB peripherals are connected through the AHB to APB bus.

Figure 6-3. Block Diagram of APB Destinations Connected to AHB Bus Matrix

AHB BUS
AHB Bus Matrix

10X7 MS5

AHB to AHB bridge with Address decoder
MS_APB0 MS_APB1 MS_APB2

AHB to APB_0 AHB to APB_1 AHB to APB_2

MMUART0 MMUART1

SPI_0 SPI_1

I2C_0 I2C_1

DMA CAN

WATCHDOG GPIO

RTC

APB Config bus
for MDDR, FDDR,

 PCIe etc

6.1.2 Timing Diagrams
The following figures are the functional timing diagrams for AHBL read/write transactions through the AHB bus matrix
and AHB-to-AHB bridge. Signals to/from a master are denoted by X in the signal name, and signals to/from a slave
are denoted with Y in the signal name. For example, if Cortex-M3 processor master initiates the transactions of
read/write to the eSRAM slave then the signals with X in the signal name indicates the signals of the Cortex-M3
processor and signals with Y indicate slave eSRAM signals.

AHB Bus Matrix

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 199

Figure 6-4. AHB-Lite Write Transactions
HCLK

X_HADDR[31:0]

X_HTRANS

X_HWRITE

X_HWDATA[31:0]

X_HREADY

X_HRESP 0

X_HMASTLOCK 0

Y_HADDR[31:0]

Y_HSEL

Y_HTRANS

Y_HWRITE

Y_HWDATA[31:0]

Y_HREADY

Y_HRESP 0

Y_HMAST 0

AD0

AD0

AD1 AD2 AD3 AD4 AD5 AD6

AD1 AD2 AD3 AD4 AD5 AD6

D0 D1 D3D2 D4 D5 D6

D0 D1 D2 D3 D4 D5 D6

Figure 6-5. AHB-Lite Read Transactions
HCLK

X_HADDR

X_HTRANS

X_HWRITE

X_HREADY

X_HRDATA

X_HRESP 0

X_HMASTLOCK 0

Y_HADDR

Y_HSEL

Y_HTRANS

Y_HWRITE

Y_HREADY

Y_HRDATA

Y_HRESP 0
Y_HMASTLOCK 0

AD0 AD1 AD2 AD3 AD4 AD5

D0 D1 D2 D3 D4 D5

AD0 AD1 AD2 AD3 AD4 AD5

D0 D1 D2 D3 D4 D5

AHB Bus Matrix

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 200

Figure 6-6. AHB-to-AHB Write Transactions
HCLK

Y_HRESET

Y_HMASTLOCK

Y_HSIZE

Y_HSEL

Y_HTRANS1

Y_HWRITE

Y_HWDATA

Y_HADDR

Y_HREADY

Y_HRESP

Y_HREADYOUT

X_HREADYOUT

X_HRESP

X_HADDR

X_HSIZE

X_HTRANS1

X_HWRITE

X_HWDATA

X_HREADY

X_HMASTLOCK

AD0

AD0

D0

D0

11

11

Figure 6-7. AHB-to-AHB Read Transactions
HCLK

Y_HADDR

Y_HMASTLOCK

Y_HSIZE

Y_HSEL

Y_HTRANS1

Y_HWRITE

Y_HWDATA

Y_HREADY

Y_HRESP

Y_HRDATA

Y_HREADYOUT

X_HRDATA

X_HREADYOUT

X_HRESP

X_HADDR

X_HSIZE

X_HTRANS1

X_HWRITE

X_HREADY

X_HMASTLOCK

AD0

D0

AD0

D0

11

11

AHB Bus Matrix

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 201

6.1.3 Details of Operation
This section describes the details of operation.

6.1.3.1 Slave Arbitration
Each of the slave devices on the AHB bus matrix contains an arbiter. Arbitration is done at two levels. At the first
level, the fixed higher priority masters are evaluated for any access request to the slave. At the second level, the
remaining buses are evaluated in round robin fashion for any access request to the slave. The priority levels of the
buses with fixed priority are listed in the following table. 

Table 6-2. Fixed Priority Masters

Masters Priority Arbitration

M3 DCode bus MM0 1 Fixed

M3 ICode bus MM1 2 Fixed

M3 system bus MM2 3 Fixed

System controller MM9 4 Fixed

The buses with round robin priority are listed in the following table.

Table 6-3. WRR Masters

Masters Priority Arbitration

HPDMA MM3 4 WRR

FIC_0 MM4 4 WRR

FIC_1 MM5 4 WRR

MAC MM6 4 WRR

PDMA MM7 4 WRR

USB MM8 4 WRR

6.1.3.1.1 Arbitration Parameters
The following slave arbitration configuration parameters are user programmable registers in the SYSREG block.

• Programmable slave maximum latency: Slave maximum latency, ESRAM_MAX_LAT, decides the peak wait time
for a fixed priority master arbitrating for eSRAM access while the WRR master is accessing the slave. After
the defined latency period, the WRR master will have to re-arbitrate for slave access. Slave maximum latency
can be configurable from 1–8 clock cycles (8 by default). ESRAM_MAX_LAT is only supported for fixed priority
masters addressing eSRAM slaves; it has no effect on WRR masters. The system designer can use this feature
to ensure the processor latency for accesses to eSRAM is limited to a defined number of clock cycles. This is to
facilitate limiting the ISR latency for real-time-critical functions.

• Programmable weight: MASTER_WEIGHT0_CR and MASTER _WEIGHT1_CR are 5-bit programmable
registers located in the SYSREG block. These registers define the number of consecutive transfers the weighted
master can perform without being interrupted by a fixed priority master, or before moving onto the next master in
the WRR cycle.

6.1.3.1.2 Pure Round Robin Arbitration
This is the default arbitration mode after reset. The programmable weight value of each master is set to 1, and
ESRAM_MAX_LAT = 1.

The arbitration scheme for each slave port is identical in pure round robin arbitration, as shown in the following
figure. The processor masters have priority over the non-processor masters. Each non-processor master accessing a
slave has equal priority on a round robin basis. However, if a locked transaction occurs, the master issuing the lock
maintains ownership of the slave until the locked transaction completes.

AHB Bus Matrix

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 202

Figure 6-8. Pure Round Robin and Fixed Priority Slave Arbitration Scheme

HMASTLOCK

Dcode
M1

System
Controller

M9

S-Bus
M2

Icode
M0

USB
M8

MAC
M6

FIC_1
M5

PDMA
M7

FIC_0
M4

Fixed Priority
Masters

Round Robin
Masters

HMASTLOCK

HMASTLOCK

HMASTLOCK

HPDMA
M3

The following table gives an example of a pure round robin and fixed priority arbitration scenario for eSRAM1. This
example illustrates default AHB bus matrix behavior.

Table 6-4. Pure Round Robin and Fixed Priority Arbitration Scenario for eSRAM1

Master HCLK

1 2 3 4 5 6 7 8 9

M3-I: M0 — — — eSRAM
1

— — — — —

M3-D: M1 — — — eSRAM
1

— — — — —

M3-S: M2 — eSRAM1 — — eSRAM
1

— — — —

HPDMA:
M3

eSRAM1 — — — — — — — —

FIC_0: M4 eSRAM1 — — — — — — — —

FIC_1: M5 eSRAM1 — — — — — — — —

GIGE: M6 eSRAM1 — — — — — — — —

PDMA: M7 eSRAM1 — — — — — — — —

eSRAM1:
S1

HPDMA M3 M3-S M2 FIC_0 M4 M3-D
M1

M3-I M0 M3-S M2 FIC_1 M5 TSE M6 PDMA
M7

In the preceding table, WRR masters and fixed priority masters arbitrate for the S1 (eSRAM1) slave during HCLK
cycle 1. The last row in the table, labeled eSRAM1: S1, shows which of the masters obtains access to the slave

AHB Bus Matrix

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 203

according to the arbitration in that clock cycle. In the first cycle, master M3 (HPDMA) is granted access, since it is
the first master in the round robin scheme. In the second cycle, even though master M4 is scheduled to get access
to the slave as per the round robin scheme, the M2 master (Cortex-M3 processor SBus) is granted access since
it has a higher priority. In the third cycle, the master M4 (FIC_0) in the round robin scheme is granted access. In
the fourth cycle, both M0 (Cortex-M3 processor ICode bus) and M1 (Cortex-M3 processor DCode bus) are trying for
access. Since M1 has the highest priority among the fixed priority masters, it is granted access, followed by the M0
master. WRR masters are delayed while the fixed priority masters get access to the slave. The remaining cycles are
consumed by the WRR masters in order.

6.1.3.1.3 WRR Arbitration
In this mode, the slave arbitration parameters, programmable weight (SW_WEIGHT_<master>), and eSRAM
slave maximum latency (SW_MAX_LAT_ESRAM<0/1> of ESRAM_MAX_LAT) can be configured to operate as
WRR arbitration. The slave arbiter operates on a round robin basis, with each master having a maximum of N
consecutive access opportunities to the slave in each round of arbitration. The value of N is determined by the
programmed weight for the master and eSRAM slave maximum latency. Programmable weight values can be
changed dynamically. The following figure depicts the WRR slave arbitration scheme. At each stage, the arbiter
checks whether that master is requesting access. If so, the master performs N transfers equal to its programmed
weight and then has to re-arbitrate for the bus. For a WRR master, the WRR priority in the round robin sequence
changes after the programmed number of transfers. Due to its highest priority, the Cortex-M3 processor DCode bus
master is allowed to perform transfers as long as there are transfers to complete. However, if a locked transaction
occurs, the master issuing the lock (HMASTLOCK = 1) maintains ownership of the slave until the locked transaction
completes.

AHB Bus Matrix

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 204

Figure 6-9. WRR and Fixed Priority Slave Arbitration Scheme

HMASTLOCK

Dcode
M1

System
Controller

M9

S-Bus
M2

Icode
M0

USB
M8

HPDMA
M3

MAC
M6

FIC_1
M5

PDMA
M7

FIC_0
M4

Fixed Priority
Masters

Round Robin
Masters

HMASTLOCK

HMASTLOCK

HMASTLOCK

PrgWeight

PrgWeight

PrgWeight

PrgWeight

PrgWeight

PrgWeight

WRR with fixed priority arbitration allows more efficient usage of slave bandwidth in cases where the slaves have
a penalty when transitioning from one master to another. When both the Ethernet MAC and Cortex-M3 processor
ICode/DCode interfaces are performing write and read AHB bursts to eSRAM, this scheme groups together a
maximum of N Ethernet MAC accesses followed by a maximum of M Cortex-M3 processor accesses (even if AHB
bursts of greater than N or M transfers are in progress from the master’s point of view). Due to the fact that
the eSRAM AHB controller inserts an IDLE cycle every time there is a write followed by a read, enabling WRR
can increase the effective eSRAM bandwidth during this time from 66% to 94% of the theoretical maximum. If a
sequence of locked transfers is in progress, the locked master remains selected by the slave arbiter until the lock
sequence is finished, regardless of the number of transfers. For the case described, the values of N and M are
SW_WEIGHT_MAC and SW_WEIGHT_HPDMA in the MASTER_WEIGHT0_CR control register.

Arbitration for Non-eSRAM Slaves

In non-eSRAM slaves, any WRR master getting access to the slave can perform uninterrupted transactions equal to
its programmed weight before re-arbitrating for the slave. Thus, for example, if FIC_1 is programmed with a weight of
8, it can do 8 continuous transactions with the slave even if the high priority master is requesting access to the slave.
Only after completing 8 transfers, the high priority master will gain access to the slave.

AHB Bus Matrix

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 205

The following table gives an arbitration scenario for a non-eSRAM slave. In this scenario, master M5 (FIC_1) starts
a burst of 12 transfers (reads typically for accesses to eNVM) to slave S2 (eNVM_0) in the first clock cycle. In the
second clock, fixed priority master M1 (DCode bus) bus tries to access the same slave. Since the programmed
weight of M5 master is 8, the M1 master does not gain access to the slave until M5 completes eight transfers. As
listed in the table, the M1 master gains access to the slave only after the M5 master completes 8 transfers, which
is in the 9th clock cycle. The M5 master has to re-arbitrate for the slave to complete the remaining transfers. So the
maximum latency seen by the Cortex-M3 processor bus M1 is equal to the programmed weight of 8.

Table 6-5. WRR and Fixed Priority Arbitration Scenario for eNVM_0

Master HCLK

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

M3-D: M1 — S2-
B4

— — — — — — — — — — — — — —

FIC_1: M5 S2-
B12

— — — — — — — — — — — — — — —

eNVM_0:
S2

M5-
B1

M5-
B2

M5-
B3

M5-
B4

M5-
B5

M5-
B6

M5-
B7

M5-
B8

M1-
B1

M1-
B2

M1-
B3

M1-
B4

M5-
B9

M5-
B10

M5-
B11

M5-
B12

6.1.3.1.4 Arbitration for eSRAM Slaves
For eSRAM slaves, the maximum latency seen by the Cortex-M3 processor bus masters can affect overall system
performance. To manage this latency, a programmable maximum latency parameter, SW_MAX_LAT_ESRAM<0/1>,
is available to optimize arbitration for the eSRAM slaves from a fixed priority master. The parameter
SW_MAX_LAT_ESRAM_<0/1> sets a ceiling as to the number of cycles the Cortex-M3 processor bus master, or
any fixed priority master, has to wait before accessing an eSRAM slave that is currently being accessed by a WRR
master. When a WRR master has a programmable weight greater than the SW_MAX_LAT_ESRAM<0/1> value, the
WRR master will have to re-arbitrate for the slave after SW_MAX_LAT_ESRAM<0/1> cycles. The following equation
gives the maximum latency seen by a processor master while accessing an eSRAM slave:

Maximum latency seen by the Cortex-M3 processor master = min {programmable weight (WRR master),
SW_MAX_LAT_ESRAM<0/1>}

For example, if SW_WEIGHT_HPDMA is set to 18 and SW_MAX_LAT_ESRAM0 is set to 4, then the maximum
latency is min {18, 4} = 4. Similarly, if SW_WEIGHT_PDMA is set to 2 and SW_MAX_LAT_ESRAM1 is set to 6, then
the maximum latency is min {2, 6} = 2. The following table depicts a typical scenario.

Table 6-6. WRR Arbitration Scenario for eSRAM_0 slave

Master HCLK

1 2 3 4 5 6 7 8 9 10 11 12

M3-D: M1 — S0-B4 — — — — — — — — — —

PDMA: M7 S0-B8 — — — — — — — — — — —

eSRAM_0: S0 M7-B1 M7-B2 M7-
B3

M7-B4 M1-B1 M1-B2 M1-B3 M1-B4 M7-B5 M7-B6 M7-B7 M7-B8

In this scenario, the slave maximum latency is set to 4 and the master programmable weight is set to 8, so the
maximum latency seen by the processor bus master is min {4, 8} = 4. When the WRR master starts transactions
with the eSRAM slave, it can perform a number of transactions equal to the programmed maximum latency or the
programmed weight, whichever is less, before re-arbitrating for the slave.

6.1.3.1.5 Slave Arbitration Flow Diagram
The following figure shows the slave arbitration flow diagram depicting the grant of access to master requesting for
slave access. At each stage the arbiter checks if that master is requesting for an access. If yes, then the master
can do number of transfers equal to its programmed weight and then has to re-arbitrate for the bus. In case of WRR
master, after the programmed number of transfers WRR priority changes for that master in round robin sequence.

AHB Bus Matrix

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 206

The D-Code master can perform transfers as long as there are transfers to complete. In case of lock transfers,
master issuing lock (HMASTLOCK = 1) maintains the ownership of the slave as long as lock signal is asserted.

Figure 6-10. Slave Arbitration Flow Diagram

Slave Arbitration Flow Diagram

Re-arbitrate

Re-arbitration

Re-arbitrate

Re-arbitrate

Re-arbitrate

Re-arbitrate

Re-arbitrate

YES

YES

YES

YES

YES

YES

Transact as long as there
is data to transfer.

Transact till number of
transfer<=PW_MO

Transact till number of
transfer done <=PW_M2

Transact till number of
transfer done <=PW_M9

Transact as long
as HMASTLOCK = 1

Transact till
number of

Transfer done <=
PW_WRR

HMASTLOCK = 1

No

No
If (WRRM=1)

If (M3=1) and if WRRM
has completed its burst

If (M2=1) and if WRRM has
completed its burst

If (M0 = 1) and if M2 and
WRRM have completed

their burst

If (M0 = 1) and if M0, M2 and
WRRM have completed

their burst

Index:
PW_M = Programmable
 Weight of master M
WRRM = Masters in WRR

AHB Bus Matrix

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 207

6.1.3.2 HBURST Support for eNVM
The AHB bus matrix only supports AHB bursts from the Cortex-M3 processor bus or from the cache to the eNVM.
To support burst reads from the eNVM, you must program SW_WEIGHT_IC to be the maximum burst expected.
SW_WEIGHT_IC = 32 allows a cache line to be filled from eNVM without interruption.

6.1.3.3 AHB Bus Matrix to Fabric Interface Controller
The AHB bus matrix provides two 2-bit side band signals—driven out of the AHB bus matrix to the fabric interrupt
controller to indicate which master is asserting FIC_X (X indicates FIC 0 or 1 master). The following figure shows the
two FIC blocks connected to AHB bus matrix.

The FIC block provides two separate interfaces between the MSS and the FPGA fabric: the hard master (HM)
and fabric master (FM). These interfaces may be configured to operate as AHB32 or APB32. Configure FIC_0 and
FIC_1 interfaces in bypass mode to perform weighted round robin arbitration. For more information, see AC388:
SmartFusion2 SoC FPGA - Dynamic Configuration of AHB Bus Matrix Application Note.

FIC_0_MASTER_ID and FIC_1_MASTER_ID are two signals from FIC_0 and FIC_1 to FPGA fabric that indicate the
current master group accessing fabric slaves. These two signals are exposed when each FIC block interface towards
the fabric is configured with the Libero SoC MSS configurator.

Figure 6-11. AHB Bus Matrix to Fabric Interface Controller

AHB-to-AHB
Bridge with
Address
Decoder

MM4 MS4 MM5 MM6

FIC_0 FIC_1

Ethernet

The following table provides the decoding of master access done by the AHB bus matrix to the fabric slave.

Table 6-7. Decoding of Master Access to the Fabric Slaves

FIC_X_MASTER_ID Accessing Master

00 IC-bus, D-bus, and S-bus master

01 FIC_0, FIC_1 master

10 HPDMA, Ethernet master, PDMA, USB

11 System controller

6.1.4 System Memory Map
The AHB bus matrix is responsible for implementing the address decoding of all masters to all slaves, so it defines
the system memory map. The following figure depicts the default system memory map for SmartFusion 2 devices.

AHB Bus Matrix

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 208

Figure 6-12. Default System Memory Map

SYSREG SYSREG
(63 K space

allocation for
devices outside

MSS)
Config DDR_1, PCIe_0, PCIe_1, etc. Config DDR_1, PCIe_0, PCIe_1, etc.

Config DDR_0 Config DDR_0

RTC RTC
COMBLK COMBLK

CAN CAN
High Performance DMA High Performance DMA

MSS GPIO MSS GPIO
I2C_1 I2C_1
SPI_1 SPI_1

UART_1 UART_1

Fabric Interface Interrupt Controller Fabric Interface Interrupt Controller
Watchdog Watchdog

Timer Timer
Peripheral DMA Control Peripheral DMA Control

I2C_0 I2C_0
SPI_0 SPI_0

UART_0 UART_0
FPGA Fabric FIC Region0 FPGA Fabric FIC Region0

SRAM bit-band alias
region of Cortex-M3
processor

eSRAM_0/eSRAM_1 (BB View)

ECC eSRAM_1 ECC eSRAM_1
ECC eSRAM_0 ECC eSRAM_0

Cortex-M3 processor
system region

eSRAM_1 eSRAM_1
eSRAM_0 eSRAM_0

Cortex-M3 processor
code region eNVM (Cortex-M3 processor) virtual view eNVM (Fabric) virtual view

Visible only to
FPGA fabric

master

{

}

Memory Map of
Cortex-M3 Processor

Memory Map of System
Controller, FPGA Fabric
Master, Ethernet MAC,

Peripheral DMA
FPGA Fabric FIC Region5 FPGA Fabric FIC Region5

DDR_0 Space 3 DDR_0 Space 3
DDR_0 Space 2 DDR_0 Space 2
DDR_0 Space 1 DDR_0 Space 1
DDR_0 Space 0 DDR_0 Space 0

FPGA Fabric FIC Region4 FPGA Fabric FIC Region4
FPGA Fabric FIC Region3 FPGA Fabric FIC Region3
FPGA Fabric FIC Region2 FPGA Fabric FIC Region2

AHB-to-eNVM_1 Registers AHB-to-eNVM_1 Registers
AHB-to-eNVM_0 Registers AHB-to-eNVM_0 Registers

eNVM_1 eNVM_1
eNVM_0 eNVM_0

FPGA Fabric FIC Region1 FPGA Fabric FIC Region1
Peripheral bit-band alias
region of Cortex-M3
processor

Peripherals (BB View)

USB USB

Ethernet MAC Control Ethernet MAC Control

0xF0000000 - 0xFFFFFFFF
0xE0000000 - 0xEFFFFFFF
0xD0000000 - 0xDFFFFFFF
0xC0000000 - 0xCFFFFFFF
0xB0000000 - 0xBFFFFFFF
0xA0000000 - 0xAFFFFFFF
0x90000000 - 0x9FFFFFFF
0x80000000 - 0x8FFFFFFF
0x70000000 - 0x7FFFFFFF
0x60100000 - 0x6FFFFFFF
0x600C0000 - 0x600FFFFF
0x60080000 - 0x600BFFFF
0x60040000 - 0x6007FFFF
0x60000000 - 0x6003FFFF
0x50000000 - 0x5FFFFFFF
0x44000000 - 0x4FFFFFFF
0x42000000 - 0x43FFFFFF
0x40410000 - 0x41FFFFFF

 0x40044000 - 0x403FFFFF
0x40043000 - 0x40043FFF
0x40042000 - 0x40042FFF
0x40041000 - 0x40041FFF
0x40039000 - 0x40040FFF
0x40038000 - 0x40038FFF
0x40030000 - 0x40037FFF
0x40020400 - 0x4002FFFF
0x40020000 - 0x400203FF
0x40018000 - 0x4001FFFF
0x40017000 - 0x40017FFF
0x40016000 - 0x40016FFF
0x40015000 - 0x40015FFF
0x40014000 - 0x40014FFF
0x40013000 - 0x40013FFF
0x40012000 - 0x40012FFF
0x40011000 - 0x40011FFF
0x40010000 - 0x40010FFF
0x40007000 - 0x4000FFFF
0x40006000 - 0x40006FFF
0x40005000 - 0x40005FFF
0x40004000 - 0x40004FFF
0x40003000 - 0x40003FFF
0x40002000 - 0x40002FFF
0x40001000 - 0x40001FFF
0x40000000 - 0x40000FFF
0x30000000 - 0x3FFFFFFF
0x24000000 - 0x2FFFFFFF
0x22000000 - 0x23FFFFFF
0x20014000 - 0x21FFFFFF
0x20012000 - 0x20013FFF
0x20010000 - 0x20011FFF
0x20008000 - 0x2000FFFF
0x20000000 - 0x20007FFF
0x00080000 - 0x1FFFFFFF

0x0007FFFF
0x00000000

{

6.1.4.1 eSRAM Remap
The AHB bus matrix supports remapping the eSRAM address space into code space that the Cortex-M3 processor
can use. Both eSRAM blocks can be remapped to appear at the bottom of the Cortex-M3 processor code space, as
shown in the preceding figure.

The amount of space available to
Cortex-M3 processor as code space depends on ECC as indicated below:

• When ECC is ON, the two eSRAM blocks (64 KB) can be remapped, but ECC sections of eSRAM (8 KB) cannot
be used by the Cortex-M3 processor.

• When ECC is OFF, the two eSRAM blocks (64 KB) can be remapped, and the ECC sections of eSRAM (8 KB)
can also be used by the Cortex-M3 processor. These 8 KB are available at a different address. The resultant
memory map is illustrated in the following figure.

AHB Bus Matrix

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 209

Figure 6-13. Memory Map after eSRAM Remap (64 KB eSRAM)

Memory Map of
Cortex-M3 Processor

Memory Map of System
Controller, FPGA Fabric
Master, Ethernet MAC,

Peripheral DMA
FPGA Fabric FIC Region5 FPGA Fabric FIC Region5

DDR_0 Space 3 DDR_0 Space 3
DDR_0 Space 2 DDR_0 Space 2
DDR_0 Space 1 DDR_0 Space 1
DDR_0 Space 0 DDR_0 Space 0

FPGA Fabric FIC Region4 FPGA Fabric FIC Region4
FPGA Fabric FIC Region3 FPGA Fabric FIC Region3
FPGA Fabric FIC Region2 FPGA Fabric FIC Region2

AHB-to-eNVM_1 Registers AHB-to-eNVM_1 Registers
AHB-to-eNVM_0 Registers AHB-to-eNVM_0 Registers

eNVM_1 eNVM_1
eNVM_0 eNVM_0

FPGA Fabric FIC Region1 FPGA Fabric FIC Region1

Peripheral bit-band
alias region of Cortex-M3
processor

Peripherals (BB View)

 {
USB USB

Ethernet MAC Control Ethernet MAC Control

SYSREG SYSREG
(63 K space

allocation
for devices

outside MSS)
Config DDR_1, PCIe_0, PCIe_1, etc. Config DDR_1, PCIe_0, PCIe_1, etc.

Config DDR_0 Config DDR_0

RTC RTC
COMBLK COMBLK

CAN CAN
High Performance DMA High Performance DMA

MSS GPIO MSS GPIO
I2C_1 I2C_1
SPI_1 SPI_1

UART_1 UART_1

Fabric Interface Interrupt Controller Fabric Interface Interrupt Controller
Watchdog Watchdog

Timer Timer
Peripheral DMA Control Peripheral DMA Control

I2C_0 I2C_0
SPI_0 SPI_0

UART_0 UART_0
FPGA Fabric FIC Region0 FPGA Fabric FIC Region0

SRAM bit-band alias region
of Cortex-M3 processor

eSRAM_0/eSRAM_1(BB View)

ECC eSRAM_1 ECC eSRAM_1
ECC eSRAM_0 ECC eSRAM_0

Cortex-M3 Processor System
region eSRAM_1 eSRAM_1

eSRAM_0 eSRAM_0
0x10000000 - 0x1FFFFFFF DDR_0 Space 0(Mirrored)

0xF0000000 - 0xFFFFFFFF
0xE0000000 - 0xEFFFFFFF
0xD0000000 - 0xDFFFFFFF
0xC0000000 - 0xCFFFFFFF
0xB0000000 - 0xBFFFFFFF
0xA0000000 - 0xAFFFFFFF
0x90000000 - 0x9FFFFFFF
0x80000000 - 0x8FFFFFFF
0x70000000 - 0x7FFFFFFF
0x60100000 - 0x6FFFFFFF
0x600C0000 - 0x600FFFFF
0x60080000 - 0x600BFFFF
0x60040000 - 0x6007FFFF
0x60000000 - 0x6003FFFF
0x50000000 - 0x5FFFFFFF
0x44000000 - 0x4FFFFFFF
0x42000000 - 0x43FFFFFF
0x40410000 - 0x41FFFFFF

0x40044000 - 0x403FFFFF
0x40043000 - 0x40043FFF
0x40042000 - 0x40042FFF
0x40041000 - 0x40041FFF
0x40039000 - 0x40040FFF
0x40038000 - 0x40038FFF
0x40030000 - 0x40037FFF
0x40020400 - 0x4002FFFF
0x40020000 - 0x400203FF
0x40018000 - 0x4001FFFF
0x40017000 - 0x40017FFF
0x40016000 - 0x40016FFF
0x40015000 - 0x40015FFF
0x40014000 - 0x40014FFF
0x40013000 - 0x40013FFF
0x40012000 - 0x40012FFF
0x40011000 - 0x40011FFF
0x40010000 - 0x40010FFF
0x40007000 - 0x4000FFFF
0x40006000 - 0x40006FFF
0x40005000 - 0x40005FFF
0x40004000 - 0x40004FFF
0x40003000 - 0x40003FFF
0x40002000 - 0x40002FFF
0x40001000 - 0x40001FFF
0x40000000 - 0x40000FFF
0x30000000 - 0x3FFFFFFF
0x24000000 - 0x2FFFFFFF
0x22000000 - 0x23FFFFFF
0x20014000 - 0x21FFFFFF
0x20012000 - 0x20013FFF
0x20010000 - 0x20011FFF

0x20008000 - 0x2000FFFF

0x20000000 - 0x20007FFF
0x00080000 - 0x1FFFFFFF

Cortex-M3 processor code
region

0x00180000 - 0x0FFFFFFF eNVM (Fabric)
Virtual View

0x0007FFFF
Visible only to
FPGA fabric

master
0x00100000 - 0x00170000 eNVM (Remap View)

0x00010000 - 0x000FFFFF
0x00000000 - 0x0000FFFF eSRAM0 and eSRAM1 (Mirrored) 0x00000000

}

{

AHB Bus Matrix

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 210

In default mode, the Cortex-M3 processor firmware boots from eNVM. However, as shown in the preceding figure, it
is also possible to get the firmware to boot from eSRAM by re-mapping eSRAM to location zero. Code shadowing is
supported to facilitate this.

A master in the FPGA fabric must extend the assertion of reset to the Cortex-M3 processor until the system reset to
the remainder of the MSS is negated. This master must then copy the appropriate code from eNVM to eSRAM and
release the reset of the Cortex-M3 processor.

6.1.4.1.1 Executing from eSRAM
The eSRAM remap is actually performed by aliasing the eSRAM blocks so they appear in the Cortex-M3 processor
code space but are still accessible in the Cortex-M3 processor system space. Therefore, the system designer must
allocate the eSRAM among clients in such a way that a portion of eSRAM allocated in one space (code space, for
example) is left untouched in the other space (system space, for example).

The Cortex-M3 processor executes the application (including ISRs) from the code space, allowing optimal
performance. However, the corresponding region in system space is grayed out. Conversely, the stack (and heap,
if present) as well as buffering for non-M3 masters (such as peripheral DMA or Ethernet DMA) is allocated out of
system space and so must be left grayed out in the code space.

This implementation is shown in the following figure.

Figure 6-14. Use Case for eSRAM Execution

Stack/Heap

eSRAM

Code Space
(M3 ICode
and DCode)

System Space
(M3 System
Bus and Other
Masters)

eSRAM

Application0x00000000

0x0000FFFF

0x20000000

0x2000FFFF

0xFFFFFFFF

eNVM
0x60000000

0x600FFFFF

System Memory
Buffering (DMA)

This scheme allows flexibility to the system designer in choosing how much eSRAM is to be dedicated to each class
of storage. For example, if the application, stack, and heap are small, this allows a large chunk of contiguous RAM to
be allocated to buffering.

6.1.4.1.2 Using Harvard Architecture
When a system designer is more interested in optimal performance than flexibility, eSRAM_0 can be dedicated to
the application (and ISRs), and eSRAM_1 can be dedicated to stack, heap, and buffering. This implies that the
Cortex-M3 processor operates in a fully Harvard fashion, because eSRAM_0 can be accessed only by the combined
code bus, and eSRAM_1 can be accessed by the system bus of M3 as well as the other (non-M3) masters.

6.1.4.1.3 Ensuring Deterministic Latency
If the system designer wishes to have deterministic latencies of ISR execution, the ISRs need to be located
in eSRAM. The eSRAM must be un-contended to ensure true determinism. A maximum latency value can be
programmed to eSRAM slaves, so processor masters do not wait long for access to eSRAM slaves. The maximum

AHB Bus Matrix

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 211

latency is set by writing into SW_MAX_LAT_ESRAM0[2:0] or SW_MAX_LAT_ESRAM1 of ESRAM_MAX_LAT. You
can execute code from the external memory (SRAM or DDR). DDR is accessed by the Cortex-M3 processor masters
directly through the cache controller block and not through the AHB bus matrix block.

6.1.4.2 eNVM Remap
The following sections describe remapping eNVM.

6.1.4.2.1 eNVM Remap for Cortex-M3
An eNVM can have multiple firmware images located at any of the possible locations of the eNVM array. But any
image can be accessed from the zero or base address location in the virtual view by remapping the eNVM. The
AHB bus matrix, under the control of the SYSREG block, handles the eNVM remap, whereby a virtual eNVM view is
presented to the AHB bus for accesses in the range from 0x00000000 to 0x1FFFFFFF.

Of all masters in a SmartFusion 2 device, only the Cortex-M3 processor ICode and DCode AHB busses access the
eNVM in this range, which corresponds to its code space.

After reset, the AHB bus matrix must address the data at its physical address in the system memory map because it
is not visible in the virtual map at this point. At the end of the boot process, the Cortex-M3 processor firmware writes
into two SYSREG registers ENVM_CR and ENVM_REPMAP_BSASE_CR, which control eNVM remapping for the
Cortex-M3 processor. This causes a specific segment of the eNVM array, of a specified size, to be remapped in the
virtual view starting at address 0x00000000. This implies that if multiple firmware images are present, each may be
built with the assumption that they are located at 0x00000000.

For example, consider that there are two firmware images: image0 and image1. After remap of image1, the virtual
view of this image will be from 0x00000000 even though the physical address of the image starts at 0x60002000. The
following figure shows this example representation of an eNVM remap after chip boot.

Figure 6-15. Virtual eNVM View (After Chip Boot)

Image 0

Firmware
Services

Event Log

Image 1 Image 1

Physical View of eNVM
(System Space)

Virtual eNVM View
(Code Space)

0x60000000

0x6FFFFFFF

eNVM remap
(after chip boot)

0x60001FFF
0x60002000 0x00000000

At the bottom of the remapped firmware image is the user boot code. This can call out to firmware services located
at the top of eNVM. However, these services must be addressed by the firmware using the physical address of the
firmware services.

6.1.4.2.2 eNVM Remap for Soft Processor
Any soft processor implemented within the FPGA fabric usually tries to fetch instructions from location 0x00000000.
However, this refers to different code than the Cortex-M3 processor boot code, which resides at location 0x00000000
as far as the Cortex-M3 processor is concerned. The AHB bus matrix supports remapping of an eNVM segment
to location 0x00000000 in the memory map seen by masters in the FPGA fabric with the ENVM_REMAP_FAB_CR
control register.

AHB Bus Matrix

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 212

The ENVM_REMAP_FAB_CR control register configures where eNVM is mapped in fabric space. There is no
eSRAM remap for fabric masters. Therefore, a fabric master must always access eSRAM from its location described
in Figure 6-12.

The following figure gives an example representation of the eNVM remap of a soft processor implemented in FPGA
fabric and remapped to a virtual address 0x00000000, even though its physical address starts at 0x60003000.

Figure 6-16. Virtual eNVM View for Soft Processor

Physical View of eNVM
(FPGA Fabric)

Virtual eNVM
(FPGA Fabric
Master View)

0x60000000

0x6FFFFFFF

eNVM remap
(after chip boot)

0x60001FFF
0x60002000 0x00000000

Firmware n

Firmware for
Soft Processor
in FPGA Fabric

0x60002FFF
0x60003000

0x60003FFF

Firmware for
Soft Processor
in FPGA Fabric

Firmware2
for Cortex-M3
Microcontroller

Firmware1
for Cortex-M3
Microcontroller

6.1.4.3 DDR Memory Map
Although up to 4 Gbytes of DDR is supported by the system, only 1 GB of this is accessible at one time from
the Cortex-M3 processor or MSS masters via the AHB bus matrix. The HPDMA and DDR_FIC can access all 4
Gbytes at default settings. To make a particular region of DDR visible to the Cortex-M3 processor firmware or another
non-HPDMA MSS master, it is necessary to configure the appropriate DDR mapping registers in the MSS system
registers.

6.1.4.4 DDR Remap
In default mode, the Cortex-M3 processor firmware boots from eNVM. However, as shown in the following figure,
it is also possible to get the firmware to boot from DDR by re-mapping DDR to location zero. Code shadowing is
supported to facilitate this. User boot firmware, located in eNVM, must copy an executable image from external
Flash memory (serial or parallel) to external DDR memory, then jump to the application entry point in external DDR
memory.

In DDR remap mode, the total available cacheable region (512 Mbytes) can be configured to 128 Mbytes,
256 Mbytes, or 512 Mbytes. In the case of a 128 Mbyte cacheable size, the entire 512 Mbytes is divided into
four cacheable regions of 128 Mbytes each, and one of the four regions will be selected as per configuration.
Similarly for 256 Mbytes, one of the two cacheable regions (512 Mbytes cacheable region split to two 256 Mbyte
regions) will be selected as per configuration. These selections can be configured using the DDRB_NB_ADDR_CR
and DDRB_NB_SIZE_CR registers.

The cache controller generates the appropriate DDR address as per remap before putting the access request to the
MSS DDR bridge. A soft SDRAM memory controller implemented in the fabric can be remapped to address 0 just like
the MDDR so that external code located in SDRAM is cacheable.

AHB Bus Matrix

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 213

Figure 6-17. DDR Memory Remap

Memory Map of
Cortex-M3 Processor

Memory Map of System
Controller, FPGA Fabric
Master, Ethernet MAC,

Peripheral DMA
FPGA Fabric FIC Region5 FPGA Fabric FIC Region5

MDDR Space 3 DDR_0 Space 3
MDDR Space 2 DDR_0 Space 2
MDDR Space 1 DDR_0 Space 1
MDDR Space 0 DDR_0 Space 0

FPGA Fabric FIC Region4 FPGA Fabric FIC Region4
FPGA Fabric FIC Region3 FPGA Fabric FIC Region3
FPGA Fabric FIC Region2 FPGA Fabric FIC Region2

AHB-to-eNVM_1 Registers AHB-to-eNVM_1 Registers
AHB-to-eNVM_0 Registers AHB-to-eNVM_0 Registers

eNVM_1 eNVM_1
eNVM_0 eNVM_0

FPGA Fabric FIC Region1 FPGA Fabric FIC Region1

Peripheral Bit-band
alias region of Cortex-M3

processor
Peripherals (BB View)

USB USB

Ethernet MAC Control Ethernet MAC Control

SYSREG SYSREG
(63 K space

allocation
for devices

outside MSS)
Config DDR_1, PCIe_0, PCIe_1, etc. Config DDR_1, PCIe_0, PCIe_1, etc.

Config DDR_0 Config DDR_0

RTC RTC
COMBLK COMBLK

CAN CAN
High Performance DMA High Performance DMA

MSS GPIO MSS GPIO
I2C_1 I2C_1
SPI_1 SPI_1

UART_1 UART_1

Fabric Interface Interrupt Controller Fabric Interface Interrupt Controller
Watchdog Watchdog

Timer Timer
Peripheral DMA Control Peripheral DMA Control

I2C_0 I2C_0
SPI_0 SPI_0

UART_0 UART_0
FPGA Fabric FIC Region0 FPGA Fabric FIC Region0

SRAM bit-band alias
region of Cortex-M3

processor
eSRAM_0/eSRAM_1(BB View)

ECC eSRAM_1 ECC eSRAM_1
ECC eSRAM_0 ECC eSRAM_0

Cortex-M3 processor system
region eSRAM_1 eSRAM_1

eSRAM_0 eSRAM_0
Cortex-M3 processor code

region
0x10000000 - 0x1FFFFFFF

MDDR Space 1 (mirrored)

eNVM (Fabric) virtual view

0xF0000000 - 0xFFFFFFFF
0xE0000000 - 0xEFFFFFFF
0xD0000000 - 0xDFFFFFFF
0xC0000000 - 0xCFFFFFFF
0xB0000000 - 0xBFFFFFFF
0xA0000000 - 0xAFFFFFFF
0x90000000 - 0x9FFFFFFF
0x80000000 - 0x8FFFFFFF
0x70000000 - 0x7FFFFFFF
0x60100000 - 0x6FFFFFFF
0x600C0000 - 0x600FFFFF
0x60080000 - 0x600BFFFF
0x60040000 - 0x6007FFFF
0x60000000 - 0x6003FFFF
0x50000000 - 0x5FFFFFFF
0x44000000 - 0x4FFFFFFF
0x42000000 - 0x43FFFFFF
0x40410000 - 0x41FFFFFF

0x40044000 - 0x403FFFFF
0x40043000 - 0x40043FFF
0x40042000 - 0x40042FFF
0x40041000 - 0x40041FFF
0x40039000 - 0x40040FFF
0x40038000 - 0x40038FFF
0x40030000 - 0x40037FFF
0x40020400 - 0x4002FFFF
0x40020000 - 0x400203FF
0x40018000 - 0x4001FFFF
0x40017000 - 0x40017FFF
0x40016000 - 0x40016FFF
0x40015000 - 0x40015FFF
0x40014000 - 0x40014FFF
0x40013000 - 0x40013FFF
0x40012000 - 0x40012FFF
0x40011000 - 0x40011FFF
0x40010000 - 0x40010FFF
0x40007000 - 0x4000FFFF
0x40006000 - 0x40006FFF
0x40005000 - 0x40005FFF
0x40004000 - 0x40004FFF
0x40003000 - 0x40003FFF
0x40002000 - 0x40002FFF
0x40001000 - 0x40001FFF
0x40000000 - 0x40000FFF
0x30000000 - 0x3FFFFFFF
0x24000000 - 0x2FFFFFFF
0x22000000 - 0x23FFFFFF
0x20014000 - 0x21FFFFFF
0x20012000 - 0x20013FFF
0x20010000 - 0x20011FFF

0x20008000 - 0x2000FFFF

0x20000000 - 0x20007FFF
0x00080000 - 0x1FFFFFFF

0x0007FFFF
Visible only

to FPGA
fabric masterMDDR Space 0 (mirrored)

0x00000000 - 0x0000FFFF
0x00000000

{

{

}

AHB Bus Matrix

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 214

6.1.4.5 Unimplemented Address Space
The AHB bus matrix performs address decoding based on the memory map defined in Figure 6-12 and Figure
6-13, to decide which slave, if any, is being addressed. Any access to memory space outside of these regions
is considered unimplemented from the AHB bus matrix point of view. This access results in the assertion of a
SW_ERRORSTATUS register bit of the MSS_EXTERNAL_SR control register, as well as the assertion of HRESP by
the AHB bus matrix to the master. If any master attempts a write access to unimplemented address space, the AHB
bus matrix completes the handshake to the master with an HRESP error indication. No write occurs to any slave.

If any master attempts a read access from unimplemented address space, the AHB bus matrix completes the
handshake to the master with an HRESP error indication. Undefined data is returned. There may be further memory
areas that are unimplemented, within individual slave memory regions. Depending on the slave, accesses may be
aliased within these areas or not. Firmware must not perform writes to these locations because the aliasing may
cause a write to another location within the slave. Data read from these intra-slave unimplemented regions may be
undefined.

6.1.4.6 Burst Support
AHB-Lite HBURST is supported only for an ICode (IC) bus master accessing eNVM slaves. The AHB bus matrix
handshakes correctly with masters performing AHB bursts to any slave. However, it does not pass the transactions
through the slaves as bursts. Instead, the AHB bus matrix converts the burst accesses into single-cycle accesses
of the type NONSEQ. This simplifies the design of the slaves (which can exist in the FPGA fabric), since they do
not need to support AHB bursts. It also allows the system designer to avoid long latencies incurred by bursts of
indeterminate length (such as those from the FPGA fabric).

6.1.4.7 Locked Transactions
MSS supports locked accesses through its internal switch matrix to its slaves (eSRAM, DDR, FIC_0, and FIC_1).
HMASTLOCK signal is not routed to the fabric to allow a matrix to implement a lock-based arbitration system.

6.1.4.8 Peripheral Bit-Banding
All of the peripherals, including the system registers, are located in the peripheral bit-banded space of the Cortex-M3
processor memory map. Therefore, bit manipulations may be performed on registers using bit-banded instructions
from the Cortex-M3 processor instruction set. These guarantee atomic read-modify-write accesses, which are of use
if multiple masters may be accessing a particular location.

6.1.4.9 Fabric Memory Map
There are six regions of 256 KB each, which may be allocated to either FIC_0 or FIC_1 (fabric interrupt controller).
This allows large memory mapped windows into the FPGA fabric.

6.1.4.10 Firmware Considerations
The following must be considered while implementing Fabric logic:

• Configuring the AHB bus matrix: For the mode changes (change of protection region, memory map mode,
programmable weights, and programmable maximum latency), user firmware must take care that all the masters
are in IDLE state (where no data transfer is required) for a sufficient amount of time—10 IDLE cycles (ten clock
cycles)—before and after the mode change.

• HBURST support in eNVM slave: HBURST is supported for an IC bus master to eNVM slaves only.
SW_WEIGHT_IC of MASTER_WEIGHT0_CR is configured such that the value of SW_WEIGHT_IC is equal
to or greater than the number of bursts. For example, for a burst of 8, the SW_WEIGHT_IC must be at least 8 or
greater than 8.

• Avoid using infinite firmware loops in eSRAM which result in preventing WRR masters from accessing the
eSRAM. A typical example is a tight polling loop in the Cortex-M3 processor firmware, executing code from
eSRAM, which is polling a location in the same eSRAM and consuming its full bandwidth, thereby not allowing
a lower-priority master (such as, Ethernet MAC) to access the eSRAM to perform the write of the data for which
the polling loop is waiting. This leads to a hung system.
This is due to the use of the fixed priority for processor masters in the arbitration algorithm and the possibility of
eSRAM being used for both instruction fetches (I and D busses) and data accesses (SBus). It is recommended
that the Cortex-M3 processor firmware is stored in a separate eSRAM from the data storage of other services.

6.1.4.11 Memory Security
After reset, all master ports on the AHB bus matrix are enabled. There are separate user-defined Flash configuration
bits that control read and write access for each memory slave from various masters, which are organized in groups.

AHB Bus Matrix

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 215

The pairing of the masters and the slaves with respect to the bits set in the security registers are given in detail in the
following table. Read access and write access can be independently controlled by separate read and write Flash bits.
For more information on bit configuration of S registers, see 21. System Register Block.

Table 6-8. Pairing of Masters and Slaves

SYSREG Register Masters Slaves

MS0 MS1 MS2 MS3 MS6

eSRAM
0

eSRAM
1

eNVM_
0

eNVM_
1

MSS DDR
Bridge

MM0_1_2_SECURITY MM0: M3 DCode bus,
cache

RW RW RW RW RW

MM1: M3 ICode bus RW RW RW RW RW

MM2: M3 system bus RW RW RW RW RW

MM4_5_FIC64_SECURITY MM4: FIC_0 RW RW RW RW RW

MM5: FIC_1 RW RW RW RW RW

DDR_FIC RW RW RW RW RW

MM3_6_7_8_SECURITY MM3: HPDMA RW RW RW RW RW

MM6: MAC RW RW RW RW RW

MM7: PDMA RW RW RW RW RW

MM8: USB RW RW RW RW RW

MM9_SECURITY MM9: System controller RW RW RW RW RW

An access attempt by a master where the corresponding master port is blocked (by a Flash configuration bit setting)
causes the AHB bus matrix to assert HRESP to the master and terminate the transaction. If a blocked port is
attempting a read access, the read data is returned as garbage. If the blocked port is attempting a write, the write of
data does not occur to any slave. In both cases, one of the SW_ERRORSTATUS bits is asserted. DDR_FIC is not
part of the AHB bus matrix but can be blocked from accessing the MSS DDR (MDDR) subsystem.

6.2 How to Use AHB Bus Matrix
This section describes how to use the AHB bus matrix in an application.

6.2.1 Design Flow
The following steps are used to configure the AHB bus matrix in the application:

1. Configure the AHB bus matrix by using the MSS configurator in the application, as shown in the following
figure.

AHB Bus Matrix

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 216

Figure 6-18. AHB Bus Matrix in Libero® SoC Design MSS Configurator

2. Click AHB Bus Matrix to configure it. The AHB Bus Matrix configuration window is shown in the following
figure.

– The AHB bus matrix provides support to remap eNVM, eSRAM, and DDR memory regions to location
0x000000000 of the Cortex-M3 ID code space. It also provides an option to remap eNVM for a Soft
Processor eNVM Remap. To enable remapping for eNVM, eSRAM, and DDR select appropriate option
from remapping section of AHB Bus Matrix configurator.

AHB Bus Matrix

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 217

Figure 6-19. AHB Bus Matrix Configuration Window

– Enter the weight values for the masters in arbitration section, to configure the programmable weight
registers MASTER_WEIGHT0_CR and MASTER_WEIGHT1_CR. These are located in the SYSREG
block with the required weight values. The weight values range is from 1 to 32.

– Enter the maximum latency values for the fixed priority masters to configure ESRAM_MAX_LAT registers
that are located in the SYSREG block.
This decides the peak wait time for a fixed priority master arbitrating for eSRAM access while the WRR
master is accessing the slave. Slave maximum latency can be configured from 1 to 8 clock cycles (8 by
default).

Important:  ESRAM_MAX_LAT is only supported for fixed priority masters addressing eSRAM
slaves. It has no effect on WRR masters.

AHB Bus Matrix

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 218

3. Generate the component by clicking Generate Component or by selecting SmartDesign > Generate
Component.
For more information on generation of the component, see the latest SmartDesign User Guide on
Libero SoC User Guide page.

4. Click Generate Bitstream under Program Design to complete *.fdb file generation.

Important: The MSS AHB Bus Matrix supports full behavioral simulation models. For more
information, see SmartFusion2 MSS BFM Simulation User Guide.

6.3 Register Map
The following table lists the AHB bus matrix control registers in the SYSREG block.

Table 6-9. AHB Bus Matrix Register Map

Register Name Register
Type

Flash
Write
Protect

Reset Source Description

21.5.16. Master Weight
Configuration Register 0

RW-P Register SYSRESET_N Configures WRR master arbitration scheme
for masters.

21.5.17. Master Weight
Configuration Register 1

RW-P Register SYSRESET_N Configures WRR master arbitration scheme
for masters.

21.5.71. Security
Configuration Register for
Masters 0, 1, and 2

RO-U N/A SYSRESET_N Security bits for masters 0, 1, and 2

21.5.72. Security
Configuration Register for
Masters 4, 5, and DDR_FIC

RO-U N/A SYSRESET_N Security bits for masters 4, 5, and DDR_FIC

21.5.73. Security
Configuration Register for
Masters 3, 6, 7, and 8

RO-U N/A SYSRESET_N Security bits for masters 3, 6, 7, and 8

21.5.74. Security
Configuration Register for
Master 9

RO-U N/A SYSRESET_N Security bits for master 9

21.5.99. MSS External
Status Register

SW1C N/A SYSRESET_N AHB bus matrix error status. Writing a 1 clears
the status.

21.5.2. eSRAM
Configuration Register

RW-P Register SYSRESET_N This register configures eSRAM.

21.5.5. eNVM Configuration
Register

RW-P Register SYSRESET_N This register configures eNVM parameters.

21.5.3. eSRAM Latency
Configuration Register

RW-P Register SYSRESET_N This register configures maximum latency for
accessing eSRAM0/1 slave.

21.5.6. eNVM Remap Base
Address Control Register

RW-P Register SYSRESET_N This signal indicates the base address of the
segment in eNVM, which is to be remapped to
location 0H.

AHB Bus Matrix

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 219

...........continued
Register Name Register

Type
Flash
Write
Protect

Reset Source Description

21.5.7. eNVM FPGA
Fabric Remap Base Address
Register

RW-P Register SYSRESET_N Configures where eNVM is mapped in fabric
master space.

21.5.12. MSS DDR Bridge
Non-Bufferable Address
Control Register

RW-P Register SYSRESET_N This register indicates the base address of the
non-bufferable address region.

21.5.13. MSS DDR Bridge
Non-Bufferable Size Control
Register

RW-P Register SYSRESET_N This register indicates the size of the non-
bufferable address region.

21.5.4. DDR Configuration
Register

RW-P Register SYSRESET_N This register configures DDR parameters.

High Performance DMA Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 220

7. High Performance DMA Controller
The High Performance DMA (HPDMA) controller provides fast data transfer between the MSS DDR bridge and MSS
memories. The MSS memories are eSRAM0, eSRAM1, eNVM0, and eNVM1. The DDR bridge connects to External
DDR memory.

The following figure shows HPDMA interfacing with AHB Bus Matrix and MSS DDR bridge. AHB bus masters such
as the Cortex-M3 processor can offload the high speed memory transfers to HPDMA, making the master available
for performing other tasks. All transfers by the HPDMA are full word transfers. The HPDMA controller has two AHB
masters, MSS DDR Bridge and AHB bus matrix master (MM0-MM9), which functions concurrently to enable high
performance data transfers. The configuration of HPDMA is done through the APB interface.

One of the main applications for which the HPDMA can be used is paging access by the processor. The main data is
stored in a large DDR space and relevant chunks of this data would be transferred as needed via the HPDMA to the
eSRAM, where it can be processed faster.

Figure 7-1. HPDMA Interfacing With MSSDDR Bridge and AHB Bus Matrix

AHB Bus Matrix

eSRAM_0System
Controller

Cache
Controller

S D IC

Arm® Cortex®-M3
Processor

S D I

MSS DDR
Bridge

PDMA

MS6

MM3

AHB To AHB Bridge with Address Decoder
USB OTG

HPDMA

MDDR

APB_0SYSREGTriple Speed
Ethernet MAC

FIC_0

MM4 MS4

MS2 MS3 MS0

MS5

MS1

MM5 MM6

MM7

MM8

MM2 MM1 MM0 MM9

IDC
D/S eNVM_0 eNVM_1 eSRAM_1

FIC_2 (Peripheral
Initialization) APB_1

MMUART_0

SPI_0

I2C_0

PDMA
Configuration

HPDMA
Configuration

WATCHDOG

FIIC

TIMERx2

MMUART_1

SPI_1

I2C_1

GPIO

CAN

RTC

COMM_BLK

FIC_1

M
SS

_F
IC

M
S6

_U
SB

MS5_MAC MS5_SR MS5_APB0 MS5_FIC2 MS5_APB1

7.1 Features
• Faster read/write operations with two concurrent AHB masters
• 32-bit AHB operation at 200 MHz

High Performance DMA Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 221

• 32-bit APB slave interface for control and status registers at 25/50/100/200 MHz
• Internal 32-bit control, status, and debug registers
• Single DMA channel with four queuing HPDMA descriptors, serviced with round robin priority
• Up to 64 KB data transfer in single channel request
• 32-byte internal data buffer
• Supports word aligned data transfers
• Interrupts for DMA transfer complete and transfer errors
• DMA transfer pause
• Individual descriptor reset
• Data transfer in little-endian format

7.2 Functional Description
HPDMA has a single channel which can process up to four service requests (HPDMA descriptor) in a round robin
fashion. To process each request, HPDMA descriptor is configured by an AHB bus matrix master through APB
interface. The AHB bus matrix master can be Cortex-M3, USB, Ethernet, and Fabric master. The HPDMA APB
interface is connected on APB_1, which is an AHB to APB bridge as shown in the preceding figure. HPDMA then
reads data from the source memory and transfers data to the destination.

This section provides the detailed description of the HPDMA.

7.2.1 Architecture Overview
HPDMA mainly consists of following sub-blocks, as shown in the following figure:

• Interfaces
• Configuration and Status Registers
• DMA Controller
• Write Buffer Controller
• Read Buffer Controller
• Data Buffer

Figure 7-2. HPDMA Controller Block Diagram

APB Interface

APB Slave

Configuration and
Status Registers

DMA
Controller

Write Buffer
Controller

Read Buffer
Controller

Data Buffer
MUX
Logic

AHB
Master 1

AHB
Master 2

AHB Bus Matrix

MSS DDR
Bridge

HPDMA

High Performance DMA Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 222

7.2.1.1 Interfaces
There are two types of interfaces used for communicating with HPDMA:

• 32-bit APB slave interface for configuration
• Two AHB master interfaces (AHB-M1, AHB-M2) for data transfers:

– AHB Master 1 performs the read/write transfers at the AHB bus matrix end
– AHB Master 2 performs the read/write transfers at the MSS DDR bridge end

7.2.1.2 Configuration and Status Registers
The configuration and status registers of the HPDMA controller are accessed through a 32-bit APB slave, as shown
in the following figure. To enable and use HPDMA services, the AHB bus matrix master must configure the 32-bit
wide descriptor registers.

HPDMA controller has four descriptors. Each descriptor has the following five registers:

• Source memory address register
• Destination memory address register
• Control register
• Status register
• Pending Transfer register

Figure 7-3. HPDMA Registers

APB Interface

APB Slave

Descriptor 0 Registers

Descriptor 1 Registers

Descriptor 2 Registers

Descriptor 3 Registers

HPDMA Registers

Configuration and Status Registers

DMA Controller

7.2.1.3 DMA Controller
The DMA controller controls and monitors transactions on the source and destination AHB master interfaces. When
a descriptor is configured, the DMA controller enables the write buffer controller to read data from the appropriate
source memory (AHB bus matrix or MSS DDR bridge) and transfer it into the internal data buffer. In a similar way,
the DMA controller enables read buffer controller to read the data from the internal data buffer and transfers it to the
destination memory. The following figure shows the detailed DMA Controller flow.

High Performance DMA Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 223

Figure 7-4. DMA Controller Flow Chart

Reset

Is Descriptor
valid?

Data
Transfer

direction = 1

Enable write buffer
controller to read
data from MSS DDR
bridge and write to
internal data buffer

Transfer size
bytes are

transferred to
destination
memory

successfully

NO

YES
ERROR

YES

Enable Read
buffer controller

to send data from
internal data

buffer to
MSS DDR bridge

Enable write buffer
controller to read
data from AHB bus
matrix and write to
internal data buffer

NO

YESNO
Enable read

buffer controller
to send data from

internal data buffer
to AHB bus matrix

Load Descriptor to
internal registers

Update DMA
Status and
Debug registers

7.2.1.4 Write Buffer Controller
The write buffer controller enables the appropriate AHB master (AHB-M1 or AHB-M2) to read the data from source
memory. To initiate read transfers on the AHB bus, the write buffer controller provides the read address and asserts
the ready signal. The AHB master acknowledges, and the write buffer controller writes the source memory data to the
internal data buffer.

If the data buffer is full, the write buffer controller initiates idle transfers on the AHB bus, and asserts ready signal
when at least one data buffer is available. The write buffer controller pauses the DMA transfers when the descriptor
pause bit is enabled, and resumes the transfers as soon as the pause bit is disabled. When the last count value is
reached, the AHB slave acknowledges the last transfer.

7.2.1.5 Read Buffer Controller
The read buffer controller places the address and asserts the ready signal to the AHB master (AHB-M1 or AHB-M2).
Depending on the transfer direction, AHB-M1 or AHB-M2 initiates the data transfers from internal data buffer to the
destination memory.

If the data buffer is empty or if the DMA controller pause bit is enabled, then the read buffer controller initiates IDLE
transfers on the AHB bus.

7.2.1.6 Data Buffer
The data buffer block is 32 bits wide and 8 words deep. Data buffer read/write operations are performed on the rising
edge of the clock signal. There are 4-bit read and write pointers that increment on read and write.

High Performance DMA Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 224

The 3 least significant bits (LSBs) are used to address the 8 locations; the most significant bit (MSB) of the read and
write pointers is used to signal the data buffer empty and full.

7.2.1.6.1 Data Buffer Full and Empty
When the read and write pointers are equal, the data buffer is empty. When the 3 LSBs of read pointer and write
pointer are equal and the MSBs of the read pointer and write pointer are not equal, the data buffer is full.

7.2.2 Initialization
To initiate and setup DMA transactions, HPDMA has to be initialized. The initialization process starts with a reset
sequence followed by Channel configuration and interrupt configuration.

7.2.2.1 Reset
The HPDMA registers are reset on power-up. The HPDMA can be reset by configuring the Bit 17 of
SOFT_RESET_CR system register.

7.2.2.2 Descriptor Configuration
Before configuring each HPDMA channel, the round robin weight is specified if needed, using the
MASTER_WEIGHT_CR register or configuring the AHB bus matrix in Libero SoC.

To configure each HPDMA descriptor, the following registers have to be set:

• Descriptor Control registers:
– Direction: bit 1 of HPDMADXCR_REG (where, X is 0 to 3)
– Transfer size in bytes: bits[15:0] of HPDMADXCR_REG (where, X is 0 to 3)
– Enable Interrupts: bits[22:20] of HPDMADDXCR_REG (where, X is 0 to 3)

• 32-bit Source memory start Address: bits[31:0] of HPDMADXSAR_REG (where, X is 0 to 3)
• 32-bit Destination memory start Address: bits[31:0] of HPDMADXDAR_REG (where, X is 0 to 3)

7.2.2.3 Interrupt
There are two interrupts: HPD_XFR_CMP_INT and HPD_XFR_ERR_INT from the HPDMA to the NVIC on the
Cortex-M3 processor. The interrupt signals are mapped to one of the IRQs in the Cortex-M3 NVIC controller.

The interrupt signals are also mapped to the dedicated interrupt signal MSS_INT_M2F[9] and the MSS_INT_M2F[22]
of the fabric interface interrupt controller (FIIC).

This is to interrupt the user logic instantiated in the FPGA fabric. To enable HPDMA interrupts, the 9th bit
(HPD_XFR_CMP_INT_EN) and the 22nd bit (HPD_XFR_CMP_INT_EN) of INTERRUPT_ENABLE0 register (located
at address 0x40006000) has to be set. The status of the interrupts to FIIC can be determined by reading the 9th and
22nd bits of the INTERRUPT_REASON0 register (located at 0x40006008).

To determine the descriptor transfer status, monitor the Descriptor status register (HPDMADXSR, where X is 0 to
3). Before start of transaction, the enabled Descriptor interrupt bits are to be cleared. See Table 7-24 for clearing
interrupts.

7.2.3 Details of Operation
After initialization, the HPDMA is ready to function in one of the two following data transfer modes:

• AHB bus matrix to MSS DDR bridge
• MSS DDR bridge to AHB bus matrix

For initiation of the above data transfer modes, a descriptor valid bit has to be set (that is, bit 16 of the Descriptor
control register is asserted). If all the four descriptors are configured and set to valid, the descriptor transfer begins
and executes in a round robin fashion. If any of the descriptor is paused by setting the bit 19 of Descriptor control
register, the HPDMA stops the data transfer. HPDMA resumes the operation once the pause bit is reset. The pending
transfers of the source and destination can be read from the Descriptor pending transfer register (HPDMADXPTR,
where X is 0 to 3).

HPDMA can service the next descriptor only after the pending transfer of the current descriptor is complete. The data
transfer completion interrupt is monitored using bit 20 of the Descriptor control register and bit 1 of the Descriptor
status register. For more information on HPDMA registers, see 7.4.1. HPDMA Register Bit Definitions.

High Performance DMA Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 225

7.3 How to Use HPDMA
This section describes how to use the HPDMA in an application.

7.3.1 Design Flow
The following steps describe how to enable HPDMA in the application:

1. Enable HPDMA by using MDDR in the application, as shown in the following figure.
Figure 7-5. Enable HPDMA in the Libero® SoC Design MSS Configurator

2. To configure the HPDMA to transfer data between DDR memory and MSS internal memory, make the
selection in the MSS external memory configurator as shown in the following figure.

High Performance DMA Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 226

Figure 7-6. HPDMA Transfers Data Between DDR Memory and MSS Internal Memory

3. To configure the HPDMA to transfer data between SDR memory and MSS internal memory, make the
selection in the MSS external memory configurator as shown in the following figure.
Figure 7-7. HPDMA Transfers Data Between SDR Memory and MSS Internal Memory

4. Generate the component by clicking Generate Component or by selecting SmartDesign > Generate
Component from the menu. The firmware driver folder and SoftConsole workspace is included in the project.
For more information on generation of the component, see the latest SmartDesign User Guide on Libero SoC
Documentation page. The firmware driver folder and SoftConsole workspace is included in the project. Click
the highlighted Configure firmware button as shown in the following figure to find the RTC drivers.

High Performance DMA Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 227

Figure 7-8. HPDMA Driver User Guide

5. Click Generate Bitstream under Program Design to complete *.fdb file generation.
6. Double-click Export Firmware under Handoff Design for Firmware Development in the Libero SoC design

flow window to generate the SoftConsole Firmware Project. The SoftConsole folder contains the mss_hpdma
firmware driver (mss_hpdma.c and mss_hpdmac.h), which provides a set of functions for controlling the
MSS HPDMA transfers. The mss_hpdma firmware driver can also be downloaded from the Microchip firmware
catalog. The following table shows the list of APIs for HPDMA. For more information on the APIs, see the
SmartFusion2_MSS_HPDMA_Driver_UG shown in the preceding figure.

Table 7-1. MSS HPDMA APIs

Category API Description and Usage

Initialization MSS_HPDMA_init() Initializes HPDMA

Control of descriptor
transfer

MSS_HPDMA_start() Starts HPDMA transfer

MSS_HPDMA_pause() Pauses HPDMA transfer

MSS_HPDMA_resume() Resumes HPDMA transfer

MSS_HPDMA_abort() Aborts the HPDMA transfer

Status of current
transfer

MSS_HPDMA_get_pending_counters() Gets the number of pending transfers in bytes

MSS_HPDMA_get_transfer_state() Gets the transfer status when transfer is in
progress

Interrupt control
functions

MSS_HPDMA_enable_irq() Enables either transfer interrupt or error interrupt

MSS_HPDMA_disable_irq() Disables either transfer interrupt or error interrupt

MSS_HPDMA_clear_irq() Clears either transfer interrupt or error interrupt

For more information on HPDMA usage, the sample projects are available and can be generated, as shown in the
following figure.

High Performance DMA Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 228

Figure 7-9. HPDMA Examples

7.3.2 HPDMA Use Models
This section explains the use models and gives directions for using HPDMA in an application. The SmartFusion 2
soft memory controller fabric interface controller (SMC_FIC) is used to access external bulk memories other than
DDR through the FPGA fabric. The SMC_FIC can be used with a soft memory controller for the MSS to access
memories such as SDRAM, Flash, and SRAM. MSS masters communicate with the SMC_FIC through an MSS DDR
bridge present in the MSS. Fore more information on SMC_FIC, see UG0446: SmartFusion2 and IGLOO2 FPGA
High Speed DDR Interfaces User Guide.

7.3.2.1 Use Model: AHB Bus Matrix to MSS DDR Bridge/MSS DDR Bridge to AHB Bus Matrix
1. Enable HPDMA by using MDDR or configuring switch and MSSDDR bridge in Libero SoC.
2. Initialize the HPDMA using MSS_HPDMA_init().
3. Check HPDMAEDR register bits using MSS_HPDMA_get_transfer_state().
4. Check Clear if any interrupts are pending MSS_HPDMA_clear_irq().
5. Configure the descriptor transfer size, source address, destination address, transfer direction, and enable the

valid HPDMA descriptor register using MSS_HPDMA_start() .
6. Check HPDMAEDR register bits using MSS_HPDMA_get_transfer_state().
7. To pause the data transfers use MSS_HPDMA_pause().
8. Get the pending transfer bytes using MSS_HPDMA_get_pending_counters().
9. To resume the data transfers use MSS_HPDMA_pause().
10. To check the status of the transfer use MSS_HPDMA_get_transfer_state().

7.4 HPDMA Controller Register Map
The following table summarizes the HPDMA controller register map. The sections that follow detail register bit
descriptions of status, configuration, and debug registers. All the register bits are active high; on reset they assume
default values. Register R/W corresponds to external processor accessibility. The address range of the HPDMA APB
registers is x40014000 to x40014FFF. Only the 7 LSBs are considered for addressing the registers.

High Performance DMA Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 229

Table 7-2. HPDMA Register Map

Register Name Address
Offset

Register
Type

Reset
Value

Description

Table 7-3 x00 R x0F HPDMA Empty Descriptor register

Table 7-4 x04 R/W x00 Descriptor 0 source memory start address

Table 7-8 x08 R/W x00 Descriptor 0 destination memory start address

Table 7-12 x0C R/W x00 Descriptor 0 Control register

Table 7-16 x10 R x00 Descriptor 0 Status register

Table 7-20 x14 R x00 Descriptor 0 Pending Transfer register

Table 7-5 x18 R/W x00 Descriptor 1 source memory start address

Table 7-9 x1C R/W x00 Descriptor 1 destination memory start address.

Table 7-13 x20 R/W x00 Descriptor 1 Control register

Table 7-17 x24 R x00 Descriptor 1 Status register

Table 7-21 x28 R x00 Descriptor 1 Pending Transfer register

Table 7-6 x2C R/W x00 Descriptor 2 source memory start address

Table 7-10 x30 R/W x00 Descriptor 2 destination memory start address

Table 7-14 x34 R/W x00 Descriptor 2 Control register

Table 7-18 x38 R x00 Descriptor 2 Status register

Table 7-22 x3C R x00 Descriptor 2 Pending Transfer register

Table 7-7 x40 R/W x00 Descriptor 3 source memory start address

Table 7-11 x44 R/W x00 Descriptor 3 destination memory start address

Table 7-15 x48 R/W x00 Descriptor 3 Control register

Table 7-19 x4C R x00 Descriptor 3 Status register

Table 7-23 x50 R x00 Descriptor 3 Pending Transfer register

Table 7-24 x54 W x00 HPDMA Interrupt Clear register

Table 7-25 x58 R x01 HPDMA Debug register

7.4.1 HPDMA Register Bit Definitions
The following sections describe the HPDMA registers and their bit definitions.

High Performance DMA Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 230

7.4.1.1 HPDMA Empty Descriptor Register
Table 7-3. HPDMAEDR_REG

Bit
Numbe
r

Name Reset
Value

Description

0 HPDMAEDR_DCP_EMPTY[0] 1 Descriptor 0 is empty and ready for software
configuration.
1: Descriptor 0 is empty and ready to configure.
0: Descriptor 0 is already configured and descriptor
transfer is in progress/queue.

At the end of the descriptor transfer, either
on transfer error or transfer done, the HPDMA
controller asserts this bit High.

1 HPDMAEDR_DCP_EMPTY[1] 1 Descriptor 1 is empty and ready for software
configuration.
1: Descriptor 1 is empty and ready to configure.
0: Descriptor 1 is already configured and descriptor
transfer is in progress/queue.

At the end of the descriptor transfer, either
on transfer error or transfer done, the HPDMA
controller asserts this bit High.

2 HPDMAEDR_DCP_EMPTY[2] 1 Descriptor 2 is empty and ready for software
configuration.
1: Descriptor 2 is empty and ready to configure.
0: Descriptor 2 is already configured and descriptor
transfer is in progress/queue.

At the end of the descriptor transfer, either
on transfer error or transfer done, the HPDMA
controller asserts this bit High.

3 HPDMAEDR_DCP_EMPTY[3] 1 Descriptor 3 is empty and ready for software
configuration.
1: Descriptor 3 is empty and ready to configure.
0: Descriptor 3 is already configured and descriptor
transfer is in progress/queue.

At the end of the descriptor transfer, either
on transfer error or transfer done, the HPDMA
controller asserts this bit High.

4 HPDMAEDR_DCP_CMPLET[0] 0 Descriptor 0 transfer complete.
1: Descriptor 0 transfer completed successfully.
0: Descriptor 0 transfer not completed.

When the descriptor 0 transfer is completed,
either with transfer error or transfer done, HPDMA
controller asserts this bit High.

This bit is cleared on writing ‘1’ to
the HPDMAICR_CLR_XFR_INT[0] bit of the
HPDMA Interrupt Clear register or when the
HPDMACR_DCP_VALID[0] bit of descriptor 0
Control register is set.

High Performance DMA Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 231

...........continued
Bit
Numbe
r

Name Reset
Value

Description

5 HPDMAEDR_DCP_CMPLET[1] 0 Descriptor 1 transfer complete.
1: Descriptor 1 transfer completed successfully.
0: Descriptor 1 transfer not completed.

When the descriptor 1 transfer is completed, either
with transfer error or transfer done, the HPDMA
controller asserts this bit High.

This bit is cleared on writing ‘1’ to
the HPDMAICR_CLR_XFR_INT[1] bit of the
HPDMA Interrupt Clear register or when the
HPDMACR_DCP_VALID[1] bit of the descriptor 1
Control register is set.

6 HPDMAEDR_DCP_CMPLET[2] 0 Descriptor 2 transfer complete.
1: Descriptor 2 transfer completed successfully
0: Descriptor 2 transfer not completed

When the descriptor 2 transfer is completed, either
with transfer error or transfer done, the HPDMA
controller asserts this bit High.

This bit is cleared on writing ‘1’ to
the HPDMAICR_CLR_XFR_INT[2] bit of the
HPDMA Interrupt Clear register or when the
HPDMACR_DCP_VALID[2] bit of the descriptor 2
Control register is set.

7 HPDMAEDR_DCP_CMPLET[3] 0 Descriptor 3 transfer complete.
1: Descriptor 3 transfer completed successfully
0: Descriptor 3 transfer not completed

When the descriptor 3 transfer is completed, either
with transfer error or transfer done, the HPDMA
controller asserts this bit High.

This bit is cleared on writing ‘1’ to
the HPDMAICR_CLR_XFR_INT[3] bit of the
HPDMA Interrupt Clear Register or when the
HPDMACR_DCP_VALID[3] bit of the descriptor 3
control register is set.

8 HPDMAEDR_DCP_ERR[0] 0 Descriptor 0 transfer error.
1: Descriptor 0 transfer error
0: No descriptor 0 transfer error

This bit is asserted High if an error occurs
during the descriptor 0 transfer at either source
or destination end. This bit is cleared on writing
‘1’ to the HPDMAICR_CLR_XFR_INT[0] bit of
the HPDMA Interrupt Clear register or when the
HPDMACR_DCP_VALID[0] bit of the descriptor 0
control register is set.

High Performance DMA Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 232

...........continued
Bit
Numbe
r

Name Reset
Value

Description

9 HPDMAEDR_DCP_ERR[1] 0 Descriptor 1 transfer error.
1: Descriptor 1 transfer error
0: No descriptor 1 transfer error

This bit is asserted High, if an error occurs
during the descriptor 1 transfer at either source
or destination end. This bit is cleared on
writing ‘1’ to HPDMAICR_CLR_XFR_INT[1] of
the HPDMA Interrupt Clear register, or when
the HPDMACR_DCP_VALID[1] bit of Descriptor 1
control register is set.

10 HPDMAEDR_DCP_ERR[2] 0 Descriptor 2 transfer error.
1: Descriptor 2 transfer error
0: No descriptor 2 transfer error

This bit is asserted High, if an error occurs
during the descriptor 2 transfer at either source
or destination end. This bit is cleared on writing
‘1’ to the HPDMAICR_CLR_XFR_INT[2] bit of
the HPDMA Interrupt Clear register, or when the
HPDMACR_DCP_VALID[2] bit of the descriptor 2
control register is set.

11 HPDMAEDR_DCP_ERR[3] 0 Descriptor 3 transfer error.
1: Descriptor 3 transfer error
0: No descriptor 3 transfer error

This bit is asserted High, if an error occurs
during the descriptor 3 transfer at either source
or destination end. This bit is cleared on
writing ‘1’ to HPDMAICR_CLR_XFR_INT[3] of the
HPDMA Interrupt Clear register, or when the
HPDMACR_DCP_VALID[3] bit of the descriptor 3
control register is set.

12 HPDMAEDR_DCP_NON_WORD_ERR[0] 0 Descriptor 0 non-word aligned transfer size error.
1: Descriptor 0 non-word aligned transfer size error
0: No non-word aligned transfer size error

This bit is asserted High, if non-word aligned
value is configured in descriptor 0 transfer
size field. This bit is cleared on writing
‘1’ to HPDMAICR_NON_WORD_INT[0] of the
HPDMA Interrupt Clear register, or when the
HPDMACR_DCP_VALID[0] bit of the descriptor
0 Control register is set or when the
HPDMACR_DCP_CLR[0] bit of the HPDMA
Controller register is set.

In this case, HPDMA will continue the transfer by
ignoring the 2 LSBs of the transfer size field.

High Performance DMA Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 233

...........continued
Bit
Numbe
r

Name Reset
Value

Description

13 HPDMAEDR_DCP_NON_WORD_ERR[1] 0 Descriptor 1 non-word aligned transfer size error.
1: Descriptor 1 non-word aligned transfer size error
0: No non-word aligned transfer size error

This bit is asserted High if a non-word aligned value
is configured in the descriptor 1 transfer size field.

This bit is cleared on writing ‘1’ to
HPDMAICR_NON_WORD_INT[1] of the HPDMA
Interrupt Clear register, or when the
HPDMACR_DCP_VALID[1] bit of the descriptor
1 Control register is set, or when the
HPDMACR_DCP_CLR[1] bit of the HPDMA
Controller register is set.

In this case, HPDMA will continue the transfer by
ignoring the 2 LSBs of the transfer size filed.

14 HPDMAEDR_DCP_NON_WORD_ERR[2] 0 Descriptor 2 non-word aligned transfer size error.
1: Descriptor 2 non-word aligned transfer size error
0: No non-word aligned transfer size error

This bit is asserted High if a non-word aligned value
is configured in the descriptor 2 transfer size field.

This bit is cleared on writing ‘1’ to
HPDMAICR_NON_WORD_INT[2] of the HPDMA
Interrupt Clear register, or when the
HPDMACR_DCP_VALID[2] bit of the descriptor
2 Control register is set, or when the
HPDMACR_DCP_CLR[2] bit of the HPDMA
Controller register is set.

In this case, HPDMA will continue the transfer by
ignoring the 2 LSBs of the transfer size field.

15 HPDMAEDR_DCP_NON_WORD_ERR[3] 0 Descriptor 3 non-word aligned transfer size error.
1: Descriptor 3 non-word aligned transfer size error
0: No non-word aligned transfer size error

This bit is asserted High, if a non-word aligned value
is configured in the descriptor 3 transfer size field.

This bit clears on writing ‘1’ to
HPDMAICR_NON_WORD_INT[3] of the HPDMA
Interrupt Clear register, or when the
HPDMACR_DCP_VALID[3] bit of the descriptor
3 Control register is set, or when the
HPDMACR_DCP_CLR[3] bit of the HPDMA
Controller register is set.

In this case, HPDMA will continue the transfer by
ignoring the 2 LSBs of transfer size field.

[31:16] Reserved 0 Software should not rely on the value of a reserved
bit. To provide compatibility with future products, the
value of a reserved bit should be preserved across a
read-modify-write operation.

High Performance DMA Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 234

7.4.1.2 Descriptor 0 Source Address Register
Table 7-4. HPDMAD0SAR_REG

Bit Number Name Reset Value Description

31:0 HPDMASAR_DCP0_SRC_ADRS 0x00 Descriptor 0 source end memory start address

7.4.1.3 Descriptor 1 Source Address Register
Table 7-5. HPDMAD1SAR_REG

Bit Number Name Reset Value Description

31:0 HPDMASAR_DCP1_SRC_ADRS 0x00 Descriptor 1 source end memory start address

7.4.1.4 Descriptor 2 Source Address Register
Table 7-6. HPDMAD2SAR_REG

Bit Number Name Reset Value Description

31:0 HPDMASAR_DCP2_SRC_ADRS 0x00 Descriptor 2 source end memory start address

7.4.1.5 Descriptor 3 Source Address Register
Table 7-7. HPDMAD3SAR_REG

Bit Number Name Reset Value Description

31:0 HPDMASAR_DCP3_SRC_ADRS 0x00 Descriptor 3 source end memory start address

7.4.1.5.1 Notes on the Source Address Register (SAR)
• Address is word aligned at the start.
• Address increments on each successful transfer at the source end.
• HPDMA controller starts reading the data from source memory and transfers to destination memory.
• Software can write all 32-bit source address to prevent non-word aligned transfers at the start and 2 LSBs, 1:0,

are masked in the hardware.
• The source address is updated when descriptor transfer is in progress.

7.4.1.6 Descriptor 0 Destination Address Register
Table 7-8. HPDMAD0DAR_REG

Bit Number Name Reset
Value

Description

31:0 HPDMADAR_DCP0_DST_ADRS 0x00 Descriptor 0 destination end memory start address

7.4.1.7 Descriptor 1 Destination Address Register
Table 7-9. HPDMAD1DAR_REG

Bit Number Name Reset Value Description

31:0 HPDMADAR_DCP1_DST_ADRS 0x00 Descriptor 1 destination end memory start address

7.4.1.8 Descriptor 2 Destination Address Register
Table 7-10. HPDMAD2DAR_REG

Bit Number Name Reset Value Description

31:0 HPDMADAR_DCP2_DST_ADRS 0x00 Descriptor 2 destination end memory start address

High Performance DMA Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 235

7.4.1.9 Descriptor 3 Destination Address Register
Table 7-11. HPDMAD3DAR_REG

Bit Number Name Reset
Value

Description

31:0 HPDMADAR_DCP3_DST_ADRS 0x00 Descriptor 3 destination end memory start address

7.4.1.9.1 Notes on the Destination Address Register (DAR)
• Address is word aligned at the start.
• Address increments on each successful transfer at the destination end.
• HPDMA controller starts reading the data from source memory and transfers to destination memory.
• Software can write all 32-bit destination addresses to prevent non-word aligned transfers at the start and 2

LSBs, 1:0, are masked in the hardware.
• The destination address will be updated in the same field when the descriptor transfer is in progress.

7.4.1.10 Descriptor 0 Control Register
Table 7-12. HPDMAD0CR_REG

Bit
Number

Name Reset
Value

Description

15:0 HPDMACR_DCP0_XFR_SIZE 0 Descriptor 0 transfer size in bytes.
Defines number of bytes to be transferred in a descriptor 0
transfer.

All zeros in this field indicates 64 KB transfers.

As all the transfers are word aligned, 2 LSBs 1:0 are
ignored.

16 HPDMACR_DCP_VALID[0] 0 1: Indicates the descriptor 0 is valid and ready to transfer.
On completing descriptor 0 transfer, the HPDMA controller
clears this bit.

Once the descriptor valid bit is set, descriptor fields such
as Source address, Destination Address, Transfer size, and
Descriptor Valid bits cannot be overwritten.

When this bit is set, HPDMA clears the status of the previous
transfer, which includes transfer complete, transfer error
interrupts, and corresponding descriptor 0 Status Register.

17 HPDMACR_XFR_DIR[0] 0 Descriptor 0 data transfer direction.
0: AHB bus matrix to MSS DDR bridge

1: MSS DDR bridge to AHB bus matrix

18 HPDMACR_DCP_CLR[0] 0 When this bit is set, HPDMA clears the descriptor 0 fields.
HPDMA terminates the current transfer and reset descriptor
status and control registers.

This bit is always read back as zero.

19 HPDMACR_DCP_PAUSE[0] 0 1: HPDMA pauses descriptor 0 transfers, does idle transfers.
0: HPDMA resumes descriptor 0 transfers from where they
have stopped.

20 HPDMACR_XFR_CMP_INT[0] 0 1: HPDMA asserts interrupt on completion of descriptor 0
transfers without error.
0: HPDMA will not generate transfer complete interrupt.

High Performance DMA Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 236

...........continued
Bit
Number

Name Reset
Value

Description

21 HPDMACR_XFR_ERR_INT[0] 0 1: HPDMA asserts transfer error interrupt on error during
descriptor 0 transfers.
0: HPDMA will not generate transfer error interrupt.

22 HPDMACR_NON_WORD_INT[0] 0 Non-word interrupt enable.
1: HPDMA asserts transfer error interrupt when
non-word aligned transfer size is programmed in
HPDMACR_DCP0_XFR_SIZE and HPDMA continues the
same descriptor transfer.

0: HPDMA will not generate interrupt.

31:23 Reserved 0 Software must not rely on the value of a reserved bit. To
provide compatibility with future products, the value of a
reserved bit must be preserved across a read-modify-write
operation.

7.4.1.11 Descriptor 1 Control Register
Table 7-13. HPDMAD1CR_REG

Bit
Number

Name Reset
Value

Description

15:0 HPDMACR_DCP1_XFR_SIZE 0 Descriptor 1 transfer size in bytes.
Defines number of bytes to be transferred in a descriptor 1
transfer.

All zeroes in this field indicate 64 KB transfers.

As all the transfers are word aligned, the 2 LSBs 1:0 are
ignored.

16 HPDMACR_DCP_VALID[1] 0 1: Indicates the descriptor 1 is valid and ready to transfer.
On completing a descriptor 1 transfer, the HPDMA controller
clears this bit.

Once the descriptor valid bit is set, descriptor fields such
as Source Address, Destination Address, Transfer Size, and
Descriptor Valid bits cannot be overwritten.

When this bit is set, HPDMA clears the status of the previous
transfer, which includes transfer complete, transfer error
interrupts, and corresponding descriptor 1 Status register.

17 HPDMACR_XFR_DIR[1] 0 Descriptor 2 data transfer direction:
0: AHB bus matrix to MSS DDR bridge

1: MSS DDR bridge to AHB bus matrix

18 HPDMACR_DCP_CLR[1] 0 When this bit is set, HPDMA clears the descriptor 1 fields.
HPDMA terminates the current transfer and resets descriptor
status and control registers.

This bit is always read back as zero.

19 HPDMACR_DCP_PAUSE[1] 0 1: HPDMA pauses Descriptor 1 transfers, does idle transfers.
0: HPDMA resumes descriptor 1 transfers from where they
have stopped.

High Performance DMA Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 237

...........continued
Bit
Number

Name Reset
Value

Description

20 HPDMACR_XFR_CMP_INT[1] 0 1: HPDMA asserts interrupt on completion of descriptor 1
transfers without error.
0: HPDMA will not generate transfer complete interrupt.

21 HPDMACR_XFR_ERR_INT[1] 0 1: HPDMA asserts transfer error interrupt on error during
descriptor 1 transfers.
0: HPDMA will not generate transfer error interrupt.

22 HPDMACR_NON_WORD_INT[1] 0 Non-word interrupt enable
1: HPDMA asserts transfer error interrupt when
non-word aligned transfer size is programmed in
HPDMACR_DCP1_XFR_SIZE and HPDMA continues the
same descriptor transfer.

0: HPDMA will not generate interrupt.

31:23 Reserved 0 Software must not rely on the value of a reserved bit. To
provide compatibility with future products, the value of a
reserved bit must be preserved across a read-modify-write
operation.

7.4.1.12 Descriptor 2 Control Register
Table 7-14. HPDMAD2CR_REG

Bit
Number

Name Reset
Value

Description

15:0 HPDMACR_DCP2_XFR_SIZE 0 Descriptor 2 transfer size in bytes.
Defines number of bytes to be transferred in a Descriptor 2
transfer.

All zeroes in this field indicate 64 KB transfers.

As all the transfers are word aligned, 2 LSBs 1:0 are
ignored.

16 HPDMACR_DCP_VALID[2] 0 1: Indicates the descriptor 2 is valid and ready to transfer.
On completing descriptor 2 transfer, the HPDMA controller
clears this bit.

Once the descriptor valid bit is set, descriptor fields such as
Source Address, Destination Address, Transfer Size, and
Descriptor Valid bits cannot be overwritten.

When this bit is set, HPDMA clears the status of
the previous transfer, which includes transfer complete,
transfer error interrupts, and corresponding descriptor 2
Status register.

17 HPDMACR_XFR_DIR[2] 0 Descriptor 2 data transfer direction.
0: AHB bus matrix to MSS DDR bridge

1: DDR bridge to AHB bus matrix

18 HPDMACR_DCP_CLR[2] 0 When this bit is set, HPDMA clears the descriptor 2 fields.
HPDMA terminates the current transfer and reset
descriptor status and control registers.

This bit is always read back as zero.

High Performance DMA Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 238

...........continued
Bit
Number

Name Reset
Value

Description

19 HPDMACR_DCP_PAUSE[2] 0 1: HPDMA pauses the descriptor 2 transfers, does idle
transfers.
0: HPDMA resumes descriptor 2 transfers from where they
have stopped.

20 HPDMACR_XFR_CMP_INT[2] 0 1: HPDMA asserts interrupt on completion of descriptor 2
transfers without error.
0: HPDMA will not generate transfer complete interrupt.

21 HPDMACR_XFR_ERR_INT[2] 0 1: HPDMA asserts transfer error interrupt on error during
descriptor 2 transfers.
0: HPDMA will not generate transfer error interrupt.

22 HPDMACR_NON_WORD_INT[2] 0 Non-word interrupt enable.
1: HPDMA asserts transfer error interrupt when
non-word aligned transfer size is programmed in
HPDMACR_DCP2_XFR_SIZE and HPDMA continues the
same descriptor transfer.

0: HPDMA will not generate interrupt.

31:23 Reserved 0 Software must not rely on the value of a reserved bit. To
provide compatibility with future products, the value of a
reserved bit must be preserved across a read-modify-write
operation.

7.4.1.13 Descriptor 3 Control Register
Table 7-15. HPDMAD3CR_REG

Bit
Number

Name Reset
Value

Description

15:0 HPDMACR_DCP3_XFR_SIZE 0 Descriptor 3 transfer size in bytes.
Defines number of bytes to be transferred in a descriptor 3
transfer.

All zeroes in this field indicates 64 KB transfers.

As all the transfers are word aligned, 2 LSBs, 1:0, are
ignored.

16 HPDMACR_DCP_VALID[3] 0 1: Indicates descriptor 3 is valid and ready to transfer.
On completing descriptor 3 transfer, the HPDMA controller
clears this bit.

Once the descriptor valid bit is set, descriptor fields such
as Source address, Destination Address, Transfer size, and
Descriptor Valid bits cannot be overwritten.

When this bit is set, HPDMA clears the status of the
previous transfer, which includes transfer complete, transfer
error interrupts, and corresponding descriptor 3 Status
register.

17 HPDMACR_XFR_DIR[3] 0 Descriptor 3 data transfer direction.
0: AHB bus matrix to MSS DDR bridge

1: MSS DDR bridge to AHB bus matrix

High Performance DMA Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 239

...........continued
Bit
Number

Name Reset
Value

Description

18 HPDMACR_DCP_CLR[3] 0 When this bit is set, HPDMA clears the descriptor 3 fields.
HPDMA terminates the current transfer and resets
descriptor status and control registers.

This bit is always read back as zero.

19 HPDMACR_DCP_PAUSE[3] 0 1: HPDMA pauses the descriptor 3 transfers, does idle
transfers.
0: HPDMA resumes the descriptor 3 transfers from where
they have stopped.

20 HPDMACR_XFR_CMP_INT[3] 0 1: HPDMA asserts interrupt on completion of descriptor 3
transfers without error.
0: HPDMA will not generate transfer complete interrupt.

21 HPDMACR_XFR_ERR_INT[3] 0 1: HPDMA asserts transfer error interrupt on error during
descriptor 3 transfers.
0: HPDMA will not generate transfer error interrupt.

22 HPDMACR_NON_WORD_INT[3] 0 Non-word interrupt enable.
1: HPDMA asserts transfer error interrupt when
non-word aligned transfer size is programmed in
HPDMACR_DCP3_XFR_SIZE and HPDMA continues the
same descriptor transfer.

0: HPDMA will not generate interrupt

31:23 Reserved 0 Software must not rely on the value of a reserved bit. To
provide compatibility with future products, the value of a
reserved bit must be preserved across a read-modify-write
operation.

7.4.1.14 Descriptor 0 Status Register
Table 7-16. HPDMAD0SR_REG

Bit
Numbe
r

Name Reset
Value

Description

0 HPDMASR_DCP_ACTIVE[0] 0 Descriptor 0 transfer in progress.
1: Descriptor 0 transfer in progress.

0: Descriptor 0 is in queue when HPDMACR_DCP_VALID[0]
bit is set in descriptor 0 Control register.

1 HPDMASR_DCP_CMPLET[0] 0 Descriptor 0 transfer complete.
1: Descriptor 0 transfer completed successfully

0: Descriptor 0 transfer not completed

This bit clears on writing ‘1’ to HPDMAICR_CLR_XFR_INT[0]
of the descriptor 0 control register.

High Performance DMA Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 240

...........continued
Bit
Numbe
r

Name Reset
Value

Description

2 HPDMASR_DCP_SERR[0] 0 Descriptor 0 source transfer error.
1: Descriptor 0 transfer error occurred at source end.

0: No error at source end during descriptor 0 transfer

This bit clears on writing ‘1’ to HPDMAICR_CLR_XFR_INT[0]
of the descriptor 0 Interrupt Clear register.

3 HPDMASR_DCP_DERR[0] 0 Descriptor 0 destination transfer error.
1: Descriptor 0 transfer error

0: No error at destination end during descriptor 0 transfer.

This bit clears on writing ‘1’ to HPDMAICR_CLR_XFR_INT[0]
of the descriptor 0 Interrupt Clear register.

31:4 Reserved 0 Software must not rely on the value of a reserved bit. To
provide compatibility with future products, the value of a
reserved bit must be preserved across a read-modify-write
operation.

7.4.1.15 Descriptor 1 Status Register
Table 7-17. HPDMAD1SR_REG

Bit
Number

Name Reset
Value

Description

0 HPDMASR_DCP_ACTIVE[1] 0 Descriptor 1 transfer is in progress.
1: Descriptor 1 transfer is in progress.

0: Descriptor 1 is in queue when HPDMACR_DCP_VALID[1]
bit is set in Descriptor 1 Control register.

1 HPDMASR_DCP_CMPLET[1] 0 Descriptor 1 transfer complete.
1: Descriptor 1 transfer completed successfully

0: Descriptor 1 transfer not completed

This bit clears on writing ‘1’ to HPDMAICR_CLR_XFR_INT[1]

of the descriptor 1 Control register.

2 HPDMASR_DCP_SERR[1] 0 Descriptor 1 source transfer error.
1: Descriptor 1 transfer error occurred at source end

0: No error at source end during descriptor 1 transfer

This bit clears on writing ‘1’ to HPDMAICR_CLR_XFR_INT[1]
of the descriptor 1 Interrupt Clear register.

3 HPDMASR_DCP_DERR[1] 0 Descriptor 1 destination transfer error.
1: Descriptor 1 transfer error

0: No error at destination end during descriptor 1 transfer

This bit clears on writing ‘1’ to HPDMAICR_CLR_XFR_INT[1]
of the descriptor 1 Interrupt Clear register.

High Performance DMA Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 241

...........continued
Bit
Number

Name Reset
Value

Description

31:4 Reserved 0 Software must not rely on the value of a reserved bit. To
provide compatibility with future products, the value of a
reserved bit must be preserved across a read-modify-write
operation.

7.4.1.16 Descriptor 2 Status Register 
Table 7-18. HPDMAD2SR_REG

Bit
Number

Name Reset
Value

Description

0 HPDMASR_DCP_ACTIVE[2] 0 Descriptor 2 transfer is in progress.
1: Descriptor 2 transfer is in progress.

0: Descriptor 2 is in queue when HPDMACR_DCP_VALID[2]
bit is set in descriptor 2 Control register.

1 HPDMASR_DCP_CMPLET[2] 0 Descriptor 2 transfer complete.
1: Descriptor 2 transfer completed successfully.

0: Descriptor 2 transfer not completed.

This bit clears on writing ‘1’ to HPDMAICR_CLR_XFR_INT[2]
of the descriptor 2 Control register.

2 HPDMASR_DCP_SERR[2] 0 Descriptor 2 source transfer error.
1: Descriptor 2 transfer error occurred at source end

0: No error at source end during descriptor 2 transfer

This bit clears on writing ‘1’ to HPDMAICR_CLR_XFR_INT[2]
of the descriptor 2 Interrupt Clear register.

3 HPDMASR_DCP_DERR[2] 0 Descriptor 2 destination transfer error.
1: Descriptor 2 transfer error

0: No error at destination end during descriptor 2 transfer

This bit clears on writing ‘1’ to HPDMAICR_CLR_XFR_INT[2]
of the descriptor 2 Interrupt Clear register.

31:4 Reserved 0 Software must not rely on the value of a reserved bit. To
provide compatibility with future products, the value of a
reserved bit must be preserved across a read-modify-write
operation.

7.4.1.17 Descriptor 3 Status Register
Table 7-19. HPDMAD3SR_REG

Bit
Number

Name Reset
Value

Description

0 HPDMASR_DCP_ACTIVE[3] 0 Descriptor 3 transfer is in progress.
1: Descriptor 3 transfer is in progress.

0: Descriptor 3 is in queue when HPDMACR_DCP_VALID[3]
bit is set in descriptor 3 Control register.

High Performance DMA Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 242

...........continued
Bit
Number

Name Reset
Value

Description

1 HPDMASR_DCP_CMPLET[3] 0 Descriptor 2 transfer complete.
1: Descriptor 3 transfer completed successfully.

0: Descriptor 3 transfer not completed.

This bit clears on writing ‘1’ to HPDMAICR_CLR_XFR_INT[3]
of the descriptor 3 Control register.

2 HPDMASR_DCP_SERR[3] 0 Descriptor 3 source transfer error.
1: Descriptor 3 transfer error occurred at source end.

0: No error at source end during descriptor 3 transfer

This bit clears on writing ‘1’ to HPDMAICR_CLR_XFR_INT[3]
of the descriptor 3 Interrupt Clear register.

3 HPDMASR_DCP_DERR[3] 0 Descriptor 3 destination transfer error.
1: Descriptor 3 transfer error

0: No error at destination end during descriptor 3 transfer

This bit clears on writing ‘1’ to HPDMAICR_CLR_XFR_INT[3]

of the descriptor 3 Interrupt Clear register

31:4 Reserved 0 Software must not rely on the value of a reserved bit. To
provide compatibility with future products, the value of a
reserved bit must be preserved across a read-modify-write
operation.

7.4.1.18 Descriptor 0 Pending Transfers Register
Table 7-20. HPDMAD0PTR_REG

Bit
Number

Name Reset
Value

Description

15:0 HPDMAPTR_D0_SRC_PNDNG 0 Descriptor 0 source pending transfers in words.
This register indicates internal transfer size counter
corresponding to source end of the descriptor 0.

At the end of the transfer, zero in this register indicates
the successful transfer, and a non-zero value indicates error
occurrence at the source during the descriptor 0 transfer.

31:16 HPDMAPTR_D0_DST_PNDNG 0 Descriptor 0 destination pending transfers in words.
This register indicates the internal transfer size counter
corresponding to the destination end of descriptor 0.

At the end of the transfer, zero in this register indicates
the successful transfer, and a non-zero value indicates error
occurrence at the destination during the descriptor 0 transfer.

High Performance DMA Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 243

7.4.1.19 Descriptor 1 Pending Transfers Register
Table 7-21. HPDMAD1PTR_REG

Bit
Number

Name Reset
Value

Description

15:0 HPDMAPTR_D1_SRC_PNDN
G

0 Descriptor 1 source pending transfers in words.
This register indicates the internal transfer size counter
corresponding to the source end of descriptor 1.

At the end of the transfer, zero in this register indicates
the successful transfer, and a non-zero value indicates error
occurrence at the source during descriptor 1 transfer.

31:16 HPDMAPTR_D1_DST_PNDNG 0 Descriptor 1 destination pending transfers in words.
This register indicates the internal transfer size counter
corresponding to the destination end of descriptor 1.

At the end of the transfer, zero in this register indicates
the successful transfer, and a non-zero value indicates error
occurrence at the destination during descriptor 1 transfer.

7.4.1.20 Descriptor 2 Pending Transfers Register
Table 7-22. HPDMAD2PTR_REG

Bit
Number

Name Reset
Value

Description

15:0 HPDMAPTR_D2_SRC_PNDNG 0 Descriptor 2 source pending transfers in words.
This register indicates the internal transfer size counter
corresponding to the source end of descriptor 2.

At the end of the transfer, zero in this register indicates the
successful transfer, and a non-zero value indicates error
occurrence at the source during descriptor 2 transfer.

31:16 HPDMAPTR_D2_DST_PNDNG 0 Descriptor 2 destination pending transfers in words.
This register indicates the internal transfer size counter
corresponding to the destination end of descriptor 2.

At the end of the transfer, zero in this register indicates the
successful transfer, and a non-zero value indicates error
occurrence at the destination during descriptor 2 transfer.

7.4.1.21 Descriptor 3 Pending Transfers Register
Table 7-23. HPDMAD3PTR_REG

Bit
Number

Name Reset
Value

Description

15:0 HPDMAPTR_D3_SRC_PNDNG 0 Descriptor 3 source pending transfers in words.
This register indicates the internal transfer size counter
corresponding to the source end of descriptor 3.

At the end of the transfer, zero in this register indicates
the successful transfer, and a non-zero value indicates error
occurrence at the source during descriptor 0 transfer.

High Performance DMA Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 244

...........continued
Bit
Number

Name Reset
Value

Description

31:16 HPDMAPTR_D3_DST_PNDNG 0 Descriptor 3 destination pending transfers in words.
This register indicates the internal transfer size counter
corresponding to the destination end of descriptor 3.

At the end of the transfer, zero in this register indicates
the successful transfer, and a non-zero value indicates error
occurrence at the destination during descriptor 3 transfer.

7.4.1.22 HPDMA Interrupt Clear Register
Table 7-24. HPDMAICR_REG

Bit
Number

Name Reset
Value

Description

0 HPDMAICR_CLR_XFR_INT[0] 0 When this bit is set, HPDMA clears the following register
bits:
Descriptor 0 Status register

HPDMASR_DCP_CMPLET[0]

HPDMASR_DCP_DERR[0]

HPDMASR_DCP_SERR[0]

HPDMA Empty Descriptor register

HPDMAEDR_DCP_NON_WORD_ERR[0]

1 HPDMAICR_CLR_XFR_INT[1] 0 When this bit is set, HPDMA clears the following register
bits:
Descriptor 1 Status register

HPDMASR_DCP_CMPLET[1]

HPDMASR_DCP_DERR[1]

HPDMASR_DCP_SERR[1]

HPDMA Empty Descriptor register

HPDMAEDR_DCP_NON_WORD_ERR[1]

2 HPDMAICR_CLR_XFR_INT[2] 0 When this bit is set, HPDMA clears the following register
bits:
Descriptor 2 Status register

HPDMASR_DCP_CMPLET[2]

HPDMASR_DCP_DERR[2]

HPDMASR_DCP_SERR[2]

HPDMA Empty Descriptor register

HPDMAEDR_DCP_NON_WORD_ERR[2]

High Performance DMA Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 245

...........continued
Bit
Number

Name Reset
Value

Description

3 HPDMAICR_CLR_XFR_INT[3] 0 When this bit is set, HPDMA clears the following register
bits:
Descriptor 3 Status register

HPDMASR_DCP_CMPLET[3]

HPDMASR_DCP_DERR[3]

HPDMASR_DCP_SERR[3]

HPDMA Empty Descriptor register

HPDMAEDR_DCP_NON_WORD_ERR[3]

4 HPDMAICR_NON_WORD_INT[0] 0 When this bit is set, HPDMA clears the
HPDMAEDR_DCP_NON_WORD_ERR[0] bit in the Empty
Descriptor register.
These bits always read back as 0.

5 HPDMAICR_NON_WORD_INT[1] 0 When this bit is set, HPDMA clears the
HPDMAEDR_DCP_NON_WORD_ERR[1] bit in the Empty
Descriptor Register.
These bits always read back as 0.

6 HPDMAICR_NON_WORD_INT[2] 0 When this bit is set, HPDMA clears the
HPDMAEDR_DCP_NON_WORD_ERR[2] bit in the Empty
Descriptor register.
These bits always read back as 0.

7 HPDMAICR_NON_WORD_INT[3] 0 When this bit is set, HPDMA clears the
HPDMAEDR_DCP_NON_WORD_ERR[3] bit in the Empty
Descriptor register.
These bits always read back as 0.

31:8 Reserved 0 Software should not rely on the value of a reserved bit.
To provide compatibility with future products, the value of
a reserved bit should be preserved across a read-modify-
write operation.

7.4.1.23 HPDMA Debug Register
Table 7-25. HPDMADR_REG

Bit
Number

Name Reset
Value

Description

0 HPDMADR_BFR_EMPTY 1 Data buffer is empty; HPDMA controller initiates idle
transfers on the destination memory end.
1: Data buffer is empty.
0: Data Buffer is not empty.

1 HPDMADR_BFR_FULL 0 Data buffer is full; HPDMA controller initiates idle
transfers on the source memory end.
1: Data buffer is full.
0: Data buffer is not full.

4:2 HPDMADR_BFR_RD_PNTR[2:0] 0 HPDMA data buffer read pointer

7:5 HPDMADR_BFR_WR_PNTR[2:0] 0 HPDMA data buffer write pointer

High Performance DMA Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 246

...........continued
Bit
Number

Name Reset
Value

Description

11:8 HPDMADR_AHM1_CST_DBG[3:0] 0 Master 1 (AHB bus matrix) current state
0001 – IDLE

0010 – WRITE

0100 – READ

1000 – WAIT

15:12 HPDMADR_AHM2_CST_DBG[3:0] 0 Master 2 (MSS DDR bridge) current state
0001 – IDLE

0010 – WRITE

0100 – READ

1000 – WAIT

18:16 HPDMADR_WBC_CST_DBG[2:0] 0 Write buffer controller current state
001 – IDLE

010 – RUN

100 – WAIT

21:19 HPDMADR_RBC_CST_DBG[2:0] 0 Read buffer controller current state
001 – IDLE

010 – RUN

100 – WAIT

25:22 HPDMADR_RRBN_CST_DBG[3:0] 0 Round robin FSM current state
0001 – D0

0010 – D1

0100 – D2

1000 – D3

27:26 HPDMADR_DMA_CST_DBG[1:0] 0 DMA controller FSM current state
01 – IDLE

10 – RUN

31:28 Reserved 0 Software must not rely on the value of a reserved bit.
To provide compatibility with future products, the value of
a reserved bit must be preserved across a read-modify-
write operation.

7.5 SYSREG Control Register
In addition to the specific HPDMA registers, the registers provided in Table 7-26 also control the behavior of the
HPDMA peripheral. For more information on each register and associated bits, see 21. System Register Block.

High Performance DMA Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 247

Table 7-26. SYSREG Control Registers

Register Name Register
Type

Flash
Write
Protect

Reset Source Description

21.5.19. Software Reset
Control Register

RW-P Bit SYSRESET_
N

Bit 17 is used for HPDMA reset
’1’ – Reset HPDMA

’0’ – Release from HPDMA reset

21.5.17. Master Weight
Configuration Register 1

RW-P Register SYSRESET_
N

Bits 4:0 define round robin weight values for
the HPDMA master.

Peripheral DMA

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 248

8. Peripheral DMA
The peripheral direct memory access (PDMA) is an AHB master associated with the AHB bus matrix, as shown in
the following figure. The PDMA allows data transfers from various MSS peripherals to memory, memory to various
peripherals, and memory to memory. The peripheral can be MSS peripheral (MMUART, CAN, SPI, and COMM_BLK)
or fabric peripheral (FIC_0 and FIC_1). The memory can be MSS memory (eNVM_0, eNVM_1, eSRAM_0, and
eSRAM_1) or fabric internal memory (LSRAM and µSRAM) or external memory connected to fabric.

The PDMA is typically used for off loading byte-intensive operations and involving peripherals from the Cortex-M3
processor. For example, the firmware could direct the PDMA to transfer the next 1,000 characters received on one of
the MMUARTs to eSRAM and notify the processor when ready.

8.1 Features
PDMA supports the following features.

• Up to 8 DMA channels
• Ping-pong mode support
• Channels priority designations
• Memory to memory DMA capable
• Interrupt capability

Figure 8-1. PDMA Interfacing with AHB Bus Matrix

AHB Bus Matrix

eSRAM_0System
Controller

Cache
Controller

S D IC

Arm® Cortex®-M3
Processor

S D I

MSS DDR
Bridge

PDMA

MS6

MM3

AHB To AHB Bridge with Address Decoder
USB OTG

HPDMA

MDDR

APB_0SYSREGTriple Speed
Ethernet MAC

FIC_0

MM4 MS4

MS2 MS3 MS0

MS5

MS1

MM5 MM6

MM7

MM8

MM2 MM1 MM0 MM9

IDC
D/S eNVM_0 eNVM_1 eSRAM_1

FIC_2 (Peripheral
Initialization) APB_1

MMUART_0

SPI_0

I2C_0

PDMA
Configuration

WATCHDOG

FIIC

TIMERx2

MMUART_1

SPI_1

I2C_1

GPIO

CAN

RTC

COMM_BLK

FIC_1

M
SS

_F
IC

M
S6

_U
SB

MS5_MAC MS5_SR MS5_APB0 MS5_FIC2 MS5_APB1

Peripheral DMA

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 249

8.2 Functional Description
This section provides the detailed description of the PDMA.

8.2.1 Architecture Overview
The PDMA controller mainly consists of the following blocks, as shown in the following figure.

• AHB and APB Interfaces
• 8-Channel DMA Controller
• Timing and Control
• Channel Arbiter

Figure 8-2. PDMA Internal Architecture

AHB Bus Matrix (10x7)

Cache
Controller

S D IC

Arm® Cortex®-M3
Processor

PDMAINTERRUPT

DMA_READY_1[1:0]

DMA_READY_0[1:0]

RxRDY
and TxRDY

RxRDY
and TxRDY

RxRDY
and TxRDY

OUTREADY
and INREADY

SPIRXAVAIL
and TxRFM

SPIRXAVAIL
and TxRFM

Microcontroller Subsystem (MSS)

PDMA

S D I

AHB To APB
Bridge

SPI_0

SPI_1

MMUART_0

COMM_BLK

CAN

MMUART_1

FIC_0

FIC_1

IDC

DS
eNVM_0

AHB
Controller

eNVM_1
AHB

Controller

eSRAM_1
AHB

Controller

eSRAM_0
AHB

Controller

AHB
Interface

Timing
and

Control

APB Interface

8 DMA
Channels

Channel
Arbiter

Peripheral DMA

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 250

8.2.1.1 AHB and APB Interfaces
As shown in the preceding figure, the PDMA has two interfaces—AHB-lite and APB. The APB interface is a 32-bit
APB slave used for configuring the PDMA. DMA operations do not occur on the APB bus interface of the PDMA. The
PDMA performs single cycle accesses on the AHB interface only and Burst mode is not supported.

8.2.1.2 8-Channel DMA Controller
The 8-channel DMA controller consists of eight instances of a single DMA channel, as shown in the preceding figure.
Each channel can be configured to perform 8-bit, 16-bit, or 32-bit data transfers from the peripheral to memory,
memory to peripheral, and memory to memory. Each DMA channel supports Ping-pong mode for continuous data
transfer. To enable and use PDMA services, the AHB bus master matrix must configure the following 32-bit registers.

• 8.4.1.3. CHANNEL_x_CONTROL Register Bit Definition (Table 8-7)
• 8.4.1.5. CHANNEL_x_BUFFER_A_SRC_ADDR Register Bit Definition (Table 8-10)
• 8.4.1.6. CHANNEL_x_BUFFER_A_DST_ADDR Register Bit Definition (Table 8-11)
• 8.4.1.7. CHANNEL_x_BUFFER_A_TRANSFER_COUNT Register Bit Definition (Table 8-12)
• 8.4.1.8. CHANNEL_x_BUFFER_B_SRC_ADDR Register Bit Definition (Table 8-13)
• 8.4.1.9. CHANNEL_x_BUFFER_B_DST_ADDR Register Bit Definition (Table 8-14)
• 8.4.1.10. CHANNEL_x_BUFFER_B_TRANSFER_COUNT Register Bit Definition (Table 8-15)

If bidirectional DMA of peripheral to memory (receive) and memory to peripheral (transmit) is desired, two channels
must be programmed appropriately. In particular, the TRANSFER_SIZE fields in both the Table 8-7 registers must
be programmed identically. The PDMA performs the correct byte lane adjustments appropriate to the address being
used on the AHB. Efficient use of memory storage is achieved in this manner, even if only performing byte or 16-bit
accesses to or from a peripheral. For example, when the PDMA is accessing peripherals, the lowest 8 or 16 bits of
the data bus are always used for 8-bit or 16-bit transfers. For 32-bit transfers, the full 32-bits are used. It is possible
to configure the data width of a transfer to be independent of the address increment. The address increment at both
ends of the DMA transfer can be different, which is required when reading from a peripheral holding register (single
address) and writing to memory incrementally (many addresses).

Sixteen possible channels are available to the PDMA, as listed below. Only eight are used simultaneously.

• MMUART_0 to any MSS memory-mapped location
• Any MSS memory-mapped location to MMUART_0
• MMUART_1 to any MSS memory-mapped location
• Any MSS memory-mapped location to MMUART_1
• SPI_0 to any MSS memory-mapped location
• Any MSS memory-mapped location to SPI_0
• SPI_1 to any MSS memory-mapped location
• Any MSS memory-mapped location to SPI_1
• FPGA fabric peripheral on FIC_0 to any MSS memory-mapped location
• Any MSS memory-mapped location to FPGA fabric peripheral on FIC_0
• CAN to any MSS memory-mapped location
• Any MSS memory-mapped location to CAN
• FPGA fabric peripheral on FIC_1 to any MSS memory-mapped location
• Any MSS memory-mapped location to FPGA fabric peripheral on FIC_1
• COMM_BLK to any MSS memory-mapped location
• Any MSS memory-mapped locations to COMM_BLK

8.2.1.2.1 Ping-Pong Mode
Ping-pong mode is a dual buffering scheme for continuous stream of operation. There are two buffers (Buffer A and
Buffer B) associated with each DMA channel for ping-pong operation. This removes the real-time constraint on the
firmware of having to service the DMA channel in real-time, which might exist if there is only one DMA buffer per
channel.

To begin a transaction, source address, destination address, and transfer size in bytes of buffer A and buffer B
are to be configured by the AHB bus matrix master (such as, Cortex-M3 firmware). The following figure shows the
sequence of operations that must be performed by firmware for ping-pong operation on a configured DMA channel.
The channel control register (Table 8-7) is configured initially before enabling ping-pong operation.

Peripheral DMA

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 251

Figure 8-3. Flow of Ping-Pong Operation on DMA Channel
Write to the following PDMA registers:

Write to
Channel_0_BUFFER_A_TRANSFER_COUNT

(DMA starts using buffer A)

Write to
Channel_0_BUFFER_B_TRANSFER_COUNT

(DMA will use a buffer B when channel0
buffer A transfer count reaches 0)

Write to
Channel_0_BUFFER_A_TRANSFER_COUNT

(DMA will use a buffer A when channel0
buffer B transfer count reaches 0)

Write to
Channel_0_BUFFER_A_TRANSFER_COUNT

(DMA will use a buffer A when channel0
buffer B transfer count reaches 0)

Write to Channel_0_BUFFER_A_SRC_ADDR
Write to Channel_0_BUFFER_A_DST_ADDR

Write to Channel_0_BUFFER_B_SRC_ADDR
Write to Channel_0_BUFFER_B_DST_ADDR

If interrupt
on the DMA

channel,
buffer A

If interrupt
on the DMA

channel,
buffer B

NO

NO

YES

YES

If Transfer
completed

NO

IDLE

YES

a. Channel_0_BUFFER_A_SRC_ADDR
b. Channel_0_BUFFER_A_DST_ADDR
c. Channel_0_BUFFER_B_SRC_ADDR
d. Channel_0_BUFFER_B_DST_ADDR

Peripheral DMA

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 252

8.2.1.3 Timing and Control
The peripheral ready signals (for example, RxRDY and TxRDY in MMUART) from the SPI, MMUART, COMM_BLK,
and CAN are directly connected to the PDMA. The ready signals from the CAN are not used and are tied to logic 1,
internally. The PDMA takes care of writing or reading the receive or transmit holding registers within each peripheral
using the APB interface.

The DMAREADY_0 and DMAREADY_1 signals correspond to the ready signals from the fabric peripheral. If the
channel is configured for peripheral DMA and the direction is from the fabric peripheral to memory, this signal
indicates that the fabric peripheral can write data to memory. If the channel is configured for peripheral DMA and the
direction is from memory to the fabric peripheral, this signal indicates that the fabric peripheral can read data from
memory. The PDMA does not support peripheral to peripheral data transfer, scatter-gather DMA, and I2C DMA.

8.2.1.4 Channel Arbiter
The channel arbiter is an arbitration algorithm used to service the channels based on the priority, as shown in Figure
8-2. By default, all channels have equal priority. To configure the PDMA channel priority, RATIO_HIGH_LOW register
must be configured by the AHB bus matrix master. The RATIOHILO field in the RATIO_HIGH_LOW register indicates
the ratio of high priority requests to low priority requests. For example, a RATIOHILO value of 3:1 means that a high
priority DMA channel has 3 DMA access opportunities for every one access of a low priority DMA channel.

When the RATIOHILO value is set to 0, both high and low priority requests are serviced in a round robin fashion.

The following table lists the valid values for RATIOHILO. All other values are reserved.

Table 8-1. RATIOHILO Field Definition

Value High:Low Ratio Comments

0 — Round robin

1 1:1 Ping-pong between high and low priority requests

3 3:1 3 high to 1 low

7 7:1 7 high to 1 low

15 15:1 15 high to 1 low

31 31:1 31 high to 1 low

63 63:1 63 high to 1 low

127 127:1 127 high to 1 low

255 255:1 255 high to 1 low

All others — Reserved

For more information on configuring the register, see 8.4. PDMA Register Map.

8.2.2 Port List
Table 8-2. Port List

Name Type Polarity Description

DMAREADY_FIC_0 Input High Main Fabric Interface: Each of these bits corresponds to a ready
signal from a soft peripheral in the FPGA fabric. If the channel is
configured for peripheral DMA and the direction is from the soft
peripheral to memory, then this signal indicates that data is available
within the soft peripheral to be read out. If the channel is configured
for peripheral DMA and the direction is to the soft peripheral from
memory, then this signal indicates that there is space within the soft
peripheral for data to be written to it. This signal is asserted high.

Peripheral DMA

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 253

...........continued
Name Type Polarity Description

DMAREADY_FIC_1 Input High Second Fabric Interface: Each of these bits corresponds to a ready
signal from a soft peripheral in the FPGA fabric. If the channel is
configured for peripheral DMA and the direction is from the soft
peripheral to memory, then this signal indicates that data is available
within the soft peripheral to be read out. If the channel is configured
for peripheral DMA and the direction is to the soft peripheral from
memory, then this signal indicates that there is space within the soft
peripheral for data to be written to it. This signal is asserted high.

8.2.3 Initialization
To initiate and setup DMA transactions, PDMA has to be initialized. The initialization process starts with a reset
sequence followed by Channel configuration and interrupt configuration.

8.2.3.1 Reset
The PDMA registers are reset on power-up. The PDMA can be reset by configuring the following:

• Bit 5 of the SOFT_RESET_CR system register.
• Bit 5 of the CHANNEL_x_CONTROL register for channel reset.

8.2.3.2 Channel Configuration
Before configuring each PDMA channel, the round robin weight is specified if needed, using the
MASTER_WEIGHT_CR register or configuring the AHB bus matrix in Libero SoC.

To configure each PDMA channel, following fields of the channel control register has to be set:

• Peripheral select - bits[26:23] of CHANNEL_x_CONTROL
• Number of wait states - bits[21:14] of CHANNEL_x_CONTROL
• Source and/or destination address increment - bits[13:10] of CHANNEL_x_CONTROL
• Channel priority - bit 9 of CHANNEL_x_CONTROL
• Interrupt enable - bit 6 of CHANNEL_x_CONTROL
• Transfer size - bits [3:2] of CHANNEL_x_CONTROL
• Direction - bit 1 of CHANNEL_x_CONTROL
• Select the data Transfer type - bit 0 of CHANNEL_x_CONTROL

8.2.3.3 Interrupt
To use PDMA interrupt to Cortex-M3, Bit 8 of INTERRUPT_ENABLE0 register (located at address 0x40006000) has
to be set. The PDMA Interrupt signal is also mapped to the dedicated interrupt signal MSS_INT_M2F[8] of the fabric
interface interrupt controller (FIIC). This is to interrupt the user logic instantiated in the FPGA.

To determine transfer complete interrupt for each channel, the BUFFER_STATUS_x register bits[1:0] has to be
monitored. The bit 7 and bit 8 of CHANNEL_x_CONTROL register are used to clear the transfer complete interrupts
of the channel.

8.2.4 Details of Operations
After initialization, the PDMA is ready to function in any one of following transfer modes:

• Peripheral to Memory Transfers/Memory to Memory Transfers
• Posted APB Writes

8.2.4.1 Peripheral to Memory Transfers/Memory to Memory Transfers
For peripheral to memory or peripheral to memory transfer, the DMA transfer starts if
BUFFER_A_TRANSFER_COUNT or BUFFER_B_TRANSFER_COUNT is non-zero.

Before the transfer, the source address (CHANNEL_x_BUFFER_A_SRC_ADDR) and destination address
(CHANNEL_x_BUFFER_B_DST_ADDR) of a channel are configured; then write to one of the transfer count registers
to begin the DMA transaction. Alternatively, firmware can also write to the control register first and turn pause on, if
needed, then turn it off later.

Peripheral DMA

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 254

If the PAUSE bit in the Table 8-7 register is set, when you write a non-zero value to
BUFFER_A_TRANSFER_COUNT or BUFFER_B_TRANSFER_COUNT, then the DMA transaction waits until
PAUSE is cleared.

If bidirectional DMA of peripheral to memory (receive) and memory to peripheral (transmit) is desired, two channels
must be programmed appropriately. In particular, the TRANSFER_SIZE fields in both the Table 8-7 registers must be
programmed identically.

Channels can be assigned to peripherals or memory arbitrarily. For example, to receive only DMA data from one of
the SPI ports, only one channel is required. In this case, the DIR bit in the CHANNEL_x_CONTROL register must be
set to 0 (peripheral to memory) and the PERIPHERAL_SEL field must be set to 4 (SPI_0 receive to memory).

8.2.4.2 Posted APB Writes
The AHB to APB bridges in the SmartFusion 2 device implement posted writes (also known as dump and run)
for write accesses to peripherals. PDMA performs a write operation to a peripheral but the data is not written
to the peripheral immediately. Therefore, the PDMA block must not start another DMA on this channel based
on the state of the ready signal from that peripheral until the write is complete. The time window involved is
variable, depending on the ratio of M3_CLK to PCLK, for each of the two peripheral buses. WRITE_ADJ in the
8.4.1.3. CHANNEL_x_CONTROL Register Bit Definition (Table 8-7) register is an 8-bit binary coded field used to
define, for each DMA channel, how long to wait (in M3_CLKs) after each DMA transfer cycle before interpreting the
ready signal for that DMA channel as representing a new request.

A suitable value for WRITE_ADJ depends on the target of the DMA transfer.

The following steps describe how to select the values:

The WRITE_ADJ value of 10 can be provided as a default value

• When the PDMA channel is configured for transfers with MSS peripherals.
• For DMA transfers with FPGA fabric implemented peripherals, making use of the DMAREADY0 or

DMAREADY1 fabric interface signals indicate that the peripheral is ready for another DMA transfer.
The WRITE_ADJ parameter can be set to zero to achieve the maximum transfer speed for memory-to-memory
transfers.

The internal latency of FPGA implemented peripherals decide the WRITE_ADJ value for fabric peripherals that
do not use the DMAREADY0 or DMAREADY1 fabric interface signals.

8.3 How to Use the PDMA
This following sections describe how to use the PDMA in an application.

8.3.1 Design Flow
The following steps are used to enable the PDMA in the application:

1. Enable PDMA by using the MSS configurator in the application, as shown in the following figure.

Peripheral DMA

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 255

Figure 8-4. Enable PDMA

2. Configure the AHB bus matrix master to provide weights to PDMA, as shown in the following figure.

Peripheral DMA

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 256

Figure 8-5. PDMA AHB Bus Master Matrix Configuration

3. To configure the PDMA to transfer data between fabric peripherals (associated on FIC_0 and FIC_1) and MSS
memories, select the PDMA configurator, as shown in the following figure.

Peripheral DMA

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 257

Figure 8-6. PDMA Transfers Data Between FIC and MSS Memory

4. The PDMA signals in top-level instance are shown in the following figure.
Figure 8-7. PDMA Signals

5. Generate the component by clicking Generate Component or by selecting SmartDesign > Generate
Component
. For more information on generating the component, see the latest SmartDesign User Guide on Libero SoC
Documentation page. The firmware driver folder and SoftConsole workspace are included into the project.
Click the highlighted Configure firmware button as shown in the following figure to find the PDMA drivers.
Figure 8-8. PDMA Driver User Guide

6. Complete the following steps:
a. Click Generate Bitstream under Program Design to complete *.fdb file generation.

Peripheral DMA

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 258

b. Double-click Export Firmware under Handoff Design for Firmware Development in the Libero SoC
design flow window to generate the SoftConsole Firmware Project. The SoftConsole folder contains
the mss_pdma firmware driver. The firmware driver, mss_pdma (mss_pdma.c and mss_pdma.h) which
provides a set of functions for controlling the MSS PDMA transfers, can also be downloaded from the
Microchip firmware catalog. The following table lists the APIs for PDMA. For more information on the
APIs, see the Smartfusion2_MSS_PDMA_Driver_UG as shown in the preceding figure.

Table 8-3. MSS PDMA APIs

Category API Description and Usage

Initialization PDMA_init() Initializes PDMA

Configuration PDMA_configure() Channel priority
Transfer size

Source and/or destination address increment

Source or destination of DMA transfer

Insert wait states

Selects the peripheral and direction

Selects the transfer type

PDMA_pause() Pauses PDMA transfer

PDMA_resume() Resumes PDMA transfer

PDMA_abort() Aborts the PDMA transfer

DMA transfer and control PDMA_start() Starts PDMA transfer

PDMA_load_next_buffer() Loads with next buffer of data

PDMA_status() Gets the status of PDMA transfer

Interrupt control functions PDMA_set_irq_handler() Register PDMA channel interrupt handler functions with
the driver

PDMA_enable_irq() Enables interrupt for Cortex®-M3 processor and channel
interrupt.

PDMA_clear_irq() Clears the Cortex-M3 processor and channel interrupts.

PDMA_disables_irq() Disables the interrupts for specified channel

7. For more information on PDMA usage, the sample projects are available and can be generated, as shown in
the following figure.

Peripheral DMA

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 259

Figure 8-9. PDMA Examples

8.3.2 PDMA Use Models
This section describes the PDMA use model.

8.3.2.1 Use Model: Peripheral to Memory or Memory to Memory
1. Enable PDMA using the MSS configurator of Libero SoC.
2. Initialize the PDMA using PDMA_init().
3. Check the status of PDMA channel using PDMA_status().
4. Clear if any interrupts are pending PDMA_clear_irq().
5. Configure the following using PDMA_configure().

– Transfer type
– Selection of the peripheral and direction (if peripheral to memory transfer is selected)
– Transfer size (data width)
– Source and destination address increment
– Channel priority
– Wait states (WRITE_ADJ)

6. Start the transfer using PDMA_start().
– Buffer A and buffer B source and destination addresses
– Transfer count in bytes

7. Enable channel interrupt and Cortex-M3 interrupt using PDMA_enable_irq().
8. Disable the interrupt for channel PDMA_disable_irq().
9. To pause the data transfers, use PDMA_pause().
10. To resume the data transfer, use PDMA_resume().
11. Check for completion of the data transfer using PDMA_status().

Peripheral DMA

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 260

Important: The MSS PDMA does not support full behavioral simulation models. For more information,
see SmartFusion2 MSS BFM Simulation User Guide.

8.4 PDMA Register Map
The following table summarizes each of the registers covered by this document. The base address is 0x40003000.

Table 8-4. SmartFusion 2 SoC FPGA PDMA Register Map

Register Name Addres
s Offset

Register
Type

Reset
Value

Description

8.4.1.1. RATIO_HIGH_LOW Register Bit Definition
(Table 8-5)

0x00 R/W 0 Ratio of high priority transfers
versus low priority transfers.

8.4.1.2. BUFFER_STATUS Register Bit Definition
(Table 8-6)

0x04 R 0 Indicates when buffers have
drained.

8.4.1.3. CHANNEL_x_CONTROL Register Bit
Definition (Table 8-7 (X=0))

0x20 R/W 0 Channel 0 Control register

8.4.1.4. CHANNEL_x_STATUS Register Bit
Definition (Table 8-9 (X=0))

0x24 R 0 Channel 0 Status register

8.4.1.5. CHANNEL_x_BUFFER_A_SRC_ADDR
Register Bit Definition (Table 8-10 (x=0))

0x28 R/W 0 Channel 0 buffer A source
address

8.4.1.6. CHANNEL_x_BUFFER_A_DST_ADDR
Register Bit Definition (Table 8-11 (x=0))

0x2C R/W 0 Channel 0 buffer A destination
address

8.4.1.7.
CHANNEL_x_BUFFER_A_TRANSFER_COUNT
Register Bit Definition (Table 8-12 (x=0))

0x30 R/W 0 Channel 0 buffer A transfer
count

8.4.1.8. CHANNEL_x_BUFFER_B_SRC_ADDR
Register Bit Definition (Table 8-13 (x=0))

0x34 R/W 0 Channel 0 buffer B source
address

8.4.1.9. CHANNEL_x_BUFFER_B_DST_ADDR
Register Bit Definition (Table 8-14 (x=0))

0x38 R/W 0 Channel 0 buffer B destination
address

8.4.1.10.
CHANNEL_x_BUFFER_B_TRANSFER_COUNT
Register Bit Definition (Table 8-15 (x=0))

0x3C R/W 0 Channel 0 buffer B transfer
count

CHANNEL_1_CONTROL 0x40 R/W 0 Channel 1 Control register

CHANNEL_1_STATUS 0x44 R 0 Channel 1 Status register

CHANNEL_1_BUFFER_A_SRC_ADDR 0x48 R/W 0 Channel 1 buffer A source
address

CHANNEL_1_BUFFER_A_DST_ADDR 0x4C R/W 0 Channel 1 buffer A destination
address

CHANNEL_1_BUFFER_A_TRANSFER_COUNT 0x50 R/W 0 Channel 1 buffer A transfer
count

CHANNEL_1_BUFFER_B_SRC_ADDR 0x54 R/W 0 Channel 1 buffer B source
address

CHANNEL_1_BUFFER_B_DST_ADDR 0x58 R/W 0 Channel 1 buffer B destination
address

Peripheral DMA

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 261

...........continued
Register Name Addres

s Offset
Register
Type

Reset
Value

Description

CHANNEL_1_BUFFER_B_TRANSFER_COUNT 0x5C R/W 0 Channel 1 buffer B transfer
count

CHANNEL_2_CONTROL 0x60 R/W 0 Channel 2 Control register

CHANNEL_2_STATUS 0x64 R 0 Channel 2 Status register

CHANNEL_2_BUFFER_A_SRC_ADDR 0x68 R/W 0 Channel 2 buffer A source
address

CHANNEL_2_BUFFER_A_DST_ADDR 0x6C R/W 0 Channel 2 buffer A destination
address

CHANNEL_2_BUFFER_A_TRANSFER_COUNT 0x70 R/W 0 Channel 2 buffer A transfer
count

CHANNEL_2_BUFFER_B_SRC_ADDR 0x74 R/W 0 Channel 2 buffer B source
address

CHANNEL_2_BUFFER_B_DST_ADDR 0x78 R/W 0 Channel 2 buffer B destination
address

CHANNEL_2_BUFFER_B_TRANSFER_COUNT 0x7C R/W 0 Channel 2 buffer B transfer
count

CHANNEL_3_CONTROL 0x80 R/W 0 Channel 3 Control register

CHANNEL_3_STATUS 0x84 R 0 Channel 3 Status register

CHANNEL_3_BUFFER_A_SRC_ADDR 0x88 R/W 0 Channel 3 buffer A source
address

CHANNEL_3_BUFFER_A_DST_ADDR 0x8C R/W 0 Channel 3 buffer A destination
address

CHANNEL_3_BUFFER_A_TRANSFER_COUNT 0x90 R/W 0 Channel 3 buffer A transfer
count

CHANNEL_3_BUFFER_B_SRC_ADDR 0x94 R/W 0 Channel 3 buffer B source
address

CHANNEL_3_BUFFER_B_DST_ADDR 0x98 R/W 0 Channel 3 buffer B destination
address

CHANNEL_3_BUFFER_B_TRANSFER_COUNT 0x9C R/W 0 Channel 3 buffer B transfer
count

CHANNEL_4_CONTROL 0xA0 R/W 0 Channel 4 Control register

CHANNEL_4_STATUS 0xA4 R 0 Channel 4 Status register

CHANNEL_4_BUFFER_A_SRC_ADDR 0xA8 R/W 0 Channel 4 buffer A source
address

CHANNEL_4_BUFFER_A_DST_ADDR 0xAC R/W 0 Channel 4 buffer A destination
address

CHANNEL_4_BUFFER_A_TRANSFER_COUNT 0xB0 R/W 0 Channel 4 buffer A transfer
count

CHANNEL_4_BUFFER_B_SRC_ADDR 0xB4 R/W 0 Channel 4 buffer B source
address

Peripheral DMA

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 262

...........continued
Register Name Addres

s Offset
Register
Type

Reset
Value

Description

CHANNEL_4_BUFFER_B_DST_ADDR 0xB8 R/W 0 Channel 4 buffer B destination
address

CHANNEL_4_BUFFER_B_TRANSFER_COUNT 0xBC R/W 0 Channel 4 buffer B transfer
count

CHANNEL_5_CONTROL 0xC0 R/W 0 Channel 5 Control register

CHANNEL_5_STATUS 0xC4 R 0 Channel 5 Status register

CHANNEL_5_BUFFER_A_SRC_ADDR 0xC8 R/W 0 Channel 5 buffer A source
address

CHANNEL_5_BUFFER_A_DST_ADDR 0xCC R/W 0 Channel 5 buffer A destination
address

CHANNEL_5_BUFFER_A_TRANSFER_COUNT 0xD0 R/W 0 Channel 5 buffer A transfer
count

CHANNEL_5_BUFFER_B_SRC_ADDR 0xD4 R/W 0 Channel 5 buffer B source
address

CHANNEL_5_BUFFER_B_DST_ADDR 0xD8 R/W 0 Channel 5 buffer B destination
address

CHANNEL_5_BUFFER_B_TRANSFER_COUNT 0xDC R/W 0 Channel 5 buffer B transfer
count

CHANNEL_6_CONTROL 0xE0 R/W 0 Channel 6 Control register

CHANNEL_6_STATUS 0xE4 R 0 Channel 6 Status register

CHANNEL_6_BUFFER_A_SRC_ADDR 0xE8 R/W 0 Channel 6 buffer A source
address

CHANNEL_6_BUFFER_A_DST_ADDR 0xEC R/W 0 Channel 6 buffer A destination
address

CHANNEL_6_BUFFER_A_TRANSFER_COUNT 0xF0 R/W 0 Channel 6 buffer A transfer
count

CHANNEL_6_BUFFER_B_SRC_ADDR 0xF4 R/W 0 Channel 6 buffer B source
address

CHANNEL_6_BUFFER_B_DST_ADDR 0xF8 R/W 0 Channel 6 buffer B destination
address

CHANNEL_6_BUFFER_B_TRANSFER_COUNT 0xFC R/W 0 Channel 6 buffer B transfer
count

CHANNEL_7_CONTROL 0x100 R/W 0 Channel 7 Control register

CHANNEL_7_STATUS 0x104 R 0 Channel 7 Status register

CHANNEL_7_BUFFER_A_SRC_ADDR 0x108 R/W 0 Channel 7 buffer A source
address

CHANNEL_7_BUFFER_A_DST_ADDR 0x10C R/W 0 Channel 7 buffer A destination
address

CHANNEL_7_BUFFER_A_TRANSFER_COUNT 0x110 R/W 0 Channel 7 buffer A transfer
count

Peripheral DMA

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 263

...........continued
Register Name Addres

s Offset
Register
Type

Reset
Value

Description

CHANNEL_7_BUFFER_B_SRC_ADDR 0x114 R/W 0 Channel 7 buffer B source
address

CHANNEL_7_BUFFER_B_DST_ADDR 0x118 R/W 0 Channel 7 buffer B destination
address

CHANNEL_7_BUFFER_B_TRANSFER_COUNT 0x11C R/W 0 Channel 7 buffer B transfer
count

8.4.1 PDMA Configuration Register Bit Definitions
The following registers are present in the PDMA engine:

8.4.1.1 RATIO_HIGH_LOW Register Bit Definition
Table 8-5. Ratio_HIGH_LOW

Bit
Number

Name Reset Value Description

[31:8] Reserved 0 Software must not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit must be
preserved across a read-modify-write operation.

[0:7] RATIOHIL
O

0 This field indicates the ratio of high priority to low priority for DMA access
opportunities. This register gives the number of DMA opportunities
provided by the channel arbiter to high priority channels for every one
opportunity provided to a low priority channel. Only certain values are
allowed, as shown in Table 8-1.

8.4.1.2 BUFFER_STATUS Register Bit Definition
Table 8-6. BUFFER_STATUS

Bit
Number

Name Reset Value Description

[31:16] Reserved 0 Software must not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit must be
preserved across a read-modify-write operation.

15 CH7BUFB 0 If CH_COMP_B for channel 7 is set and if BUF_B_SEL for channel 7 is
clear, this bit is asserted.

14 CH7BUFA 0 If CH_COMP_A for channel 7 is set and if BUF_A_SEL for channel 7 is
clear, this bit is asserted.

13 CH6BUFB 0 If CH_COMP_B for channel 6 is set and if BUF_B_SEL for channel 6 is
clear, this bit is asserted.

12 CH6BUFA 0 If CH_COMP_A for channel 6 is set and if BUF_A_SEL for channel 6 is
clear, this bit is asserted.

11 CH5BUFB 0 If CH_COMP_B for channel 5 is set and if BUF_B_SEL for channel 5 is
clear, this bit is asserted.

10 CH5BUFA 0 If CH_COMP_A for channel 5 is set and if BUF_A_SEL for channel 5 is
clear, this bit is asserted.

9 CH4BUFB 0 If CH_COMP_B for channel 4 is set and if BUF_B_SEL for channel 4 is
clear, this bit is asserted.

Peripheral DMA

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 264

...........continued
Bit
Number

Name Reset Value Description

8 CH4BUFA 0 If CH_COMP_A for channel 4 is set and if BUF_A_SEL for channel 4 is
clear, this bit is asserted.

7 CH3BUFB 0 If CH_COMP_B for channel 3 is set and if BUF_B_SEL for channel 3 is
clear, this bit is asserted.

6 CH3BUFA 0 If CH_COMP_A for channel 3 is set and if BUF_A_SEL for channel 3 is
clear, this bit is asserted.

5 CH2BUFB 0 If CH_COMP_B for channel 2 is set and if BUF_B_SEL for channel 2 is
clear, this bit is asserted.

4 CH2BUFA 0 If CH_COMP_A for channel 2 is set and if BUF_A_SEL for channel 2 is
clear, this bit is asserted.

3 CH1BUFB 0 If CH_COMP_B for channel 1 is set and if BUF_B_SEL for channel 1 is
clear, this bit is asserted.

2 CH1BUFA 0 If CH_COMP_A for channel 1 is set and if BUF_A_SEL for channel 1 is
clear, this bit is asserted.

1 CH0BUFB 0 If CH_COMP_B for channel 0 is set and if BUF_B_SEL for channel 0 is
clear, this bit is asserted.

0 CH0BUFA 0 If CH_COMP_A for channel 0 is set and if BUF_A_SEL for channel 0 is
clear, this bit is asserted.

8.4.1.3 CHANNEL_x_CONTROL Register Bit Definition
Table 8-7. CHANNEL_x_CONTROL

Bit
Number

Name Reset
Value

Description

[31:27] Reserved 0 Software must not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit must
be preserved across a read-modify-write operation.

[26:23] PERIPHERAL_SE
L

0 Selects the peripheral assigned to this channel. See Table 8-8.

22 Reserved 0 Reserved

[21:14] WRITE_ADJ 0 This field contains a binary value, indicating the number of
M3_CLK periods which the PDMA must wait after completion of
a read or write access to a peripheral before evaluating the out-of-
band status signals from that peripheral for another transfer. This
is typically used to ensure that a posted write has fully completed
to the peripheral in cases where the peripheral is running at a
lower clock frequency than the PDMA. However, it may also be
used to allow the PDMA to take account of internal latencies in the
peripheral, where the ready status of a FIFO may not be available
for a number of clock ticks after a read or write, due to internal
synchronization delays, for example, within the peripheral. This
applies particularly in the case of user-designed peripherals in the
FPGA fabric.

Peripheral DMA

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 265

...........continued
Bit
Number

Name Reset
Value

Description

[13:12] DEST_ADDR_INC 00 This field controls the address increment at the destination end of
the DMA transfer. The values indicate:
00: 0 bytes

01: 1 byte

10: 2 bytes

11: 4 bytes

[11:10] SRC_ADDR_INC 00 This field controls the address increment at the source end of the
DMA transfer. The values indicate:
00: 0 bytes

01: 1 byte

10: 2 bytes

11: 4 bytes

9 HI_PRIORITY 0 When asserted, this channel is treated as high priority by the
arbitration state machine.

8 CLR_COMP_B 0 When asserted, clears the CH_COMP_B bit in the channel status
register and the buffer status register for this buffer in this
channel. This causes PDMAINTERRUPT to negate if not being
held asserted by another channel. This bit always reads back as
zero.

7 CLR_COMP_A 0 When asserted, clears the CH_COMP_A bit in the channel status
register and the buffer status register for this buffer in this
channel. This causes PDMAINTERRUPT to negate if not being
held asserted by another channel. This bit always reads back as
zero.

6 INTEN 0 When asserted, a DMA completion on this channel causes
PDMAINTERRUPT to assert.

5 RESET 0 When asserted, resets this channel. Always reads back as zero.

4 PAUSE 0 When asserted, pauses the transfers for this channel.

[3:2] TRANSFER_SIZE 00 This field determines the data width of each DMA transfer cycle for
this DMA channel. The allowed values are:
00: Byte (8 bits)

01: Halfword (16 bits)

10: Word (32 bits)

11: Reserved

1 DIR 0 If PERIPHERAL_DMA = 1, then this bit is valid. If so, then the
values of this bit indicate:
0: Peripheral to memory

1: Memory to peripheral

Peripheral DMA

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 266

...........continued
Bit
Number

Name Reset
Value

Description

0 PERIPHERAL_DM
A

0 0: Channel is configured for memory to memory DMA.
1: Channel is configured for peripheral DMA. Based on the value
of DIR, the peripheral ready signal associated with this DMA
channel is interpreted as initiating transfers either from memory
to the peripheral or vice-versa.

The following table gives the PERIPHERAL_SEL bits description.

Table 8-8. PERIPHERAL_SEL

Bit 26 Bit 25 Bit 24 Bit 23 Function

0 0 0 0 From UART_0 receive to any MSS memory-mapped location.

0 0 0 1 From any MSS memory-mapped location to UART_0 transmit.

0 0 1 0 From UART_1 receive to any MSS memory-mapped location.

0 0 1 1 From any MSS memory-mapped location to UART_1 transmit.

0 1 0 0 From SPI_0 receive to any MSS memory-mapped location.

0 1 0 1 From any MSS memory-mapped location to SPI_0 transmit.

0 1 1 0 From SPI_1 receive to any MSS memory-mapped location.

0 1 1 1 From any MSS memory-mapped location to SPI_1 transmit.

1 0 0 0 To/from FPGA fabric peripheral on FIC_0 interface (DMAREADY_0[1]).

1 0 0 1 To/from FPGA fabric peripheral on FIC_0 interface (DMAREADY_0[0]).

1 0 1 0 From any MSS memory-mapped location to CAN.

1 0 1 1 From CAN to any MSS memory-mapped location.

1 1 0 0 To/from FPGA fabric peripheral on FIC_1 interface (DMAREADY_1[1]).

1 1 0 1 To/from FPGA fabric peripheral on FIC_1 interface (DMAREADY_1[0]).

1 1 1 0 From COMM_BLK receive to any MSS memory-mapped location.

1 1 1 1 From any MSS memory-mapped location to COMM_BLK transmit.

8.4.1.4 CHANNEL_x_STATUS Register Bit Definition
Table 8-9. CHANNEL_x_STATUS

Bit
Number

Name Reset
Value

Description

[31:3] Reserved 0 Software must not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit must be
preserved across a read-modify-write operation.

2 BUF_SEL 0 0: Buffer A is used
1: Buffer B is used

1 CH_COMP_B 0 Asserts when this channel completes its DMA. Cleared by writing
to CLR_COMP_B, bit 8 in CHANNEL_x_CONTROL register for
this channel. If INTEN is set for this channel, the assertion of
CH_COMP_B causes PDMAINTERRUPT to assert.

Peripheral DMA

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 267

...........continued
Bit
Number

Name Reset
Value

Description

0 CH_COMP_A 0 Asserts when this channel completes its DMA. Cleared by writing
to CLR_COMP_A, bit 8 in CHANNEL_x_CONTROL register for
this channel. If INTEN is set for this channel, the assertion of
CH_COMP_A causes PDMAINTERRUPT to assert.

8.4.1.5 CHANNEL_x_BUFFER_A_SRC_ADDR Register Bit Definition
Table 8-10. CHANNEL_x_BUFFER_A_SRC_ADDR

Bit
Number

Name Reset
Value

Description

[31:0] BUF_A_SRC 0 Start address from which data is to be read during the next
DMA transfer cycle. If PERIPHERAL_DMA = 1 and DIR = 0, this
value is not incremented from one DMA transfer cycle to the next.
Otherwise, it is always incremented by an amount corresponding to
the TRANSFER_SIZE for this channel.

8.4.1.6 CHANNEL_x_BUFFER_A_DST_ADDR Register Bit Definition
Table 8-11. CHANNEL_x_BUFFER_A_DST_ADDR

Bit
Number

Name Reset
Value

Description

[31:0] BUF_A_DST 0 Start address from which data is to be written during the next
DMA transfer cycle. If PERIPHERAL_DMA = 1 and DIR = 1, this
value is not incremented from one DMA transfer cycle to the next.
Otherwise, it is always incremented by an amount corresponding to
the TRANSFER_SIZE for this channel.

8.4.1.7 CHANNEL_x_BUFFER_A_TRANSFER_COUNT Register Bit Definition
Table 8-12. CHANNEL_x_BUFFER_A_TRANSFER_COUNT

Bit
Number

Name Reset
Value

Description

[31:16] Reserved 0 Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

[15:0] BUF_A_COUN
T

0 Number of remaining transfers to be completed between source and
destination for buffer A for this channel. This field is decremented after
every DMA transfer cycle.
Writing a non-zero value to this register causes the DMA to start. This
must be the last register written by firmware when setting up a DMA
transfer.

Peripheral DMA

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 268

8.4.1.8 CHANNEL_x_BUFFER_B_SRC_ADDR Register Bit Definition
Table 8-13. CHANNEL_x_BUFFER_B_SRC_ADDR

Bit
Number

Name Reset
Value

Description

[31:0] BUF_B_SRC 0 Start address from which data is to be read during the next
DMA transfer cycle. If PERIPHERAL_DMA = 1 and DIR = 0, this
value is not incremented from one DMA transfer cycle to the next.
Otherwise, it is always incremented by an amount corresponding to
the TRANSFER_SIZE for this channel.

8.4.1.9 CHANNEL_x_BUFFER_B_DST_ADDR Register Bit Definition
Table 8-14. CHANNEL_x_BUFFER_B_DST_ADDR

Bit
Number

Name Reset
Value

Description

[31:0] BUF_B_DST 0 Start address from which data is to be written during the next
DMA transfer cycle. If PERIPHERAL_DMA = 1 and DIR = 1, this
value is not incremented from one DMA transfer cycle to the next.
Otherwise, it is always incremented by an amount corresponding to
the TRANSFER_SIZE for this channel.

8.4.1.10 CHANNEL_x_BUFFER_B_TRANSFER_COUNT Register Bit Definition
Table 8-15. CHANNEL_x_BUFFER_B_TRANSFER_COUNT

Bit
Number

Name Reset
Value

Description

[31:16] Reserved 0 Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

[15:0] BUF_B_COUN
T

0 Number of remaining transfers to be completed between source and
destination for buffer B for this channel. This field is decremented after
every DMA transfer cycle.
Writing a non-zero value to this register causes the DMA to start. This
must be the last register to be written by firmware when setting up a
DMA transfer.

8.5 SYSREG Control Registers
In addition to the specific PDMA registers found in Table 8-4, the registers found in the following table also control
the behavior of the PDMA peripheral. These registers are described in 21. System Register Block and are listed in
the following table for convenience. For a detailed description of each register and associated bits, see 8. Peripheral
DMA.

Table 8-16. SYSREG Control Registers

Register Name Register
Type

Flash Write
Protect

Reset
Source

Description

21.5.19. Software Reset
Control Register

RW-P Bit SYSRESET_
N

Soft reset control

21.5.17. Master Weight
Configuration Register 1

RW-P Register SYSRESET_
N

Configures weighted round robin master
arbitration scheme for masters.

Universal Serial Bus On-The-Go Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 269

9. Universal Serial Bus On-The-Go Controller
Universal serial bus (USB) is an industry standard that defines cables, connectors, and serial communication protocol
used in a bus for connection, communications, and power supply between electronic devices. SmartFusion 2
SoC FPGA device contains a USB On-The-Go (OTG) controller as part of the Microcontroller Subsystem (MSS).
SmartFusion 2 USB OTG controller provides a mechanism for the USB communication between the SmartFusion 2
devices and external USB host/USB device/USB OTG protocol compliant devices.

9.1 Features
• Operates as a USB host in point-to-point or multi-point communication with other USB devices
• Operates as a USB peripheral with other USB hosts
• Compliant with the USB 2.0 standard and includes OTG supplement
• Supports USB 2.0 speeds:

– High speed (480 Mbps)
– Full speed (12 Mbps)

• Supports session request protocol (SRP) and host negotiation protocol (HNP)
• Supports suspend and resume signaling
• Supports multipoint capabilities
• Supports four direct memory access (DMA) channels for data transfers
• Support for high bandwidth isochronous (ISO) pipe enabled endpoints
• Hardware selectable option for 8-bit/4-bit low pin interface (LPI)
• Supports the following two hardware interfaces to external USB physical layer (PHY):

– UTMI+ Level 3 transceiver interface with fabric
– ULPI link interface direct to inputs/outputs (I/Os)

• Soft connect/disconnect
• Configurable for up to 5 transmit endpoints (TX EP) and up to 5 receive endpoints (RX EP), including control

endpoint (EP0)
• Offers dynamic allocation of endpoints, to maximize the number of devices supported
• Internal memory of 8 KB with support for dynamic allocation to each end point
• Performs all USB 2.0 transaction scheduling in hardware
• Supports link power management
• Single Error Correction and Dual Error Detection (SECDED) protection on internal USB memory with the

following features:
– Generates interrupts on 1-bit or 2-bit errors; these interrupts can be masked
– Corrects 1-bit errors
– Counts the number of 1-bit and 2-bit errors

For more information on USB 2.0 and OTG protocol specifications, refer to the following web pages:

• www.usb.org/developers/docs/
• www.usb.org/developers/onthego/

The following figure shows details of MSS. As shown in the figure, USB OTG controller can function as an AHB
master for DMA data transfers and as an AHB slave for configuring the USB OTG controller from the masters Arm
Cortex -M3 processor or from the FPGA fabric logic.

The SmartFusion 2 USB OTG controller can function as:

• A high speed or a full speed peripheral USB device attached to a conventional USB host (such as, a PC)
• A point-to-point or multi-point USB host
• An OTG device that can dynamically switch roles from the host and the device

In all cases (USB host, USB device, or USB OTG), SmartFusion 2 USB OTG supports control, bulk, ISO, and
interrupt transactions in all 3 modes.

Universal Serial Bus On-The-Go Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 270

Figure 9-1. MSS Showing a USB OTG Controller

9.2 Functional Description
This section provides a detailed description of the USB OTG controller.

9.2.1 Architecture Overview
The following block diagram highlights the main blocks in the USB OTG controller. The USB OTG controller is
interfaced through the advanced high-performance bus (AHB) matrix in the MSS. The SmartFusion 2 USB OTG
provides two interfaces (ULPI and UTMI) to connect to the external PHY. Following are the main component blocks in
the USB OTG controller:

• AHB Master and Slave Interfaces
• CPU Interface
• Endpoints (EP) Control Logic and RAM Control Logic
• Packet Encoding, Decoding, and CRC Block
• UTM Synchronization
• PHY Interfaces

Universal Serial Bus On-The-Go Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 271

Figure 9-2. USB OTG Controller in SmartFusion 2

UTM
Synchro
nization

Endpoint and
RAM Control

SmartFusion® 2 USB OTG Controller

AHB Slave Interface

Interrupts
Mux

/
De

Mux
PHY
inter-
face

Packet
Encode/
Decode

DMA
Controller

CPU
Interface

AHB Master Interface

UTMI Interface
through FPGA Fabric

ULPI Interface
through MSS

9.2.1.1 AHB Master and Slave Interfaces
The USB OTG controller functions as both AHB master and AHB slave on the AHB bus matrix. For more information,
see 6. AHB Bus Matrix. The AHB master interface is used by the DMA engine, which is built into the USB controller,
for data transfer between memory in the USB controller and the system memory. The AHB slave interface is used by
other masters, such as the Cortex-M3 processor or Fabric masters in the FPGA fabric, to configure registers in the
USB controller. The address map for the USB controller is 0x40043000-0x40043FFF.

9.2.1.2 CPU Interface
USB OTG controller sends interrupts to the Cortex-M3 processor using the CPU interface. The SmartFusion 2 USB
OTG controller sends interrupts for the following events:

• When packets are transmitted or received
• When the USB OTG controller enters Suspend mode
• When USB OTG resumes from Suspend mode

The CPU interface block contains the common configuration registers and the interrupt control logic for configuring
the OTG controller.

9.2.1.3 Endpoints (EP) Control Logic and RAM Control Logic
These two blocks constitute buffer management for the data buffers in Host mode and in Device mode. This block
manages end point buffers and their properties, called pipes, which are defined by control, bulk, interrupt and
ISO data transfers. Data buffers in device mode (endpoints) and in host mode are supported by the SECDED
block, which automatically takes care of single bit error correction and dual bit error detection. This SECDED block
maintains the counters for the number of single bit corrections made and the number of detections of dual bit errors.
The SECDED block is provided with interrupt generation logic. If enabled, this block will generate the corresponding
interrupts to the Cortex-M3 processor in SmartFusion 2.

Universal Serial Bus On-The-Go Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 272

9.2.1.4 Packet Encoding, Decoding, and CRC Block
This block generates the CRC for packets to be transmitted and checks the CRC on received packets. This block
generates the headers for the packets to be transmitted and decodes the headers on received packets. There is a
CRC 16-bit for the data packets and a 5-bit CRC for control and status packets.

9.2.1.5 UTM Synchronization
The role of the UTM synchronize block is to synchronize between the transceiver macrocell 60 MHz clock domain
and the SmartFusion 2 USB OTG controller's system clock. This allows the rest of the USB OTG controller to
run at the desired system clock. This block also performs the high speed detection handshaking and handles
the host negotiation protocol (HNP) and the session request protocol of the OTG specification in point-to-point
communications with another USB OTG device.

9.2.1.6 PHY Interfaces
The USB controller supports both universal transceiver macrocell interface plus (UTMI+) and universal low pin count
interface (ULPI) at the link side. For ULPI interface I/Os are routed through the MSS onto multi standard I/Os
(MSIOs) and for UTMI, I/Os are routed through the FPGA fabric. The built-in multiplexer (MUX) and de-multiplexer
(DeMUX) logic allows the selection of UTMI or ULPI through the Libero SoC software.

Important: The SmartFusion 2 devices support OTG PHY but do not support the TI NON-OTG PHY.

9.2.2 USB OTG Controller Interface Signals
This section describes the ULPI and UTMI+ fabric interfaces.

9.2.2.1 ULPI (UTMI+ Low Pin Interface) I/O Interface
The SmartFusion 2 USB OTG controller communicates with the external ULPI PHY device using this interface. As
shown in the following figure, the ULPI interface is routed through the MSIO ports. These I/Os are dedicated to
the USB ULPI interface only. When the USB OTG controller is selected during configuration, these I/Os are not
multiplexed with other peripherals.

For interfacing with ULPI PHY, the USB MSIO signals are connected to four separate mutually exclusive I/O groups:
USBA, USBB, USBC, and USBD I/O groups. In M2S050 devices, only the USBD I/O group is available; whereas in
the M2S025 and M2S010, only the USBA, USBB, and USBC I/O groups are available.

Table 9-1. ULPI Interface Signals at SmartFusion 2 External I/Os

Signal Name Direction Description

ULPI_DATA[7:0] In/Out ULPI input data bus to ULPI link wrapper

ULPI_DIR In Controls the direction of the data bus. The PHY must drive this signal high when it has
the data to be transferred. Otherwise, the PHY must drive this signal low.

ULPI_STP Out Data end control, driven high for one XCLK cycle to indicate the end of a transmit
operation. It can also be used to stop the current receive operation.
Asynchronous path from DIR.

ULPI_NXT In Data control, driven high by the PHY to throttle all data types except the interrupt data
and the results of register reads.

ULPI_XCLK In Transceiver macrocell clock; 60 MHz

Universal Serial Bus On-The-Go Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 273

Figure 9-3. Block Diagram for Connections between USB Controller and ULPI PHY through MSS

Fabric

MSS

MUX/
DeMUX

ULPI UTMI+ Level 3 / ULPIController
Logic

USB Controller

MSIO

SmartFusion® 2

ULPI_DATA (7:0) ULPI
PHY

ULPI_CLK
ULPI_DIR

ULPI_STP

ULPI_NXT

The ULPI interface is connected to the I/Os of the device up to four separate sets of I/Os. The function of each I/O in
these sets is shared with another MSS function. These I/O groups allow flexibility to the user in deciding which MSS
peripherals to connect to the I/Os. The four USB I/O groups are referred to as USB_A, USB_B, USB_C and USB_D.
User can try each USB I/O group and see which pins cause conflict and iterate through different assignments with the
conflicting peripherals and GPIO. The availability of these USB I/O groups are device-dependent, as specified in the
following table.

Table 9-2. USB IO Group Availability

Device USB_A USB_B USB_C USB_D

M2S005 No Yes No No

M2S010 Yes Yes Yes No

M2S025 Yes Yes Yes No

M2S050 / 060 / 090 /
150

Yes Yes Yes Yes

For more information on USB I/O group, see PPAT documents available at SmartFusion 2 Documentation (PPAT
documents are grouped under the section Pinout/Packaging in the above mentioned site).

9.2.2.2 UTMI+ (USB 2.0 Transceiver Macrocell Interface+) Interface
This is the external interface connecting the SmartFusion 2 USB OTG controller to an off-chip UTMI PHY device. For
UTMI interface, all the interface signals are routed through the FPGA fabric on to the MSIOs.

Table 9-3. UTMI+Interface Signals at Fabric Interface in SmartFusion 2 Device

Signal Name Direction Description

UTMI_SUSPENDM Out Indicates asynchronous Suspend mode (derived from signals from both
CLK and XCLK flip-flops). When enabled through bit 0 of the Power
register, goes low when the device is in Suspend mode. Otherwise high
(intended to drive a UTMI PHY).

Universal Serial Bus On-The-Go Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 274

...........continued
Signal Name Direction Description

UTMI_LINESTATE[1:0] In Shows the current state of single-ended receivers. LINESTATE[0] reflects
the state of D+; LINESTATE[1] reflects state of D-.
00: SE0
01: J State
10: K State
11: SE1

UTMI_OPMODE[1:0] Out Selects Operating mode
00: Normal operation
01: Non-driving
10: Bit stuffing and NRZI encoding disabled
11: Reserved

UTMI_XDATAIN[7:0] In Received data

UTMI_XDATAOUT[7:0] Out Data to be transmitted

UTMI_TXVALID Out Transmit data valid. Indicates that valid data has been transmitted.

UTMI_TXREADY In Transmit data ready. Indicates that the transmitter requires data.

UTMI_RXVALID In Receive data valid. Indicates that valid data has been received.

UTMI_RXACTIVE In Indicates that a valid packet is being received.

UTMI_RXERROR In Indicates that the received packet is about to be aborted due to an error.

UTMI_XCVRSEL[1:0] Out Transceiver select
• 00: HS transceiver
• 01: FS transceiver
• 10: LS transceiver
• 11: FS transceiver, LS packet

UTMI_TERMSEL Out Termination select.
• When 0, high speed termination is enabled
• when 1, full speed termination is enabled

May be used to switch the pull-up resistor on D+

UTMI_VBUSVALID In Compares VBus to selected VBus valid threshold (required to be between
4.4V and 4.75V)

• 1: Above the VBus valid threshold
• 0: Below the VBus valid threshold

UTMI_AVALID In Compares VBus to session valid threshold for a B device (required to be
between 0.8V and 2V)

• 1: Above the session valid threshold
• 0: Below the session valid threshold

UTMI_SESSEND In Compares VBus to session end threshold (required to be between 0.2 V
and 0.8 V)

• 0: Above the session end threshold
• 1: Below the session end threshold

Universal Serial Bus On-The-Go Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 275

...........continued
Signal Name Direction Description

UTMI_SESSEND In Compares VBus to session end threshold (required to be between 0.2V
and 0.8V)

• 0: Above the session end threshold
• 1: Below the session end threshold

UTMI_DRVVBUS Out Enables VBus power (used when the USB controller operates as an A
device)

UTMI_CHRGVBUS Out Charges VBus (used during session request when the USB controller
operates as a B device)

UTMI_DISCHRGVBUS Out Discharges VBus (used by B devices to ensure that the VBus is low
enough before starting a session request protocol (SRP))

UTMI_HOSTDISCON In Host mode only; must be asserted when a high speed disconnect occurs
(in accordance with the UTMI+ specification).
Full/low speed connections are monitored through the LINESTATE signal.

UTMI_DPPULLDOWN Out Enables a pull-down resistor within the transceiver on the D+ line
• Low when the USB controller is operating as a peripheral
• High when USB controller is operating as a host

UTMI_DMPULLDOWN Out Enables a pull-down resistor within the transceiver on the D– line.
Needs to be high, when the USB controller is used for point-to-point
communications.

UTMI_IDDIG In Indicates USB controller connector type. High = B-type, Low = A-type.

UTMI_IDPULLUP Out Enables for IDDIG signal generation

UTMI_VSTATUS[7:0] In PHY status data; 8-bit wide as per UTMI+ specifications

UTMI_VCONTROL[3:0] Out PHY control data; 8-bit wide as per UTMI+ specifications

UTMI_VCONTROLLOADM Out Active-low signal; asserted when new control information is required to be
read – if implemented

UTMI_RXVALIDH In Tied permanently low at the fabric interface

UTMI+Level3 signals are routed through the FPGA fabric onto MSIOs.

Universal Serial Bus On-The-Go Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 276

Figure 9-4. Block Diagram for Connections Between USB Controller and UTMI PHY through FPGA Fabric

Fabric

MSS

MUX/
DeMUX

UTMI

UTMI+ Level 3 / ULPIController
Logic

USB Controller

MSIO

SmartFusion® 2

/26

UTMI
PHY

Important: The FPGA fabric design must implement a 'AND' logic between UTMI_TXVALID and
UTMI_TXREADY for proper data transmission.

For more information on USB 2.0 PHY interfaces refer to the following links:

• www.ulpi.org
• www.ulpi.org/ulpi_whitepaper_v2.pdf
• www.ulpi.org/documents.html
• www.ulpi.org/utmiplus_whitepaper.pdf
• www.usb.org/developers

9.2.3 USB OTG Controller Operations
This section describes the following:

• Modes of USB OTG Controller Operation
• USB OTG Controller: Reset Operations
• USB OTG Controller: Suspend/Resume Operations
• USB OTG Controller: Connect/Disconnect Operations

9.2.3.1 Modes of USB OTG Controller Operation
The USB OTG Controller in SmartFusion 2 device can be used in the following three modes:

9.2.3.1.1 USB Host Mode
In this mode, the USB OTG controller acts in a USB host function. As the USB protocol is host driven, the USB host
is completely responsible for all the transactions in the bus. In this mode, the USB OTG controller enumerates the
external device that is connected. Based on the USB firmware, class drivers, and application code implemented in
the SmartFusion 2 device; if the connected device USB class is supported, the SmartFusion 2 USB OTG controller
exchanges the data with the connected device, as per the application requirement of the USB function.
The USB multi-point capability of USB controller is associated with a range of registers (Table 9-108). These
registers are needed to record the allocation of device functions to individual controller endpoints, and device function
characteristics such as; endpoint number, operating speed, and transaction type on an endpoint-by-endpoint basis.

Universal Serial Bus On-The-Go Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 277

Although principally associated with the use of the core as the host to a number of devices, these registers are also
required to be set when the core is used as the host for a single device.

The following figure shows the flowchart of the overall operation in the USB Host mode.

Figure 9-5. Basic USB Flow Diagram when USB Controller is in Host Mode

9.2.3.1.2 USB Device/Peripheral Mode
In this mode, the USB OTG controller acts as a USB device, and device functionality are defined by the standard-
class- specific or vendor- specific- class firmware and application implementations. In this mode, the USB controller;
along with associated firmware, class drivers, and application code, responds to the USB commands sent by the
USB host that is connected.

The USB controller allows its connection to the USB bus to be controlled by the software. When the USB controller
operates in Peripheral mode, the UTMI+-compliant PHY that is used alongside the USB controller, can be switched
between normal mode and non-driving mode by setting/clearing the Soft Conn bit in Table 9-11.

When the Soft Conn bit is set to 1, the PHY is placed in its normal mode and the D+/D- lines of the USB bus are
enabled. When this feature is enabled and the Soft Conn bit is zero, the PHY is put into
non-driving mode (OPMODE[1:0] set to 01) and D+ and D- are tristated. The USB controller then appears to other
devices on the USB bus to have been disconnected.

Universal Serial Bus On-The-Go Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 278

After hardware reset, Soft Conn is cleared to 0. The USB controller therefore appears disconnected until the software
has set Soft Conn to 1. The application software can then choose when to set the PHY into its normal mode.
Systems with a lengthy initialization procedure may use this to ensure that initialization is completed and the system
is ready to perform enumeration before connecting to the USB.

The following figure shows the flowchart of the overall operation in the USB Device mode.

Figure 9-6. Basic USB Flow Diagram when USB Controller is in USB Device/Peripheral Mode

START

STOP

Initialization
1. Disable/initialize the Watchdog Timer
2. Configure the GPIO for keeping the PHY out of reset
3. . Register the callback functions and ISRs
4. Clear and enable the interrupts
5. . In this mode USB OTG microB receptacle on board is

connected to PHY
6. . Enable the controller in Device mode by using the soft

Connect

Wait for the host detection of this
device

Device will respond to all the
commands of the enumeration
from host:

1. Set Address
2. Sending the descriptors
3. Set the configuration etc.

Device
Connected o

host ?

ON

Class specific
and application code

execution based on the host
commands to device

START

ISR to handle the USB interrupts in
Device mode
1. Reset
2. Endpoint 0 interrupt
3. TX Endpoint interrupt
4. RX Endpoint interrupt

STOP

YES

9.2.3.1.3 USB OTG Mode (Dual Role)
In this mode, the SmartFusion 2 USB OTG controller must be configured in OTG mode by using the USB controller
register. Based on the type of the plug connected to the PHY through the USB OTG receptacle, the controller
plays a role as either the USB device or the USB host. If the plug/device with type microA is connected, the
corresponding interrupt generated to the USB controller and the firmware configures the USB OTG controller into the
USB Host mode. If the plug/device with microB is connected, the corresponding USB interrupt will be generated to
the Cortex-M3 processor and the firmware ISR will configure the USB OTG controller into the USB Device mode.

In OTG mode, whether the USB controller expects to behave as a host or as a peripheral, depends on the way the
devices are cabled together. Following list explains the USB cable, how the USB OTG controller decides the role
(device/host):

• USB Cable end types: Each USB cable has an A / microA / miniA end and a B / microB / miniB end.
• Entering into host mode: If the micro A end of the cable is plugged into the SmartFusion 2 device through the

external PHY, the USB controller will take the role of the host and go into Host mode.
• Entering into device mode: If the micro B end of the cable is plugged in, the USB controller will go instead into

Peripheral mode and Host mode bit will be set to 0.
• Changing the role which out swapping the cable ends: Where the USB controller is connected to a single device

that contains a dual-role controller, signaling can be used to switch the roles of the two devices—with no need
to switch the cable between the devices. The conditions under which the USB controller may switch between a
peripheral role and a host role are explained in the OTG specification.

The following figure shows the flowchart of the overall operation in the USB OTG (dual role) mode.

Universal Serial Bus On-The-Go Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 279

Figure 9-7. Basic USB Flow Diagram when USB Controller is in OTG Mode

9.2.3.2 USB OTG Controller: Reset Operations
This section discusses the Reset operations.

9.2.3.2.1 Peripheral Mode
When the USB controller is acting as a peripheral and a reset condition is detected on the USB, the device performs
the following actions:

1. Sets Func Addr in Table 9-10 to 0
2. Sets Selected Endpoint in Table 9-19 to 0
3. Flushes all endpoint FIFOs
4. Clears all control/status registers
5. Enables all endpoint interrupts
6. Generates a reset interrupt

If the HS Enab bit in Table 9-11 is set, the USB controller tries to negotiate for high speed operation.

Whether or not the high speed operation is selected, is indicated by the HS mode bit in POWER_REG.

When the application software driving the USB controller receives a reset interrupt, it must close any open pipes and
wait for the bus enumeration to begin.

Universal Serial Bus On-The-Go Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 280

9.2.3.2.2 Host Mode
If the reset bit in POWER_REG is set while the USB controller is in Host mode, the USB controller generates reset
signaling on the bus. If the HS Enab bit in POWER_REG is set, it tries to negotiate for a high speed operation.

The Cortex-M3 processor or fabric master must keep the reset bit set for at least 20 ms to ensure the correct
resetting of the target device.

After the Cortex-M3 processor or fabric master clears the bit, the USB controller starts the frame counter
and transaction scheduler. Whether a high speed operation is selected, is indicated by the HS mode bit of
9.3.5.2. POWER_REG Bit Definitions (Table 9-11).

9.2.3.3 USB OTG Controller: Suspend/Resume Operations
With the introduction of link power management (LPM), there are two basic methods for the USB controller to be
suspended and resumed. These two methods are demonstrated in the basic LPM transaction diagram as shown in
the following figure.

Figure 9-8. LPM State Transition Diagram

Disconnect
Power Loss
and Disable

Remote Wake
Enabled by LPM
Transaction

Resume/Remote Wake
Signaling Levels - Same as L2 to L0
Timing - LPM Specific

Resume/Remote Wake
Signaling Levels - Defined by USB v2.0
Timing - Defined by USB v2.0

ACK and Response to LPM

L1

L3

L0 L2

Reset and Enable

3 ms of Inactivity

Remote Wake
Enabled by
Set Feature

The procedure in which the controller is suspended and resumed depends on whether the controller is operating as a
device (peripheral) or as a host, and the method of suspend desired.

9.2.3.3.1 Suspend/Resume by Inactivity on the USB Bus (L0 to L2 State Transition)
Suspend/Resume when Operating as a Peripheral

• Entry into Suspend Mode: When operating as a peripheral, the USB controller monitors activity on the USB and
when no activity has occurred for 3 ms, it goes into Suspend mode. If the Suspend interrupt Table 9-17 has
been enabled, an interrupt is generated at this time. The SUSPENDM output also goes low (if enabled).
At this point, the POWERDWN signal is also asserted to indicate that the application may save power by
stopping CLK.
POWERDWN remains asserted until power is removed from the bus (indicating that the device has been
disconnected); or resume signaling; or reset signaling is detected on the bus.

• Sending Resume Signaling: When resume signaling occurs on the bus, first CLK must be restarted, if
necessary. The USB controller then automatically exits in Suspend mode. If the resume interrupt is enabled,
an interrupt is generated.

• Initiating a Remote Wake-Up: If a remote wake-up is initiated by the software while the USB controller is in
Suspend mode, it must write to Table 9-11 to set the resume bit to ‘1’.

Universal Serial Bus On-The-Go Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 281

Important: If CLK has been stopped, it must be restarted before this write can occur. The software
must leave this bit set for approximately 10 ms (minimum of 2 ms, a maximum of 15 ms) before
resetting it to 0. By this time the hub must have taken over driving and resume signaling on the USB.
Resume interrupt is not generated when the software initiates a remote wake-up.

Suspend/Resume When Operating as a Host

• Entry into Suspend mode: When operating as a host, the USB controller can be prompted to go into Suspend
mode by setting the Suspend mode bit in Table 9-11. When this bit is set, the USB controller completes the
current transaction, then stops the transaction scheduler and frame counter. No further transactions are started
and no SOF packet is generated.
If the Enable SuspendM bit in POWER_REG is set, the UTMI+ PHY goes into Low power mode; when the USB
controller goes into Suspend mode and stops XCLK.

• Sending Resume Signaling: When the application requires the USB controller to leave Suspend mode, it must
clear the Suspend mode bit and set the resume bit in the POWER_REG, and leave it set for 20 ms. while
the resume bit is high, the USB controller generates resume signaling on the bus. After 20 ms, the Cortex-M3
processor or fabric master must clear the resume bit, at which point the frame counter and transaction scheduler
are started.

• Responding to Remote Wake-Up: If resume signaling is detected from the target while the USB controller is in
Suspend mode, the UTMI+ PHY is brought out of Low power mode and restarts XCLK. The USB controller then
exits Suspend mode and automatically sets the Resume bit in POWER_REG to ‘1’ to take over generating the
resume signaling from the target. If the resume interrupt is enabled, an interrupt is generated.

9.2.3.3.2 Suspend/Resume by an LPM Transaction (L0 to L1 State Transition)
Suspend/Resume When Operating as a Peripheral

Entry into Suspend mode: When operating as a peripheral, the USB controller never initiates an LPM suspend
(transition from the L0 state to the L1 state). Rather, the USB controller only suspends at the request of the
host. However, for this to occur, the LPM feature must be enabled by setting up Table 9-117 appropriately. The
LPMEN field in LPM_CTRL_REG is used to enable the extended and LPM transactions. The LPMXMT field in
LPM_CTRL_REG is used to instruct the hardware that it is ready to suspend and to respond to the next LPM
transaction with an ACK. In this case, the USB controller responds to the next LPM transaction with an ACK, if all
other conditions are met. The response to an LPM transaction by the USB controller is summarized in the following
table.
Table 9-4. Response to LPM Transaction as Peripheral

LPMXMT LPMEN Data Pending (Data Resides in
Transmit FIFOs)

Response to the Next LPM
transaction

1'b0 00 Don't Care Timeout

1'b0 10

1'b1 00

1'b1 10

1'b0 01 Don't Care STALL

1'b1

1'b0 11 Don't Care NYET

1'b1 Yes NYET

1'b1 No ACK

For all cases shown in the preceding table in which the USB controller responds (no timeout occurs), an LPM
interrupt is generated in LPM_INTR_REG (Table 9-119).

Universal Serial Bus On-The-Go Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 282

Important: The USB controller responds with an ACK only if there is no data pending in any of the
transmit endpoint FIFOs. If there is data pending, the USB controller responds with a NYET.

Once an LPM transaction is successfully received, three events occur:

1. Table 9-116 is updated with values received in the LPM transaction. The fields in this register are as follows:
– LinkState: This field tells the USB controller what state to transition to. The only valid value for this field

is 4’h1, indicating that the core must suspend. For any other value, the USB controller responds with a
STALL, and the appropriate interrupt will be generated. However, in this case the LPM_ATTR_REG is
updated so that software can observe the non-compliant LPM packet payload. In addition, the LPMERR
interrupt set in Table 9-120 is also generated, informing software of the non-compliant LPM transaction.

– HIRD: This field let the USB controller know the minimum duration that the host drives resume signaling
on the bus. This field represents a resume duration range from 50 µs to 1200 µs. This value may be
different for subsequent LPM transactions.

– RmtWak: This is a 1-bit field indicating if the remote wake-up by the USB controller is allowed. This
bit applies to the current suspend/resume cycle only. This bit may be different for subsequent LPM
transactions. This bit must not supersede the wake-up capability that was previously negotiated on
enumeration of the USB controller.

2. The USB controller suspends 9 µs after transmitting the ACK. Resume signaling can be driven by the host or
the USB controller 50 µs after this event. During this 9 µs interval, the host may continue to transmit the LPM
transaction. The USB controller responds with an ACK in this case, regardless of the LPMXMT value in Table
9-117.

3. An interrupt is generated, informing software of the response (an ACK in this case). An ACK response is the
indication to the software that the USB controller has suspended.

Since the primary purpose of LPM is to save power, the software will read the Table 9-116 to determine the attributes
of the suspend mode. The software must make a determination based on these attributes whether additional power
savings in the system can be exploited.

Important: If the host initiates resume signaling, the USB controller is required to respond to the packet
transmissions within the time specified by HIRD + 10 µs.

• Resume Signaling Occurs on the Bus: When the host resumes the bus, it drives resume signaling for a
minimum time specified by the HIRD field in Table 9-116. The USB controller must be able to respond to traffic
within the time HIRD + 10 µs. The USB controller transitions to a normal operating state automatically and
a resume interrupt is generated in Table 9-120. However, for this to occur, the inputs CLK and XCLK must
be available. To facilitate the resume timing requirement, an additional feature, LPMNAK, is provided in Table
9-117. If LPMNAK is set to 1, all endpoints respond to any transaction (other than an LPM) with a NAK. This bit
only takes effect after the USB controller has LPM suspended. Typically, this bit is asserted when the LPMXMT
field is also asserted. Using this feature may simplify the resume timing requirement because only XCLK is
needed for the USB controller to respond (with a NAK) to traffic. The software can continue to restore the
system to normal operation while the USB controller responds to all transactions with a NAK. After the system is
completely restored, the software can then clear the LPMNAK field in LPM_CTRL_REG.

• Initiating Remote Wake-Up: If the software wants to initiate a remote wake-up while the USB controller is in
Suspend mode, it must write a 1 to the LPMRES bit in Table 9-117. This bit is self clearing. Writing a 1 causes
resume signaling to be driven on the bus for 50 µs. The host responds by driving resume signaling for 60 µs to
990 µs. 10 µs after the host stops driving resume, the USB controller transits to its normal operational state and
is ready for packet transmission. A resume interrupt is generated in Table 9-120.

Suspend/Resume When Operating as a Host

• Entry into Suspend mode: When operating as a host, the controller initiates an LPM suspend (transition from the
L0 state to the L1 state) by initiating the following LPM transaction:

a. Software sets-up the desired attributes of the Suspend mode in Table 9-116. Enables remote wake-up
and a large HIRD gives the peripheral more opportunity to conserve power.

Universal Serial Bus On-The-Go Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 283

b. All LPM interrupts must be enabled in Table 9-119.
c. Software must initiate the transaction by writing a 0x01 to Table 9-118.
d. An interrupt is generated to inform software of the response to the LPM transaction. If an ACK is

received, the controller will be suspended automatically within 8 µs. This is the indication that the
controller is suspended.

e. If the response from the device has a bit stuff error or a PID error, an LPMERR interrupt (Table 9-121)
is generated. The hardware immediately attempts the LPM transaction for two more times. The device is
not suspended for 8 µs after the initial LPM, so it will be able to respond to either of these subsequent
LPM transactions. If an LPM timeout occurs three times, the LPMNC and the LPMERR interrupts are
set (LPM_INTR_REG). At this time, software is unaware of the device state and must deduce it by other
means.

• Sending Resume Signaling: Resume signaling must be generated by the software as follows:
a. All LPM interrupts must be enabled in Table 9-119.
b. Software must write the LPMRES bit in Table 9-118. This bit is self clearing. This causes resume

signaling to be generated on the bus for the time that is currently specified in the HIRD field in Table
9-116. Hardware assumes that this value was used in the last LPM transaction that caused the Suspend
mode.

c. After HIRD + 10 µs, the controller transitions to its normal operational state and is ready for packet
transmission. A resume interrupt is generated in LPM_INTR_REG.

Important: Prior to resuming, the software must ensure that the system is completely restored from
a low- power state and that the inputs CLK and XCLK are available.

• Responding to Remote Wake-Up: If the remote wake-up feature is enabled in the LPM transaction that caused
the Suspend mode, the device may drive resume signaling on the bus. When this occurs, the device drives the
resume signaling bus for 50 µs. The controller immediately begins driving resume signaling on the bus and will
do so for 60 µs. 10 µs after completion of the resume signaling, the controller transitions to its normal operating
state and is ready for packet transmission. At this time, the resume interrupt is generated in LPM_INTR_REG.

9.2.3.4 USB OTG Controller: Connect/Disconnect Operations
The particular behavior related to connecting and disconnecting the USB controller concerns its use in Host mode or
Peripheral mode in peer-to-peer communications.

9.2.3.4.1 Host Mode
Where the USB controller is operating in Host mode, the Cortex-M3 processor or fabric master starts the session by
setting the session bit of Table 9-52. Power is then applied to VBus and the core waits for a device to be connected.
When a device is detected, a connect interrupt is generated (the Conn bit in Table 9-16, goes high). The speed of the
device that has been connected can be determined by reading Table 9-52, where the FSDev bit will be high for a high
speed/full speed device and the LSDev bit will be high for a low speed device. The Cortex-M3 processor or fabric
master should then reset the device. If both FSDev and HS Enab (Table 9-11) are set, the USB controller will try to
negotiate for high speed operation. Whether this is successful, is indicated by the HS mode bit (Table 9-11).
The Cortex-M3 processor or fabric master should keep the Reset bit set for 20 ms to ensure that the target is reset. It
can then begin device enumeration.
If the device is disconnected while a session is in progress, a disconnect interrupt is generated (the DisCon bit in
Table 9-16, goes High).

9.2.3.4.2 Peripheral Mode
Where the USB controller is operating in Peripheral mode, no interrupt is generated when the device is connected to
the host. However, a disconnect interrupt (Table 9-16) is generated when the host terminates a session.

9.3 How to Use USB OTG Controller
Microchip recommends the following flow for configuring the USB OTG controller.

1. Instantiate the SmartFusion 2 MSS component into the Libero SoC project

Universal Serial Bus On-The-Go Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 284

2. Configure (enable/disable) the SmartFusion 2 MSS components as per the application needs
using the MSS configurator

3. Configure the USB OTG controller as explained in the following sections

Important: The MSS USB does not support full behavioral simulation models. For more information, see
SmartFusion2 MSS BFM Simulation User Guide.

9.3.1 Libero Settings for USB OTG Configuration
USB OTG controller is configured using the USB macro available in the Libero SoC design software. Using the USB
macro settings options, the USB controller interface can be configured to either ULPI or UTMI interface. For external
USB PHY (ULPI or UTMI) reset, Microchip recommends to configure GPIO using the GPIO macro in the Libero SoC
design software. The following figure highlights these two mandatory blocks for the USB controller configuration in
the applications.

Figure 9-9. MSS Configurator with USB and GPIO Macros Enabled

9.3.1.1 ULPI Interface Settings
For configuring the USB OTG controller to use with the ULPI PHY, the interface option can be selected as shown
in the following figure. For interfacing the USB OTG controller with ULIP PHY, the USB MSIO signals are connected
to four separate mutually exclusive I/O groups: USBA, USBB, USBC, and USBD I/O. In the M2S050 devices, only
the USBD I/O group is available. Where in M2S025 and M2S010, only the USBA, USBB, and USBC I/O groups are
available. Based on the SmartFusion 2 device selected, the I/O groups can be selected from the USB configurator.

Universal Serial Bus On-The-Go Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 285

Figure 9-10. MSS USB Configurator with ULPI Interface Settings

9.3.1.2 UTMI Interface Settings
If UTMI PHY is in use, then Microchip recommends selecting the UTMI interface in the USB configurator, as shown in
the following figure. For interfacing the USB OTG controller with UTMI PHY, the interface signals are routed through
the FPGA fabric onto the MSIOs. There is no separate I/O grouping like the ULPI interface has, for the SmartFusion
2 device variants to use with UTMI PHY.

Universal Serial Bus On-The-Go Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 286

Figure 9-11. MSS USB Configurator with UTMI Interface Settings

9.3.1.3 External USB PHY Reset Signal Configuration
To reset the external USB PHY, Microchip recommends configuring the GPIO port. The following figure shows the
GPIO settings in the MSS GPIO configurator in the Libero SoC design software. The GPIO port settings can be set in
the I/O Editor, as shown in the following figure, to map the PIN number as per board.

Universal Serial Bus On-The-Go Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 287

Figure 9-12. MSS GPIO Configurator with GPIO Settings for External USB PHY Reset

Figure 9-13. I/O Editor Configurator with Settings for External USB PHY Reset Pin Mapping

All the above mentioned selections in the Libero SoC design software flow are mandatory for the applications using
the USB OTG controller in SmartFusion 2. Other configurations as per the complete application requirements, must
be made as well. For more information on the USB configurations using the Libero SoC design software, see
SmartFusion2 MSS USB Configuration Guide.

9.3.2 Software: Firmware, USB Class Specific Code, and Application Code
The embedded software flow for the USB applications vary based on the USB OTG controller role as: Host/Device.
The following sections describe the embedded software flow for both the USB Device mode and the USB Host mode.

Universal Serial Bus On-The-Go Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 288

USB Device mode: As per the device mode functionality, Microchip recommends that the USB Protocol descriptors
are required to be created in the low level drivers. These descriptors are sent to the USB host which the SmartFusion
2 is connected to at the time of the USB protocol enumeration processes.

The SmartFusion 2 device is connected automatically by the USB host (for example, PC), and performs the data
transfers as per the application protocol, if the following conditions are met:

• SmartFusion 2 USB OTG controller is used in USB Device mode with the USB standard class like mass
storage, human interface device (HID), communications device, and so on

• And have implemented the class driver application

If the SmartFusion 2 USB OTG controller is used as a vendor-specific application with a vendor-specific-class-driver
and an application code, then Microchip recommends implementing the USB host class drivers for the USB host (for
example, PC) that SmartFusion 2 communicates through the USB protocol.

The firmware catalog in the Libero SoC design software, as shown in the following figure, has the reference
implementations for the class drivers and application code for the USB standard mass storage, HID, and the
communications device. Microchip recommends to refer these drivers to implement the USB device application as
per the requirements.

Figure 9-14. Firmware Catalog with MSS USB Firmware Drivers and Sample Class Drivers

For more implementation details on the USB Protocol for the USB Device mode, see the USB 2.0 specifications.

Microchip provides the device drivers for the USB OTG controller for SmartFusion 2 and recommends using these
drivers for the application development. The USB OTG drivers are implemented in two layers: USB logical driver
layer (LDL) and USB core interface layer (CIL). CIL layer is the interface between the MSS USB OTG HW core and
LDL.

The following table lists the APIs available in the USB firmware drivers and the description of CIL.

Universal Serial Bus On-The-Go Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 289

Table 9-5. APIs available in USB Firmware Drivers and Description of CIL

API Description

MSS_USB_core_get_configdata() Returns the hardware (HW) configuration of the MSS USB core. This
configuration cannot be changed.

MSS_USB_core_cep_flush_fifo() Flushes the content of the Control EP FIFO.

MSS_USB_core_tx_ep_flush_fifo() Flushes the content of transmit EP FIFO.

MSS_USB_core_rx_ep_flush_fifo() Flushes the content of receive EP FIFO.

MSS_USB_core_enable_irq() Enables USB IRQ. IRQ is selected by the parameter value provided with
this function.

MSS_USB_core_disable_irq() Disables USB IRQ. IRQ is selected by the parameter value provided
with this function.

MSS_USB_core_ep_is_txfifo_notempty() Indicates that there is at least one byte present in the Transmit endpoint
FIFO

Specific to Device mode core interface layer APIs

MSS_USB_core_get_device_info() Returns the configuration of the MSS USB core. This configuration
cannot be changed.

MSS_USB_core_device_set_address() Sets the address of the MSS USB in Device mode. This value generally
is assigned by the USB host to identify the device.

MSS_USB_core_device_get_address() Returns the address set for the MSS USB in the Device mode. This
value generally is assigned by the USB host to identify the device.

MSS_USB_core_device_force_resume() Forces the MSS USB core to exit Suspend mode and generate resume
signaling when operating in Device mode.

MSS_USB_core_device_set_isoupdate() Forces ISO endpoint from the time data is deemed ready to wait for an
SOF token before IN token is received. If IN token is received before an
SOF token, then a zero length data packet will be sent.

MSS_USB_core_device_clr_isoupdate() Configures the ISO EP so that, once the data is deemed ready, ISO
endpoint will not wait for SOF token to arrive before IN token. Data will
be transmitted on the next received IN token.

Table 9-6. Device Mode Class Driver APIs (LDL)

API Description

MSS_USB_device_set_desc_cb_handler() Provides the call-back functions for USB descriptors to this driver.

MSS_USB_device_set_class_cb_handler() Provides the call-back functions for USB class implementation to this
driver.

MSS_USB_device_init() Initializes the MSS USB to operate in Device mode at desired USB
speed.

MSS_USB_device_cep_configure() Configures the Control EP. Parameters for Control EP such as
max_pkt_size, FIFO address, and FIFO size in the MSS core are
fixed.

MSS_USB_device_cep_read_prepare() Prepares the Control EP for receiving control transfer packet.

MSS_USB_device_cep_write() Transmits data on Control EP.

MSS_USB_device_cep_error() Stalls the CEP when there is a error in data exchange or when the
USB request is not supported.

Universal Serial Bus On-The-Go Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 290

...........continued
API Description

MSS_USB_device_cep_clr_error() Clears the stall condition on previously stalled control endpoint.

MSS_USB_device_tx_ep_configure() Configures the transmit EP (USB IN Transfers) as per the provided
parameters.

MSS_USB_device_rx_ep_configure() Configures the receive EP (USB OUT Transfers) as per the provided
parameters.

MSS_USB_device_rx_ep_read_prepare() Prepares receive EP for receiving data packets. (USB OUT Transfers).

MSS_USB_device_tx_ep_write() Transmits data on transmit endpoint (USB IN Transfers).

MSS_USB_device_tx_ep_error() Stalls transmit endpoint when there is error in data exchange.

MSS_USB_device_rx_ep_error() Stalls receive endpoint when there is error in data exchange.

MSS_USB_device_tx_ep_clr_error() Clears the stall condition on previously stalled transmit endpoint.

MSS_USB_device_rx_ep_clr_error() Clears the stall condition on previously stalled receive endpoint.

The USB OTG controller device driver framework is made flexible to the application/class specific driver
implementations by providing the callback functions. These call back functions are to be implemented by the class
driver which will have class specific commands and responses.

The following table shows the call back function prototype and refer to the example projects provided to know how to
use these call back functions.

Table 9-7. Functional Descriptions of Callback APIs

Callback API Description

uint8_t (*usb_class_init)
(uint8_t cfgidx);

This function is called when USB device receives
SET_CONFIGURATION request from the USB host with a non-zero
cfgidx number. The parameter cfgidx indicates the configuration number
that should be set by the USB device.

uint8_t (*usb_class_deinit)
(uint8_t cfgidx);

This function is called when the USB device receives
SET_CONFIGURATION request from the USB host with a cfgidx
= 0. The parameter cfgidx indicates the configuration number that
should be set by the USB device. USB device goes into the
MSS_USB_ADDRESS_STATE on receiving this command.

uint8_t* (*usb_class_get_descriptor)
(uint8_t recipient, uint8_t type, uint32_t*
length);

This function is called when USB device receives GET_DESCRIPTOR
request from USB host requesting a class specific descriptor
(configuration, class, interface, endpoint, OTG, vendor descriptors). The
parameter recipient indicates the intended recipient by the USB host
(endpoint, interface or device). The parameter type indicates the type of
descriptor requested.

uint8_t (*usb_class_process_requests)
(uint8_t** buf_p, uint8_t request,
uint32_t* length, uint8_t* data_buf_p,
uint32_t data_len);

This function is called when USB device receives class specific request
from USB host. The parameter request indicates the class specific
request that need to be processed. The function should return a pointer
to the data requested structure in the return parameter buf_p and length
of the buffer in the return parameter length. If the host provides data
along with the request to be processed, a pointer to this data will be
passed in the parameter data_buf_p, and the size of the buffer will be
passed in the parameter data_len.

Universal Serial Bus On-The-Go Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 291

...........continued
Callback API Description

uint8_t (*usb_class_datain)
(mss_usb_ep_num_t num, uint8_t
status);

This function is called when provided data is transferred on previously
configured transmit endpoint. The parameter num indicates the endpoint
on which data is received. The parameter status indicates error status
of the transmit transaction. A non-zero status value indicates that there
was error in last receive transaction.

uint8_t (*usb_class_dataout)
(mss_usb_ep_num_t num, uint8_t status,
uint32_t rx_count);

This function is called when data is received on previously configured
receive endpoint. The parameter num indicates the endpoint on which
data is received. The parameter status indicates error status of the
receive transaction. A non-zero status value indicates that there was
error in last receive transaction. The rx_count parameter indicates the
number of bytes received in the last receive transaction.

uint8_t (*usb_class_cep_datain)
(uint8_t status);

This function is called when data packet is transmitted on previously
configured control endpoint. The parameter status indicates error status
of the transmit transaction. A non-zero status value indicates that there
was error in last transmit transaction.

uint8_t (*usb_class_cep_dataout)
(uint8_t status);

This function is called when data packet is received on previously
configured control endpoint. The parameter status indicates error status
of the receive transaction. A non-zero status value indicates that there
was error in last receive transaction.

uint8_t *(*usb_device_descriptor)
(uint32_t* length);

This function is called when USB device receives the
GET_DESCRIPTOR command requesting device descriptor from USB
host. This function should return a pointer to the device descriptor and
provide the length of the descriptor in the return parameter.

uint8_t *(*usb_device_qual_descriptor)
(mss_usb_device_speed_t speed,
uint32_t* length);

This function is called when USB device receives the
GET_DESCRIPTOR command requesting device qualifier descriptor
from USB host. This function should return a pointer to the device
qualifier descriptor and provide the length of the descriptor in the return
parameter.

uint8_t *(*usb_string_descriptor)
(uint8_t index, uint32_t* length);

This function is called when USB device receives the
GET_DESCRIPTOR command requesting specific string descriptor
from USB host. Requested string descriptor number is provided in
parameter index. This function should return a pointer to the requested
string descriptor and provide the length of the descriptor in the return
parameter length.

For more information on the API detailed description and parameters to the APIs, see the SmartFusion 2 MSS USB
Device Core Driver’s User Guide.

9.3.3 USB OTG Controller Clocks and Resets
The following conditions are to be considered in the design for clocks and resets while using the USB OTG controller:

• To operate the USB OTG controller correctly with the external USB PHY device, the MSS FCLK and AHB CLK
must be configured to run at greater than 30 MHz.

• To reset the external USB PHY, it is necessary to use an MSS GPIO port. Firmware resets the USB PHY
whenever there is a USB controller reset done by the USB soft reset register settings.

• The USB controller resets on power-up and is held in reset until it is enabled. The USB controller can be
reset by writing to USB_SOFTRESET field of the SOFTRESET_REG at address 0x40038048, located in the
SYSREG block. The USB firmware drivers implements this feature.

Universal Serial Bus On-The-Go Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 292

Table 9-8. SOFTRESET_REG Bit for USB Controller Soft Reset

Register Name Address Bit
Numbe
r

Name Reset
Value

Function

9.3.9.18.
SOFT_RESET_RE
G Bit Definitions
(Table 9-81)

0x40038048 14 USB_SOFTRESE
T

0x1 Controls reset input to the USB
controller
0: Release USB controller from reset
1: Keep USB controller in reset (reset
value)

At power-up this bit is asserted as 1. This keeps the USB controller in a Reset state. If the bit is set to 0, the USB
controller is allowed to become active. If USB_SOFTRESET is 0, the USB controller can be held in Reset by other
system reset sources.

9.3.4 Programmability
This section discusses the programmability of the USB OTG controller.

9.3.4.1 Memory Map
The address space of the USB OTG controller in SmartFusion 2 is from 0x40043000 to 0x40043FFF. All the USB
OTG FIFO registers are residing in this address space.

9.3.4.2 USB OTG Controller Registers Map
This section describes the register map; bit description of various categories of registers in the USB controller. In
addition, System Registers that are applicable to USB are described in this section. This provides programmers
information for firmware development. Microchip recommends using the drivers provided in the tool set for application
development.

The register set in the USB controller consists of the following categories:

• Common Registers: Provide control and status for the USB controller.
• Indexed Registers: Provide control and status for the currently selected end point (host or

peripheral).
• FIFO Registers: Provide access to end point FIFOs in the USB controller.
• Control and Configuration Registers: Provide additional device status and control.
• Non-Indexed End Point Control/Status Registers: Are accessible independently for every endpoint, whereas

indexed registers are shared by endpoints. These cover EP0, EP1, EP2, EP3, and EP4.
• Extended Registers: Provides details on additional registers that control and affect the operation of the USB

controller.
• DMA Registers: Provide control and status of built-in DMA.
• Multipoint Control and Status Registers: Details additional control and status registers that relate to the

multipoint option. These registers are required and have relevance in Host mode only.
• LPM Registers: These correspond to LPM.
• USB System Registers: SmartFusion 2 system registers that are associated with USB.

9.3.5 Common Registers
This section covers all registers in this category along with the address offset, functionality, and per bit details.

Universal Serial Bus On-The-Go Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 293

Table 9-9. Common Register Set Description

Register Name Address Widt
h

R/W
Type

Rese
t
Value

Description

9.3.5.1.
FADDR_REG Bit
Definitions (Table
9-10)

0x40043000 8 RW 0 Write with the 7-bit address of the peripheral part of the
transaction. This register applies to operations when
the USB controller is used in peripheral mode only. It is
ignored in Host mode.

9.3.5.2.
POWER_REG Bit
Definitions (Table
9-11)

0x40043001 8 R 0x20 Controls suspend and resume signaling and some
other basic operational aspects of the USB controller.

9.3.5.3.
TX_IRQ_REG Bit
Definitions (Table
9-12)

0x40043002 16 R 0 Indicates which interrupts are active for endpoint 0 and
transmit endpoints EP1, EP2, EP3, and EP4. These are
the lowest 5 bits of the register. Interrupts are cleared
when this register is read.

9.3.5.4.
RX_IRQ_REG Bit
Definitions (Table
9-13)

0x40043004 16 R 0 Indicates which interrupts are active for receive
endpoints EP1, EP2, EP3, and EP4. These are bits 1,
2, 3, and 4 of the register. Interrupts are cleared when
this register is read.

9.3.5.5.
TX_IRQ_EN_REG
Bit Definitions (Table
9-14)

0x40043006 16 RW 0x1F Provides interrupt enables for interrupts in
TX_IRQ_REG. The endpoint0 and EP1, EP2, EP3, and
EP4 have corresponding enable bits from bit 0 to bit 4
of this register. A value of 1 indicates that the interrupt
is enabled.

9.3.5.6.
RX_IRQ_EN_REG
Bit Definitions (Table
9-15)

0x40043008 16 0x1E Provides interrupt enables for interrupts in
RX_IRQ_REG. The endpoints EP1, EP2, EP3, and
EP4 have corresponding enable bits from bit 1 to bit
4 of this register. A value of 1 indicates that the interrupt
is enabled.

9.3.5.7.
USB_IRQ_REG Bit
Definitions (Table
9-16)

0x4004300A 8 R 0 Indicates that the status of USB interrupts. All active
interrupts are cleared when the register is read.

9.3.5.8.
USB_IRQ_EN_REG
Bit Definitions (Table
9-17)

0x4004300B 8 RW 0x06 Provides interrupt enables for interrupts in
USB_IRQ_REG. A value of 1 indicates that the
interrupt is enabled.

9.3.5.9.
FRAME_REG Bit
Definitions (Table
9-18)

0x4004300
C

16 R 9 Holds the last received frame number. This is an 11-bit
number.

Universal Serial Bus On-The-Go Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 294

...........continued
Register Name Address Widt

h
R/W
Type

Rese
t
Value

Description

9.3.5.10.
INDEX_REG Bit
Definitions (Table
9-19)

0x4004300E 4 RW 0 Indicates which endpoint control and status registers
are currently accessed from among the implemented
transmit and receive endpoints (EP0, EP1, EP2, EP3,
and EP4). Each transmit endpoint and each receive
endpoint has its own set of control/status registers
located between 0x40043100 and 0x400431FF
addresses. In addition, one set of TX control/status and
one set of RX control/status registers appear at 10h
to 19h. Before accessing an endpoint’s control/status
registers at 10h to 19h, the endpoint number should be
written to the Index register to ensure that the correct
control/status registers appear in the memory map.

9.3.5.11.
TEST_MODE_REG
Bit Definitions (Table
9-20)

0x4004300F 8 RW 0 Puts the USB controller in one of the four test modes
for high speed operation described in the USB 2.0
specification. This register is not used in normal
operation.

9.3.5.1 FADDR_REG Bit Definitions
Table 9-10. FADDR_REG(0x40043000)

Bit
Number

Name Reset
Value

Function

7 Reserved 0 N/A

[6:0] Func Addr 0 Function Address: Write with the 7-bit address of the peripheral part of the
transaction. This register applies to operations when the USB controller is
used in Peripheral mode only. It is ignored in Host mode.

9.3.5.2 POWER_REG Bit Definitions
Table 9-11. POWER_REG (0x40043001)

Bit
Number

Name Reset
Value

Function

7 ISO Update 0 When set by the Arm® Cortex®-M3 processor (or fabric master), the USB
controller waits for an SOF token from the time TxPktRdy is set before
sending the packet. If an IN token is received before an SOF token, a zero
length data packet will be sent.
Only valid in Peripheral mode. Also, this bit only affects endpoints
performing ISO transfers.

6 Soft Conn 0 If the soft connect/disconnect feature is enabled, the USB D+/D- lines are
enabled when this bit is set by the Cortex-M3 processor (or fabric master)
and tristated when this bit is cleared by the Cortex-M3 processor (or fabric
master).
Only valid in Peripheral mode.

5 HS Enab 1 When set by CPU, the USB controller negotiates for High speed mode
when the device is reset by the hub. If not set, the device will only operate
in Full speed mode.

Universal Serial Bus On-The-Go Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 295

...........continued
Bit
Number

Name Reset
Value

Function

4 HS Mode 0 When set, this read-only bit indicates High speed mode successfully
negotiated during USB reset. In Peripheral mode, becomes valid when
USB reset completes (as indicated by USB reset interrupt). In Host mode,
becomes valid when the reset bit is cleared. Remains valid for the duration
of the session.
Allowance is made for Tiny-J signaling in determining the transfer speed to
select.

3 Reset 0 This bit is set when reset signaling is present on the bus.
This bit is read/write from the Cortex-M3 processor (or fabric master) in
Host mode but read-only in Peripheral mode.

2 Resume 0 Set by the Cortex-M3 processor (or fabric master) to generate resume
signaling when the device is in Suspend mode. In Peripheral mode, the
Cortex-M3 processor (or fabric master) should clear this bit after 10 ms
(a maximum of 15 ms), to end resume signaling. In Host mode, the Cortex-
M3 processor (or fabric master) should clear this bit after 20 ms.

1 Suspend Mode 0 In Host mode, this bit is set by the Cortex-M3 processor (or fabric master)
to enter Suspend mode. In Peripheral mode, this bit is set on entry into
Suspend mode. It is cleared when the Cortex-M3 processor (or fabric
master) reads the interrupt register, or sets the resume bit above.

0 Enable SuspendM 0 Set by the Cortex-M3 processor (or fabric master) to enable the
SUSPENDM output.

9.3.5.3 TX_IRQ_REG Bit Definitions
Table 9-12. TX_IRQ_REG (0x40043002)

Bit Number Name Reset Value Function

[15:5] Reserved N/A N/A

4 EP4 Tx 0 Transmit endpoint 4 interrupt

3 EP3 Tx 0 Transmit endpoint 3 interrupt

2 EP2 Tx 0 Transmit endpoint 2 interrupt

1 EP1 Tx 0 Transmit endpoint 1 interrupt

0 EP0 0 Endpoint 0 interrupt

9.3.5.4 RX_IRQ_REG Bit Definitions
Table 9-13. RX_IRQ_REG (0x40043004)

Bit Number Name Reset Value Function

[15:5] Reserved N/A N/A

4 EP4 Rx 0 Receive endpoint 4 interrupt

3 EP3 Rx 0 Receive endpoint 3 interrupt

2 EP2 Rx 0 Receive endpoint 2 interrupt

1 EP1 Rx 0 Receive endpoint 1 interrupt

0 Reserved 0 Always returns zero

Universal Serial Bus On-The-Go Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 296

9.3.5.5 TX_IRQ_EN_REG Bit Definitions
Table 9-14. TX_IRQ_EN_REG (0x40043006)

Bit Number Name Reset Value Function

[15:5] Reserved N/A N/A

4 EP4 TxEn 1 Transmit endpoint 4 interrupt enable

3 EP3 TxEn 1 Transmit endpoint 3 interrupt enable

2 EP2 TxEn 1 Transmit endpoint 2 interrupt enable

1 EP1 TxEn 1 Transmit endpoint 1 interrupt enable

0 EP0 1 Endpoint0 interrupt enable

9.3.5.6 RX_IRQ_EN_REG Bit Definitions
Table 9-15. RX_IRQ_EN_REG (0x40043008)

Bit Number Name Reset Value Function

[15:5] Reserved N/A N/A

4 EP4 RxEn 1 Receive endpoint 4 interrupt enable

3 EP3 RxEn 1 Receive endpoint 3 interrupt enable

2 EP2 RxEn 1 Receive endpoint 2 interrupt enable

1 EP1 RxEn 1 Receive endpoint 1 interrupt enable

0 Reserved 0 Always returns zero

9.3.5.7 USB_IRQ_REG Bit Definitions
Table 9-16. USB_IRQ_REG (0x4004300A)

Bit
Number

Name Reset
Value

Function

7 VBus Error 0 Set when VBus drops below the VBus valid threshold during a session.
Only valid when the USB controller is an A device.

6 Sess Req 0 Set when session request signaling has been detected.
Only valid when the USB controller is an A device.

5 Discon 0 Set in Host mode when a device disconnection is detected. Set in
Peripheral mode when a session ends. Valid at all transaction speeds.

4 Conn 0 Set when a device connection is detected. Only valid in Host mode. Valid
at all transaction speeds.

3 SOF 0 Set when a new frame starts.

2 Reset 0 Set in Peripheral mode when reset signaling is detected on the bus.

Babble Set in Host mode when babble is detected.
Only active after first SOF has been sent.

1 Resume 0 Set when resume signaling is detected on the bus while the USB controller
is in Suspend mode.

0 Suspend 0 Set when suspend signaling is detected on the bus. Only valid in
Peripheral mode.

Universal Serial Bus On-The-Go Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 297

9.3.5.8 USB_IRQ_EN_REG Bit Definitions
Table 9-17. USB_IRQ_EN_REG (0x4004300B)

Bit
Number

Name Reset
Value

Function

7 VbEn 0 Interrupt Enable for corresponding bit[7], VBus Error in USB_IRQ_REG

6 SrEn 0 Interrupt Enable for corresponding bit[6], Sess Req in USB_IRQ_REG

5 DcEn 0 Interrupt Enable for corresponding bit[5], Discon in USB_IRQ_REG

4 CoEn 0 Interrupt Enable for corresponding bit[4], Conn in USB_IRQ_REG

3 SofEn 0 Interrupt Enable for corresponding bit[3], SOF in USB_IRQ_REG

2 ReBaEn 1 Interrupt Enable for corresponding bit[2], Reset/Babble in USB_IRQ_REG

1 ReEn 1 Interrupt Enable for corresponding bit[1], Resume in USB_IRQ_REG

0 SuEn 0 Interrupt Enable for corresponding bit[0], Suspend in USB_IRQ_REG

9.3.5.9 FRAME_REG Bit Definitions
Table 9-18. FRAME_REG (0x4004300C)

Bit
Number

Name Reset
Value

Function

[15:11] Reserved N/A N/A

[10:0] Frame Number 0 This is the 11-bit frame number, with bit[10] being MSB and bit[0] being
LSB.

9.3.5.10 INDEX_REG Bit Definitions
Table 9-19. INDEX_REG (0x4004300E)

Bit
Number

Name Reset
Value

Function

[3:0] Selected Endpoint 0 This is the index into the selected endpoint.

9.3.5.11 TEST_MODE_REG Bit Definitions
Table 9-20. TEST_MODE_REG (0x4004300F)

Bit
Number

Name Reset
Value

Function

7 Force_Host 0 The Arm® Cortex®-M3 processor (or fabric master) sets this bit to instruct
the core to enter Host mode when the session bit is set, regardless of
whether it is connected to any peripheral. The state of the CID input,
HostDisconnect, and LineState signals is ignored. The core will then
remain in Host mode until the session bit is cleared, even if a device is
disconnected, and if the Force_Host bit remains set, will re-enter Host
mode the next time the session bit is set. While in this mode, the status
of the HOSTDISCON signal from the PHY may be read from bit 7 of the
DevCtl register.
The operating speed is determined from the Force_HS and Force_FS bits,
as shown in Table 9-21.

6 FIFO_Access 0 The Cortex-M3 processor (or fabric master) sets this bit to transfer the
packet in the endpoint 0 TX FIFO to the endpoint 0 Rx FIFO. This bit is
cleared automatically.

Universal Serial Bus On-The-Go Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 298

...........continued
Bit
Number

Name Reset
Value

Function

5 Force_FS 0 The Cortex-M3 processor (or fabric master) sets this bit either in
conjunction with bit 7 above or to force the USB controller into Full speed
mode when it receives a USB reset.

4 Force_HS 0 The Cortex-M3 processor (or fabric master) sets this bit either in
conjunction with bit 7 above or to force the USB controller into High speed
mode when it receives a USB reset.

3 Test_Packet 0 (High speed mode) The Cortex-M3 processor (or fabric master) sets this
bit to enter Test_Packet test mode. In this mode, the USB controller
repetitively transmits on the bus a 53-byte test packet, the form of which is
defined in the USB specification revision 2.0, Section 7.1.20 (and in section
28.4).
The test packet has a fixed format and must be loaded into the endpoint 0
FIFO before the test mode is entered.

2 Test_K 0 (High speed mode) The Cortex-M3 processor (or fabric master) sets this
bit to enter Test_K test mode. In this mode, the USB controller transmits a
continuous K on the bus.

1 Test_J 0 (High speed mode) The Cortex-M3 processor (or fabric master) sets this
bit to enter Test_J test mode. In this mode, the USB controller transmits a
continuous J on the bus.

0 Test_SE0_NAK 0 (High speed mode) The Cortex-M3 processor (or fabric master) sets this
bit to enter Test_SE0_NAK test mode. In this mode, the USB controller
remains in high-speed mode but responds to any valid IN token with a
NAK.

9.3.5.12 Operating Speed
Table 9-21. Operating Speed

Bit Number Reset Value Function

0 0 Low speed

0 1 Full speed

1 0 High speed

1 1 Undefined

9.3.6 Indexed Registers
This section covers all the registers in this category along with the address offset, functionality, and per- bit details.
The registers mapped into this section depend on whether the core is in Peripheral mode (DEV_CTRL_REG.Bit2 = 0)
or in Host mode (DEV_CTRL_REG.Bit2 = 1) and the value of the Index register (INDEX_REG).

Table 9-22. Indexed Register Set Description

Register Name Address Widt
h

R/W
Type

Reset
Value

Description

Table 9-23 0x40043010 16 RW 0 Maximum packet size of host transmit endpoint.
(Index register set to select endpoints 1 – 4 only).

Universal Serial Bus On-The-Go Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 299

...........continued
Register Name Address Widt

h
R/W
Type

Reset
Value

Description

Table 9-24 Table 9-25
Table 9-28

Table 9-29

0x40043012 8 RW 0 Provide control and status bits for endpoint0
(Index register set to select endpoint0) and
transmit endpoint0 (Index register set to select
endpoints 1 – 4).
The interpretation of the register depends on
whether the USB controller is acting as a
peripheral or a host. The value returned when
the register is read reflects the status attained;
for example, as a result of writing to the register.

Table 9-26
Table 9-27

Table 9-30

Table 9-31

0x40043013 8 RW 0 Provides control and status bits for endpoint0
(Index register set to select endpoint0) and
transmit endpoint0 (Index register set to select
endpoints 1 – 4).
The interpretation of the register depends on
whether the USB controller is acting as a
peripheral or a host. The value returned when
the register is read reflects the status attained;
for example, as a result of writing to the register.

Table 9-32 0x40043014 16 RW 0 Defines the maximum amount of data that can be
transferred through the selected receive endpoint
in a single operation. There is one such register
for each receive endpoint (except endpoint 0).

Table 9-33
Table 9-34

0x40043016 8 RW 0 Provide control and status bits for transfers
through the currently selected receive endpoint.
There is one such register for each configured
receive endpoint (not including endpoint 0).
The interpretation of the register depends on
whether the USB controller is acting as a
peripheral or a host. The value returned when
the register is read reflects the status attained;
for example, as a result of writing to the register.

Table 9-35
Table 9-37

0x40043017 8 RW 0 Provides control and status bits for transfers
through the currently-selected receive endpoint
(Index register set to select endpoints 1 – 4 only).
There is one such register for each configured
receive endpoint (not including endpoint 0).
The interpretation of the register depends on
whether the USB controller is acting as a
peripheral or a host. The value returned when
the register is read reflects the status attained;
for example, as a result of writing to the register.

Table 9-38 0x40043018 7 R 0 Indicates the number of received data bytes
in the endpoint 0 FIFO. The value returned
changes as the contents of the FIFO change and
is only valid while RxPktRdy (CSR0L_REG.bit0)
is set.

Universal Serial Bus On-The-Go Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 300

...........continued
Register Name Address Widt

h
R/W
Type

Reset
Value

Description

Table 9-39 0x40043018 14 R 0 Holds the number of data bytes in the packet
currently in line to be read from the Rx FIFO.
If the packet is transmitted as multiple bulk
packets, the number given will be for the
combined packet.
The value returned changes as the FIFO is
unloaded and is only valid while RxPktRdy
(CSR0L_REG.bit0) is set.

Table 9-40 0x4004301A 8 RW 0 Applicable in Host mode only. Number of
received bytes in endpoint0 FIFO (Index register
set to select endpoint 0).

Table 9-41 0x4004301A 8 RW 0 Number of bytes to be read from the peripheral
receive endpoint FIFO (Index register set to
select endpoints 1 – 4).

Table 9-42 0x4004301B 5 RW 0 Sets the NAK response timeout on endpoint 0
(Index register set to select endpoint 0).

Table 9-43 0x4004301B 8 RW 0 Sets the polling interval for interrupt/ISOC
transactions or the NAK response timeout on
bulk transactions for host transmit endpoint
(Index register set to select endpoints 1 – 4 only).

Table 9-45 0x4004301C 8 RW 0 Sets the transaction protocol, speed, and
peripheral endpoint number for the host receive
endpoint (Index register set to select endpoints 1
– 4 only).

Table 9-46 0x4004301D 8 RW 0 Sets the polling interval for interrupt/ISOC
transactions or the NAK response timeout on
bulk transactions for host receive endpoint (Index
register set to select endpoints 1 – 4 only).

Table 9-47 0x4004301F 8 R Returns details of USB controller configuration
(Index register set to select endpoint 0).

Table 9-48 0x4004301F 8 R Returns the configured size of the selected
receive and transmit FIFOs (endpoints 1 – 4
only).

Universal Serial Bus On-The-Go Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 301

9.3.6.1 TX_MAX_P_REG Bit Definitions
Table 9-23. TX_MAX_P_REG

Bit
Number

Name Reset
Value

Function

[15:11] m-1 N/A If the core is configured with high-bandwidth ISO/interrupt endpoints or packet splitting
on bulk endpoints, the register includes 2 or 5 further bits that define a multiplier m
which is equal to one more than the value recorded.
For bulk endpoints with the packet splitting option enabled, the multiplier m can be up
to 32 and defines the maximum number of USB packets (packets for transmission over
the USB) of the specified payload into which a single data packet placed in the FIFO
should be split, prior to transfer. If the packet splitting option is not enabled, bits[15:13]
are not implemented and bits[12:11] (if included) are ignored.

The data packet must be an exact multiple of the payload specified by bits 10:0, which
itself is required to be either 8, 16, 32, 64, or (in the case of high speed transfers) 512
bytes.

For ISO/interrupts endpoints operating in High speed mode and with the
high-bandwidth option enabled, m may only be 2 or 3 (corresponding to bit[11] set or
bit[12] set) and it specifies the maximum number of such transactions that can take
place in a single microframe.

If either bit 11 or bit 12 is non-zero, the USB controller automatically splits any data
packet written to the FIFO into 2 or 3 USB packets, each containing the specified
payload (or less). The maximum payload for each transaction is 1,024 bytes, so this
allows up to 3,072 bytes to be transmitted in each microframe. For ISO transfers in Full
speed mode or if high-bandwidth is not enabled, bits[11] and [12] are ignored.

The value written to bits[10:0] (multiplied by m in the case of high-bandwidth ISO
transfers) must match the value given in the wMaxPacketSize field of the standard
endpoint descriptor for the associated endpoint (see the USB specification v2.0). A
mismatch could cause unexpected results.

The total amount of data represented by the value written to this register (specified
payload × m) must not exceed the FIFO size for the transmit endpoint, and should not
exceed half the FIFO size if double-buffering is required.

If this register is changed after packets have been sent from the endpoint, the
transmit endpoint FIFO should be completely flushed (using the FlushFIFO bit,
TX_CSRL_REG.bit[3]) after writing the new value to this register.

[10:0] TxMaxP m-1 Maximum payload/transaction.
Maximum payload in bytes transmitted in a single transaction. The value set can be
up to 1,024 bytes but is subject to the constraints placed by the USB specification
on packet sizes for bulk, interrupt, and ISO transfers in full speed and high speed
operations.

This must be set to an even number of bytes for proper interrupt generation DMA mode
1.

9.3.6.2 CSROL_REG (in Peripheral mode) Bit Definitions
Table 9-24. CSR0L_REG (Peripheral)

Bit
Number

Name Reset
Value

Function

7 ServicedSetupEnd 0 The Arm® Cortex®-M3 processor (or fabric master) writes a 1 to this bit to
clear the SetupEnd bit (bit[4] of this register). This bit is self clearing.

Universal Serial Bus On-The-Go Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 302

...........continued
Bit
Number

Name Reset
Value

Function

6 ServicedRxPktRdy 0 The Cortex-M3 processor (or fabric master) writes a 1 to this bit to clear the
RxPktRdy bit (bit[0] of this register). This bit is self clearing.

5 SendStall 0 The Cortex-M3 processor (or fabric master) writes a 1 to this bit to terminate
the current transaction. The STALL handshake will be transmitted and then
this bit will be cleared automatically.

4 SetupEnd 0 This bit is set when a control transaction ends before the DataEnd bit (bit[3]
of this register) has been set. An interrupt is generated and the FIFO is
flushed at this time. The bit is cleared by the Cortex-M3 processor (or fabric
master) writing a 1 to the ServicedSetupEnd bit (bit[7] of this register).

3 DataEnd 0 The Cortex-M3 processor (or fabric master) sets this bit:
– When setting TxPktRdy (bit[1] of this register) for the last data packet.

– When clearing RxPktRdy (bit[0] of this register) after unloading the last
data packet.

– When setting TxPktRdy (bit[1] of this register) for a zero length data
packet.

It is cleared automatically.

2 SentStall 0 This bit is set when a STALL handshake is transmitted. The Cortex-M3
processor (or fabric master) should clear this bit.

1 TxPktRdy 0 The Cortex-M3 processor (or fabric master) sets this bit after loading a data
packet into the FIFO. It is cleared automatically when a data packet has
been transmitted. An interrupt is also generated at this point (if enabled).

0 RxPktRdy 0 This bit is set when a data packet has been received. An interrupt is
generated when this bit is set. The Cortex-M3 processor (or fabric master)
clears this bit by setting the ServicedRxPktRdy bit (bit[6]of this register).

9.3.6.3 CSROL_REG (Host mode) Bit Definitions
Table 9-25. CSR0L_REG (Host)

Bit
Number

Name Reset
Value

Function

7 NAK
Timeout

0 This bit is set when endpoint 0 is halted, following the receipt of NAK responses
for longer than the time set by the NAKLimit0 register. The Arm® Cortex®-M3
processor (or fabric master) should clear this bit to allow the endpoint to
continue.

6 StatusPkt 0 The Cortex-M3 processor (or fabric master) sets this bit at the same time as the
TxPktRdy (bit[1] of this register) or ReqPkt bit (bit 0 of this register) is set, to
perform a status stage transaction. Setting this bit ensures that the data toggle is
set to 1 so that a DATA1 packet is used for the status stage transaction.

5 ReqPkt 0 The Cortex-M3 processor (or fabric master) sets this bit to request an IN
transaction. It is cleared when RxPktRdy (bit [0] of this register) is set.

4 Error 0 This bit will be set when three attempts have been made to perform a transaction
with no response from the peripheral. The Cortex-M3 processor (or fabric
master) should clear this bit. An interrupt is generated when this bit is set.

Universal Serial Bus On-The-Go Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 303

...........continued
Bit
Number

Name Reset
Value

Function

3 SetupPkt 0 The Cortex-M3 processor (or fabric master) sets this bit, at the same time as the
TxPktRdy bit (bit[1] of this register) is set, to send a SETUP token instead of an
OUT token for the transaction.
Setting this bit also clears the Data Toggle.

2 RxStall 0 This bit is set when a STALL handshake is received. The Cortex-M3 processor
(or fabric master) should clear this bit.

1 TxPktRdy 0 The Cortex-M3 processor (or fabric master) sets this bit after loading a data
packet into the FIFO. It is cleared automatically when a data packet has been
transmitted. An interrupt is also generated at this point (if enabled).

0 RxPktRdy 0 This bit is set when a data packet has been received. An interrupt is generated (if
enabled) when this bit is set. The Cortex-M3 processor (or fabric master) should
clear this bit when the packet has been read from the FIFO.

9.3.6.4 CSROH_REG (in Peripheral mode) Bit Definitions
Table 9-26. CSR0H_REG (Peripheral)

Bit
Number

Name Reset
Value

Function

[7:1] Reserved N/A —

0 FlushFIFO 0 The Arm® Cortex®-M3 processor (fabric master) writes a 1 to this bit to flush the
next packet to be transmitted/read from the endpoint 0 FIFO. The FIFO pointer
is reset and the TxPktRdy/RxPktRdy bit (bit[1] and bit[0] of CSR0L_REG) is
cleared.
FlushFIFO should only be used when TxPktRdy/RxPktRdy is set. At other times,
it may cause data to be corrupted.

9.3.6.5 CSROH_REG (in Host mode) Bit Definitions
Table 9-27. CSR0H_REG (Host)

Bit
Number

Name Reset
Value

Function

[7:4] Reserved N/A —

3 Dis Ping 0 The Arm® Cortex®-M3 processor (or fabric master) writes a 1 to this bit
to instruct the USB controller not to issue PING tokens in data and status
phases of a high speed control transfer (for use with devices that do not
respond to PING).

2 Data Toggle
Write Enable

0 The Cortex-M3 processor (or fabric master) writes a 1 to this bit to enable
the current state of the endpoint 0 data toggle to be written (refer to the Data
Toggle bit). This bit is automatically cleared once the new value is written.

1 Data Toggle 0 When read, this bit indicates the current state of the endpoint 0 data toggle. If
Data Toggle Write Enable (bit 2 of this register) is High, this bit may be written
with the required setting of the data toggle. If Data Toggle Write Enable is
Low, any value written to this bit is ignored.

Universal Serial Bus On-The-Go Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 304

...........continued
Bit
Number

Name Reset
Value

Function

0 FlushFIFO 0 The Cortex-M3 processor (fabric master) writes a 1 to this bit to flush the next
packet to be transmitted/read from the endpoint 0 FIFO. The FIFO pointer
is reset and the TxPktRdy/RxPktRdy bit (bit 1 and bit 0 of CSR0L_REG) is
cleared.
FlushFIFO should only be used when TxPktRdy/RxPktRdy is set. At other
times, it may cause data to be corrupted.

9.3.6.6 TX_CSRL_REG (in Peripheral mode) Bit Definitions
Table 9-28. TX_CSRL_REG (Peripheral)

Bit
Number

Name Reset
Value

Function

7 IncompTx 0 When the endpoint is being used for high-bandwidth ISO transfers, this bit
is set to indicate where a large packet has been split into 2 or 3 packets
for transmission but insufficient IN tokens have been received to send all the
parts.
In anything other than ISO transfers, this bit will always return 0.

6 ClrDataTog 0 The Arm® Cortex®-M3 processor (or fabric master) writes a 1 to this bit to
reset the endpoint data toggle to 0.

5 SentStall 0 This bit is set when a STALL handshake is transmitted. The FIFO is flushed
and the TxPktRdy bit (bit 0 of this register) is cleared. The Cortex-M3
processor (or fabric master) should clear this bit.

4 SendStall 0 The Cortex-M3 processor (or fabric master) writes a 1 to this bit to issue
a STALL handshake to an IN token. The Cortex-M3 processor (or fabric
master) clears this bit to terminate the stall condition.
This bit has no effect where the endpoint is being used for ISO transfers.

3 FlushFIFO 0 The Cortex-M3 processor (or fabric master) writes a 1 to this bit to flush
the latest packet from the endpoint TX FIFO. The FIFO pointer is reset, the
TxPktRdy bit (bit0 of this register) is cleared and an interrupt is generated. It
may be set simultaneously with TxPktRdy to abort the packet that is currently
being loaded into the FIFO.
FlushFIFO should only be used when TxPktRdy is set. At other times, it may
cause data to be corrupted. Also note that, if the FIFO is double-buffered,
FlushFIFO may need to be set twice to completely clear the FIFO.

2 UnderRun 0 The controller sets this bit if an IN token is received when TxPktRdy (bit0 of
this register) is not set. The Cortex-M3 processor (or fabric master) should
clear this bit.

1 FIFONotEmpty 0 The controller sets this bit when there is at least 1 packet in the transmit
FIFO.

0 TxPktRdy 0 The Cortex-M3 processor (or fabric master) sets this bit after loading a data
packet into the FIFO. It is cleared automatically when a data packet has been
transmitted. An interrupt is generated at this point (if enabled). TxPktRdy is
automatically cleared prior to loading a second packet into a double-buffered
FIFO.

Universal Serial Bus On-The-Go Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 305

9.3.6.7 TX_CSRL_REG (in Host mode) Bit Definitions
Table 9-29. TX_CSRL_REG (Host)

Bit
Number

Name Reset
Value

Function

7 NAK Timeout 0 (Bulk endpoints only) This bit will be set when the transmit endpoint is halted,
following the receipt of responses for longer than the time set as the NAK
Limit by the TxInterval register. The Arm® Cortex®-M3 processor (or fabric
master) should clear this bit to allow the endpoint to continue.

IncompTx 0 (High-bandwidth interrupt endpoints only) This bit will be set if no response is
received from the device to which the packet is being sent.

6 ClrDataTog 0 The Cortex-M3 processor (or fabric master) writes a 1 to this bit to reset the
endpoint data toggle to 0.

5 RxStall 0 This bit is set when a STALL handshake is received. When this bit is set,
any DMA request that is in progress is stopped, the FIFO is completely
flushed and the TxPktRdy bit (bit 0 of this register) is cleared. The Cortex-M3
processor (or fabric master) should clear this bit.

4 SetupPkt 0 The Cortex-M3 processor (or fabric master) sets this bit at the same time the
TxPktRdy bit (bit 0 of the register) is set, to send a SETUP token instead of
an OUT token for the transaction.
Setting this bit also clears the Data Toggle.

3 FlushFIFO 0 The Cortex-M3 processor (or fabric master) writes a 1 to this bit to flush
the latest packet from the endpoint TX FIFO. The FIFO pointer is reset, the
TxPktRdy bit (bit0 of this register) is cleared and an interrupt is generated.
May be set simultaneously with TxPktRdy to abort the packet that is currently
being loaded into the FIFO.
FlushFIFO should only be used when TxPktRdy is set. At other times, it may
cause data to be corrupted. Also note that, if the FIFO is double-buffered,
FlushFIFO may need to be set twice to completely clear the FIFO.

2 Error 0 The controller sets this bit when 3 attempts have been made to send a
packet and no handshake packet has been received. When the bit is set,
an interrupt is generated, TxPktRdy (bit 0 of this register) is cleared and
the FIFO is completely flushed. The Cortex-M3 processor (or fabric master)
should clear this bit. Valid only when the endpoint is operating in Bulk or
Interrupt mode.

1 FIFONotEmpty 0 The controller sets this bit when there is at least 1 packet in the transmit
FIFO.

0 TxPktRdy 0 The Cortex-M3 processor (or fabric master) sets this bit after loading a data
packet into the FIFO. It is cleared automatically when a data packet has
been transmitted. An interrupt is also generated at this point (if enabled).
TxPktRdy is also automatically cleared prior to loading a second packet into
a double-buffered FIFO.

Universal Serial Bus On-The-Go Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 306

9.3.6.8 TX_CSRH_REG (in Peripheral mode) Bit Definitions
Table 9-30. TX_CSRH_REG (Peripheral)

Bit
Number

Name Reset
Value

Function

7 AutoSet 0 If the Arm® Cortex®-M3 processor (or fabric master) sets this bit, TxPktRdy
(bit 0 of TXCSRL_REG) will be set automatically when data of the maximum
packet size (value in TxMaxP in TX_MAX_P_REG) is loaded into the
transmit FIFO. If a packet of less than the maximum packet size is loaded,
then TxPktRdy must be set manually.
Should not be set for high-bandwidth ISO endpoints or high-bandwidth
interrupt endpoints.

6 ISO 0 The Cortex-M3 processor (or fabric master) sets this bit to enable the
transmit endpoint for ISO transfers, and clears it to enable the transmit
endpoint for bulk or interrupt transfers.
This bit only has effect in Peripheral mode. In Host mode, it always returns
zero.

5 Mode 0 The Cortex-M3 processor (or fabric master) sets this bit to enable the
endpoint direction as transmit and clears the bit to enable it as receive.
This bit has effect only where the same endpoint FIFO is used for both
transmit and receive transactions.

4 DMAReqEnab 0 The Cortex-M3 processor (or fabric master) sets this bit to enable the DMA
request for the transmit endpoint.

3 FrcDataTog 0 The Cortex-M3 processor (or fabric master) sets this bit to force the endpoint
data toggle to switch and the data packet to be cleared from the FIFO,
regardless of whether an ACK was received or not. This can be used by
interrupt transmit endpoints that are used to communicate rate feedback for
ISO endpoints.

2 DMAReqMode 0 The Cortex-M3 processor (or fabric master) sets this bit to select DMA
request Mode 1 and clears it to select DMA request Mode 0.
This bit must not be cleared before or in the same cycle as the above
DMAReqEnab bit (bit 4 of this register) is cleared.

[1:0] Reserved NA NA

9.3.6.9 TX_CSRH_REG (in Host mode) Bit Definitions
Table 9-31. TX_CSRH_REG (Host)

Bit
Number

Name Reset
Value

Function

7 AutoSet 0 If the Arm® Cortex®-M3 processor (or fabric master) sets this bit, TxPktRdy
(bit0 of TXCSRL_REG) will be set automatically when data of the maximum
packet size (value in TxMaxP of TX_MAX_P_REG) is loaded into the
transmit FIFO. If a packet of less than the maximum packet size is loaded,
then TxPktRdy must be set manually.
Note: Should not be set for high-bandwidth ISO endpoints or high-bandwidth
interrupt endpoints.

6 Reserved NA —

Universal Serial Bus On-The-Go Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 307

...........continued
Bit
Number

Name Reset
Value

Function

5 Mode 0 The Cortex-M3 processor (or fabric master) sets this bit to enable the
endpoint direction as transmit and clears the bit to enable it as receive.
This bit has effect only where the same endpoint FIFO is used for both
transmit and receive transactions.

4 DMAReqEnab 0 The Cortex-M3 processor (or fabric master) sets this bit to enable the DMA
request for the transmit endpoint.

3 FrcDataTog 0 The Cortex-M3 processor (or fabric master) sets this bit to force the endpoint
data toggle to switch and the data packet to be cleared from the FIFO,
regardless of whether an ACK was received or not. This can be used by
Interrupt transmit endpoints that are used to communicate rate feedback for
ISO endpoints.

2 DMAReqMode 0 The Cortex-M3 processor (or fabric master) sets this bit to select DMA
Request Mode 1 and clears it to select DMA Request Mode 0.
This bit must not be cleared either before or in the same cycle as the above
DMAReqEnab bit (bit4 of this register) is cleared.

1 Data Toggle
Write Enable

0 The Cortex-M3 processor (or fabric master) writes a 1 to this bit to enable the
current state of the endpoint 0 data toggle to be written (see Data Toggle bit).
This bit is automatically cleared once the new value is written.

0 Data Toggle 0 When read, this bit indicates the current state of the endpoint 0 data toggle.
If Data Toggle Write Enable (bit 1 of this register) is High, this bit may be
written with the required setting of the data toggle. If Data Toggle Write
Enable is Low, any value written to this bit is ignored.

Universal Serial Bus On-The-Go Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 308

9.3.6.10 RX_MAX_P_REG Bit Definitions
Table 9-32. RX_MAX_P_REG

Bit
Number

Name Reset
Value

Function

[15:11] m-1 N/A If the core is configured for high-bandwidth ISO/interrupt endpoints or packet
splitting on bulk endpoints, the register includes either 2 or 5 further bits that define
a multiplier m, which is equal to one more than the value recorded.
For bulk endpoints with the packet splitting option enabled, the multiplier m can be
up to 32 and defines the number of USB packets of the specified payload which are
to be amalgamated into a single data packet within the FIFO. If the packet splitting
option is not enabled, bits[15:13] are not implemented and bits[12:11] (if included)
are ignored.

For ISO/interrupt endpoints operating in High speed mode and with the
high-bandwidth option enabled, m may only be either 2 or 3 (corresponding to bit
11 set or bit 12 set) and it specifies the maximum number of such transactions that
can take place in a single microframe. If either bit[11] or bit[12] is non-zero, the
USB controller automatically combines the separate USB packets received in any
microframe into a single packet within the receive FIFO. The maximum payload for
each transaction is 1,024 bytes, so this allows up to 3,072 bytes to be received in
each microframe. For ISO transfers in Full speed mode or if high-bandwidth is not
enabled, bits[11] and [12] are ignored.

The value written to bits[10:0] (multiplied by m in the case of high-bandwidth ISO
transfers) must match the value given in the wMaxPacketSize field of the standard
endpoint descriptor for the associated endpoint (see the USB specification revision
2.0,

A mismatch could cause unexpected results.

The total amount of data represented by the value written to this register (specified
payload × m) must not exceed the FIFO size for the receive endpoint, and should
not exceed half the FIFO size if double-buffering is required.

[10:0] RxMaxP 0 Maximum payload/transaction. Maximum payload in bytes received in a single
transaction. The value set can be up to 1,024 bytes but is subject to the constraints
placed in the USB specification on packet sizes for bulk, interrupt, and ISO transfers
in full speed and high speed operations.
RxMaxP must be set to an even number of bytes for proper interrupt generation in
DMA mode 1.

9.3.6.11 RX_CSRL_REG (in Peripheral mode) Bit Definitions
Table 9-33. RX_CSRL_REG (Peripheral)

Bit
Number

Name Reset
Value

Function

7 ClrDataTog 0 The Arm® Cortex®-M3 processor (or fabric master) writes a 1 to this bit to reset the
endpoint data toggle to 0.

6 SentStall 0 This bit is set when a STALL handshake is transmitted. The Cortex-M3 processor
(or fabric master) should clear this bit.

5 SendStall 0 The Cortex-M3 processor (or fabric master) writes a 1 to this bit to issue a STALL
handshake. The Cortex-M3 processor (or fabric master) clears this bit to terminate
the stall condition.
This bit has no effect where the endpoint is being used for ISO transfers.

Universal Serial Bus On-The-Go Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 309

...........continued
Bit
Number

Name Reset
Value

Function

4 FlushFIFO 0 The Cortex-M3 processor (or fabric master) writes a 1 to this bit to flush the latest
packet from the endpoint receive FIFO. The FIFO pointer is reset, the RxPktRdy
bit (bit 0 of this register) is cleared.
FlushFIFO should only be used when RxPktRdy is set. At other times, it may
cause data to be corrupted.

If the FIFO is double-buffered, FlushFIFO may need to be set twice to completely
clear the FIFO.

3 DataError 0 This bit is set when RxPktRdy (bit 0 of this register) is set if the data packet has a
CRC or bit-stuff error. It is cleared when RxPktRdy is cleared.
This bit is only valid when the endpoint is operating in ISO mode. In Bulk mode, it
always returns zero.

2 OverRun 0 This bit is set if an OUT packet cannot be loaded into the receive FIFO. The
Cortex-M3 processor (or fabric master) should clear this bit.
This bit is only valid when the endpoint is operating in ISO mode. In Bulk mode, it
always returns zero.

1 FIFOFull 0 This bit is set when no more packets can be loaded into the receive FIFO.

0 RxPktRdy 0 This bit is set when a data packet has been received. The Cortex-M3 processor (or
fabric master) should clear this bit when the packet has been unloaded from the
receive FIFO. An interrupt is generated when the bit is set.

9.3.6.12 RX_CSRL_REG (in Host mode) Bit Definitions
Table 9-34. RX_CSRL_REG (Host)

Bit
Number

Name Reset
Value

Function

7 ClrDataTog 0 The Cortex-M3 processor (or fabric master) writes a 1 to this bit to reset the
endpoint data toggle to 0.

6 RxStall 0 When a STALL handshake is received, this bit is set and an interrupt is
generated. The Cortex-M3 processor (or fabric master) should clear this bit.

5 ReqPkt 0 The Cortex-M3 processor (or fabric master) writes a 1 to this bit to request an
IN transaction. It is cleared when RxPktRdy is set.

4 FlushFIFO 0 The Cortex-M3 processor (or fabric master) writes a 1 to this bit to flush the
latest packet from the endpoint receive FIFO. The FIFO pointer is reset and the
RxPktRdy bit (bit 0 of this register) is cleared.
FlushFIFO should only be used when RxPktRdy is set. At other times, it may
cause data to be corrupted.

If the FIFO is double-buffered, FlushFIFO may need to be set twice to
completely clear the FIFO.

3 DataError 0 While operating in ISO mode, this bit is set when RxPktRdy (bit 0 of this
register) is set, if the data packet has a CRC or bit-stuff error, and cleared when
RxPktRdy is cleared. In Bulk mode, this bit is set when the receive endpoint
is halted, following the receipt of NAK responses for longer than the time set
as the NAK limit by the RxInterval register. The Cortex-M3 processor (or fabric
master) should clear this bit to allow the endpoint to continue. However, if
double packet buffering is enabled, this alone will not allow the transfer to
continue. In this case, the reqpkt bit should also be set in the same cycle this
bit is cleared.

NAK Timeout 0

Universal Serial Bus On-The-Go Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 310

...........continued
Bit
Number

Name Reset
Value

Function

2 Error 0 The USB controller sets this bit when 3 attempts have been made to receive
a packet and no data packet has been received. The Cortex-M3 processor (or
fabric master) should clear this bit.
This bit is only valid when the Rx endpoint is operating in Bulk or Interrupt
mode. In ISO mode, it always returns zero.

1 FIFOFull 0 This bit is set when no more packets can be loaded into the receive FIFO.

0 RxPktRdy 0 This bit is set when a data packet has been received. The Cortex-M3 processor
(or fabric master) should clear this bit when the packet has been unloaded from
the receive FIFO. An interrupt is generated when the bit is set.

9.3.6.13 RX_CSRH_REG (in Peripheral mode) Bit Definitions
Table 9-35. RX_CSRH_REG (Peripheral)

Bit
Number

Name Reset
Value

Function

7 AutoClear 0 If the Cortex-M3 processor (or fabric master) sets this bit then the RxPktRdy
bit (bit 0 in RXCSRL_REG) will be automatically cleared when a packet
of RxMaxP (RX_MAX_P_REG) bytes has been unloaded from the receive
FIFO. When packets of less than the maximum packet size are unloaded,
RxPktRdy will have to be cleared manually. When using a DMA to unload
the receive FIFO, data is read from the receive FIFO in 4-byte chunks,
regardless of the RxMaxP. Therefore, the RxPktRdy bit will be cleared, as
shown in Table 9-36.
Should not be set for high-bandwidth ISO endpoints.

6 ISO 0 The Cortex-M3 processor (or fabric master) sets this bit to enable the receive
endpoint for ISO transfers, and clears it to enable the receive endpoint for
bulk/interrupt transfers.

5 DMAReqEnab 0 The Cortex-M3 processor (or fabric master) sets this bit to enable the DMA
request for the receive endpoint.

4 DisNyet 0 Bulk/interrupt transactions: the Cortex-M3 processor (or fabric master)
sets this bit to disable the sending of NYET handshakes. When set, all
successfully received packets are ACKed, including the point at which the
FIFO becomes full.
This bit only has effect in High speed mode, and should be set for all interrupt
endpoints.

PID Error 0 ISO transactions: the USB controller sets this bit to indicate a PID error in the
received packet.

3 DMAReqMode 0 The Cortex-M3 processor (or fabric master) sets this bit to select DMA
Request Mode 1 and clears it to select DMA Request Mode 0.

[2:1] Reserved NA —

0 IncompRx 0 This bit is set in a high-bandwidth ISO/interrupt transfer if the packet in the
receive FIFO is incomplete because parts of the data were not received. It is
cleared when RxPktRdy (bit0 in RXCSRL_REG) is cleared.
In anything other than ISO transfer, this bit will always return 0.

Universal Serial Bus On-The-Go Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 311

9.3.6.14 RxPktReady Bit Cleared
Table 9-36. RxPktReady Bit Cleared

Remainder (RxMaxP/4) Actual Bytes Read Packet Sizes that will Clear RxPktRdy

0 (RXMaxP = 64 bytes) RxMaxP RxMaxP, RxMaxP – 1,RxMaxP – 2, RxMaxP – 3

3 (RXMaxP = 63 bytes) RxMaxP + 1 RxMaxP, RxMaxP – 1, RxMaxP – 2

2 (RXMaxP = 62 bytes) RxMaxP + 2 RxMaxP, RxMaxP – 1

1 (RXMaxP = 61 bytes) RxMaxP + 3 RxMaxP

9.3.6.15 RX_CSRH_REG (in Host mode) Bit Definitions
Table 9-37. RX_CSRH_REG (Host)

Bit
Number

Name Reset
Value

Function

7 AutoClear 0 If the Cortex-M3 processor (or fabric master) sets this bit, the RxPktRdy
bit (bit 0 in RXCSRL_REG) will be automatically cleared when a packet
of RxMaxP (RX_MAX_P_REG) bytes has been unloaded from the receive
FIFO. When packets of less than the maximum packet size are unloaded,
RxPktRdy will have to be cleared manually. When using a DMA to unload
the receive FIFO, data is read from the receive FIFO in 4-byte chunks
regardless of the RxMaxP. Therefore, the RxPktRdy bit is cleared as shown
in Table 9-36.
Should not be set for high-bandwidth ISO endpoints.

6 AutoReq 0 If the Cortex-M3 processor (or fabric master) sets this bit, the ReqPkt bit
(bit 5 in RX_CSRL_REG) will be set automatically when the RxPktRdy bit
(bit 0 in RX_CSRL_REG) is cleared.
This bit is automatically cleared when a short packet is received.

5 DMAReqEnab 0 The Cortex-M3 processor (or fabric master) sets this bit to enable the DMA
request for the receive endpoint.

4 PID Error 0 ISO transactions: The USB controller sets this bit to indicate a PID error
in the received packet. Bulk/interrupt transactions: the setting of this bit is
ignored.

3 DMAReqMode 0 The Cortex-M3 processor (or fabric master) sets this bit to select DMA
Request mode 1 and clears it to select DMA Request mode 0.

2 Data Toggle
Write Enable

0 The Cortex-M3 processor (or fabric master) writes a 1 to this bit to enable
the current state of the endpoint0 data toggle to be written (refer to the
Data Toggle bit, below). This bit is automatically cleared once the new
value is written.

1 Data Toggle 0 When read, this bit indicates the current state of the endpoint0 data toggle.
If Data Toggle Write Enable (bit[2] of this register) is high, this bit may be
written with the required setting of the data toggle. If Data Toggle Write
Enable is low, any value written to this bit is ignored.

0 IncompRx 0 This bit is set in a high-bandwidth ISO/interrupt transfer if the packet in the
receive FIFO is incomplete because parts of the data were not received. It
is cleared when RxPktRdy (bit 0 in RXCSRL_REG) is cleared.
In anything other than ISO transfer, this bit always returns 0.

Universal Serial Bus On-The-Go Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 312

9.3.6.16 COUNT0_REG Bit Definitions
Table 9-38. COUNT0_REG

Bit
Number

Name Reset
Value

Function

[6:0] Endpoint0 Rx Count 0 Indicates the number of received data bytes in the endpoint 0 FIFO. The
value returned changes as the contents of the FIFO change and is only
valid while RxPktRdy (CSR0L_REG.bit0) is set.

9.3.6.17 RX_COUNT_REG Bit Definitions
Table 9-39. RX_COUNT_REG

Bit
Number

Name Reset
Value

Function

[13:0] Endpoint Rx Count 0 Holds the number of data bytes in the packet currently in line to be read
from the receive FIFO. If the packet was transmitted as multiple bulk
packets, the number given will be for the combined packet.
The value returned changes as the FIFO is unloaded and is only valid
while RxPktRdy (bit 0 in RX_CSRL_REG) is set.

9.3.6.18 TYPE0_REG (Host mode only)
Table 9-40. TYPE0_REG

Bit
Number

Name Reset
Value

Function

[7:6] Speed 0 These bits should be written with the operating speed of the targeted
device.

[5:0] Reserved NA —

9.3.6.19 TX_TYPE_REG Bit Definitions
Table 9-41. TX_TYPE_REG

Bit
Number

Name Reset
Value

Function

[7:6] Speed 0 Operating speed of the target device
• 00: Unused (If selected, the target is assumed to be using the same

connection speed as the USB controller).
• 01: High
• 10: Full
• 11: Low

When the core is not configured with the multipoint option, these bits
should not be accessed.

[5:4] Protocol 0 The Cortex-M3 processor (or fabric master) should set this to select the
required protocol for the transmit endpoint.
00: Control
01: ISO
10: Bulk
11: Interrupt

[3:0] Target Endpoint
Number

0 The Cortex-M3 processor (or fabric master) should set this value to the
endpoint number contained in the transmit endpoint descriptor returned to
the USB controller during device enumeration.

Universal Serial Bus On-The-Go Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 313

9.3.6.20 NAK_LIMIT0_REG (Hots mode only) Bit Definitions
Table 9-42. NAK_LIMIT0_REG

Bit
Number

Name Reset
Value

Function

[4:0] Endpoint0 NAK Limit
(m)

0 Sets the number of frames/microframes (high-speed transfers) after
which endpoint 0 should timeout on receiving a stream of NAK
responses. Equivalent settings for other endpoints can be made through
their TX_INTERVAL_REG and TX_INTERVAL_REG registers.
The number of frames/microframes selected is 2(m – 1) (where, m is the
value set in the register, valid values are 2 – 16). If the host receives NAK
responses from the target for more frames than the number represented
by the limit set in this register, the endpoint will be halted.

A value of 0 or 1 disables the NAK timeout function.

9.3.6.21 TX_INTERVAL_REG (Host mode only) Bit Definitions
Table 9-43. TX_INTERVAL_REG

Bit
Number

Name Reset
Value

Function

[7:0] Tx Polling
Interval/NAK Limit
(m)

0 Defines the polling interval for the currently selected transmit endpoint
for interrupt and ISO transfers. For bulk endpoints, this register sets the
number of frames/microframes after which the endpoint should timeout
on receiving a stream of NAK responses.
There is one such register for each configured transmit endpoint (except
endpoint 0). In each case the value that is set defines a number of
frames/microframes (high speed transfers), as given in Table 9-44.

9.3.6.22 Polling Intervals for Transfer Types
Table 9-44. Polling Intervals for Transfer Types

Transfer Type Speed Valid Value (m) Interpretation

Interrupt Low speed or full speed 1 – 255 Polling interval is m frames.

High speed 1 – 16 Polling interval is 2(m – 1) microframes.

Isochronous Full speed or high speed 1 – 16 Polling interval is 2(m –1) frames/microframes.

Bulk Full speed or high speed 2 – 16 NAK Limit is 2(m – 1) frames/microframes.
A value of 0 or 1 disables the NAK timeout
function.

Universal Serial Bus On-The-Go Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 314

9.3.6.23 RX_TYPE_REG (Host mode only) Bit Definitions
Table 9-45. RX_TYPE_REG

Bit
Number

Name Reset
Value

Function

[7:6] Speed 0 Operating speed of the target device:
00: Unused (If selected, the target is assumed to be using the same
connection speed as the USB controller.)

01: High
10: Full
11: Low
When the core is not configured with the multipoint option, these bits
should not be accessed.

[5:4] Protocol 0 The Cortex-M3 processor (or fabric master) should set this to select
the required protocol for the receive endpoint:
00: Control
01: ISO
10: Bulk
11: Interrupt

[3:0] Target Endpoint Number 0 The Cortex-M3 processor (or fabric master) should set this value to
the endpoint number contained in the receive endpoint descriptor
returned to the USB controller during device enumeration.

9.3.6.24 RX_INTERVAL_REG (Host mode only) Bit Definitions
Table 9-46. RX_INTERVAL_REG

Bit
Number

Name Reset
Value

Function

[7:0] Rx Polling Interval/NAK
Limit (m)

0 Defines the polling interval for the currently selected receive
endpoint for Interrupt and ISO transfers. For bulk endpoints, this
register sets the number of frames/microframes after which the
endpoint should timeout on receiving stream of NAK responses.
There is one such register for each configured transmit endpoint
(except endpoint 0). In each case the value that is set defines a
number of frames/microframes (high speed transfers), as given in
Table 9-44.

9.3.6.25 CONFIG_DATA_REG Bit Definitions
Table 9-47. CONFIG_DATA_REG

Bit
Number

Name Reset
Value

Function

7 MPRxE NA When set to 1, automatic amalgamation of bulk packets is selected.

6 MPTxE NA When set to 1, automatic splitting of bulk packets is selected.

5 BigEndian NA Always 0. Indicates Little Endian ordering.

4 HBRxE NA When set to 1, indicates high-bandwidth receive ISO endpoint support
selected.

3 HBTxE NA When set to 1, indicates high-bandwidth transmit ISO endpoint support
selected.

2 DynFIFO Sizing NA When set to 1, indicates dynamic FIFO sizing option selected.

Universal Serial Bus On-The-Go Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 315

...........continued
Bit
Number

Name Reset
Value

Function

1 SoftConE NA Always 1. Indicates soft connect/disconnect.

0 UTMI DataWidth NA Indicates selected UTMI+ data width. Always 0, indicating 8 bits.

9.3.6.26 FIFO_SIZE_REG Bit Definitions
Table 9-48. FIFO_SIZE_REG

Bit
Number

Name Reset
Value

Function

[7:4] Rx FIFO Size N/A Returns the sizes of the FIFOs associated with the selected additional
transmit/receive endpoints. The lower nibble, [3:0], encodes the size of
the selected transmit endpoint FIFO; the upper nibble, [7:4], encodes the
size of the selected receive endpoint FIFO. Values of 3 – 13 correspond
to a FIFO size of 2n bytes (8 – 8,192 bytes). If an endpoint has not
been configured, a value of 0 is displayed. When the transmit and receive
endpoints share the same FIFO, the Rx FIFO size will be encoded as 0xF.
The register only has this interpretation when the Index register is set to
select one of endpoints 1 – 15 and dynamic sizing is not selected. It has a
special interpretation when the INDEX_REG is set to select endpoint0; the
result returned is not valid where dynamic FIFO sizing is used.

[3:0] Tx FIFO Size N/A

9.3.7 FIFO Registers
These registers provide access to endpoint transmit and receive FIFOs. Writing to these addresses loads data into
the transmit for the corresponding endpoint. Reading from these addresses unloads data from the receive FIFO for
the corresponding endpoint.

Table 9-49. FIFO Registers

Register Name Address
Offset from
0x40043000

Width R/W Type Reset
Value

Description

EP0_FIFO_REG 0x0020 32 RW 0 Writing to this address loads data into the
endpoint0 transmit FIFO. Reading from this
address unloads data from the endpoint0 transmit
FIFO.

EP1_FIFO_REG 0x0024 32 RW 0 Writing to this address loads data into the
endpoint1 transmit FIFO. Reading from this
address unloads data from the endpoint1 transmit
FIFO.

EP2_FIFO_REG 0x0028 32 RW 0 Writing to this address loads data into the
endpoint2 transmit FIFO. Reading from this
address unloads data from the endpoint2 transmit
FIFO.

EP3_FIFO_REG 0x002C 32 RW 0 Writing to this address loads data into the
endpoint3 transmit FIFO. Reading from this
address unloads data from the endpoint3 transmit
FIFO.

EP4_FIFO_REG 0x0030 32 RW 0 Writing to this addresses loads data into the
endpoint4 transmit FIFO. Reading from this
address unloads data from the endpoint4 transmit
FIFO.

Universal Serial Bus On-The-Go Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 316

9.3.7.1 EPx_FIFO_REG Bit Definitions
Table 9-50. EPx_FIFO_REG (0x400430YZ)

Bit
Number

Name Reset
Value

Function

[31:0] Epx_TxRxDataAcc 0 Address of endpointx to write data into transmit FIFO or read from
receive FIFO.
The value of x can be 0, 1, 2, 3, or 4.

The values of YZ differ with the register name:

1. EP0_FIFO_REG - 0x40043020

2. EP1_FIFO_REG - 0x40043024

3. EP2_FIFO_REG - 0x40043028

4. EP3_FIFO_REG - 0x4004302C

5. EP4_FIFO_REG - 0x40043030

9.3.8 Control and Status Registers (OTG, Dynamic FIFO, and Version)
This section covers all registers in this category along with the address offset, functionality, and per bit details.

Table 9-51. Additional Control and Status Registers (OTG, Dynamic FIFO, and Version)

Register Name Address
Offset from
0x40043000

Widt
h

R/W Type Reset
Value

Description

Table 9-52 0x0060 8 R 0x80 Selects whether the USB
controller operates in Peripheral
mode or in Host mode, and
also controls and monitors the
USB VBus line. If the PHY
is suspended, no PHY clock
(XCLK) is received and the VBus
is not sampled.

Table 9-54 0x0061 8 R 0 Contains the early DMA enable
bits to receive and transmit.

Table 9-55 0x0062 5 RW 0 Controls the size of the selected
transmit endpoint FIFO.

Table 9-56 0x0063 5 RW 0 Controls the size of the selected
receive endpoint FIFO.

Table 9-57 0x0064 14 RW 0 Controls the start address of the
selected transmit endpoint FIFO.

Table 9-59 0x0066 14 RW 0 Controls the start address of the
selected receive endpoint FIFO.

Universal Serial Bus On-The-Go Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 317

...........continued
Register Name Address

Offset from
0x40043000

Widt
h

R/W Type Reset
Value

Description

Table 9-60 0x0068 4 W
(VControl)

0 VControl is optionally a UTMI+
PHY vendor register. UTMI+
specification defines a 4-bit
VControl register.
The latency for the write (as
measured between the positive
edge of the CLK at the end
of the AHB write cycle and the
positive edge of XCLK when the
UTMI+ PHY VControl register is
loaded) is between Hc + 3Xc
and Hc + 4Xc, where Hc is a
cycle of CLK and Xc is a cycle
of XCLK.

The minimum period between
successive writes to the
VControl register must be Hc
+ 4Xc to ensure that the value
is not corrupted while it is
being synchronized to the XCLK
domain.

Table 9-61 0x0068 8 R
(VStatus)

VStatus is optionally a UTMI+
PHY vendor register. UTMI+
specification defines an 8-bit
VStatus register.
The VSTATUS input bus is
sampled once every six XCLK
cycles.

The latency between the
VSTATUS input bus from the
PHY changing and the new
value being read from the
VStatus register (measured to
the positive edge of CLK at the
end of the AHB read cycle) is
between 2Hc + Xc and 3Hc +
6Xc, where Hc is a cycle of CLK
and Xc is a cycle of XCLK.

Table 9-62 0x006C 16 R Returns information about the
version of the USB controller.
Specifically, the version of
design (RTL) used to implement
the USB controller. Useful for
debug purposes.

Reserved 0x006E N/A

Universal Serial Bus On-The-Go Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 318

9.3.8.1 DEV_CTRL_REG Bit Definitions
Table 9-52. DEV_CTRL_REG (0x40043060)

Bit
Number

Name Reset
Value

Function

7 B-Device 1 Indicates whether the USB controller is operating as the A device or the B
device.
0: A device

1: B device

Only valid while a session is in progress. To determine the role when no
session is in progress, set the session bit and read this bit.

If the core is in Force_Host mode (a session has been started
with TESTMODE_REG.bit[7] = 1), this bit indicates the state of the
FAB_HOSTDISCON input signal.

6 FSDev 0 This read-only bit is set when a full speed or high speed device has been
detected being connected to the port. High-speed devices are distinguished
from full speed by checking for high-speed chirps when the device is reset.
Only valid in Host mode.

5 LSDev 0 This read-only bit is set when a low-speed device is detected being
connected to the port. Only valid in Host mode.

[4:3] Vbus[1:0] 0 These read-only bits encode the current VBus level as given in Table 9-53.

2 Host Mode 0 This read-only bit is set when the USB controller is acting as a host.

1 Host Req 0 When set, the USB controller initiates the host negotiation when Suspend
mode is entered It is cleared when host negotiation is completed. (B device
only).

0 Session 0 When operating as an A device, this bit is set or cleared by the Cortex-M3
processor (or fabric master) to start or end a session. When operating as a
B device, this bit is set/cleared by the USB controller when a session starts/
ends. It is also set by the Cortex-M3 processor (or fabric master) to initiate
the session request protocol. When the USB controller is in Suspend mode,
the bit gets cleared by the Cortex-M3 processor (or fabric master) to perform
a software disconnect.
Clearing this bit when the core is not suspended results in undefined
behavior.

9.3.8.2 Encoding of VBus Level
Table 9-53. Encoding of VBus Level

D4 D3 Meaning

0 0 Below session end

0 1 Above session end, below Avalid

1 0 Above Avalid, below VBus valid

1 1 Above VBus valid

Universal Serial Bus On-The-Go Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 319

9.3.8.3 MISC_REG Bit Definitions
Table 9-54. MISC_REG (0x40043061)

Bit
Number

Name Reset
Value

Function

1 TX_EDMA 0 0: DMA_REQ signal for all IN endpoints is deasserted when MAXP
(TX_MAX_P_REG) bytes are written to an endpoint. This is a late mode.
1: DMA_REQ signal for all IN endpoints is deasserted when MAXP-8
(TX_MAX_P_REG-8) bytes are written to an endpoint. This is an early mode.

0 RX_EDMA 0 0: DMA_REQ signal for all OUT endpoints is deasserted when MAXP
(TX_MAX_P_REG) bytes are read to an endpoint. This is a late mode.
1: DMA_REQ signal for all OUT endpoints is deasserted when MAXP-8
(TX_MAX_P_REG-8) bytes are read to an endpoint. This is an early mode.

9.3.8.4 TX_FIFO_SIZE_REG Bit Definitions
Table 9-55. TX_FIFO_SIZE_REG (0x40043062)

Bit
Number

Name Reset
Value

Function

4 DPB 0 Defines whether double-packet buffering is supported. When ‘1’, double-packet
buffering is supported. When ‘0’, only single-packet buffering is supported.

[3:0] SZ[3:0] 0 Maximum packet size to be allowed for (before any splitting within the FIFO of
bulk/high-bandwidth packets prior to transmission).

• 0000: 8 Bytes
• 0001: 16 Bytes
• 0010: 32 Bytes
• 0011: 64 Bytes
• 0100: 128 Bytes
• 0101: 256 Bytes
• 0110: 512 Bytes
• 0111: 1,024 Bytes
• 1000: 2,048 Bytes
• 1001: 4,096 Bytes

If DPB = 0, the FIFO will also be this size; if DPB = 1, the FIFO will be twice this
size.

9.3.8.5 RX_FIFO_SIZE_REG Bit Definitions
Table 9-56. RX_FIFO_SIZE_REG (0x40043063)

Bit
Number

Name Reset
Value

Function

4 DPB 0 Defines whether double-packet buffering is supported. When ‘1’, double-packet
buffering is supported. When ‘0’, only single-packet buffering is supported.

Universal Serial Bus On-The-Go Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 320

...........continued
Bit
Number

Name Reset
Value

Function

[3:0] SZ[3:0] 0 Maximum packet size to be allowed for (before any splitting within the FIFO of
bulk/high-bandwidth packets prior to transmission).
00

00: 8 Bytes
0

001: 16 Bytes
0010: 32 Bytes
0011: 64 Bytes
0100: 128 Bytes
0101: 256 Bytes
0110: 512 Bytes
0111: 1,024 Bytes
1000: 2,048 Bytes
1001: 4,096 Bytes

If DPB = 0, the FIFO will also be this size; if DPB = 1, the FIFO will be twice
this size.

9.3.8.6 TX_FIFO_ADD_REG Bit Definitions
Table 9-57. TX_FIFO_ADD_REG (0x40043064)

Bit
Number

Name Reset
Value

Function

13 Reserved N/A

[12:0] AD[12:0] 0 Start address of the transmit endpoint FIFO in units of 8 bytes as given in Table
9-58.

9.3.8.7 Start Address of Transmit Endpoint
Table 9-58. Start Address of Transmit Endpoint

AD[12:0] Start Address

0 0 … 0 0 0x0000

0 0 … 0 1 0x0008

0 0 … 1 0 0x0010

… …

1 1 … 1 1 0xFFF8

9.3.8.8 RX_FIFO_ADD_REG Bit Definitions
Table 9-59. RX_FIFO_ADD_REG (0x40043066)

Bit
Number

Name Reset
Value

Function

13 Reserved NA —

[12:0] AD[12:0] 0 Start address of the receive endpoint FIFO in units of 8 bytes as given in
Table 9-58.

Universal Serial Bus On-The-Go Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 321

9.3.8.9 VBUS_CSR_REG (write only control) Bit Definitions
Table 9-60. VBUS_CSR_REG (write only) (0x40043068)

Bit
Number

Name Reset
Value

Function

[3:0] Vcontrol 0 Vendor-specific control data

9.3.8.10 VBUS_CSR_REG (read only status) Bit Definitions
Table 9-61. VBUS_CSR_REG (read only) (0x40043068)

Bit
Number

Name Reset
Value

Function

[7:0] Vstatus 0 Vendor-specific status data

9.3.8.11 HW_VERSION_REG Bit Definitions
Table 9-62. HW_VERSION_REG (continued)(0x4004306C)

Bit
Number

Name Reset
Value

Function

15 Reserved N/A

[14:10] xx 0 Major version number (range 0–31)

[9:0] yyy 0 Minor version number (range 0–999)

9.3.9 ULPI and Configuration Registers
These registers correspond to the ULPI interface and link specific. This section covers all registers in this category
along with the address offset, functionality, and per bit details.

Table 9-63. ULPI and Configuration Registers

Register
Name

Address Width R/W
Type

Reset
Value

Description

Table 9-64 0x40043070 8 R 0 ULPI PHYs can use an external charge pump to
generate VBus rather than an internal charge pump.
This register allows selection of the external charge
pump. It also allows this selection to be displayed
through an external VBus indicator.
This register is read back from the PHY clock domain.
Therefore, these bits do not return the updated values
when the PHY is suspended.

Table 9-65 0x40043071 8 R 0 Provides the basic control needed by ULPI-compatible
PHYs when interfacing with in-car CarKit systems.

Table 9-66 0x40043072 8 R 0 Enables the assertion of MC_NINT in response to the
possible interrupt sources.

Table 9-67 0x40043073 8 R 0 This register shows the unmasked value of the
possible interrupt sources.

Table 9-68 0x40043074 8 R 0 Contains the data associated with register reads/writes
that are conducted through the ULPI interface.

Table 9-69 0x40043075 8 R 0 Contains the address of the register being read/written
through the ULPI interface.

Universal Serial Bus On-The-Go Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 322

...........continued
Register
Name

Address Width R/W
Type

Reset
Value

Description

Table 9-70 0x40043076 8 R 0 Contains control and status bits relating to the register
being read/written through the ULPI interface.

Table 9-71
Table 9-72

0x40043077 8 R 0 This register is used in Asynchronous modes to
sample the ULPI bus and in Synchronous mode to
store the last received command.

Table 9-74 0x40043078 8 R 0 Allows read-back of the number of transmit and
receive endpoints included in the design.

Table 9-75 0x40043079 8 R 0 Provides information about the number of DMA
channels and the width of the RAM.

Table 9-76 0x4004307A 8 RW 0x5C Allows configuration of link-specific delays.

Table 9-77 0x4004307B 8 RW 0x3C This register allows setting duration of the Vbus
pulsing charge.

Table 9-78 0x4004307C 8 RW 0x80 Sets the minimum time gap that is allowed between
the start of the last transaction and the EOF for high-
speed transactions.

Table 9-79 0x4004307D 8 RW 0x77 Sets the minimum time gap that is to be allowed
between the start of the last transaction and the EOF
for full speed transactions.

Table 9-80 0x4004307E 8 RW 0x72 Sets the minimum time gap that is allowed between
the start of the last transaction and the EOF for low-
speed transactions.

Table 9-81 0x4004307F 8 RW 0 Asserts the output reset signals, NRSTO and
NRSTOX, low. This register is self clearing and is reset
by the input NRST.

9.3.9.1 ULPI_VBUS_CTRL_REG Bit Definitions
Table 9-64. ULPI_VBUS_CTRL_REG (0x40043070)

Bit
Number

Name Reset
Value

Function

[7:2] Reserved NA —

1 UseExtVbusInd 0 When 1, selects the use of an external VBus indicator (overcurrent indicator)
in the PHY’s VbusState determination.

0 UseExtVbus 0 When 1, selects the use of an external charge pump.

9.3.9.2 ULPI_CARKIT_CTRL_REG Bit Definitions
Table 9-65. ULPI_CARKIT_CTRL_REG (0x40043071)

Bit
Number

Name Reset
Value

Function

[7:6] Reserved NA Reserved

5 CarKitActiveEnd 0 Set by link when CarKitActive (bit 1 of this register) is cleared. This bit must
be cleared by software. It signifies that the USB controller’s (synchronous)
USB mode has been entered.

Universal Serial Bus On-The-Go Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 323

...........continued
Bit
Number

Name Reset
Value

Function

4 RxCmdEvent 0 Set by link when a RxCmd has been latched. This bit must be cleared by
software.

3 CancelCarKit 0 Set by software to abort CarKit mode and wake up the PHY. This bit auto-
clears when the PHY enters Synchronous mode.

2 AltIntEvent 0 Set by link when an alt_int (ULPI_RAW_DATA_REG.bit7) event occurs. This
bit must be cleared by software.

1 CarKitActive 0 Set by link when the (asynchronous) CarKit mode is entered after DIR goes
high. It is cleared on the falling edge of DIR.

0 DisableUTMI 0 Set and cleared by software to decouple the reconstituted UTMI signals from
the USB controller prior to entering CarKit mode.
It cannot be cleared while ULPICarKitControl CarKitActive bit (bit 1 of this
register) is set.

9.3.9.3 ULPI_IRQ_MASK_REG Bit Definitions
Table 9-66. ULPI_IRQ_MASK_REG (0x40043072)

Bit
Number

Name Reset
Value

Function

[7:4] Reserved NA —

3 RxCmdIntEn 0 Assert MC_NINT if RxCmdInt (ULPI_IRQ_SRC_REG.bit3) is set.
To clear MC_NINT, the software must clear RxCmdEvent
(ULPI_CARKIT_CTRL_REG.bit4).

2 ActiveEndIntEn 0 Assert MC_NINT if ActiveEndInt (ULPI_IRQ_SRC_REG.bit2) is set.
To clear MC_NINT, the software must clear CarKitActiveEnd
(ULPI_CARKIT_CTRL_REG.bit5).

1 AltIntEn 0 Assert MC_NINT if AltInt (ULPI_IRQ_SRC_REG.bit1) is set.
To clear MC_NINT, the software must clear AltIntEvent
(ULPI_CARKIT_CTRL_REG.bit2).

0 RegIntEn 0 Assert MC_NINT if RegInt (ULPI_IRQ_SRC_REG.bit0) is set.
To clear MC_NINT, the software must clear ULPIRegCmplt
(ULPI_REG_CTRL.bit1).

9.3.9.4 ULPI_IRQ_SRC_REG Bit Definitions
Table 9-67. ULPI_IRQ_SRC_REG (0x40043073)

Bit
Number

Name Reset
Value

Function

[7:4] Reserved N/A

3 RxCmdInt 0 Asserted if RxCmdEvent (ULPI_CARKIT_CTRL_REG.bit4) is set.
To clear the interrupt, the software must clear RxCmdEvent.

2 ActiveEndInt 0 Asserted if CarKitActiveEnd (ULPI_CARKIT_CTRL_REG.bit5) is set.
To clear the interrupt, the software must clear CarKitActiveEnd.

1 AltInt 0 Asserted if AltIntEvent (ULPI_CARKIT_CTRL_REG.bit2) is set.
To clear the interrupt, the software must clear AltIntEvent.

Universal Serial Bus On-The-Go Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 324

...........continued
Bit
Number

Name Reset
Value

Function

0 RegInt 0 Asserted if ULPIRegCmplt (ULPI_REG_CTRL.bit1) is set.
To clear the interrupt, the software must clear ULPIRegCmplt.

9.3.9.5 ULPI_DATA_REG Bit Definitions
Table 9-68. ULPI_DATA_REG (0x40043074)

Bit Number Name Reset
Value

Function

[7:0] ULPIRegData 0 Register data for PHY register access

9.3.9.6 ULPI_ADDR_REG Bit Definitions
Table 9-69. ULPI_ADDR_REG (0x40043075)

Bit Number Name Reset
Value

Function

[7:0] ULPIRegAddr 0 Address for PHY register access

9.3.9.7 ULPI_REG_CTRL Bit Definitions
Table 9-70. ULPI_REG_CTRL (0x40043076)

Bit
Number

Name Reset
Value

Function

[7:3] Reserved N/A

2 ULPIRdnWr 0 Set by software for register read access. Cleared by software for register write
access.

1 ULPIRegCmplt 0 Set by link when register access is complete. This bit must be cleared by
software.

0 ULPIRegReq 0 Set by software to initiate register access. This is cleared when ULPIRegCmplt
(bit 1 of this register) is set.

9.3.9.8 ULPI_RAW_DATA_REG (Asynchronous Mode) Bit Definitions
When one of the PHY’s Asynchronous modes is selected, this register is used to indicate the present value of the
ULPI bus, latched by any transition on int (on data(3)).

Table 9-71. ULPI_RAW_DATA_REG (0x40043077) (Asynchronous)

Bit Number Name Reset
Value

Function

[7:4] Reserved NA —

3 data(3) 0 Active-high interrupt indication (int)

2 data(2) 0 Single-ended zero (se0)

1 data(1) 0 Differential data (dat)

0 data(0) 0 Active-high transmit enable (tx_enable)

9.3.9.9 ULPI_RAW_DATA_REG (Synchronous mode) Bit Definitions
When the PHY’s Synchronous mode is used, this register stores the last RxCmd.

Universal Serial Bus On-The-Go Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 325

Because RxCmds are received in the PHY clock domain and this register is read in the CPU clock domain, RxCmds
may be missed if they are concurrent and the CPU clock is slower than the PHY clock. This should not be an issue
for CarKit negotiation because this process lasts for over 1 ms, but this feature should not be relied upon to monitor
transactions carried out at USB bus speed.

Table 9-72. ULPI_RAW_DATA_REG (0x40043077) (Synchronous)

Bit
Number

Name Reset
Value

Function

7 alt_int 0 Asserted when a non-USB interrupt occurs. In particular, it must be set if an
unmasked event occurs on any bit of the PHY’s CarKit Interrupt Latch register.

6 ID 0 Set to the value of the IDDIG (valid 50 ms after IDPULLUP is asserted).

[5:4] RxEvent[1:0] 0 Encoded UTMI event signals are given in Table 9-73.

[3:2] VbusState[1:0] 0 Encoded Vbus voltage state.
00: Vbus < VB_Sess_END

01: VB_Sess_END < = Vbus < VB_Sess_VLD

.

.

10: VB_Sess_VLD < = Vbus < VB_Vbus_VLD

11: VB_Sess_VLD < = Vbus

[1:0] LineState[1:0] 0 UTMI+ LineState signals

9.3.9.10 Encoded UTMI Event Signals
Table 9-73. Encoded UTMI Event Signals

Value RxActive RxError Host Disconnect

00 0 0 0

01 1 0 0

10 1 1 0

11 X X 1

9.3.9.11 EP_INFO_REG Bit Definitions
Table 9-74. EP_INFO_REG (0x40043078)

Bit
Number

Name Reset
Value

Function

[7:4] RxEndPoints 0 The number of receive endpoints implemented in the design.

[3:0] TxEndPoints 0 The number of transmit endpoints implemented in the design.

9.3.9.12 RAM_INFO_REG Bit Definitions
Table 9-75. RAM_INFO_REG (0x40043079)

Bit
Number

Name Reset
Value

Function

[7:4] DMAChans 0 The number of DMA channels implemented in the design.

[3:0] RamBits 0 The width of the RAM address bus.

Universal Serial Bus On-The-Go Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 326

9.3.9.13 LINK_INFO_REG Bit Definitions
Table 9-76. LINK_INFO_REG (0x4004307A)

Bit
Number

Name Reset
Value

Function

[7:4] WTCON 0x5 Sets the wait to be applied to allow the connect/disconnect filter in units
of 533.3 ns. The default setting corresponds to 2.667 μs.

[3:0] WTID 0xC Sets the delay to be applied from IDPULLUP being asserted to
IDDIG being considered valid in units of 4.369 ms. The default setting
corresponds to 52.43 ms.

9.3.9.14 VP_LEN_REG Bit Definitions
Table 9-77. VP_LEN_REG (0x4004307B)

Bit
Number

Name Reset
Value

Function

[7:0] VPLEN 0x3C Sets the duration of the VBus pulsing charge in units of 546.1 μs. The
default setting corresponds to 32.77 ms.

9.3.9.15 HS_EOF1_REG Bit Definitions
Table 9-78. HS_EOF1_REG (0x4004307C)

Bit
Number

Name Reset
Value

Function

[7:0] HS_EOF1 0x80 For high-speed transactions: Sets the time before EOF to stop beginning new
transactions, in units of 133.3 ns. The default setting corresponds to 17.07 μs.

9.3.9.16 FS_EOF1_REG Bit Definitions
Table 9-79. FS_EOF1_REG (0x4004307D)

Bit
Number

Name Reset
Value

Function

[7:0] FS_EOF1 0x77 For full-speed transactions: Sets the time before EOF to stop beginning new
transactions, in units of 533.3 ns. The default setting corresponds to 63.46 μs.

9.3.9.17 LS_EOF1_REG Bit Definitions
Table 9-80. LS_EOF1_REG (0x4004307E)

Bit
Number

Name Reset
Value

Function

[7:0] LS_EOF1 0x72 For low-speed transactions: Sets the time before EOF to stop beginning new
transactions, in units of 1.067 μs. The default setting corresponds to 121.6 μs.

9.3.9.18 SOFT_RESET_REG Bit Definitions
Table 9-81. SOFT_RESET_REG (0x4004307F)

Bit
Number

Name Reset
Value

Function

[7:2] Reserved N/A

Universal Serial Bus On-The-Go Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 327

...........continued
Bit
Number

Name Reset
Value

Function

1 NRSTX 0 The default value of this bit is 0. When a 1 is written to this bit, the output NRSTXO
is asserted (low) within a minimum delay of seven cycles of the CLK input. The
output NRSTXO is asynchronously asserted and synchronously deasserted with
respect to XCLK. This register is self clearing and is reset by the input NRST.

0 NRST 0 The default value of this bit is 0. When a 1 is written to this bit, the output NRSTO is
asserted (Low) within a minimum delay of seven cycles of the CLK input. The output
NRSTO is asynchronously asserted and synchronously deasserted with respect to
CLK. This register is self clearing and is reset by the input NRST.

9.3.10 Non-Indexed End Point Control/Status Registers
The registers available at 10h–1Fh are accessible independently of the setting of the Index register. 100h–10Fh for
EP0 registers; 110h–11Fh for EP1 registers; 120h–12Fh for EP2; and so on until EP4. For each set, a separate table
for registers is included. Since all registers are similar except for address offset, a common bit definition table is
included for each register.

9.3.10.1 Endpoint0 Control and Status Registers
Table 9-82. Endpoint0 Control and Status Registers

Register Name Address
Offset from
0x40043000

Width R/W
Type

Reset
Value

Description

EP0_TX_MAX_P_REG 0x0100 16 RW 0 Maximum packet size for host transmit
endpoint0.

EP0_TX_CSR_REG 0x0102 16 R 0 Provides control and status bits for transmit
endpoint0.

EP0_RX_MAX_P_REG 0x0104 16 RW 0 Defines the maximum amount of data that can
be transferred through receive endpoint0 in a
single operation.

EP0_RX_CSR_REG 0x0106 16 R 0 Provides control and status bits for transfers
through the receive endpoint0.

EP0_RX_COUNT_REG 0x0108 16 R 0 Holds the number of data bytes in the packet
currently in line to be read from the endpoint0
receive FIFO. If the packet was transmitted as
multiple bulk packets, the number given will be
for the combined packet.

EP0_TX_TYPE_REG 0x010A 8 W 0 Reads the number of bytes from peripheral
endpoint0 transmit FIFO

EP0_TX_INTERVAL_REG 0x010B 8 RW 0 Sets the polling interval for interrupt/ISOC
transactions or the NAK response timeout on
bulk transactions for host transmit endpoint0.

EP0_RX_TYPE_REG 0x010C 8 RW 0 Sets the transaction protocol, speed, and
peripheral endpoint number for the host receive
endpoint0.

EP0_RX_INTERVAL_REG 0x010D 8 RW 0 Sets the polling interval for interrupt/ISOC
transactions or the NAK response timeout on
bulk transactions for host receive endpoint0.

Universal Serial Bus On-The-Go Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 328

...........continued
Register Name Address

Offset from
0x40043000

Width R/W
Type

Reset
Value

Description

EP0_FIFO_SIZE_REG 0x010E 8 R — Returns the configured size of the endpoint0
receive FIFO and transmit FIFOs.

9.3.10.2 Endpoint1 Control and Status Registers
Table 9-83. Endpoint1 Control and Status Registers

Register Name Address
Offset from
0x40043000

Width R/W
Type

Reset
Value

Description

EP1_TX_MAX_P_REG 0x0110 16 R 0 Maximum packet size for host transmit
endpoint1.

EP1_TX_CSR_REG 0x0112 16 R 0 Provides control and status bits for transmit
endpoint1.

EP1_RX_MAX_P_REG 0x0114 16 RW 0 Defines the maximum amount of data that can
be transferred through receive endpoint1 in a
single operation.

EP1_RX_CSR_REG 0x0116 16 R 0 Provides control and status bits for transfers
through the receive endpoint1.

EP1_RX_COUNT_REG 0x0118 16 R 0 Holds the number of data bytes in the packet
currently in line to be read from the endpoint1
receive FIFO. If the packet is transmitted as
multiple bulk packets, the number given will be
for the combined packet.

EP1_TX_TYPE_REG 0x011A 8 W 0 Reads the number of bytes to be read from
peripheral endpoint1 transmit FIFO

EP1_TX_INTERVAL_REG 0x011B 8 RW 0 Sets the polling interval for interrupt/ISOC
transactions or the NAK response timeout on
bulk transactions for host transmit endpoint1.

EP1_RX_TYPE_REG 0x011C 8 RW 0 Sets the transaction protocol, speed, and
peripheral endpoint number for the host receive
endpoint1.

EP1_RX_INTERVAL_REG 0x011D 8 RW 0 Sets the polling interval for interrupt/ISOC
transactions or the NAK response timeout on
bulk transactions for host receive endpoint1.

EP1_FIFO_SIZE_REG 0x011E 8 R — Returns the configured size of the endpoint1
receive FIFO and transmit FIFOs.

9.3.10.3 Endpoint2 Control and Status Registers
Table 9-84. Endpoint2 Control and Status Registers

Register Name Address
Offset from
0x40043000

Widt
h

R/W
Type

Reset
Value

Description

EP2_TX_MAX_P_REG 0x0120 16 RW 0 Maximum packet size for host transmit
endpoint2.

Universal Serial Bus On-The-Go Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 329

...........continued
Register Name Address

Offset from
0x40043000

Widt
h

R/W
Type

Reset
Value

Description

EP2_TX_CSR_REG 0x0122 16 R 0 Provides control and status bits for transmit
endpoint2.

EP2_RX_MAX_P_REG 0x0124 16 RW 0 Defines the maximum amount of data that can
be transferred through receive endpoint2 in a
single operation.

EP2_RX_CSR_REG 0x0126 16 R 0 Provides control and status bits for transfers
through the receive endpoint2.

EP2_RX_COUNT_REG 0x0128 16 R 0 Holds the number of data bytes in the packet
currently in line to be read from the endpoint2
receive FIFO. If the packet is transmitted as
multiple bulk packets, the number given will be
for the combined packet.

EP2_TX_TYPE_REG 0x012A 8 W 0 Reads the number of bytes from peripheral
endpoint2 transmit FIFO.

EP2_TX_INTERVAL_REG 0x012B 8 RW 0 Sets the polling interval for interrupt/ISOC
transactions or the NAK response timeout on
bulk transactions for host transmit endpoint2.

EP2_RX_TYPE_REG 0x012C 8 RW 0 Sets the transaction protocol, speed, and
peripheral endpoint number for the host receive
endpoint2.

EP2_RX_INTERVAL_REG 0x012D 8 RW 0 Sets the polling interval for interrupt/ISOC
transactions or the NAK response timeout on
bulk transactions for host receive endpoint2.

EP2_FIFO_SIZE_REG 0x012E 8 R — Returns the configured size of the endpoint2
receive FIFO and transmit FIFOs.

9.3.10.4 Endpoint3 Control and Status Registers
Table 9-85. Endpoint3 Control and Status Registers

Register Name Address
Offset from
0x40043000

Widt
h

R/W
Type

Rese
t
Value

Description

EP3_TX_MAX_P_REG 0x0130 16 RW 0 Maximum packet size for host transmit
endpoint3.

EP3_TX_CSR_REG 0x0132 16 R 0 Provides control and status bits for transmit
endpoint3.

EP3_RX_MAX_P_REG 0x0134 16 RW 0 Defines the maximum amount of data that can
be transferred through receive endpoint3 in a
single operation.

EP3_RX_CSR_REG 0x0136 16 R 0 Provides control and status bits for transfers
through the receive endpoint3.

Universal Serial Bus On-The-Go Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 330

...........continued
Register Name Address

Offset from
0x40043000

Widt
h

R/W
Type

Rese
t
Value

Description

EP3_RX_COUNT_REG 0x0138 16 R 0 Holds the number of data bytes in the packet
currently in line to be read from the endpoint3
receive FIFO. If the packet is transmitted as
multiple bulk packets, the number given will be
for the combined packet.

EP3_TX_TYPE_REG 0x013A 8 W 0 Reads the number of bytes from peripheral
endpoint3 transmit FIFO.

EP3_TX_INTERVAL_REG 0x013B 8 RW 0 Sets the polling interval for interrupt/ISOC
transactions or the NAK response timeout on
bulk transactions for host transmit endpoint3.

EP3_RX_TYPE_REG 0x013C 8 RW 0 Sets the transaction protocol, speed, and
peripheral endpoint number for the host receive
endpoint3.

EP3_RX_INTERVAL_REG 0x013D 8 RW 0 Sets the polling interval for interrupt/ISOC
transactions or the NAK response timeout on
bulk transactions for host receive endpoint3.

EP3_FIFO_SIZE_REG 0x013E 8 R — Returns the configured size of the endpoint3
receive FIFO and transmit FIFOs.

9.3.10.5 Endpoint4 Control and Status Registers
Table 9-86. Endpoint4 Control and Status Registers

Register Name Address
Offset from
0x40043000

Widt
h

R/W
Type

Rese
t
Value

Description

EP4_TX_MAX_P_REG 0x0140 16 RW 0 Maximum packet size for host transmit
endpoint4.

EP4_TX_CSR_REG 0x0142 16 R 0 Provides control and status bits for transmit
endpoint4.

EP4_RX_MAX_P_REG 0x0144 16 RW 0 Defines the maximum amount of data that can
be transferred through receive endpoint4 in a
single operation.

EP4_RX_CSR_REG 0x0146 16 R 0 Provides control and status bits for transfers
through the receive endpoint4.

EP4_RX_COUNT_REG 0x0148 16 R 0 Holds the number of data bytes in the packet
currently in line to be read from the endpoint4
receive FIFO. If the packet is transmitted as
multiple bulk packets, the number given will be
for the combined packet.

EP4_TX_TYPE_REG 0x014A 8 W 0 Reads the number of bytes from peripheral
endpoint4 transmit FIFO.

EP4_TX_INTERVAL_REG 0x014B 8 RW 0 Sets the polling interval for interrupt/ISOC
transactions or the NAK response timeout on
bulk transactions for host transmit endpoint4.

Universal Serial Bus On-The-Go Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 331

...........continued
Register Name Address

Offset from
0x40043000

Widt
h

R/W
Type

Rese
t
Value

Description

EP4_RX_TYPE_REG 0x014C 8 RW 0 Sets the transaction protocol, speed, and
peripheral endpoint number for the host receive
endpoint4.

EP4_RX_INTERVAL_REG 0x014D 8 RW 0 Sets the polling interval for interrupt/ISOC
transactions or the NAK response timeout on
bulk transactions for host receive endpoint4.

EP4_FIFO_SIZE_REG 0x014E 8 R — Returns the configured size of the endpoint4
receive FIFO and transmit FIFOs.

9.3.10.6 EPx_TX_MAX_P_REG Bit Definitions
Table 9-87. EPx_TX_MAX_P_REG

Bit
Number

Name Reset
Value

Function

[15:11] Reserved NA —

[10:0] EPx_TxMaxP 0 Maximum payload/transaction
Maximum payload in bytes transmitted in a single transaction. The value set
can be up to 1,024 bytes but is subject to the constraints placed by the USB
specification on packet sizes for bulk, interrupt, and ISO transfers in full-speed
and high-speed operations.

This must be set to an even number of bytes for proper interrupt generation in
DMA mode 1.

9.3.10.7 EPx_RX_COUNT_REG Bit Definitions
Table 9-88. EPx_RX_COUNT_REG

Bit
Number

Name Reset
Value

Function

[13:0] EPx_Rx Count 0 Holds the number of data bytes in the packet currently in line to be read from
the receive FIFO. If the packet is transmitted as multiple bulk packets, the
number given is for the combined packet.
The value returned changes as the FIFO is unloaded and is only valid while
RxPktRdy (bit0 in RX_CSRL_REG) is set.

9.3.10.8 EPx_RX_MAX_P_REG Bit Definitions
Table 9-89. EPx_RX_MAX_P_REG

Bit
Number

Name Reset
Value

Function

[15:11] Reserved N/A —

Universal Serial Bus On-The-Go Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 332

...........continued
Bit
Number

Name Reset
Value

Function

[10:0] EPx_RxMaxP 0 Maximum Payload/transaction
Maximum payload in bytes received in a single transaction. The value set
can be up to 1,024 bytes but is subject to the constraints placed by the USB
specification on packet sizes for bulk, interrupt, and ISO transfers in full-speed
and high-speed operations.

This must be set to an even number of bytes for proper interrupt generation in
DMA Mode 1.

9.3.10.9 EPx_TX_TYPE_REG Bit Definitions
Table 9-90. EPx_TX_TYPE_REG

Bit
Number

Name Reset
Value

Function

[7:6] EPx_Speed 0 Operating speed of the target device:
00: Unused

If selected, the target is assumed to be using the same connection
speed as the USB controller.

01: High
10: Full
11: Low
When the core is not configured with the multipoint option, these bits
should not be accessed.

[5:4] EPx_Protocol 0 The Cortex-M3 processor (or fabric master) should set this to select
the required protocol for the transmit endpoint:
00: Control
01: ISO
10: Bulk
11: Interrupt

[3:0] EPx_Target Endpoint
Number

0 The Cortex-M3 processor (or fabric master) should set this value to
the endpoint number contained in the transmit endpoint descriptor
returned to the USB controller during device enumeration.

9.3.10.10 EPx_TX_INTERVAL_REG Bit Definitions
Table 9-91. EPx_TX_INTERVAL_REG

Bit
Number

Name Reset
Value

Function

[7:0] EPx_Tx Polling
Interval / NAK Limit (m)

0 Defines the polling interval for endpointx transmit for interrupt and ISO
transfers. For bulk endpoints, this register sets the number of frames/
microframes after which the endpoint should timeout on receiving a
stream of NAK responses.
The value that is set defines number of frames/microframes (high-
speed transfers), as given in Table 9-44.

Universal Serial Bus On-The-Go Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 333

9.3.10.11 EPx_RX_TYPE_REG Bit Definitions
Table 9-92. EPx_RX_TYPE_REG

Bit
Number

Name Reset
Value

Function

[7:6] EPx_Speed 0 Operating speed of the target device:
00: Unused (If selected, the target is assumed to be using the same
connection speed as the USB controller.)

01: High
10: Full
11: Low
When the core is not configured with the multipoint option, these bits
should not be accessed.

[5:4] EPx_Protocol 0 The Cortex-M3 processor (or fabric master) should set this to select
the required protocol for the receive endpoint:
00: Control
01: ISO
10: Bulk
11: Interrupt

[3:0] EPx_Target Endpoint
Number

0 The Cortex-M3 processor (or fabric master) should set this value to the
endpoint number contained in the receive endpoint descriptor returned
to the USB controller during device enumeration.

9.3.10.12 EPx_RX_INTERVAL_REG Bit Definitions
Table 9-93. EPx_RX_INTERVAL_REG

Bit
Number

Name Reset
Value

Function

[7:0] EPx_Rx Polling
Interval / NAK Limit (m)

0 Defines the polling interval receive endpointx for interrupt and ISO
transfers. For bulk endpoints, this register sets the number of frames/
microframes after which the endpoint should timeout on receiving
stream of NAK responses.
The value defines a number of frames/microframes (high-speed
transfers), as given in Table 9-44.

9.3.10.13 EPx_FIFO_SIZE_REG Bit Definitions
Table 9-94. EPx_FIFO_SIZE_REG

Bit
Number

Name Reset
Value

Function

[7:4] EPx_Rx FIFO Size N/A Returns the sizes of the FIFOs associated with endpointx. The lower
nibble, [3:0], encodes the size of the transmit FIFO; the upper nibble,
[7:4], encodes the size of the receive endpoint FIFO. Values of 3 –
13 correspond to a FIFO size of 2n bytes (8 – 8192 bytes). If an
endpoint has not been configured, a value of 0 gets displayed. When
the transmit and receive endpoints share the same FIFO, the Rx FIFO
size is encoded as 0xF.
The register only has this interpretation when the Index register is set
to select one of endpoints 1 – 15 and dynamic sizing is not selected.
It has a special interpretation when the INDEX_REG is set to select
endpoint 0; the result returned is not valid where dynamic FIFO sizing
is used.

[3:0] EPx_Tx FIFO Size N/A

Universal Serial Bus On-The-Go Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 334

9.3.11 Extended Registers
These registers correspond to extended register set. This section covers all registers in this category along with the
address offset, functionality, and per bit details.

Table 9-95. Extended Registers Description

Register Name Address
Offset
from
0x40043
000

Width R/W
Type

Reset
Value

Description

Table 9-96 This read/write register is used in host
mode to specify the number of packets that
are to be transferred in a block transfer
of one or more bulk packets of length
MaxP (EPx_RX_MAX_P_REG) to receive
endpointx. The core uses the value recorded
in this register to determine the number of
requests to issue where the AutoReq option
(RX_CSRH_REG.bit 6) has been set.

EP0_RQ_PKT_COUNT_RE
G

0x0300 16 RW 0

EP1_RQ_PKT_COUNT_RE
G

0x0304 16 RW 0

EP2_RQ_PKT_COUNT_RE
G

0x0308 16 RW 0

EP3_RQ_PKT_COUNT_RE
G

0x030C 16 RW 0

EP4_RQ_PKT_COUNT_RE
G

0x0310 16 RW 0

Table 9-97 0x0340 16 RW 0 Indicates which of the receive endpoints (EP0,
EP1, EP2, EP3, EP4) have disabled the double
packet buffer functionality.

Table 9-98 0x0342 16 RW 0 Indicates which of the transmit endpoints (EP0,
EP1, EP2, EP3, EP4) have disabled the double
packet buffer functionality.

Table 9-99 0x0344 16 RW N/A Sets the chirp timeout. This number when
multiplied by four represents the number of
XCLK cycles before the timeout occurs. That
is, if XCLK is 30 MHz, this number represents
the number of 133 ns time intervals before the
timeout occurs. If XCLK is 60 MHz, this number
represents the number of 67 ns time intervals
before the timeout occurs. Although this bit is
written by the host in the CLK domain, the
counter that utilizes this value is in the XCLK
domain. No time domain crossing is provided
because the value in this register is a static.

Universal Serial Bus On-The-Go Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 335

...........continued
Register Name Address

Offset
from
0x40043
000

Width R/W
Type

Reset
Value

Description

Table 9-100 0x0346 16 RW N/A Sets the delay from the end of high-speed
resume signaling (acting as a Host) to enable
the UTM normal operating mode. This number
when multiplied by four represents the number
of XCLK cycles before the timeout occurs. That
is, if XCLK is 30 MHz, this number represents
the number of 33.3 ns time intervals before the
timeout occurs. If XCLK is 60 MHz, this number
represents the number of 16.7 ns time intervals
before the timeout occurs. Although this bit is
written by the host in the CLK domain, the
counter that utilizes this value is in the XCLK
domain. No time domain crossing is provided
because the value in this register is a static.

Table 9-101 0x0348 4 RW 0 Per USB 2.0, Section 7.1.19.2, a high-speed
host or device expecting a response to a
transmission must not timeout the transaction,
if the inter packet delay is less than 736 bit
times, and it must timeout the transaction if no
signaling is seen within 816 bit times.
It represents the value to be added to the
minimum high speed timeout period of 736 bit
times. The timeout period can be increased in
increments of 64 high-speed bit times (133 ns).
There are 16 possible values. By default, the
adder is 0, thus; setting the high-speed timeout
to its minimum value. Use of this register allows
the high-speed timeout to be set to values that
are greater than maximum specified in USB 2.0,
making the USB controller non-compliant.

Universal Serial Bus On-The-Go Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 336

9.3.11.1 EPx_RQ_PK1_COUNT_REG Bit Definitions
Table 9-96. EPx_RQ_PKT_COUNT_REG (0x40043XYZ)

Bit
Number

Name Reset
Value

Function

[15:0] EPx_RqPktCount 0 Sets the number of packets size MaxP (EPx_TX_MAX_P_REG) that
are to be transferred in a block transfer. It is only used in Host mode
when AutoReq is set. This has no effect in Peripheral mode, or when
AutoReq is not set.
The value of x can be 0, 1, 2, 3, or 4.

The values of XYZ would be differ with the register name:

1. EP0_RQ_PKT_COUNT_REG 0x4004300

2. EP1_RQ_PKT_COUNT_REG 0x4004304

3. EP2_RQ_PKT_COUNT_REG 0x4004308

4. EP3_RQ_PKT_COUNT_REG 0x400430C

5. EP4_RQ_PKT_COUNT_REG 0x4004310

9.3.11.2 RX_DPKT_BUT_DIS_REG Bit Definitions
Table 9-97. RX_DPKT_BUF_DIS_REG (0x40043340)

Bit
Number

Name Reset
Value

Function

[15:5] Reserved N/A

4 EP4 RxDPktBufDis 0 Receive Double Packet Buffer Disable for endpoint 4.

3 EP3 RxDPktBufDis 0 Receive Double Packet Buffer Disable for endpoint 3.

2 EP2 RxDPktBufDis 0 Receive Double Packet Buffer Disable for endpoint 2.

1 EP1 RxDPktBufDis 0 Receive Double Packet Buffer Disable for endpoint 1.

0 Reserved N/A

9.3.11.3 TX_DPKT_BUF_DIS_REG Bit Definitions
Table 9-98. TX_DPKT_BUF_DIS_REG (0x40043342)

Bit
Number

Name Reset
Value

Function

[15:5] Reserved N/A

4 EP4 TxDPktBufDis 0 Transmit Double Packet Buffer Disable for endpoint 4.

3 EP3 TxDPktBufDis 0 Transmit Double Packet Buffer Disable for endpoint 3.

2 EP2 TxDPktBufDis 0 Transmit Double Packet Buffer Disable for endpoint 2.

1 EP1 TxDPktBufDis 0 Transmit Double Packet Buffer Disable for endpoint 1.

0 Reserved N/A

Universal Serial Bus On-The-Go Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 337

9.3.11.4 C_T_UCH_REG Bit Definitions
Table 9-99. C_T_UCH_REG (0x40043344)

Bit
Number

Name Reset
Value

Function

[15:0] C_T_UCH N/A Configurable Chirp Timeout timer. The default value is 203Ah if the host
PHY data width is 16 bits (XCLK is 30 MHz) and 4074h if the PHY data
width is 8 bits (XCLK is 60 MHz), corresponding to a delay of 1.1 ms.

9.3.11.5 C_T_HHRSTN_REG Bit Definitions
Table 9-100. C_T_HHSRTN_REG (0x40043346)

Bit
Number

Name Reset
Value

Function

[15:0] C_T_HHRSTN N/A The delay from the end of high-speed resumes signaling to enable
UTM normal operating mode. The default value is 2F3h if the host PHY
data width is 16 bits (XCLK is 30 MHz) and 5E6h if the PHY data width
is 8 bits (XCLK is 60 MHz), corresponding to a delay of 100 µs.

9.3.11.6 C_T_HSBT_REG Bit Definitions
Table 9-101. C_T_HSBT_REG (0x40043348)

Bit
Number

Name Reset
Value

Function

[3:0] HS Timeout Adder 0 The value added to the minimum high speed timeout period (736 bit
times) in increments of 64 high speed bit times. This allows the turn
around timeout period to be set to 16 possible values as given in Table
9-102.

9.3.11.7 Turnaround Timeout Period Settings
Table 9-102. Turnaround Timeout Period Settings

Register Value HS Turnaround Timeout (HS bit times) HS Turnaround Timeout (µs)

0 736 1.534

1 800 1.667

2 864 1.801

3 928 1.934

4 992 2.067

5 1,056 2.201

6 1,120 2.334

7 1,184 2.467

8 1,248 2.601

9 1,312 2.734

10 1,376 2.868

11 1,140 3.001

12 1,504 3.134

13 1,568 3.268

Universal Serial Bus On-The-Go Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 338

...........continued
Register Value HS Turnaround Timeout (HS bit times) HS Turnaround Timeout (µs)

14 1,632 3.401

15 1,696 3.534

9.3.12 Direct Memory Access (DMA) Registers
These registers correspond to the built-in DMA engine. The DMA engine has four channels. This section covers all
registers in this category along with the address offset, functionality, and per bit details.

9.3.12.1 DMA_REGISTER Description
Table 9-103. DMA_REGISTER Description

Register Name Address
Offset
from
0x40043
000

Widt
h

R/W
Type

Reset
Value

Description

Table 9-104 0x0200 8 R 0 Provides an interrupt for each DMA channel. This
interrupt register is cleared when read. When any bit
of this register is set, the output DMA_NINT (output
from DMA USB controller going to the Cortex-M3
processor) is asserted low. Bits in this register is set
if the DMA Interrupt Enable bit for the corresponding
channel is enabled (CHx_DMA_CNTL_REG.bit3).

CH1_DMA_CTRL_REG 0x0204 10 RW 0 Provides the DMA transfer control for channel 1.
The enabling, transfer direction, transfer mode, and
the DMA Burst modes are all controlled by this
register.

CH1_DMA_ADDR_REG 0x0208 32 RW 0 Identifies the current memory address of the DMA
channel 1. The initial memory address written
to this register must have a value such that
its modulo 4 value is equal to 0. That is,
CH1_DMA_ADDR_ADDR[1:0] must be equal to 00.
The lower two bits of this register are read only and
cannot be set by the software. As the DMA transfer
progresses, the memory address is incremented as
bytes are transferred.

CH1_DMA_COUNT_REG 0x020C 32 RW 0 Identifies the current DMA count of the transfer for
DMA channel 1. Software sets the initial count of the
transfer, which identifies the entire transfer length.
As the count progresses, this count is decremented
as bytes are transferred.

CH2_DMA_CTRL_REG 0x0214 10 RW 0 Provides the DMA transfer control for channel 2.
The enabling, transfer direction, transfer mode, and
the DMA Burst modes are controlled by this register.

Universal Serial Bus On-The-Go Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 339

...........continued
Register Name Address

Offset
from
0x40043
000

Widt
h

R/W
Type

Reset
Value

Description

CH2_DMA_ADDR_REG 0x0218 32 RW 0 Identifies the current memory address of DMA
channel 2. The initial memory address written
to this register must have a value such that
its modulo 4 value is equal to 0. That is,
CH2_DMA_ADDR_ADDR[1:0] must be equal to 00.
The lower two bits of this register are read only and
cannot be set by the software. As the DMA transfer
progresses, the memory address is incremented as
bytes are transferred.

CH2_DMA_COUNT_REG 0x021C 32 RW 0 Identifies the current DMA count of the transfer
for DMA channel 2. The software sets the initial
count of the transfer, which identifies the entire
transfer length. As the count progresses, this count
is decremented as bytes are transferred.

CH3_DMA_CTRL_REG 0x0224 10 RW 0 Provides the DMA transfer control for channel 3.
The enabling, transfer direction, transfer mode, and
the DMA Burst modes are controlled by this register.

CH3_DMA_ADDR_REG 0x0228 32 RW 0 Identifies the current memory address of DMA
channel 3. The initial memory address written
to this register must have a value such that
its modulo 4 value is equal to 0. That is,
CH3_DMA_ADDR_ADDR[1:0] must be equal to 00.
The lower two bits of this register are only read and
cannot be set by the software. As the DMA transfer
progresses, the memory address is incremented as
bytes are transferred.

CH3_DMA_COUNT_REG 0x022C 32 RW 0 Identifies the current DMA count of the transfer for
DMA channel 3. Software sets the initial count of the
transfer, which identifies the entire transfer length.
As the count progresses, this count is decremented
as bytes are transferred.

CH4_DMA_CTRL_REG 0x0234 10 RW 0 This register provides the DMA transfer control for
channel 4. The enabling, transfer direction, transfer
mode, and the DMA burst modes are controlled by
this register.

CH4_DMA_ADDR_REG 0x0238 32 RW 0 Identifies the current memory address of DMA
channel 4. The initial memory address written
to this register must have a value such that
its modulo 4 value is equal to 0. That is,
CH4_DMA_ADDR_ADDR[1:0] must be equal to 00.
The lower two bits of this register are only read and
cannot be set by the software. As the DMA transfer
progresses, the memory address is incremented as
bytes are transferred.

Universal Serial Bus On-The-Go Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 340

...........continued
Register Name Address

Offset
from
0x40043
000

Widt
h

R/W
Type

Reset
Value

Description

CH4_DMA_COUNT_REG 0x023C 32 RW 0 Identifies the current DMA count of the transfer for
DMA channel 4. Software sets the initial count of the
transfer, which identifies the entire transfer length.
As the count progresses, this count is decremented
as bytes are transferred.

9.3.12.2 DMA_INT_REG Bit Definitions
Table 9-104. DMA_INT_REG (0x40043200)

Bit Number Name Reset Value Function

[7:4] Reserved N/A

3 CH4_DMA_INTR 0 Channel4 DMA interrupt

2 CH3_DMA_INTR 0 Channel3 DMA interrupt

1 CH2_DMA_INTR 0 Channel2 DMA interrupt

0 CH1_DMA_INTR 0 Channel1 DMA interrupt

[7:4] Reserved N/A

9.3.12.3 CHx_DMA_CTRL_REG Bit Definitions
Table 9-105. CHx_DMA_CTRL_REG (0x40043204)

Bit
Number

Name Reset
Value

Function

[10:9] DMA_BRSTM 0 Burst Mode
00: Burst mode 0; bursts of unspecified length
01: Burst mode 1; INCR4 or unspecified length
10: Burst mode 2; INCR8, INCR4 or unspecified length
11: Burst mode 3; INCR16, INCR8, INCR4, or unspecified length

8 DMA_ERR 0 Bus error bit. Indicates that a bus error has been observed on the input
AHB_HRESPM[1:0] coming from the AHB bus matrix, originating from the
Cortex-M3 processor (or fabric master). This bit is cleared by the software.

[7:4] DMAEP 0 The endpoint number (EP0/EP1/EP2/EP3/EP4) this channel is assigned to.

3 DMAIE 0 DMA interrupt enable

2 DMAMODE 0 Selects DMA Transfer mode.
0: DMA Mode 0 transfer
1: DMA Mode 1 transfer

3 DMA_DIR 0 Selects the DMA transfer direction.
0: DMA write (receive endpoint)
1: DMA read (transmit endpoint)

2 DMA_ENAB 0 Enables the DMA transfer and will cause the transfer to begin.

Universal Serial Bus On-The-Go Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 341

Notes: 
• Allowed values of x are 1, 2, 3, and 4, corresponding to DMA channels 1 through 4.
• For CH2_DMA_CTRL_REG register the address is 0x40043214.
• For CH3_DMA_CTRL_REG register the address is 0x40043224
• For CH4_DMA_CTRL_REG register the address is 0x40043234.

9.3.12.4 CHx_DMA_ADDR_REG Bit Definitions
Table 9-106. CHx_DMA_ADDR_REG (0x40043208)

Bit
Number

Name Reset
Value

Function

[31:0] DMA_ADDR 0 The DMA memory address.
The initial memory address written to this register must have a value such that
its modulo 4 value is equal to 0. That is, DMA_ADDR[1:0] must be equal to 00.
The lower two bits of this register are read-only and cannot be set by software.

Notes: 
• Allowed values of x are 1, 2, 3, and 4, corresponding to DMA channels 1 through 4.
• For CH2_DMA_ADDR_REG register the address is 0x40043218.
• For CH3_DMA_ADDR_REG register the address is 0x40043228.
• For CH4_DMA_ADDR_REG register the address is 0x40043238

9.3.12.5 CHx_DMA_COUNT_REG Bit Definitions
Table 9-107. CHx_DMA_COUNT_REG (0x4004320C)

Bit
Number

Name Reset
Value

Function

[31:0] DMA_COUNT 0 The DMA memory address for the corresponding DMA channel.
If DMA is enabled with a count of 0, the bus will not be requested and a DMA
interrupt will be generated.

Notes:

• Allowed values of x are 1, 2, 3, and 4, corresponding to DMA channels 1 through 4.
• For CH2_DMA_COUNT_REG register the address is 0x4004321C.
• For CH3_DMA_COUNT_REG register the address is 0x4004322C.
• For CH4_DMA_COUNT_REG register the address is 0x4004323C.

9.3.13 Multipoint Control and Status Registers
This section covers all registers in this category along with the address offset, functionality, and per bit details.

Universal Serial Bus On-The-Go Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 342

9.3.13.1 Additional Multipoint CSR Registers
Table 9-108. Additional Multipoint CSR Description

Register Name Address
Offset
from
0x40043
000

Widt
h

R/W
Type

Reset
Value

Description

EP0_TX_FUNC_ADDR_REG 0x0080 7 RW 0 This register is used to record the address
of the target function that is to be accessed
through endpoint0 for transmit. Required in host
mode.
For endpoint0 there is no companion
EP0_RX_FUNC_ADDR_REG for receive.

EP0_TX_HUB_ADDR_REG 0x0082 8 RW 0 This register only needs to be written where a
full speed or low speed device is connected
to the transmit endpoint0 through a high
speed USB 2.0 hub, which carries out the
necessary transaction translation to convert
between high-speed transmission and full/low-
speed transmission. In such circumstances:
– The lower 7 bits should record the address of
this USB 2.0 hub.

– The top bit should record whether the hub
has multiple transaction translators (set to ‘0’ if
single transaction translator; set to ‘1’ if multiple
transaction translators). This is relevant in Host
mode only.

For endpoint 0 there is no companion
EP0_RX_HUB_ADDR_REG for receive.

EP0_TX_HUB_PORT_REG 0x0083 7 RW 0 This register only needs to be written where a
full speed or low speed device is connected
to the transmit endpoint0 via a high-speed
USB 2.0 hub which carries out the necessary
transaction translation. In such circumstances,
these 7-bit read/write registers need to be used
to record the port of that USB 2.0 hub through
which the target associated with the endpoint1
is accessed. This is only relevant in host mode.
For endpoint 0 there is no companion
EP0_TX_HUB_PORT_REG for receive.

EP1_TX_FUNC_ADDR_REG 0x0088 7 RW 0 This register is used to record the address
of the target function that is to be accessed
through endpoint1 for transmit. Required in Host
mode.

Universal Serial Bus On-The-Go Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 343

...........continued
Register Name Address

Offset
from
0x40043
000

Widt
h

R/W
Type

Reset
Value

Description

EP1_TX_HUB_ADDR_REG 0x008A 8 RW 0 This register only needs to be written where a
full speed or low speed device is connected
to transmit endpoint1 through a high speed
USB 2.0 hub which carries out the necessary
transaction translation to convert between
high speed transmission and full/low speed
transmission. In such circumstances:
– The lower 7 bits should record the address of
this USB 2.0 hub.

– The top bit should record whether the hub
has multiple transaction translators (set to ‘0’ if
single transaction translator; set to ‘1’ if multiple
transaction translators). This is relevant in host
mode only.

EP1_TX_HUB_PORT_REG 0x008B 7 RW 0 Needs to be written where a full or
low speed device is connected to transmit
endpoint1 through a high speed USB 2.0 hub
which carries out the necessary transaction
translation. In such circumstances, these 7-bit
read/write registers need to be used to record
the port of that USB 2.0 hub through which
the target associated with the endpoint0 is
accessed. This is only relevant in Host mode.

EP1_RX_HUB_ADDR_REG 0x008E 8 RW 0 Need to be written where a full speed or
low speed device is connected to receive
endpoint1 through a high speed USB 2.0 hub
which carries out the necessary transaction
translation to convert between high speed
transmission and full/low speed transmission. In
such circumstances:
– The lower 7 bits should record the address of
this USB 2.0 hub.

– The top bit should record whether the hub
has multiple transaction translators (set to ‘0’ if
single transaction translator; set to ‘1’ if multiple
transaction translators). This is relevant in Host
mode only.

EP1_RX_HUB_PORT_REG 0x008F 7 RW 0 Needs to be written where a full-speed or
low-speed device is connected to receive
endpoint1 through a high-speed USB 2.0 hub,
which carries out the necessary transaction
translation. In such circumstances, these 7-bit
read/write registers need to be used to record
the port of that USB 2.0 hub through which
the target associated with the endpoint0 is
accessed. This is only relevant in Host mode.

Universal Serial Bus On-The-Go Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 344

...........continued
Register Name Address

Offset
from
0x40043
000

Widt
h

R/W
Type

Reset
Value

Description

EP2_TX_FUNC_ADDR_REG 0x0090 7 RW 0 Records the address of the target function
that is to be accessed through endpoint2 for
transmit. Required in Host mode.

EP2_TX_HUB_ADDR_REG 0x0092 8 RW 0 Needs to be written where a full speed or
low speed device is connected to transmit
endpoint2 via a high speed USB 2.0 hub,
which carries out the necessary transaction
translation to convert between high speed
transmission and full/low speed transmission. In
such circumstances:
– The lower 7 bits should record the address of
this USB 2.0 hub.

– The top bit should record whether the hub
has multiple transaction translators (set to ‘0’ if
single transaction translator; set to ‘1’ if multiple
transaction translators). This is relevant in Host
mode only.

EP2_TX_HUB_PORT_REG 0x0093 7 RW 0 Needs to be written where a full speed or
low speed device is connected to transmit
endpoint2 through a high speed USB 2.0 hub
which carries out the necessary transaction
translation. In such circumstances, these 7-bit
read/write registers need to be used to record
the port of that USB 2.0 hub through which the
target associated with endpoint0 is accessed.
This is only relevant in Host mode.

EP2_RX_FUNC_ADDR_REG 0x0094 7 RW 0 Records the address of the target function that
is to be accessed through endpoint2 for receive.
Required in Host mode.

EP2_RX_HUB_ADDR_REG 0x0096 8 RW 0 Needs to be written where a full-speed or low-
speed device is connected to receive endpoint2
through a high speed USB 2.0 hub, which
carries out the necessary transaction translation
to convert between high-speed transmission
and full-speed/low-speed transmission. In such
circumstances:
– The lower 7 bits should record the address of
this USB 2.0 hub.

– The top bit records whether the hub has
multiple transaction translators (set to ‘0’ if
single transaction translator; set to ‘1’ if multiple
transaction translators). This is relevant in Host
mode only.

Universal Serial Bus On-The-Go Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 345

...........continued
Register Name Address

Offset
from
0x40043
000

Widt
h

R/W
Type

Reset
Value

Description

EP2_RX_HUB_PORT_REG 0x0097 7 RW 0 Needs to be written where a full speed or low
speed device is connected to receive endpoint2
via a high speed USB 2.0 hub which carries out
the necessary transaction translation. In such
circumstances, these 7-bit read/write registers
need to be used to record the port of that USB
2.0 hub through which the target associated
with the endpoint0 is accessed. This is only
relevant in Host mode.

EP3_TX_FUNC_ADDR_REG 0x0098 7 RW 0 Records the address of the target function
that is to be accessed through endpoint3 for
transmit. Required in Host mode.

EP3_TX_HUB_ADDR_REG 0x009A 8 RW 0 Needs to be written where a full speed
or low speed device is connected to
transmit endpoint3 through a high speed USB
2.0 hub which carries out the necessary
transaction translation to convert between high
speed transmission and full speed/low speed
transmission. In such circumstances:
– The lower 7 bits records the address of this
USB 2.0 hub.

– The top bit records whether the hub has
multiple transaction translators (set to ‘0’ if
single transaction translator; set to ‘1’ if multiple
transaction translators). This is relevant in Host
mode only.

EP3_TX_HUB_PORT_REG 0x009B 7 RW 0 Needs to be written where a full speed or
low speed device is connected to transmit
endpoint3 through a high speed USB 2.0 hub
which carries out the necessary transaction
translation. In such circumstances, these 7-bit
read/write registers need to be used to record
the port of that USB 2.0 hub through which
the target associated with the endpoint0 is
accessed. This is only relevant in Host mode.

EP3_RX_FUNC_ADDR_REG 0x009C 7 RW 0 Records the address of the target function that
is to be accessed through endpoint3 for receive.
Required in Host mode.

Universal Serial Bus On-The-Go Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 346

...........continued
Register Name Address

Offset
from
0x40043
000

Widt
h

R/W
Type

Reset
Value

Description

EP3_RX_HUB_ADDR_REG 0x009E 8 RW 0 Needs to be written where a full speed or
low speed device is connected to receive
endpoint3 through a high speed USB 2.0 hub
which carries out the necessary transaction
translation to convert between high speed
transmission and full/low speed transmission. In
such circumstances:
– The lower 7 bits records the address of this
USB 2.0 hub.

– The top bit records whether the hub has
multiple transaction translators (set to ‘0’ if
single transaction translator; set to ‘1’ if multiple
transaction translators). This is relevant in Host
mode only.

EP3_RX_HUB_PORT_REG 0x009F 7 RW 0 Needs to be written where a full speed or
low speed device is connected to receive
endpoint3 through a high speed USB 2.0 hub
which carries out the necessary transaction
translation. In such circumstances, these 7-bit
read/write registers need to be used to record
the port of that USB 2.0 hub through which
the target associated with the endpoint0 is
accessed. This is relevant only in Host mode.

EP4_TX_FUNC_ADDR_REG 0x00A0 7 RW 0 Records the address of the target function
that is to be accessed through endpoint4 for
transmit. Required in Host mode.

EP4_TX_HUB_ADDR_REG 0x00A2 8 RW 0 Needs to be written where a full speed or
low speed device is connected to transmit
endpoint4 through a high speed USB 2.0 hub
which carries out the necessary transaction
translation to convert between high speed
transmission and full/low speed transmission. In
such circumstances:
– The lower 7 bits records the address of this
USB 2.0 hub.

– The top bit records whether the hub has
multiple transaction translators (set to ‘0’ if
single transaction translator; set to ‘1’ if multiple
transaction translators). This is relevant in Host
mode only.

Universal Serial Bus On-The-Go Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 347

...........continued
Register Name Address

Offset
from
0x40043
000

Widt
h

R/W
Type

Reset
Value

Description

EP4_TX_HUB_PORT_REG 0x00A3 7 RW 0 Needs to be written where a full speed or
low speed device is connected to transmit
endpoint4 through a high speed USB 2.0 hub
which carries out the necessary transaction
translation. In such circumstances, these 7-bit
read/write registers need to be used to record
the port of that USB 2.0 hub through which
the target associated with the endpoint0 is
accessed. This is only relevant in Host mode.

EP4_RX_FUNC_ADDR_REG 0x00A4 7 RW 0 Records the address of the target function that
is to be accessed through endpoint4 for receive.
Required in Host mode.

EP4_RX_HUB_ADDR_REG 0x00A6 8 RW 0 Needs to be written where a full or low
speed device is connected to receive endpoint4
through a high speed USB 2.0 hub which
carries out the necessary transaction translation
to convert between high speed transmission
and full/low speed transmission. In such
circumstances:
– The lower 7 bits records the address of this
USB 2.0 hub.

– The top bit records whether the hub has
multiple transaction translators (set to ‘0’ if
single transaction translator; set to ‘1’ if multiple
transaction translators). This is relevant in Host
mode only.

EP4_RX_HUB_PORT_REG 0x00A7 7 RW 0 Needs to be written where a full speed or
low speed device is connected to receive
endpoint4 through a high speed USB 2.0 hub
which carries out the necessary transaction
translation. In such circumstances, these 7-bit
read/write registers need to be used to record
the port of that USB 2.0 hub through which
the target associated with the endpoint0 is
accessed. This is only relevant in Host mode.

9.3.13.2 EPx_TX_FUNC_ADDR_REG Bit Definitions
Table 9-109. EPx_TX_FUNC_ADDR_REG (0x40043080)

Bit
Number

Name Reset
Value

Function

[6:0] TxFuncAddr 0 Address of target function to transmit endpointx

Universal Serial Bus On-The-Go Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 348

Important: 
• Allowed values of x are 0, 1, 2, 3, and 4, corresponding to endpoints 0, 1, 2, 3, and 4.
• For EP1_TX_FUNC_ADDR_REG register the address is 0x40043088.
• For EP2_TX_FUNC_ADDR_REG register the address is 0x40043090.
• For EP3_TX_FUNC_ADDR_REG register the address is 0x40043098.
• For EP4_TX_FUNC_ADDR_REG register the address is 0x400430A0.

9.3.13.3 EPx_RX_FUNC_ADDR_REG Bit Definitions
Table 9-110. EPx_RX_FUNC_ADDR_REG

Bit
Number

Name Reset
Value

Function

[6:0] RxFuncAddr 0 Address of target function to receive endpointx

Important: 
• Allowed values of x are 0, 1, 2, 3, and 4, corresponding to endpoints 0, 1, 2, 3, and 4.
• For EP2_RX_FUNC_ADDR_REG register the address is 0x40043094.
• For EP3_RX_FUNC_ADDR_REG register the address is 0x4004309C.
• For EP4_RX_FUNC_ADDR_REG register the address is 0x400430A4.

9.3.13.4 EPx_TX_HUB_ADDR_REG Bit Definitions
Table 9-111. EPx_TX_HUB_ADDR_REG (continued) (0x40043082)

Bit
Number

Name Reset
Value

Function

7 Multiple Translators 0 Records whether the hub has multiple transaction translators (set to
‘0’ if single transaction translator; set to ‘1’ if multiple transaction
translators).

[6:0] Tx Hub Address 0 Address of this USB 2.0 hub is used to transmit

Important: 
• Allowed values of x are 0, 1, 2, 3, and 4, corresponding to endpoints 0, 1, 2, 3, and 4.
• For EP1_TX_HUB_ADDR_REG register the address is 0x4004308A.
• For EP2_TX_HUB_ADDR_REG register the address is 0x40043092.
• For EP3_TX_HUB_ADDR_REG register the address is 0x4004309A.
• For EP4_TX_HUB_ADDR_REG register the address is 0x400430A2.

9.3.13.5 EPx_RX_HUB_ADDR_REG Bit Definitions
Table 9-112. EPx_RX_HUB_ADDR_REG

Bit
Number

Name Reset
Value

Function

7 Multiple Translators 0 Records whether the hub has multiple transaction translators (set to
‘0’ if single transaction translator; set to ‘1’ if multiple transaction
translators).

[6:0] Rx Hub Address 0 Address of this USB 2.0 hub to receive

Universal Serial Bus On-The-Go Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 349

Important: 
• Allowed values of x are 0, 1, 2, 3, and 4, corresponding to endpoints 0, 1, 2, 3, and 4.
• For EP1_RX_HUB_ADDR_REG register the address is 0x4004308E.
• For EP2_RX_HUB_ADDR_REG register the address is 0x40043096.
• For EP3_RX_HUB_ADDR_REG register the address is 0x4004309E.
• For EP4_RX_HUB_ADDR_REG register the address is 0x400430A6.

9.3.13.6 EPx_TX_HUB_PORT_REG Bit Definitions
Table 9-113. EPx_TX_HUB_PORT_REG (0x40043083)

Bit
Number

Name Reset
Value

Function

[6:0] TxHubPort 0 This information, together with the hub address
(EPx_TX_HUB_ADDR_REG), allows the USB controller to support split
transactions.

Important: 
• For EP1_TX_HUB_PORT_REG register the address is 0x4004308B.
• For EP2_TX_HUB_PORT_REG register the address is 0x40043093.
• For EP3_TX_HUB_PORT_REG register the address is 0x4004309B.
• For EP4_TX_HUB_PORT_REG register the address is 0x400430A3.

9.3.13.7 EPx_RX_HUB_PORT_REG Bit Definitions
Table 9-114. EPx_RX_HUB_PORT_REG

Bit
Number

Name Reset
Value

Function

[6:0] RxHubPort 0 This information, together with the hub address
(EPx_RX_HUB_ADDR_REG), allows the USB controller to support
split transactions.

Important: 
• For EP1_RX_HUB_PORT_REG register the address is 0x4004308F.
• For EP2_RX_HUB_PORT_REG register the address is 0x40043097.
• For EP3_RX_HUB_PORT_REG register the address is 0x4004309F.
• For EP4_RX_HUB_PORT_REG register the address is 0x400430A7.

Universal Serial Bus On-The-Go Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 350

9.3.14 Link Power Management Registers

9.3.14.1 Link Power Management Register Descriptions
Table 9-115. Link Power Management Register Descriptions

Register Name Address
Offset
from
0x400430
00

Width R/W
Type

Reset
Value

Description

Table 9-116 0x0360 16 R 0 Defines the attributes of an LPM transaction and sleep
cycle. In both Host mode and Peripheral mode, the
meaning of this register is same; however, the source
of the data is different for Host and Peripheral modes
as follows:
In Peripheral mode:

The values in this register contains the equivalent
attributes that were received in the last LPM
transaction that was accepted. This register is updated
with the LPM packet contents if the response to the
LPM transaction was an ACK.
This register can be updated through software. In all
other cases, this register holds its current value.

In Host mode:

Software sets up the values in this register to define
the next LPM transaction that is transmitted. These
values are inserted in the payload of the next LPM
transaction.

Table 9-117
Table 9-118

0x0362 8 R 0 Provides controls for LPM based on Peripheral mode
and Host mode.

Table 9-119 0x0363 8 R 0 Provides enable bits for the interrupts in
LPM_INTR_REG. If a bit in this register is set
to 1, MC_NINT will be asserted (low) when the
corresponding interrupt in the LPM_INTR_REG is set.
If a bit in this register is set to 0, the corresponding
register in LPM_INTR_REG is still set but MC_NINT
will not be asserted (low). On reset, all bits in this
register are reset to 0.

Table 9-120
Table 9-121

0x0364 7 R 0 Provides status of the LPM power state. When a bit
is set to 1, if the corresponding enable bit is also set
to 1, the output MC_NINT is asserted (low). If the
corresponding enable bit is set to 0, then the output
MC_NINT is not asserted. On reset, all bits in this
register are reset to 0. This register is clear on read.

Table 9-122 0x0365 7 R 0 Holds the function address that is placed in the LPM
payload. This has relevance in Host mode only.

Universal Serial Bus On-The-Go Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 351

9.3.14.2 LPM_ATTR_REG Bit Definitions
Table 9-116. LPM_ATTR_REG (0x40043360)

Bit
Number

Name Reset
Value

Function

[15:12] EndPnt 0 This is the endpoint that is in the token packet of the LPM transaction.

[11:9] Reserved NA —

8 RmtWak 0 This bit is the remote wake-up enable bit.
0: Remote wake-up is not enabled.
1: Remote wake-up is enabled

This bit is applied on a temporary basis and is applied only to the current suspend
state. After the current suspend cycle, the remote wake-up capability that was
negotiated upon enumeration applies.

[7:4] HIRD 0 This is the host initiated resume duration. This value is the minimum time the host
drives resume on the bus. The value in this register corresponds to an actual
resume time as follows:
Resume Time = 50 µs + HIRD × 75 µs.

This results a range 50 µs to 1200 µs.

[3:0] LinkState 0 This value is provided by the host to the peripheral to indicate what state the
peripheral must transition to after the receipt and acceptance of a LPM transaction.
0000: Reserved
0001: Sleep state (L1)
0010: Reserved
0011: Reserved

9.3.14.3 LPM_CTRL_REG (Peripheral) Bit Definitions
Table 9-117. LPM_CTRL_REG (0x40043362)(Peripheral)

Bit
Number

Name Reset
Value

Function

[7:5] Reserved NA —

4 LPMNAK 0 Places all endpoints in a state such that the response to all transactions other than
an LPM transaction is a NAK. This bit takes effect only after the USB controller has
been LPM suspended. In this case, the USB controller continues to NAK until this
bit has been cleared by software.

[3:2] LPMEN 0 Enables LPM in the USB controller. There are three levels in which LPM can
be enabled, which determines the response of the USB controller to LPM
transactions. Following are the three levels:
00: LPM and extended transactions are not supported. In this case, the USB
controller does not respond to LPM transactions and the transaction timeouts.

01: LPM and extended transactions are not supported. In this case, the USB
controller does not respond to LPM transactions and the transaction timeouts.

10: LPM is not supported but extended transactions are supported. In this case,
the USB controller responds to an LPM transaction with a STALL.

11: The USB controller supports LPM extended transactions. In this case, the
USB controller responds with a NYET or an ACK as determined by the value of
LPMXMT (bit 0 of this register) and other conditions.

Universal Serial Bus On-The-Go Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 352

...........continued
Bit
Number

Name Reset
Value

Function

1 LPMRES 0 Initiates resume (remote wake-up). This bit differs from the classic RESUME bit
(POWER_REG.bit2) in that the RESUME signal timing is controlled by hardware.
When software writes this bit, resume signaling is asserted for 50 µs. This bit is
self clearing.

0 LPMXMT 0 Instructs the USB controller to transition to the L1 state upon the receipt of the next
LPM transaction. This bit is only effective if LPMEN (bits[3:2] of this register) is set
to 11. This bit can be set in the same cycle as LPMEN. If this bit is set to 1 and
LPMEN = 11, the USB controller can respond in the following ways:
If any data is not pending (all transmit FIFOs are empty), the USB controller will
respond with an ACK. In this case this bit will self clear and a software interrupt will
be generated.

If any data is pending (data resides in at least one transmit FIFO), the USB
controller will respond with a NYET. In this case, this bit will NOT self clear;
however, a software interrupt will be generated.

9.3.14.4 LPM_CTRL_REG (Host) Bit Definitions
Table 9-118. LPM_CTRL_REG (0x40043362) (Host)

Bit
Number

Name Reset
Value

Function

[7:2] Reserved N/A

1 LPMRES 0 Initiates a RESUME from the L1 state. This bit differs from the classic RESUME bit
(POWER_REG.bit2) in that the RESUME signal timing is controlled by hardware.
When software writes this bit, resume signaling is asserted for a time specified by
the HIRD field (LPM_ATTR_REG.bit[7:4]). This bit is self clearing.

0 LPMXMT 0 Transmits an LPM transaction. This bit is self clearing. This bit will be immediately
cleared upon receipt of any token or three timeouts have occurred.

9.3.14.5 LMP_INTR_EN_REG Bit Definitions
Table 9-119. LPM_INTR_EN_REG (0x40043363)

Bit Number Name Reset
Value

Function

[7:6] Reserved N/A

5 LPMERREN 0 0: Disable the LPMERR interrupt
1: Enable the LPMERR interrupt

4 LPMRESEN 0 0: Disable the LPMRES interrupt
1: Enable the LPMRES interrupt

3 LPMNCEN 0 0: Disable the LPMNC interrupt
1: Enable the LPMNC interrupt

2 LPMACKEN 0 0: Disable the LPMACK interrupt
1: Enable the LPMACK interrupt

1 LPMNYEN 0 0: Disable the LPMNY interrupt
1: Enable the LPMNY interrupt

0 LPMSTEN 0 0: Disable the LPMST interrupt
1: Enable the LPMST interrupt

Universal Serial Bus On-The-Go Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 353

9.3.14.6 LPM_INTR_REG (Peripheral) Bit Definitions
Table 9-120. LPM_INTR_REG (0x40043364)(Peripheral Mode)

Bit
Number

Name Reset
Value

Function

[7:6] Reserved N/A

5 LPMERR 0 This bit is set if an LPM transaction is received that has a LinkState field
(LINK_ATTR_REG.bits[3:0]) that is not supported. In this case, the response to
the transaction is a STALL. However, the LINK_ATTR_REG is updated so that
software can observe the noncompliant LPM packet payload.

4 LPMRES 0 This bit is set when the USB controller has been resumed for any reason. This bit
is mutually exclusive from RESUME (POWER_REG.bit2).

3 LPMNC 0 This bit is set when an LPM transaction is received and the USB controller
responds with a NYET due to data pending in the received FIFOs. This can only
occur under the following condition:
The LPMEN field (LPM_CTRL_REG.bit[3:2]) is set to 11, the LPMXMT
(LPM_CTRL_REG.bit0) is set to 1, and there is data pending in the USB
controller transmit FIFOs.

2 LPMACK 0 This bit is set when an LPM transaction is received and the USB controller
responds with an ACK. This can only occur under the following condition:
The LPMEN field (LPM_CTRL_REG.bit[3:2]) is set to 11, the LPMXMT
(LPM_CTRL_REG.bit0) is set to 1, and there is data pending in the USB
controller transmit FIFOs.

1 LPMNY 0 This bit is set when an LPM transaction is received and the USB controller
responds with a NYET. This can only occur under the following conditions:
The LPMEN field (LPM_CTRL_REG.bit[3:2]) is set to 11, the LPMXMT
(LPM_CTRL_REG.bit0) is set to 1, and there is data pending in the USB
controller transmit FIFOs.

0 LPMST 0 This bit is set when an LPM transaction is received and the USB controller
responds with a STALL. This can only occur under the following condition:
The LPMEN field (LPM_CTRL_REG.bit[3:2]) is set to 01.

9.3.14.7 LPM_INTR_REG (Host) Bit Definitions
Table 9-121. LPM_INTR_REG (0x40043364) (Host Mode)

Bit
Number

Name Reset
Value

Function

[7:6] Reserved N/A

5 LPMERR 0 This bit is set if a response to the LPM transaction is received with a bit stuff error
or a PID error. In this case, suspend does not occur and the state of the device is
unknown.

4 LPMRES 0 This bit is set when the USB controller has been resumed for any reason. This bit
is mutually exclusive from RESUME (POWER_REG.bit2).

3 LPMNC 0 This bit is set when an LPM transaction has been transmitted and has failed to
complete. The transaction would have failed either because a timeout is occurred
or there are bit errors in the response for three attempts.

2 LPMACK 0 This bit is set when an LPM transaction is transmitted and the device responds
with an ACK.

Universal Serial Bus On-The-Go Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 354

...........continued
Bit
Number

Name Reset
Value

Function

1 LPMNY 0 This bit is set when an LPM transaction is transmitted and the device responds
with a NYET.

0 LPMST 0 This bit is set when an LPM transaction is transmitted and the device responds
with a STALL.

9.3.14.8 LPM_FADDR_REG Bit Definitions
Table 9-122. LPM_FADDR_REG (0x40043365)

Bit Number Name Reset Value Function

7 Reserved N/A

[6:0] LPMFADDR 0 The LPM function address

9.3.15 USB System Registers
These registers are in the System registers block for the SmartFusion 2 devices. This subset of registers, and in
some cases bit fields, control the configuration, and behavior of the USB controller.

Universal Serial Bus On-The-Go Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 355

9.3.15.1 MASTER_WEIGHT1_CR Register USB Related Bit Definitions
Table 9-123. MASTER_WEIGHT1_CR

Bit
Numbe
r

Name Address Reset
Value

Function

[9:5] SW_WEIGHT_USB 0x40038040 0x1 Configures the round robin weightage for the USB
master from 1 to 32. The configurable weightage
values are as follows:
00000: USB master weightage 32
00001: USB master weightage 1
00010: USB master weightage 2
00011: USB master weightage 3
00100: USB master weightage 4
00101: USB master weightage 5
00110: USB master weightage 6
00111: USB master weightage 7
01000: USB master weightage 8
01001: USB master weightage 9
01010: USB master weightage 10
01011: USB master weightage 11
01100: USB master weightage 12
01101: USB master weightage 13
01110: USB master weightage 14
01111: USB master weightage 15
10000: USB master weightage 16
10001: USB master weightage 17
10010: USB master weightage 18
10011: USB master weightage 19
10100: USB master weightage 20
10101: USB master weightage 21
10110: USB master weightage 22
10111: USB master weightage 23
11000: USB master weightage 24
11001: USB master weightage 25
11010: USB master weightage 26
11011: USB master weightage 27
11100: USB master weightage 28
11101: USB master weightage 29
11110: USB master weightage 30
11111: USB master weightage 31

Universal Serial Bus On-The-Go Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 356

9.3.15.2 USB_IO_INPUT_SEL_CR Register Bit Definitions
Table 9-124. USB_IO_INPUT_SEL_CR

Bit
Numbe
r

Name Address Reset
Value

Function

2 USB_IO_INPUT_SEL 0x40038064 0 Selects one of the four USB data interfaces from
IOMUXCELLs and I/O pads. Following are the allowed
values:
00: USBA interface can be connected to USB
controller
01: USBB interface can be connected to USB
controller
10: USBC interface can be connected to USB
controller
11: USBD interface can be connected to USB
controller

9.3.15.3 USB_CR Register Bit Definitions
Table 9-125. USB_CR

Bit
Number

Name Address Reset
Value

Function

0 USB_UTMI_SEL 0x4003807C 0 This signal is used to configure USB controller
interface as ULPI PHY or UTMI interface. Following
are the allowed values:
0: ULPI PHY Interface is selected
1: UTMI Interface is selected

1 USB_DDR_SELECT 0 This signal is used to configure whether the USB
controller works in Single Data Rate (SDR) mode or
Double Data Rate (DDR) mode. Allowed values:
0: SDR mode is selected
1: DDR mode is selected

9.3.15.4 USB_EDAC_CNT Register Bit Definitions
Table 9-126. USB_EDAC_CNT

Bit
Number

Name Address Reset
Value

Function

[15:0] USB_EDAC_CNT_1E 0x40038104 0 This is a 16-bit counter value in USB incremented by
USB EDAC 1-bit errors. The counter does not roll back
and stays at its maximum value, if reached.

[31:16] USB_EDAC_CNT_2E 0 This is a 16-bit counter value in USB incremented by
USB EDAC 2-bit errors. The counter does not roll back
and stays at its maximum value, if reached.

Universal Serial Bus On-The-Go Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 357

9.3.15.5 USB_EDAC_ADR Register Bit Definitions
Table 9-127. USB_EDAC_ADR

Bit
Number

Name Address Reset
Value

Function

[10:0] USB_EDAC_1E_AD 0x40038120 0 Address from USB memory on which a 1-bit SECDED
error is occurred.

[21:11] USB_EDAC_2E_AD 0 Address from USB memory on which a 2-bit SECDED
error is occurred.

9.3.15.6 USB_SR Register Bit Definitions
Table 9-128. USB_SR

Bit
Number

Name Address Reset
Value

Function

0 POWERDN 0x40038154 0 Asserted when CLK may be stopped to save power.
Derived from combination of signals from CLK and XCLK
flip-flops, AVALID, VBUSVALID, and LINESTATE.)

1 LPI_CARKIT_EN 0 Asserted when entry is made into CarKit mode and
cleared on exit from CarKit mode.

9.3.15.7 EDAC_SR Register USB Related Bit Definitions
Table 9-129. EDAC_SR

Bit
Number

Name Address Reset
Value

Function

10 USB_EDAC_1E 0x40038190 0 This status is updated by USB when a 1-bit SECDED
error is detected and also corrected for RAM memory.

11 USB_EDAC_2E 0 This status is updated by USB when a 2-bit SECDED
error is detected and also corrected for RAM memory.

9.3.15.8 CLR_EDAC_COUNTERS Register USB Related Bit Definitions
Table 9-130. CLR_EDAC_COUNTERS

Bit
Number

Name Address Reset
Value

Function

10 USB_EDAC_CNTCLR_1E 0x400381A4 0 This is pulse generated to clear the 16-bit counter
value in USB corresponding to the count value of
EDAC 1-bit errors. This in turn clears the lower 16
bits of USB_EDAC_CNT register.

11 USB_EDAC_CNTCLR_2E 0 This is pulse generated to clear the 16-bit counter
value in USB corresponding to the count value of
EDAC 2-bit errors. This in turn clears the upper 16
bits of the USB_EDAC_CNT register.

Ethernet MAC

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 358

10. Ethernet MAC
The tri-speed (10/100/1000 Mbps) Ethernet medium access controller (TSEMAC) is a medium access controller
which can be configured to 10/100/1000 Mbps data transfer rate (line speed) between the host processor and
Ethernet network. The SmartFusion 2 SoC FPGA device has one instance of the TSEMAC peripheral as part of the
Microcontroller Subsystem (MSS).

10.1 Features
• Supports tri-speeds: 10/100/1000 Mbps
• Implements the carrier sense multiple access with the collision detection (CSMA/CD) algorithms defined by the

Institute of Electrical and Electronics Engineers (IEEE®) 802.3 standard.
• The advanced high-performance bus (AHB) master port for the direct memory access (DMA) transfers and

AHB-slave port for the configuration space access.
• The media independent interface (MII), gigabit media independent interface (GMII), and the ten-bit interface

(TBI) for external PHY support.
• MII/GMII/TBI loopback support.
• 4 KB of TX buffer and 8 KB of RX buffer.
• Both TX and RX Buffers are protected by single error correction and dual error detection (SECDED).
• Standard Ethernet frames of 1522 bytes are supported. Jumbo frames of 9000 bytes are not supported.

The following figure shows the details of MSS. TSEMAC can function as an AHB master for DMA data transfers and
as an AHB slave for configuring the TSEMAC from the master
Arm® Cortex® -M3 processor or from the field programmable gate array (FPGA) fabric logic.

Ethernet MAC

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 359

Figure 10-1. MSS Showing a TSEMAC

AHB Bus Matrix

eSRAM_0System
Controller

Cache
Controller

S D IC

Arm® Cortex®-M3
Processor

S D I

MSS DDR
Bridge

PDMA

MS6

MM3

AHB To AHB Bridge with Address Decoder
USB OTG

HPDMA

MDDR

APB_0SYSREGTriple Speed
Ethernet MAC

FIC_0

MM4 MS4

MS2 MS3 MS0

MS5

MS1

MM5 MM6

MM7

MM8

MM2 MM1 MM0 MM9

IDC
D/S eNVM_0 eNVM_1 eSRAM_1

FIC_2 (Peripheral
Initialization) APB_1

MMUART_0

SPI_0

I2C_0

PDMA
Configuration

WATCHDOG

FIIC

TIMERx2

MMUART_1

SPI_1

I2C_1

GPIO

CAN

RTC

COMM_BLK

FIC_1

M
S5

_F
IC

M
S5

_U
SB

MS5_MAC MS5_SR MS5_APB0 MS5_FIC2 MS5_APB1

10.2 Functional Description
The TSEMAC controller is interfaced through the advanced high-performance bus (AHB) matrix in the MSS.
SmartFusion 2 TSEMAC provides three interfaces (MII, GMII, and TBI) to connect to the external PHY. The following
figure shows the block diagram for the connections between the EMAC and FPGA fabric.

Ethernet MAC

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 360

Figure 10-2. TSEMAC Block Diagram

Ethernet MAC

AHBEngine

DMA controller
+

AHB Master
interface port

DMA
controller

+
AHB Slave

interface port

AHB
Decoder

MAC TX
& RX
FIFOs

PE_MCXMAC

PETMC
Tx MAC
Control

PERMC
Rx MAC
Control

PEHST
Host

Interface

PETFN
Transmit
function

PERFN
Receive
function

PEMGT
MII

Management
interface

M
U

X
 -

 D
e

M
U

X

SGMIIMAC
Statistics
Collector

FABRIC

SERDES I/O’s

SGMII
PHY

System Registers

MSS

TBIGMII /MII

GMII/MII
10/100/1000 Mbps

MSIO

GMII/MII
PHY

SmartFusion® 2

EPCS

SERDES

SERDESIF0/1

10.2.1 EMAC Functional Blocks
EMAC has five functional sub-blocks:

• AHB Engine
• MAC TX and RX FIFO
• PE-MCXMAC
• MAC Statistics Module
• SGMII Module

10.2.1.1 AHB Engine
The EMAC can be accessed from an AHB system bus using the AHB engine. The AHB engine module is positioned
between the AHB system bus and the MAC TX and RX FIFO.

The AHB Engine includes the following modules:

• DMA: Includes logic for the AHB master interface and contains the DMA controller.

Ethernet MAC

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 361

• Slave: Includes logic for the AHB slave interface.
• Decoder: Address bus decoder module to divide accesses between MAC core, FIFO, and accesses to the

registers within AHB engine.

The AHB engine includes a DMA controller which is used to transmit and receive operations. Both operations
compete for the use of the DMA controller. A round-robin priority algorithm is used to arbitrate between the competing
requests.

The AHB engine module interfaces with the host system through a 32-bit AHB master and slave ports. The AHB
engine module is positioned between the AHB system bus and the FIFO. Registers within the AHB engine provide
control and status information concerning these transfers.

10.2.1.2 MAC TX and RX FIFO
The A-MCXFIFO is a flexible FIFO module with the transmit buffering and the receive buffering, which can
significantly improve the performance of the embedded 10/100/1000 Mbps Ethernet systems. This FIFO module
offers increased system level throughput by allowing data queueing. The size of the transmit buffer is 4 KB and the
receive buffer is 8 KB.

Both automatic pause frame handshaking and per transmit frame MAC configuration data are supported. A PAUSE
frame is used for flow control. This halts the transmission for a specified period of time. A PAUSE frame includes the
period of pause time being requested.

Register definitions for the FIFO RAM access registers are intended for non-real-time RAM testing and system
debug. MAC TX and RX FIFO configuration registers one through five are intended to be written while the
submodules are held in reset. FIFO sizes are fixed and cannot be modified by either the MAC configuration or
the firmware.

10.2.1.3 PE-MCXMAC
The PE-MCXMAC provides a 10/100/1000 Mbps EMAC with a GMII interface. The PE-MCXMAC supports control
frames, particularly PAUSE frames. Other types of control frames can be supported through the setting optional
configuration bits.

The PE-MCXMAC module consists of the following six sub-modules.

10.2.1.3.1 PETFN Transmit Function
The PETFN sub-module accepts the transmit frames, and prepends a 7-byte preamble and start of frame delimiter.
The PETFN waits for the pre-programmed inter-packet gap before outputting the preamble.

10.2.1.3.2 PETMC Transmit MAC Control
The PETMC sub-module is responsible for the multiplexing of normal transmit frames and control frame requests. It
provides native support to the PAUSE flow control frames.

10.2.1.3.3 PERFN Receive Function
The PERFN sub-module accepts receive packets through the GMII, extracts frames, strips off the preamble, and
starts the frame delimiter from each frame before presenting them to the system. It also calculates the cyclic
redundancy check (CRC) of the received frame for checking against the Frame Check Sequence field.

10.2.1.3.4 PERMC Receive MAC Control
The PERMC sub-module is responsible for detecting the control frames in the receive data stream. Each frame is
examined to determine if it is a control frame and if so, whether it is a PAUSE frame.

10.2.1.3.5 PEHST Host Interface
This 32-bit interface gives access to the status and control registers included in the PE-MCXMAC.

10.2.1.3.6 PEMGT MII Management
The PEMGT sub-module drives the MII Management Interface where the control and status information is exchanged
with the attached PHY.

10.2.1.4 MAC Statistics Module
The MAC Statistics module is a register-based, statistics-gathering module. The MAC Statistics module offers 37
separate counters, which can be used either to count or to accumulate conditions (such as dropped frames which
occur as packets), that are transmitted or received. The presence of non-zero elements in either of these statistics
vectors triggers MAC Statistics module to update its statistics counters.

Ethernet MAC

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 362

The counter’s rollover condition is indicated through a carry interrupt output from the MAC Statistics module. Each
counters rollover condition can be discreetly masked from causing an interrupt by internal masking registers.

Table 10-104 and Table 10-105 show the mask registers for transmit and receive.

10.2.1.5 SGMII Module
The SGMII module provides an SGMII that facilitates a connection between any IEEE 802.3 standard GMII or MII
interface and an SGMII interface that is compliant with version 1.7 of the SGMII specification.

The SGMII module uses TBI to provide the 8B/10B encoding, decoding, and auto-negotiation functionality that is
defined in Clause 36 of the IEEE 802.3z specification. This allows link partners to synchronize with each other and
exchange information regarding their configuration capabilities, using a symbol stream that has a proven industry
standard. The SGMII also instantiates transmit and receive conversion and rate adaptation modules, which allow for
G/MII data/control conversion, half-duplex control encoding, and clock domain interfacing to the SGMII clock domain.
The SGMII core includes optional modules for 10-bit comma alignment.

Both transmit and receive paths leverage the physical coding sub-layer and the auto-negotiation sub-layers of the
IEEE 802.3z specification, as explained in clauses 36 and 37. In the transmit direction, the 10-bit encoded data
is serialized and output over the interface. In the receive direction, the single-bit input is made parallel after being
aligned to comma characters.

The SGMII core also includes support for MAC speeds less than gigabit rates. To maintain a constant clock
frequency at the PHY interface for all MAC speeds, the MII bus data is replicated internally to maintain a gigabit
rate at the output of the SGMII core.

TSEMAC can have separate clocks for MSS and PHY side connections. These clocks are asynchronous to each
other.

10.3 TSEMAC PHY Interfaces
This section describes the MII, GMII, and TBI fabric PHY interfaces. The PHY interfaces are routed to the fabric
onto MSIOs in case of MII, GMII, and SerDes I/Os in case of TBI. To implement the other PHY protocols within the
fabric such as RMII, RGMII, RTBI, RevMII, and SMII, these PHY protocols may be derived from appropriate wrappers
implemented in fabric, which converts PHY interface signals input to the FPGA fabric as shown in Figure 10-1. The
EMAC can be configured through Libero® SoC MSS configurator by selecting the interface, line speed, and enabling
the management interface PHY interface. On reset, MSS Ethernet MAC turns the auto-negotiate of the Ethernet PHY
to OFF. Due to difference in protocol between MSS Ethernet MAC and Ethernet PHY, user has to handle the Ethernet
PHY auto-negotiation through PHY driver code. The SGMII can be implemented by means of configuring the EMAC
for the TBI operation. Figure 10-2 shows TBI pins are routed to SerDes, which is configured for EPCS mode to
provide SGMII functionality.

The following tables list the port names, port groups, and direction information for the default supported MII, GMII,
and TBI PHY interfaces.

Table 10-1. MII Ports

Port Name Port Group Directio
n

Description

MII_TXD[3:0] MAC_MII_FABRIC Out Indicates MII transmit data

MII_TX_EN MAC_MII_FABRIC Out Indicates MII transmit data enable

MII_TX_ER MAC_MII_FABRIC Out Indicates MII transmit data error

MII_RXD[3:0] MAC_MII_FABRIC In Indicates MII receive data

MII_RX_ER MAC_MII_FABRIC In Indicates MII receive data error

MII_RX_DV MAC_MII_FABRIC In Indicates MII receive data valid

MII_CRS MAC_MII_FABRIC In Asynchronous carrier sense signal. Indicates at least one physical
device transmits on the medium.

Ethernet MAC

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 363

...........continued
Port Name Port Group Directio

n
Description

MII_COL MAC_MII_FABRIC In Asynchronous collision sense signal. Indicates more than one
physical device transmits simultaneously on the medium.

MII_RX_CLK MAC_MII_FABRIC In Indicates MII receive clock. 25 MHz for 100 Mbps mode and
2.5 MHz for 10 Mbps mode.

MII_RX_CLK MAC_MII_FABRIC In Indicates MII management transmit clock. 25 MHz for 100-Mbps
mode and 2.5 MHz for 10 Mbps mode. MIII_TXD, MII_TX_EN,
MII_TX_ER signals are synchronized to MII_TX_CLK.

MII_MDC Out Indicates MII management data clock

MII_MDO_ED Out Indicates MII management data output enable

MII_MDO Out Indicates MII management data out

MII_MDI In Indicates MII management data input

Table 10-2. GMII Ports

Port Name Port Group Direction Description

GMII_TXD[7:0] MAC_GMII_FABRIC Out GMII transmit data

GMII_TX_EN MAC_GMII_FABRIC Out GMII transmit data enable

GMII_TX_ER MAC_GMII_FABRIC Out GMII transmit data error

GMII_RXD[7:0] MAC_GMII_FABRIC Out GMII receive data

GMII_RX_ER MAC_GMII_FABRIC In GMII receive data error

GMII_RX_DV MAC_GMII_FABRIC In Indicates MII receive data valid

GMII_CRS MAC_GMII_FABRIC In Asynchronous carrier sense signal. Indicates at least one
physical device transmits on the medium.

GMII_COL MAC_GMII_FABRIC In Asynchronous collision signal. Indicates more than one
physical device transmits simultaneously on the medium.

GMII_RX_CLK MAC_GMII_FABRIC In Indicates GMII receive clock. 125 MHz for 1000-megabit mode,
25 MHz for 100-megabit mode, and 2.5 MHz for 10-megabit
mode.

GMII_TX_CLK MAC_GMII_FABRIC In Indicates GMII transmit clock. 25 MHz for 100-megabit
mode and 2.5-megabit for 10-megabit mode. GMIII_TXD,
GMII_TX_EN, and GMII_TX_ER signals are synchronized to
GMII_TX_CLK.

GMII_GTX_CL
K

MAC_GMII_FABRIC In Indicates gigabit 125 MHz transmit clock input for 1000-
megabit mode. GMII_TXD, GMII_TX_EN, and GMII_TX_ER
signals are synchronized to GMII_GTX_CLK.

GMII_MDC Out GMII management data clock

GMII_MDO_EN Out GMII management data output enable

GMII_MDO Out GMII management data out

GMII_MDI In GMII management data input

Ethernet MAC

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 364

Table 10-3. TBI Ports

Port Name Port Group Direction Description

TBI_RCGF[9:0] MAC_TBI_FABRIC In MAC_RGGF is the 10-bit parallel receive data. The receive
data byte 0 containing the comma character is byte aligned to
53,125 MHz receive byte clock used to latch the bytes 0 and
2 of the receive data word.

TBI_TCGF[9:0] MAC_TBI_FABRIC Out MAC_TCGF is the 10-bit parallel transmit data presented
in the physical layer for serialization and transmission. The
order of transmission is MAC_TCGF[0] first, followed by
MAC_TCGF[1] through MAC_TCGF[9].

TBI_RX_CLKP0 MAC_TBI_FABRIC In TBI_RX_CLKP0 and TBI_RX_CLK1 are fed in from the fabric
as two 62.5 MHz clocks, which are 180° out of phase with
one another.

TBI_RX_CLKP1 MAC_TBI_FABRIC In Indicates 125 MHz clocks, which are 180° out of phase with
one another.

TBI_GTX_CLK MAC_TBI_FABRIC In Indicates 125 MHz transmit clock from the fabric for 1000
Mbps mode.

TBI_MDI — In Indicates TBI management data clock

TBI_MDO — Out Indicates TBI management data output enable

TBI_MDO_EN — Out Indicates TBI management data out

TBI_MDC — Out Indicates TBI management data input

Important: Port names have the name of the MAC instance as a prefix, for example: MAC_GMII_TXD.

The following figure depicts the RMII, RGMII, RTBI, RevMII, and SMII derived from the available protocols by the
appropriate wrapper in the fabric.

Ethernet MAC

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 365

Figure 10-3. RMII, RGMII, RTBI, RevMII, SMII Derived from Available Protocols by Appropriate Wrapper in
Fabric

SmartFusion® 2

MSS

Ethernet
MAC Mux/

Demux
MM6

MS_MAC

AHB
Bus

Matrix

RMII/RGMII/
RevMII/SMII

PHY

Wrapper for
GMII/MII to

RMII/RGMII/
RevMII/SMII

MSIO

FPGA Fabric

The following figure depicts TBI to SerDes (EPCS Mode) for SGMII Interface.

Ethernet MAC

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 366

Figure 10-4. TBI Brought to Fabric for EPCS Soft IP for SGMII Interface

SmartFusion® 2
MSS

Ethernet
MAC

Mux/
Demux

MM6

MS_MAC

AHB
Bus

Matrix

Fabric

SERDESIF0/1
EPCS

SERDES

SERDESIF I/Os

SGMI PHY

G
M

II/
M

II

TB
I

10.4 EMAC Operation
Before any DMA transfers can be carried out, two sets of descriptors are needed to be initialized in the host memory.
One descriptor is for the transmit operations and the other is for the receive operations. Each set of descriptors takes
the form of a linked list typically closed to form a ring buffer.

For ease of handling by software, the transfers are handled using linked lists of transmit and receive descriptors.
Transmit and receive descriptors define the buffer in the host memory for Tx operations and another for Rx
operations.

The transfer of data in either direction typically uses a ring buffer defined within host memory. The ring buffer for the
transmit operations is defined by a closed linked list of the Tx descriptors. The ring buffer for the receive operations
is defined by a closed link list of the Rx descriptors. The descriptors act as pointers to the ring buffers. There are
separate list of descriptors for both the transmit and receive processes. Each descriptor is in the host memory.

The two ring buffers are formed of an equal-sized segment, each of which is 32-bit aligned and is capable of storing
a packet of up to the maximum size of packet transferred. Due to a limitation in the AHB-DMA controller, Ethernet
jumbo frames are not supported.

The software can either use the DMA Interrupts generated or poll semaphore bits within the descriptors to maintain
synchronization with the packet streams. The entry point into the buffer, used at the start of any sequence of
transfers, is given by the descriptor picked out by the DMATx/RxDescriptor register.

The following table shows that each descriptor comprises of a sequence of three 32-bit memory locations.

Ethernet MAC

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 367

Table 10-4. Tx/Rx Descriptor

Address Register Function Size

0x0 Table 10-5 Start address for the packet data 32 bits

0x4 Table 10-6 Size of packet, Overrides and Empty Flag 32 bits

0x8 Table 10-7 Location of next descriptor 32 bits

Table 10-5. PacketStartAddr

Bit Number Name Reset Value Description

[31:2] PacketStartAddr[31:2] 0x0 Start address of the packet.

[1:0] PacketStartAddr[1:0] 0x0 All transfers are 32-bit aligned in host memory.

Table 10-6. Packet Size

Bit Number Name Reset Value Description

31 Empty Flag 0x0 For the transmit operations, this bit indicates the availability
of the data associated with the packet. For the receive
operations, this bit indicates the availability of the specified
location to store the received packet. The setting of this flag
is used to validate the descriptor.

[30:21] Reserved 0x0 Reserved

[20:16] FTPP Overrides 0x0 The 5-bit field containing the FIFO transmit per-packet
override flags signaled to the A-MCXFIFO during the packet
transmission. The bits are encoded as follows:
20: FIFO transmit control frame flag.

19:18: FIFO transmit per-packet pad mode flag.

0x0: Do not pad transmit frame.

0x1: Pad all frames to 64 bytes and append FCS to all
frames.

0x2: Reserved.

0x3: Reserved.

17: FIFO transmit per-packet generate FCS flag.

16: FIFO transmit per-packet enable flag.

[15:12] Reserved 0x0 Reserved

[11:0] PacketSize 0x0 For the transmit operations, the 12-bit field gives the size of
packet to be transferred in bytes.
In the receive operations, the DMA controller writes the
number of bytes received to this field.

The value of this field prior to the transfer being made is
ignored.

Ethernet MAC

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 368

Table 10-7. Next Descriptor

Bit Number Name Reset Value Description

[31:2] Next Descriptor[31:2] 0x0 The built-in DMA controller reads this register to discover the
location in the host memory of the descriptor for the next
packet in the sequence. The descriptors should form a closed
linked list.

[1:0] Next Descriptor[1:0] 0x0 All descriptors are 32-bit aligned in the host memory.

10.4.1 Transmit Operation
1. Before any packet can be transmitted, a group of Tx descriptors needs to be set up to define the ring buffer

used for transmit operations.

The start addresses set for the different segments of the ring buffer are required to be word aligned and
should be spaced to give segments of equal size, each able to handle a packet of the maximum size to be
transferred.

The packet size component of transmit descriptors should initially be written to have ‘1’ in bit 31, which is the
empty flag to indicate that the ring buffer does not currently contain any valid data.

2. The least significant four bits of the DMA interrupt mask register are set to specify which Tx DMA events cause
a DMA interrupt to be generated.

3. The data for one or more transmit packets should then be placed in contiguous segments of the ring buffer.
The PacketSize component of the descriptor associated with these segments amended both to record the size
of the packet placed in the buffer and to set the Empty Flag to ‘0’ to indicate the presence of valid data.

4. The location of the descriptor, which acts as the entry point in the Tx ring buffer, is written in the DMA Tx
descriptor register.The DMA transfer of the transmit packets are enabled by writing a ‘1’ to the bit 0 of the DMA
Tx control register, which is Tx enable bit.

5. The built-in DMA controller then reads the DMA Tx descriptor register to discover the location of the first Tx
descriptor. The Tx descriptor is read to check the validity of the associated packet which is indicated by the
empty flag, the start address of the packet to be transmitted, and its size.
If the empty flag is ‘1’ then the descriptor is not associated with valid data. The DMA controller terminates
the sequence of transmit packet transfers, set the TxUnderrun bit in the DMA Tx Status register and clear
the TxEnable bit in the DMA Tx Control register. The TxUnderrun bit in the DMA Tx Status register is set
whenever DMA controller reads a ‘1’ in the empty flag of the Tx Descriptor being processed.

If the empty flag is ‘1’, the DMA terminates the transmit operation and then an interrupt is generated for
TxUnderrun if enabled. The DMA interrupts register shows TxUnderrun as the source of this interrupt. Any
further transfers require the DMA Tx descriptor register to be updated to record the start position in the ring
buffer and to set the TxEnable bit to ‘1’ again.

6. The transfer starts when the FIFO indicates that there is a space in the FIFO for a packet of the maximum
packet size.

7. If the transfer is completed successfully, the DMA controller writes ‘1’ to bit 31 of the PacketSize component
of the descriptor. The TxPktSent flag in the DMA_TX_STATUS register needs to be set (if not already set),
the TxPktSent interrupt is to be generated (if enabled) and the TxPktCount is recorded in bits [23:16] of the
DMA_TX_STATUS register incremented by 1.

8. The DMA controller then moves on to process any packet stored in the next segment of the ring buffer.
The location of the descriptor associated with the next segment in the ring has already been read from
the NextDescriptor component of the sequence of transmit packet transfers, sets the Bus Error bit in the
DMA_TX_STATUS register, and clears the TxEnable bit in the DMA_TX_CTRL register. If enabled, an
interrupt is generated with the DMA Interrupts register showing a Tx Bus Error as the source of this interrupt.

Any further transfers require the DMA_TX_DESC register to be updated to record the new start position in the
ring buffer and the TxEnable bit to be set to ‘1’ again.

10.4.2 Receive Operation
1. Before any packets are received, a group of Rx descriptors needs to be set up to define the ring buffer used

for receive operations.

Ethernet MAC

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 369

The start addresses set for the different segments of the ring buffer are required to be word-aligned and
should be spaced to give segments of equal size, each able to handle a packet of the maximum size to be
transferred.

The packet size components of these descriptors should initially be written to have ‘1’ in bit 31, which is the
empty flag to indicate that the ring buffer does not currently contain any received packets.

2. Bits [7:4] of the DMA Interrupt Mask register are set to specify which Rx DMA events cause a DMA interrupt to
be generated.

3. The location of the descriptor corresponding to the entry point in the Rx ring buffer should be written to the
DMA Rx descriptor register and to enable the DMA transfer of receive packets enabled by writing a ‘1’ the bit 0
of DMA Rx control register which is the RxEnable bit.

4. The built-in DMA controller then reads DMA Rx descriptor to discover the location of the first Rx descriptor.
The built-in DMA controller then reads that descriptor to check that the associated area of the host memory
is available for storing the received packet. This is indicated by the empty flag in bit 31 of the PacketSize
component of the descriptor and the start address of this storage area.

If the Empty Flag is ‘0’, this suggests that the storage area already contains a packet that has not yet been
read by the host software.

When the Empty flag is ‘0’, the DMA controller terminates the sequence of the receive packet transfers, sets
the RxOverflow bit in the DMA_RX_STATUS register and clears the RxEnable bit in the DMA_RX_CTRL
register.

If enabled, an interrupt is generated with the DMA Interrupts register showing RxOverflow as the source of this
interrupt. Any further transfers require the DMA_RX_DESC register to be updated to record the start position
in the ring buffer that is now required and the RxEnable bit to be set to '1' again.

5. Transfer starts when FIFO indicates that there is a packet waiting to be transferred.
6. If the transfer is completed successfully, the DMA controller records the number of bytes transmitted in bits

[11:0] of the PacketSize component of the descriptor and writes ‘0’ in bit 31 to record that a packet has been
stored in the ring buffer.

The RxPktReceived flag in the DMA_RX_STATUS register is also to be set (if not already set), the
RxPktReceived interrupt is to be generated (if enabled) and the RxPktCount is recorded in
bits[23:16] of that register incremented by 1.

7. The DMA controller then moves on to transfer the next packet in the next segment of the ring buffer. The
location of the descriptor associated with the next segment in the ring has already been read from the
NextDescriptor component of the current descriptor.

8. The software should respond to the RxPktReceived interrupt by reading the packet from its location in the ring
buffer and then setting the Empty Flag in the descriptor to ‘1’ again to mark this segment of the ring buffer as
available for storing further received packets.

9. If a bus error occurs, the DMA controller terminates the sequence of the receive packet transfers, sets the
Bus Error bit in the DMA_RX_STATUS register, and clears the RxEnable bit in the DMA_RX_CTRL register. If
enabled, an interrupt is generated with the DMA Interrupts register showing an Rx Bus Error as the source of
this interrupt.
Any further transfers require the DMA_RX_DESC register to be updated to record the start position in the ring
buffer that is now required and the RxEnable bit is to be set to ‘1’ again.

10.5 How to Use TSEMAC
TSEMAC can be configured using the Libero SoC design software. Using the MSS Ethernet Configurator macro,
select the external PHY interface, as shown in the following figure. The external PHY interface can be MII or GMII or
TBI. The MII and GMII interfaces are routed though the FPGA fabric onto the MSIOs, and the TBI interface is routed
though the FPGA fabric on-to the SerDes I/Os.

Ethernet MAC

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 370

Figure 10-5. External PHY Interface Selection in MSS EMAC Configurator

Using the MSS EMAC configurator, the line speed can be selected. Supported line speeds are:

• 10/100 Mbps for the MII interface
• 10/100/1000 Mbps for the GMII and TBI interfaces

The following figure shows how to select the line speed for the selected interface.

Ethernet MAC

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 371

Figure 10-6. Line Speed Selection in MSS EMAC Configurator

Follow these steps:

1. Using the MSS EMAC configurator, select the management interface. The management interface is used to
exchange the control and status information with the external PHY. The following figure shows how to select
the PHY management interface.

Ethernet MAC

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 372

Figure 10-7. External PHY Management Interface Selections in MSS EMAC Configurator

10.5.1 SGMII Interface Configuration
1. Select the interface as TBI, line speed as required. Enable the management interface check box as shown in

the following figure.

Ethernet MAC

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 373

Figure 10-8. MSS Ethernet Configurator with TBI Interface

2. Connect TBI signals to SerDes, which is configured for EPCS mode, as shown in the following figure.

Ethernet MAC

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 374

Figure 10-9. SGMII Interface Signals: TBI to SerDes

Important: Timing models for SerDes to Fabric have been updated with additional time delay. This
changes the timing arcs of nets and interface between SerDes to Fabric Nets. To meet timing
accuracy, open all Libero v11.7 SP3 designs and re-run Verify Timing. If you get new timing
violations, do the following:
1. Re-run place-and-route.
2. Re-run place-and-route with high effort.
3. Run place-and-route with multi-pass.
4. Adjust timing constraints or use chip planner to floorplan the affected interfaces.

For more information about the updated timing arcs, see PCN 17005A.

3. In design flow window of Libero SoC under compile option open Edit I/O attributes option and assign pin
names to PHY interface as shown in the following figure.

Ethernet MAC

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 375

Figure 10-10. I/O Editor With SGMII and PHY Ports

10.5.2 SECDED Features for TSEMAC Buffers
The 4 KB TX buffer and 8 KB RX buffer are protected with the SECDED feature. Use the EDAC configurator to
enable the SECDED feature independently for TX and RX buffers. The following figure shows how to enable or
disable the SECDED feature for the EMAC TX and RX buffers. Interrupts for single bit error, dual bit error, or both
single bit and dual bit errors can be enabled.

To clear these interrupts and to take necessary actions in case of dual bit error, register the interrupt handler in the
application code.

Ethernet MAC

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 376

Figure 10-11. SECDED Configurator with Ethernet TX RAM and Ethernet RX RAM Configuration Options

Microchip provides TSEMAC firmware drivers to use with the application development. Download the SmartFusion
2 TSEMAC firmware drivers from the Firmware Catalog. The TSEMAC firmware drivers provides APIs-to-TSEMAC
services. See the SmartFusion 2 TSEMAC Driver User Guide for the list of APIs and their descriptions.

The TSEMAC driver package includes sample projects to show the usage of TSEMAC. The sample projects are
available for three different tool chains: IAR Embedded Work, Keil MDK, and SoftConsole. The following figure shows
a sample project that gets generated by right-clicking the system services driver and selecting Generate sample
project.

Ethernet MAC

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 377

Figure 10-12. Firmware Catalog Showing the Generation of Sample Project for TSEMAC

Microchip provides the device drivers for the TSEMAC controller for SmartFusion 2 device and recommends using
these drivers for the application development.

The following table lists the APIs available in TSEMAC firmware drivers for initialization and configuration.

Table 10-8. TSEMAC Firmware Drivers for Initialization and Configuration

API Description

MSS_MAC_cfg_struct_def_init The MSS_MAC_cfg_struct_def_init() function initializes a
mss_mac_cfg_t configuration data structure to default values. The default
configuration uses the MII interface connected to a PHY at address 0x00 which
is set to auto-negotiate all the available speeds up to 1000 Mbps. This default
configuration can then be used as parameter to MSS_MAC_init(). Typically,
the default configuration would be modified to suit the application before being
passed to MSS_MAC_init().

Ethernet MAC

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 378

...........continued
API Description

MSS_MAC_init The MSS_MAC_init() function initializes the Ethernet MAC hardware and
driver internal data structures. The MSS_MAC_init() function takes a pointer
to a configuration data structure of type mss_mac_cfg_t as parameter. This
configuration data structure contains all the information required to configure
the Ethernet MAC. The MSS_MAC_init() function initializes the descriptor
rings and their pointers to initial values. The MSS_MAC_init() function
enables DMA Rx packet received and Tx packet sent interrupts.
The configuration passed to the MSS_MAC_init() function specifies the type
of interface used to connect the Ethernet MAC and Ethernet PHY as well as
the PHY MII management interface address. It also specifies the allowed link
speed and duplex mode. It is at this point that the application chooses if the link
speed and duplex mode will be auto-negotiate with the link partner or forced to
a specific speed and duplex mode.

The following table lists the APIs available in TSEMAC firmware drivers for Ethernet PHY management.

Table 10-9. TSEMAC Firmware Drivers for Ethernet PHY Management

API Description

MSS_MAC_read_phy_reg The MSS_MAC_read_phy_reg() function reads the Ethernet PHY register
specified as parameter. It uses the MII management interface to communicate
with the Ethernet PHY. This function is used part of the Ethernet PHY drivers
provided alongside the Ethernet MAC driver. You only need to use this function
if writing your own Ethernet PHY driver.

MSS_MAC_write_phy_reg The MSS_MAC_write_phy_reg() function writes a 16-bit value to the
specified Ethernet PHY register. It uses the MII management interface to
communicate with the Ethernet PHY. This function is used part of the Ethernet
PHY drivers provided alongside the Ethernet MAC driver. You only need to use
this function if writing your own Ethernet PHY driver.

The following table lists the APIs available in TSEMAC firmware drivers for transmit and receive operations.

Table 10-10. TSEMAC Firmware Drivers for Transmit and Receive Operations

API Description

MSS_MAC_send_pkt The MSS_MAC_send_pkt() function initiates the transmission of a packet. It
places the buffer containing the packet to send into one of the Ethernet MAC’s
transmit descriptors. This function is non-blocking. It will return immediately
without waiting for the packet to be sent. The Ethernet MAC driver indicates that
the packet is sent by calling the transmit completion handler registered by a call
to MSS_MAC_set_tx_callback().

Ethernet MAC

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 379

...........continued
API Description

MSS_MAC_receive_pkt The MSS_MAC_receive_pkt() function assigns a buffer to one of
the Ethernet MAC’s receive descriptors. The receive buffer specified as
parameter will be used to receive one single packet. The receive buffer
will be handed back to the application via a call to the receive callback
function assigned through a call to MSS_MAC_set_rx_callback(). The
MSS_MAC_receive_pkt() function needs to be called again pointing to the
same buffer if more packets are received into this same buffer after the packet
has been processed by the application.
The MSS_MAC_receive_pkt() function is non-blocking. It will return
immediately and does not wait for a packet to be received. The application
needs to implement a receive callback function to be notified that a packet has
been received.

The p_user_data parameter can be optionally used to point to a memory
management data structure managed by the application.

MSS_MAC_set_tx_callback The MSS_MAC_set_tx_callback() function registers the function called by
the Ethernet MAC driver when a packet has been sent.

MSS_MAC_set_rx_callback The MSS_MAC_set_rx_callback() function registers the function called by
the Ethernet MAC driver when a packet is received.

The following table lists the APIs available in TSEMAC firmware drivers for reading status and statistics.

Table 10-11. TSEMAC Firmware Drivers for Reading Status and Statistics

API Description

MSS_MAC_read_stat The MSS_MAC_read_stat() function reads the transmit and receive
statistics of the Ethernet MAC. This function can be used to read one of
17 receiver statistics, 20 transmitter statistics, and 7 frame type statistics as
defined in the mss_mac_stat_t enumeration.

MSS_MAC_clear_statistics The MSS_MAC_clear_statistics() function clears all the statistics
counter registers.

MSS_MAC_get_link_status The MSS_MAC_get_link_status() function retrieves the status of the link
from the Ethernet PHY. It returns the current state of the Ethernet link. The
speed and duplex mode of the link is also returned via the two pointers
passed as parameter if the link is up.
This function also adjusts the Ethernet MAC’s internal configuration if some
of the link characteristics have changed since the previous call to this
function.

For more information on the API detailed description and parameters to the APIs, see MSS Ethernet MAC Driver
User's Guide.

Important: The MSS Ethernet does not support full behavioral simulation models. For more information,
see SmartFusion2 MSS BFM Simulation User Guide.

Ethernet MAC

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 380

10.6 SYSREG Control Register for EMAC
The registers are located in the SYSREG section and are listed again here for clarity. For a detailed description of
each register and bit, see 10. Ethernet MAC.

Table 10-1 shows the control information from the MAC_CR register in the system register.

The following table depicts the MAC_CR register in the SYSREG block.

Table 10-12. MAC_CR Register in SYSREG Block

Register Name Register Type Flash Write Protect Reset Source Description

MAC_CR RW-P Register sysreset_n MAC configuration register

10.7 EMAC Configuration Register Summary
Table 10-4 shows that each descriptor comprises a sequence of three 32-bit memory locations.

The following table summarizes each of the registers covered in this document. The EMAC base address is
0x40041000.

Table 10-13. EMAC M-AHB Register Map

Register Name Address
Offset

Register
Type

Reset Value Description

Table 10-20 0x180 R/W 0x0 Transmit control register

Table 10-21 0x184 R/W 0x0 Pointer to transmit descriptor

Table 10-22 0x188 R/W 0x0 Transmit status register

Table 10-23 0x18C R/W 0x0 Receive control register

Table 10-24 0x190 R/W 0x0 Pointer to receive descriptor

Table 10-25 0x194 R/W 0x0 Receive status register

Table 10-26 0x198 R/W 0x0 Interrupt mask register

Table 10-27 0x19C RO 0x0 Interrupts register

Table 10-14. EMAC PE-MCXMAC Register Map

Register Name Address
Offset

Register
Type

Reset Value Description

Table 10-28 0x00 R/W 0x80000000 MAC configuration register

Table 10-29 0x04 R/W 0x00007000 MAC configuration register

Table 10-30 0x08 R/W 0x40605060 Inter packet gap and interframe gap register

Table 10-31 0x0C R/W 0x00A1F037 Definition of half-duplex register

Table 10-32 0x10 R/W 0x00000600 Sets the maximum frame size in both transmit and
receive directions.

Reserved 0x14 R/W 0x0 Reserved

Reserved 0x18 R/W 0x0 Reserved

Ethernet MAC

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 381

...........continued
Register Name Address

Offset
Register
Type

Reset Value Description

Table 10-33 0x1C R/W 0x0 This test bit is used to predict back off times in
Half-duplex mode.
This allows the MAC to be paused for testing
purpose only.

Table 10-34 0x20 R/W 0x0 This resets MII MGMT, determines MGMT clock
frequency, and causes the MII MGMT to suppress
preamble generation.

Table 10-35 0x24 R/W 0x0 MONITORS link fails

Table 10-36 0x28 R/W 0x0 This represents 5-bit PHY address field and 5-bit
register address field.

Table 10-37 0x2C WO 0x0 Control register for MII management write cycle
that uses 16-bit data and the pre-configured PHY
and register addresses.

Table 10-38 0x30 RO 0x0 Following an MII Mgmt read cycle, the 16-bit data
can be read from this location.

Table 10-39 0x34 RO 0x0 This indicates MII management block is currently
performing an MII Mgmt read or write cycle.

Table 10-40 0x38 R/W 0x0 This configures PERMII for 10 Mbps or 100 Mbps
speed.

Table 10-41 0x3C RO 0x0 This indicates the serial MII PHY has detected a
jabber condition on the link.
This also indicates the serial MII PHY has
detected a valid link.

This indicates the serial MII PHY is operating in
full-duplex mode.

Table 10-42 0x40 R/W 0x0 The register fields hold the station address.
Station address is the 48-bit programmed receive
frame’s destination address.

Table 10-43 0x44 R/W 0x0 The register fields hold the station address. The
station address is the 48-bit programmed receive
frame’s destination address.

Table 10-15. EMAC A-MCXFIFO Register Map

Register Name Address
Offset

Register
Type

Reset Value Description

Table 10-44 0x48 R/W 0x0 Definition of A-MCXFIFO configuration register 0

Table 10-45 0x4C R/W 0x0FFFFFFF Definition of A-MCXFIFO configuration register 1

Table 10-46 0x50 R/W 0x1FFF1FFF Definition of A-MCXFIFO configuration register 2

Table 10-47 0x54 R/W 0xFFF0FFF Definition of A-MCXFIFO configuration register 3

Table 10-48 0x58 R/W 0x0 Definition of A-MCXFIFO configuration register 4

Table 10-49 0x5C R/W 0x3FFFF Definition of A-MCXFIFO configuration register 5

Ethernet MAC

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 382

...........continued
Register Name Address

Offset
Register
Type

Reset Value Description

Table 10-50 0x60 R/W 0x0 The FIFO RAM access register 0 is intended for
non-real-time RAM testing and debug

Table 10-51 0x64 R/W 0x0 The FIFO RAM access register 1 is intended for
non-real-time RAM testing and debug

Table 10-52 0x68 R/W 0x0 The FIFO RAM access register 2 is intended for
non-real-time RAM testing and debug

Table 10-53 0x6C RO 0x0 The FIFO RAM access register 3 is intended for
non-real-time RAM testing and debug

Table 10-54 0x70 R/W 0x0 The FIFO RAM access register 4 is intended for
non-real-time RAM testing and debug

Table 10-55 0x74 R/W 0x0 The FIFO RAM access register 5 is intended for
non-real-time RAM testing and debug

Table 10-56 0x78 R/W 0x0 The FIFO RAM access register 6 is intended for
non-real-time RAM testing and debug

Table 10-57 0x7C RO 0x0 The FIFO RAM access register 7 is intended for
non-real-time RAM testing and debug

Table 10-16. EMAC PE-MSTAT Transmit and Receive Counters Register Map

Register Name Address
Offset

Register
Type

Reset Value Description

Table 10-58 0x80 R/W 0x0 Transmit and receive 64 byte frame counter

Table 10-59 0x84 R/W 0x0 Transmit and receive 65 to127 byte frame counter

Table 10-60 0x88 R/W 0x0 Transmit and receive 128 to 255 byte frame counter

Table 10-61 0x8C R/W 0x0 Transmit and receive 256 to 511 byte frame counter

Table 10-62 0x90 R/W 0x0 Transmit and receive 512 to 1023 byte frame counter

Table 10-63 0x94 R/W 0x0 Transmit and receive 1024 to 1518 byte frame
counter

Table 10-64 0x98 R/W 0x0 Transmit and receive 1519 to 1522 byte good VLAN
frame count

Table 10-17. EMAC PE-MSTAT Receive Counters Register Map

Register
Name

Address
Offset

Register
Type

Reset
Value

Description

Table 10-65 0x9C R/W 0x0 The statistic counter register is incremented by the byte count of
all frames received.

Table 10-66 0XA0 R/W 0x0 Incremented for each frame received packet.

Table 10-67 0XA4 R/W 0x0 This is incremented for each frame received that has an integral
64 to 1518 length and contains a frame check sequence error.

Table 10-68 0XA8 R/W 0x0 This is incremented for each multicast good frame of lengths
smaller than 1518 (non VLAN) or 1522 (VLAN) excluding
broadcast frames.

Ethernet MAC

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 383

...........continued
Register
Name

Address
Offset

Register
Type

Reset
Value

Description

Table 10-69 0xAC R/W 0x0 This is incremented for each broadcast good frame of lengths
smaller than 1518 (non VLAN) or 1522 (VLAN) excluding
multicast frames.

Table 10-70 0XB0 R/W 0x0 This is incremented for each MAC control frame received.

Table 10-71 0XB4 R/W 0x0 This is incremented each time a valid PAUSE MAC control frame
is received.

Table 10-72 0XB8 R/W 0x0 This is incremented each time a MAC control frame is received,
which contains an op code other than a PAUSE.

Table 10-73 0xBC R/W 0x0 This is incremented for each received frame from 64 to 1518,
which contains an invalid FCS and is not an integral number of
bytes.

Table 10-74 0XC0 R/W 0x0 This is incremented for each frame received in which the 802.3
length field does not match the number of data bytes actually
received (46 – 1500 bytes).

Table 10-75 0XC4 R/W 0x0 This is incremented each time a valid carrier is present and at
least one invalid data symbol is detected.

Table 10-76 0XC8 R/W 0x0 This is incremented each time a false carrier is detected.

Table 10-77 0xCC R/W 0x0 This is incremented each time a frame is received, which is
less than 64 bytes in length and contains a valid frame check
sequence (FCS).

Table 10-78 0xD0 R/W 0x0 This is incremented each time a frame is received, which
exceeds1518 (non VLAN) or 1522 (VLAN) bytes and contains a
valid FCS.

Table 10-79 0xD4 R/W 0x0 This is incremented for each frame received, which is less than 64
bytes in length and contains an invalid FCS.

Table 10-80 0xD8 R/W 0x0 This is incremented for frames received, which exceed 1518 (non
VLAN) or 1522 (VLAN) bytes and contains an invalid FCS.

Table 10-81 0xDC R/W 0x0 This is incremented for frames received, which are streamed to
system but are later dropped due to lack of system resources.

Table 10-18. EMAC PE-MSTAT Transmit Counters Register Map

Register
Name

Address
Offset

Register
Type

Reset Value Description

Table 10-82 0XE0 R/W 0x0 This is incremented for each transmitted byte including
fragments of frames which are involved in collisions.

Table 10-83 0XE4 R/W 0x0 This is incremented for each transmitted packet.

Table 10-84 0XE8 R/W 0x0 This is incremented for each transmitted multicast valid frame.

Table 10-85 0xEC R/W 0x0 This is incremented for each transmitted broadcast frame.

Table 10-86 0XF0 R/W 0x0 This is incremented each time a valid PAUSE MAC control
frame is transmitted.

Table 10-87 0XF4 R/W 0x0 This incremented for each frame, which is deferred on its first
transmission attempt.

Ethernet MAC

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 384

...........continued
Register
Name

Address
Offset

Register
Type

Reset Value Description

Table 10-88 0XF8 R/W 0x0 This is incremented for aborted frames, which are deferred for
an excessive period of time (3036 byte times).

Table 10-89 0xFC R/W 0x0 This is incremented for each transmitted frame that
experiences exactly one collision during the transmission.

Table 10-90 0x100 R/W 0x0 This is incremented for each transmitted frame that
experiences 2 to 15 collisions (including any late collisions)
during the transmission.

Table 10-91 0x104 R/W 0x0 This is incremented for each transmitted frame that
experiences a late collision during a transmission attempt.

Table 10-92 0x108 R/W 0x0 This is incremented for each frame that experiences 16
collisions during the transmission and is aborted.

Table 10-93 0x10C R/W 0x0 This is incremented by the number of collisions experienced
during the transmission of a frame.

Table 10-94 0x110 R/W 0x0 This is incremented each time a valid PAUSE MAC control
frame is transmitted and honored.

Table 10-95 0x114 R/W 0x0 This is incremented each time PAUSE frame is honored.

Table 10-96 0x118 R/W 0x0 This is incremented for each oversized transmitted frame with
an incorrect FCS value.

Table 10-97 0x11C R/W 0x0 This is incremented for each valid sized packet with an
incorrect FCS value.

Table 10-98 0x120 R/W 0x0 This is incremented for each valid size frame with a Type Field
signifying a Control frame.

Table 10-99 0x124 R/W 0x0 This is incremented for each oversized transmitted frame with
a correct FCS value.

Table
10-100

0x128 R/W 0x0 This is incremented for each frame which is less than
64 bytes with a correct FCS value.

Table
10-101

0x12C R/W 0x0 This is incremented for each frame which is less than
64 bytes, with an incorrect FCS value.

Table
10-102

0x130 RO 0x0 This indicates the transmit and receive counters and the
receive counters carry the bits. The carry register bits are
cleared on carry register write when the respective bit is
asserted.

Table
10-103

0x134 RO 0x0 This indicates the transmit counters carry bits. The carry
register bits are cleared on carry register write when the
respective bit is asserted.

Table
10-104

0x138 R/W 0xFE01FFFF The rollover condition of each transmit and receive counter
and receive counters can be discreetly masked from causing
an interrupt by internal masking.

Table
10-105

0x13C R/W 0xFFFFF The rollover condition of each transmit counter can be
discreetly masked from causing an interrupt by internal
masking.

Ethernet MAC

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 385

Table 10-19. EMAC M-SGMII Register Map

Register Name Address
Offset

Register
Type

Reset Value Description

Table 10-106 0x00 R/W 0x0 This enables the loopback and the auto-negotiation.
The PHY address for the M-SGMII is 0x1E.

Table 10-107 0x01 RO 0x0001 This enables the MF PREMABLE suppression enable.
This indicates the auto-negotiation complete, associated
PHY auto-negotiation ability, and link status.
The PHY address for the M-SGMII is 0x1E.

RESERVED 0x02 R/W 0x0 Reserved

RESERVED 0x03 R/W 0x0 Reserved

Table 10-108 0x04 R/W 0x0 This indicates that the link is up when the M-SGMII is
integrated into a PHY and is communicating with the
SGMII module in a MAC. It also indicates the link is
transferring data in full-duplex mode and link speed.
The PHY address for the M-SGMII is 0x1E.

Table 10-109 0x05 RO - This indicates that the link is transferring data in
full-duplex mode. This also indicates the speed of the
link.
The PHY address for the M-SGMII is 0x1E.

Table 10-110 0x06 RO 0x0 This indicates that the device supports the next page
function.
This also indicates that the new page is received and
stored in the applicable AN LINK PARTNER ABILITY or
AN NEXT PAGE register.

The PHY address for the M-SGMII is 0x1E.

Table 10-111 0x07 R/W 0x0 This indicates the additional next pages to follow and
message page.
Message pages are formatted pages, which carry a
predefined message code that is enumerated in IEEE®

802.3u/Annex 28C.

The PHY address for the M-SGMII is 0x1E.

Table 10-112 0x08 RO - The link partner asserts this bit to indicate additional
Next Pages to follow.
This indicates the message page and the link partner’s
ability to comply with the message.

The PHY address for the M-SGMII is 0x1E.

Table 10-113 0x0F RO 0xA000 This indicates that the PHY can be operated
in 1000BASE-X FULL-DUPLEX, 1000BASE-X HALF-
DUPLEX, 1000BASE-T FULL-DUPLEX, 1000BASE-T
HALF-DUPLEX.
The PHY address for the M-SGMII is 0x1E.

Table 10-114 0x10 R/W 0x0 This enables the M-SGMII to transmit the jitter test
patterns, which are defined in the IEEE 802.3z 36A.
This selects the jitter pattern that is to be transmitted in
diagnostics mode.

The PHY address for the M-SGMII is 0x1E.

Ethernet MAC

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 386

...........continued
Register Name Address

Offset
Register
Type

Reset Value Description

Table 10-115 0x11 R/W 0x0 This allows the auto-negotiation function to sense either
a gigabit MAC in the auto-negotiation bypass mode
or an older gigabit MAC without the auto-negotiation
capability.
This defines the M-SGMII as being in 1000BASE-X or
SerDes mode.

This allows the SerDes PHY to perform the code group
alignment based upon the detection of a comma.

The PHY address for the M-SGMII is 0x1E.

The following code snippet shows the minimal configuration required for MAC to make it functional in 1000 Mbps
mode of operation.

CFG1= 32'h0000_0035 //Rx/Tx flow control enable, Rx/Tx-Enable
CFG2 = 32'h0000_7202 //Preamble=7, byteMode, CRC-enable
STATION_ADDRESS1 = 32'hA5A4_A3A2 //Station Address 1-4
STATION_ADDRESS2 = 32'hA1A0_0000 //Station Address 5-6
FIFO_CFG0 = 32'h0000_FF00 //Enable FIFO transmit and receive modules
FIFO_CFG3 = 32'h007F_FFFF // Tx-FIFO high watermark=128

10.8 EMAC Register Bit Definitions
The following tables define the bit definitions of the registers present in EMAC.

Table 10-20. DMA_TX_CTRL

Bit
Number

Name Reset
Value

Description

[31:1] Reserved 0x0 Reserved

0 Transmit control 0x0 TxEnable: Set this bit to enable DMA transmit packet transfers.
The bit is cleared by the built-in DMA controller whenever it encounters
a Tx Underrun or Bus Error state.

Table 10-21. DMA_TX_DESC

Bit
Number

Name Reset
Value

Description

[31:2] Top 30 bits of
Descriptor
Address

0x0. When TxEnable is set by the host, the built-in DMA controller reads this
register to discover the location in the host memory of the first transmit
packet descriptor.

[1:0] Ignored by the
DMA controller

0x0 All descriptors are 32-bit aligned in the host memory.

Table 10-22. DMA_TX_STATUS

Bit Number Name Reset Value Description

[31:24] Reserved 0x0 Reserved

[23:16] TxPktCount 0x0 The 8-bit transmit packet counter that is incremented whenever
the built-in DMA controller successfully transfers a packet, and is
decremented whenever the host writes a '1' to bit '0' in this register.

Ethernet MAC

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 387

...........continued
Bit Number Name Reset Value Description

[16:4] Reserved 0x0 Reserved

3 BusError 0x0 When set, this indicates that a host slave split, retry or error
response is received by the DMA controller.

2 Reserved 0x0 Reserved

1 TxUnderrun 0x0 Set whenever the DMA controller reads a '1' for the empty flag in
the descriptor.

0 TxPktSent 0x0 When set, this indicates that one or more packets have been
successfully transferred.
Writing a '1' to this bit reduces the TxPktCount value by one. The
bit is cleared whenever TxPktCount is zero.

Table 10-23. DMA_RX_CTRL

Bit Number Name Reset Value Description

[31:1] Reserved 0x0 Reserved

0 Rx Enable 0x0 Setting this bit enables DMA receive packet transfers.
The bit is cleared by the built-in DMA controller whenever it
encounters an Rx overflow or bus error state.

Table 10-24. DMA_RX_DESC

Bit Number Name Reset Value Description

[31:1] Top 30 bits of
Descriptor
Address

0x0 When RxEnable is set by the host, the built-in DMA controller
reads this register to discover the location in the host memory of
the first receive packet descriptor.

0 Ignored by the
DMA controller

0x0 All descriptors are 32-bit aligned in the host memory.

Table 10-25. DMA_RX_STATUS

Bit Number Name Reset Value Description

[31:24] Reserved 0x0 Reserved

[23:16] RxPktCount 0x0 The 8-bit receive packet counter that is incremented whenever
the built-in DMA controller successfully transfers a packet, and is
decremented whenever the host writes a “1” to bit zero of this
register.

[16:4] Reserved 0x0 Reserved

3 BusError 0x0 When set, this indicates that a host slave split, retry or error
response is received by the DMA controller.

2 RxOverflow 0x0 Set whenever the DMA controller reads a zero empty flag in the
descriptor it is processing.

1 Reserved 0x0 Reserved

0 RxPktReceived 0x0 When set, this indicates that one or more packets have been
successfully transferred. Writing a “1” to this bit reduces the
RxPktCount value by one. The bit is cleared whenever RxPktCount
is zero.

Ethernet MAC

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 388

Table 10-26. DMA_IRQ_MASK

Bit Number Name Reset Value Description

[31:8] Reserved 0x0 Reserved

7 Bus Error Mask 0x0 Setting this bit to “1” enables the Bus Error bit in the DMARxStatus
register as an interrupt source.

6 Rx Overflow
Mask

0x0 Setting this bit to “1” enables the RxOverflow bit in the
DMARxStatus register as an interrupt source.

5 Reserved 0x0 Reserved

4 RxPktReceived
Mask

0x0 Setting this bit to “1” enables the RxPktReceived bit in the
DMARxStatus register as an interrupt source.

3 Bus Error Mask 0x0 Setting this bit to “1” enables the Bus Error bit in the DMATxStatus
register as an interrupt source.

2 Reserved 0x0 Reserved

1 Tx Underrun
Mask

0x0 Setting this bit to “1” enables the TxUnderrun bit in the
DMATxStatus register as an interrupt source.

0 TxPktSent Mask 0x0 Setting this bit to “1” enables the TxPktSent bit in the DMATxStatus
register as an interrupt source.

Table 10-27. DMA_IRQ

Bit Number Name Reset Value Description

[31:8] Reserved 0x0 Reserved

7 Bus Error 0x0 This is set to “1” to record a receive bus error interrupt when
the Bus Error bit in the DMARxStatus register and bit 7 of the
DMAIntrMask register are both set.

6 Rx Overflow 0x0 This is set to “1” to record an Rx overflow interrupt when the
RxOverflow bit in the DMARxStatus register and bit 6 of the
DMAIntrMask register are both set.

5 Reserved 0x0 Reserved

4 RxPktReceived 0x0 This is set to “1” to record a RxPktReceived interrupt when the
RxPktReceived bit in the DMARxStatus register and bit 4 of the
DMAIntrMask register are both set.

3 Bus Error 0x0 This is set to “1” to record a transmit bus error interrupt when
the Bus Error bit in the DMATxStatus register and bit 3 of the
DMAIntrMask register are both set.

2 Reserved 0x0 Reserved

1 Tx Underrun 0x0 This is set to “1” to record a Tx underrun interrupt when the
TxUnderrun bit in the DMATxStatus register and bit 1 of the
DMAIntrMask register are both set.

0 TxPktSent 0x0 This is set to “1” to record a TxPktSent interrupt when the
TxPktSent bit in the DMATxStatus register and bit 0 of the
DMAIntrMask register are both set.

Ethernet MAC

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 389

Table 10-28. CFG1

Bit Number Name Reset Value Description

31 SOFT RESET 0x1 Setting this bit will put all modules within the PE-MCXMAC in the
reset except the Host Interface.

30 SIMULATION
RESET

0x0 Setting this bit will reset those registers, such as the random
backoff timer, which are not controlled by the normal resets
(simulation only).

[29:20] Reserved 0x0 Reserved

19 RESET RX MAC
CONTROL

0x0 Setting this bit puts the PERMC Receive MAC control in reset.

18 RESET TX MAC
CONTROL

0x0 Setting this bit puts the PETMC Transmit MAC control in reset.

17 RESET RX
FUNCTION

0x0 Setting this bit puts the PERFN receive function block in reset.
PERFN block performs the receive frame protocol.

16 RESET TX
FUNCTION

0x0 Setting this bit puts the PETFN transmit function block in reset.
PETFN block performs the frame transmission protocol.

[15:9] Reserved 0x0 Reserved

8 LOOP BACK 0x0 Setting this bit causes the PETFN MAC transmit outputs to be
looped back to the MAC receive inputs. Clearing this bit results in
normal operation.

[7:6] Reserved 0x0 Reserved

5 RECEIVE FLOW
CONTROL
ENABLE

0x0 Setting this bit causes the PERFN receive.
MAC control to detect and act on PAUSE flow control frames.
Clearing this bit causes the receive MAC control to ignore PAUSE
flow control frames.

4 TRANSMIT
FLOW
CONTROL
ENABLE

0x0 Setting this bit allows the PETMC transmit.
MAC control sends PAUSE flow control frames when requested by
the system.

Clearing this bit prevents the transmit MAC control from sending
flow control frames.

3 SYNCHRONIZE
D RECEIVE
ENABLE

0x0 This field is read only and indicates that the receive enable is
synchronized to the receive stream.

2 RECEIVE
ENABLE

0x0 Setting this bit allows the MAC to receive frames from the PHY.
Clearing this bit prevents the reception of the frames.

1 SYNCHRONIZE
D TRANSMIT
ENABLE

0x0 This field is read only and indicates that the transmit enable is
synchronized to the transmit stream.

0 TRANSMIT
ENABLE

0x0 Setting this bit allows the MAC to transmit frames from the system.
Clearing this bit prevents the transmission of the frames.

Table 10-29. CFG2

Bit Number Name Reset Value Description

[31:16] Reserved 0x0 Reserved

Ethernet MAC

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 390

...........continued
Bit Number Name Reset Value Description

[15:12] PREAMBLE
LENGTH

0x7 This field determines the length of the preamble field of the packet
in bytes. Default is ‘0x7’.

[9:8] INTERFACE
MODE

0x0 This field determines the type of interface the MAC is connected to.
The Interface mode settings are as follows:

Interface mode Bit 9 Bit 8

Reserved 0 0

Nibble mode (10/100 Mbps
MII/RMII/SMII, …)

0 1

Byte mode (1000 Mbps GMII/TBI) 1 0

Reserved 1 1

[7:6] Reserved 0x0 Reserved

5 HUGE FRAME
ENABLE

0x0 Set this bit to transmit and receive the frames that are longer than
the MAXIMUM FRAME LENGTH. Clear this bit to have the MAC
limits the length of frames at the MAXIMUM FRAME LENGTH
value.

4 LENGTH FIELD
CHECKING

0x0 Set this bit to cause the MAC to check the frame’s length field to
ensure it matches the actual data field length. Clear this bit if no
length field checking is desired.

3 Reserved 0x0 Reserved

2 PAD/CRC
ENABLE

0x0 Set this bit to have the MAC pads all the short frames and appends
a CRC to every frame whether or not padding is required. Clear this
bit if frames, presented to the MAC, have a valid length and contain
a CRC.

1 CRC ENABLE 0x0 Set this bit to have the MAC appends a CRC to all the frames.
Clear this bit if frames that are presented to the MAC, have a
valid length and contain a valid CRC. If the PAD/CRC ENABLE
configuration bit or the per-packet PAD/CRC ENABLE is set, CRC
ENABLE is ignored.

0 FULL-DUPLEX 0x0 Setting this bit configures the PE-MCXMAC to operate in
full-duplex mode. Clearing this bit configures the PE-MCXMAC to
operate in half-duplex mode only.

Table 10-30. IFG

Bit Number Name Reset
Value

Description

31 Reserved 0x0 Reserved

[30:24] NON-BACK-TO-BACK INTER-
PACKET-GAP PART 1 (IPGR1)

0x40 This programmable field represents the optional carrier
Sense window, which is referenced in the IEEE
802.3/4.2.3.2.1 ‘Carrier Deference’. If a carrier is detected
during the timing of IPGR1, the MAC defers to the carrier.
However, the carrier becomes active after IPGR1; the
MAC continues timing IPGR2 and transmit, knowingly
causing a collision. This ensures fair access to the
medium. The permitted range of values is 0x0 to IPGR2.
Default is 0x40.

Ethernet MAC

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 391

...........continued
Bit Number Name Reset

Value
Description

23 Reserved 0x0 Reserved

[22:16] NON-BACK-TO-BACK INTER-
PACKET-GAP PART 2 (IPGR2)

0x60 This programmable field represents the Non-Back-to-Back
Inter-Packet-Gap in the bit times, which represent the
minimum inter packet gap (IPG) of 96 bits.

[15:8] MINIMUM IFG
ENFORCEMENT

0x50 This programmable field represents the minimum size
of management gap (IFG) to enforce between frames
(expressed in bit times).
A frame whose IFG is less than the programmed minimum
IFG enforcement value is dropped. The default setting of
0x50 represents half of the nominal minimum IFG which is
160 bits.

7 Reserved 0x0 Reserved

[6:0] BACK-TO-BACK INTER-
PACKET-GAP

0x60 This programmable field represents the IPG between
Back-to-Back packets (expressed in bit times). This is the
IPG parameter used exclusively in full-duplex mode when
two transmit packets are sent back-to-back. Set this field
to the desired number of bits. The default setting of 0x60
represents the minimum IPG of 96 bits.

Table 10-31. HALF_DUPLEX

Bit Number Name Reset
Value

Description

[31:24] Reserved 0x0 Reserved

[23:20] ALTERNATE BINARY
EXPONENTIAL BACKOFF
TRUNCATION

0xA This field is used when ALTERNATE BINARY EXPONENTIAL
BACKOFF ENABLE is set. The value programmed is
substituted for the Ethernet standard value of ten. Default is
‘0xA’.

19 ALTERNATE BINARY
EXPONENTIAL BACKOFF
ENABLE

0x0 Setting this bit configures the Tx MAC to use the ALTERNATE
BINARY EXPONENTIAL BACKOFF TRUNCATION setting
instead of the 802.3 standard tenth collision. Clearing this bit
causes the Tx MAC to follow the standard binary exponential
backoff rule.

18 BACKPRESSURE NO
BACKOFF

0x0 Setting this bit configures the Tx MAC to immediately re-
transmit following a collision during back pressure operation.
Clearing this bit causes the Tx MAC to follow the binary
exponential backoff rule.

17 NO BACKOFF 0x0 Setting this bit configures the Tx MAC to immediately re-
transmit following a collision. Clearing this bit causes the Tx
MAC to follow the binary exponential backoff rule.

16 EXCESSIVE DEFER 0x1 Setting this bit configures the Tx MAC to allow the transmission
of a packet that has been excessively deferred. Clearing this bit
causes the Tx MAC to abort the transmission of a packet that
has been excessively deferred.

[15:12] RETRANSMISSION
MAXIMUM

0xF This is a programmable field specifying the number of
retransmission attempts following a collision before aborting the
packet due to excessive collisions. The standard specifies the
maximum number of attempts to be 0xF (15d).

Ethernet MAC

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 392

...........continued
Bit Number Name Reset

Value
Description

[11:10] Reserved 0x0 Reserved

[9:0] COLLISION WINDOW 0x37 This programmable field represents the slot time or collision
window during which collisions might occur in a properly
configured network. Since the collision window starts at the
beginning of the transmission, the preamble and start frame
delimiter (SFD) are included. The default of 0x37 (55d)
corresponds to the count of the frame bytes at the end of the
window.

Table 10-32. MAX_FRAME_LENGTH

Bit Number Name Reset Value Description

[31:16] Reserved 0x0 Reserved

[15:0] MAXIMUM FRAME
LENGTH

0x600 This programmable field sets the maximum frame size in
both the transmit and receive directions.

Table 10-33. TEST

Bit Number Name Reset Value Description

[31:4] Reserved 0x0 Reserved

3 MAXIMUM FRAME
LENGTH

0x0 Setting this bit causes the MAC to backoff for the maximum
possible length of time. This test bit is used to predict the
backoff times in half-duplex mode.

2 REGISTERED
TRANSMIT FLOW
ENABLE

0x0 Registered transmit half-duplex flow enable.

1 TEST PAUSE 0x0 Setting this bit allows the MAC to be paused via the host
interface for the testing purposes.

0 SHORTCUT SLOT
TIME

0x0 This bit allows the slot time counter to expire regardless of
the current count. This bit is for the testing purposes only.

Table 10-34. MII_CONFIG

Bit Number Name Reset Value Description

31 RESET MII MGMT 0x0 Setting this bit resets MII Mgmt. Clearing this bit allows MII
Mgmt to perform Mgmt read/write cycles as requested via
the Host Interface.

30:6 Reserved 0x0 Reserved

5 SCAN AUTO
INCREMENT

0x0 Setting this bit causes MII Mgmt to continually read from
a set of PHYs of contiguous address space. The starting
address of the PHY is specified by the content of the PHY
address field, which is recorded in the MII Mgmt Address
register. Up to 31 PHY contiguous address space can be
addressed. The last PHY, which is to be queried in this read
sequence, is the one residing at address 0x31, after which
the read sequence returns to the PHY, specified by the PHY
address field.

Ethernet MAC

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 393

...........continued
Bit Number Name Reset Value Description

4 PREAMBLE
SUPPRESSION

0x0 Setting this bit causes MII Mgmt to suppress preamble
generation and reduce the Mgmt cycle from 64 clocks to 32
clocks. This is in accordance with the IEEE 802.3/22.2.4.4.2.
Clearing this bit causes MII Mgmt to perform Mgmt read/
write cycles with the 64 clocks of preamble.

3 Reserved 0x0 Reserved

2:0 MGMT CLOCK
SELECT

0x0 This field determines the clock frequency of the
management data clock (MDC). Following are the MGMT
Clock Select Encoding programming fields:

Mgmt Clock Select 2 1 0

Source Clock divided by 4 0 0 0

Source Clock divided by 4 0 0 1

Source Clock divided by 6 0 1 0

Source Clock divided by 8 0 1 1

Source Clock divided by 10 1 0 0

Source Clock divided by 14 1 0 1

Source Clock divided by 20 1 1 0

Source Clock divided by 28 1 1 1

Table 10-35. MII_COMMAND

Bit Number Name Reset Value Description

31:2 Reserved 0x0 Reserved

1 SCAN CYCLE 0x0 This bit causes MII Mgmt to perform Read cycles
continuously. This is useful to monitor Link Fail.

0 READ CYCLE 0x0 This bit causes MII Mgmt to perform a single Read cycle.
The Read data is returned in Register 0xC (MII Mgmt Read
Data).

Table 10-36. MII_ADDRESS

Bit Number Name Reset Value Description

[31:13] Reserved 0x0 Reserved

[12:8] PHY ADDRESS 0x00 This field represents the 5-bit PHY address field used in
Mgmt cycles. Up to 31 PHYs can be addressed (0 is
reserved).

[4:0] REGISTER
ADDRESS

0x00 This field represents the 5-bit register address field of Mgmt
cycles. Up to 32 registers can be accessed.

Table 10-37. MII_CTRL

Bit Number Name Reset Value Description

[31:16] Reserved 0x0 Reserved

Ethernet MAC

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 394

...........continued
Bit Number Name Reset Value Description

[15:0] MII MGMT
CONTROL

0x0 When written, an MII Mgmt write cycle is performed using
the 16-bit data and the pre-configured PHY and register
addresses from the MII Mgmt Register (0x0A).

Table 10-38. MII_STATUS

Bit Number Name Reset Value Description

[31:16] Reserved 0x0 Reserved

[15:0] MII MGMT STATUS
(PHY STATUS)

0x0 Following an MII Mgmt read cycle, the 16-bit data can be
read from this location.

Table 10-39. MII_INDICATORS

Bit Number Name Reset Value Description

[31:3] Reserved 0x0 Reserved

2 NOT VALID 0x0 When “1” is returned, this indicates MII Mgmt Read cycle is
not completed and the Read Data is not yet validated.

1 SCANNING 0x0 When “1” is returned, this indicates a scan operation
(continuous MII Mgmt Read cycles) is in progress.

0 BUSY 0x0 When “1” is returned, this indicates MII Mgmt block is
currently performing an MII Mgmt read or write cycle.

Table 10-40. INTERFACE_CTRL

Bit Number Name Reset Value Description

31 RESET
INTERFACE
MODULE

0x0 Setting this bit resets the interface module. Clearing this bit
allows for the normal operation. This bit can be used in the
place of bits 23, 15, and 7, when just 1 interface module is
connected.

[30:28] Reserved 0x0 Reserved

27 TBIMODE 0x0 Setting this bit configures the A-RGMII module to expect TBI
signals at the GMII interface. This bit should not be asserted
unless this mode is being used.

26 GHDMODE 0x0 Setting this bit configures the A-RGMII module to expect
half-duplex GMII at the GMII interface.

25 LHDMODE 0x0 Setting this bit configures the A-RGMII module to expect 10
or 100 half-duplex MII at the GMII interface. This bit should
not be asserted unless this mode is being used.

24 PHY MODE 0x0 Setting this bit configures the PESMII serial MII module
to be in PHY mode. Link characteristics are taken directly
from the Rx segments supplied by the PHY. Clearing this
bit configures the PESMII to be in MAC to MAC mode. In
this configuration, the Serial MII module reverts to the pre-
defined settings of 100 Mbps, full-duplex.

23 RESET PERMII 0x0 Setting this bit resets the PERMII module. Clearing this bit
allows for normal operation.

[22:17] Reserved 0x0 Reserved

Ethernet MAC

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 395

...........continued
Bit Number Name Reset Value Description

16 SPEED 0x0 This bit configures the PERMII Reduced MII module with the
current operating speed.
When set, 100 Mbps mode is selected. When cleared, 10
Mbps mode is selected.

15 RESET PE100X 0x0 This bit resets the 4B/5B symbol encipher/decipher logic.

[14:11] Reserved 0x0 Reserved

10 FORCE QUIET 0x0 When enabled, the transmit data is cleared which allows the
contents of the cipher to be the output. When cleared, the
normal operation is enabled. This affects the 4B/5B symbol
encipher/decipher logic module only.

9 NO CIPHER 0x0 When enabled, the raw transmit 5B symbols are transmitted
without ciphering.
When disabled, the normal ciphering occurs. This affects the
4B/5B symbol encipher/decipher logic module only.

8 DISABLE LINK FAIL 0x0 When enabled, the 330 ms Link Fail timer is disabled,
allowing shorter simulations. Removes the 330 ms link-up
time before reception of streams is allowed. When cleared,
normal operation occurs. Affects 4B/5B symbol encipher/
decipher logic module only.

7 Reserved 0x0 Reserved

[6:1] Reserved 0x0 Reserved

0 ENABLE JABBER
PROTECTION

0x0 This bit enables the jabber protection logic. Jabber is the
condition where a transmitter is stuck on for longer than 50
ms to prevent other stations from transmitting.

Table 10-41. INTERFACE_STATUS

Bit Number Name Reset Value Description

[31:11] Reserved 0x0 Reserved

10 Reserved 0x0 Reserved

9 EXCESS DEFER 0x0 This bit sets when the MAC excessively defers a
transmission. It clears when read. This bit latches high.

8 CLASH 0x0 When read as a “1”, the Serial MII module is in the MAC to
MAC mode with the partner in 10 Mbps and/or half-duplex
mode indicative of a configuration error.
When read as a “0”, the Serial MII module is either in PHY
mode or in a properly configured MAC to MAC mode.

7 JABBER 0x0 When read as a “1”, the Serial MII PHY detects a jabber
condition on the link. When read as a “0”, the Serial MII PHY
does not detect a jabber condition.

6 LINK OK 0x0 When read as a “1”, the Serial MII PHY detects a valid link.
When read as a “0”, the Serial MII PHY does not detect a
valid link.

5 FULL DUPLEX 0x0 When read as a “1”, the Serial MII PHY operates in full-
duplex mode. When read as a “0”, the Serial MII PHY
operates in half-duplex mode.

Ethernet MAC

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 396

...........continued
Bit Number Name Reset Value Description

4 SPEED 0x0 When read as a “1”, the Serial MII PHY operates at 100
Mbps mode. When read as a “0”, the Serial MII PHY
operates at 10 Mbps.

3 LINK FAIL 0x0 When read as a “1”, the MII Management module reads the
PHY link fail register to be 1’. When read as a “0”, the MII
Management module reads the PHY link fail register to be 0’.
Note: For asynchronous host accesses, this bit must be read
at least once every scan read cycle of the PHY.

2 Reserved 0x0 Reserved

1 Reserved 0x0 Reserved

0 Reserved 0x0 Reserved

Table 10-42. STATION_ADDRESS1

Bit Number Name Reset
Value

Description

[31:24] STATION ADDRESS 0x0 This field holds the first octet of the station address.

[23:16] STATION ADDRESS 0x0 This field holds the second octet of the station address.

[15:8] STATION ADDRESS 0x0 This field holds the third octet of the station address.

[7:0] STATION ADDRESS 0x0 This field holds the fourth octet of the station address.

Table 10-43. STATION_ADDRESS2

Bit Number Name Reset Value Description

[31:24] STATION ADDRESS 0x0 This field holds the fifth octet of the station address.

[23:16] STATION ADDRESS 0x0 This field holds the sixth octet of the station address.

Table 10-44. FIFO_CFG0

Bit Number Name Reset
Value

Description

[31:21] Reserved 0x0 Reserved

20 ftfenrply 0x0 This is a read only bit.
When asserted, the FIFO transmit interface is enabled.

When de-asserted, the FIFO transmit interface is disabled.

The bit should be polled until it reaches the expected value.

19 stfenrply 0x0 This is a read only bit.
When asserted, the FIFO PE-MCXMAC transmit interface
module is enabled.

When de-asserted, the FIFO PE-MCXMAC transmit interface
module is disabled.

The bit should be polled until it reaches the expected value.

Ethernet MAC

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 397

...........continued
Bit Number Name Reset

Value
Description

18 frfenrply 0x0 This is a read only bit.
When asserted, the FIFO receive interface module is
enabled.

When de-asserted, the FIFO receive interface module is
disabled.

The bit should be polled until it reaches the expected value.

17 srfenrply 0x0 This is a read only bit.
When asserted, the FIFO PE-MCXMAC receive interface
module is enabled.

When de-asserted, the FIFO PE-MCXMAC receive interface
module is disabled.

The bit should be polled until it reaches the expected value.

16 wtmenrply 0x0 When asserted, the FIFO PE-MCXMAC watermark module
is enabled.
When de-asserted, the FIFO PE-MCXMAC watermark
module is disabled.

The bit should be polled until it reaches the expected value.

[15:13] Reserved 0x0 Reserved

12 ftfenreq 0x0 When asserted, this bit requests to enable the FIFO fabric
transmit interface module.
When de-asserted, this bit requests to disable the FIFO
Fabric transmit interface module.

11 stfenreq 0x0 When asserted, this bit requests to enable the FIFO
PE-MCXMAC transmit interface module.
When de-asserted, this bit requests to disable the FIFO
PE-MCXMAC transmit interface module.

10 frfenreq 0x0 When asserted, this bit requests to enable the FIFO fabric
receive interface module.
When de-asserted, this bit requests to disable of the FIFO
fabric receive interface module.

9 srfenreq 0x0 When asserted, this bit requests to enable the FIFO
PE-MCXMAC receive interface module.
When de-asserted, this bit requests to disable the FIFO
PE-MCXMAC receive interface module.

8 wtmenreq 0x0 When asserted, this bit requests to enable the FIFO
PE-MCXMAC Watermark module.
When de-asserted, this bit requests to disable the FIFO

PE-MCXMAC watermark module.

[7:5] Reserved 0x0 Reserved

4 hstrstft 0x0 When asserted, this bit places the FIFO Fabric transmit
interface module in reset.

3 hstrstst 0x0 When asserted, this bit places the FIFO PE-MCXMAC
transmit interface module in reset.

Ethernet MAC

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 398

...........continued
Bit Number Name Reset

Value
Description

2 hstrstfr 0x0 When asserted, this bit places the FIFO Fabric receive
interface module in reset.

1 hstrstsr 0x0 When asserted, this bit places the FIFO PE-MCXMAC
receive interface module in reset.

0 hstrstwt 0x0 When asserted, this bit places the FIFO PE-MCXMAC
watermark module in reset.

Table 10-45. FIFO_CFG1

Bit Number Name Reset Value Description

[31:28] Reserved 0x0 Reserved

[27:16] cfgsrth[11:0] 0xFFF This bit represents the minimum number of 4 byte locations,
which are simultaneously stored in the receive RAM, relative
to the beginning of the frame being input, before the fabric
receive ready may be asserted.

[15:0] cfgxoffrtx 0xFFFF This bit represents the number of pause quanta after an
XOFF pause frame is acknowledged, until the A-MCXFIFO
re-asserts pause request if the A-MCXFIFO receive storage
level remains higher than the low watermark.

Table 10-46. FIFO_CFG2

Bit Number Name Reset Value Description

[31:29] Reserved 0x0 Reserved

[28:16] cfghwm 0x1FFF This bit represents the maximum number of 4 byte words
that are simultaneously stored in the receive RAM before the
transmit flow control enables and pause value facilitates an
XOFF pause control frame.

[15:13] Reserved 0x0 Reserved

[12:0] cfglwm 0x1FFF This bit represents the minimum number of 4 byte words
that are simultaneously stored in the receive RAM before
transmit flow control enables and pause value facilitates
an XON pause control frame in response to a previously
transmitted XOFF pause control frame.

Table 10-47. FIFO_CFG3

Bit Number Name Reset Value Description

[31:28] Reserved 0x0 Reserved

[27:16] cfghwmft 0xFFF This hex value represents the maximum number of 4 byte
locations, which are simultaneously stored in the transmit
RAM before the fthwm is asserted.
The fthwm is asserted whenever the amount of four byte
locations, used in the transmit FIFO data RAM, exceeds the
value programmed in the cfghwmft host register.

[15:12] Reserved 0x0 Reserved

Ethernet MAC

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 399

...........continued
Bit Number Name Reset Value Description

[11:0] cfgftth 0xFFF This bit represents the minimum number of 4 byte locations
which are simultaneously stored in the transmit RAM,
relative to the beginning of the frame being input, before
transmit packet start of frame is asserted.

Table 10-48. FIFO_CFG4

Bit Number Name Reset Value Description

[31:18] Reserved 0x0 Reserved

Ethernet MAC

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 400

...........continued
Bit Number Name Reset Value Description

[17:0] hstfltrfrm 0x0 These configuration bits are used to signal the drop frame
conditions internal to the A-MCXFIFO.
The bits correspond to the receive statistics vector input to A-
MCXFIFO on a one per one basis. Receive statistics vector
indicates the characteristics of the current receive frame and is
input to A-MCXFIFO.

The setting of this bits along with their don’t care values in the
hstfltrfrmdc not asserted, create the filter that drops the receive
frame if the receive frame does not pass through the acceptable
conditions.

For example, if it is needed to drop a frame that contains a receive
error, least significant fourth bit is set, and all receive frames that
have frame receive error in receive statistics vector asserted are
dropped.

The hstfltrfrm bit and their corresponding receive statistics vector
is as follows:

Bit Description

17: System receive unicast address

16: Truncated frame

15: Receive long event

14: VLAN Tagged frame: frame’s length/type field contained
0x8100 which is the VLAN protocol identifier

13: Frame was an unsupported Op-code

12: Frame was a PAUSE control frame

11: Long event detected

10: Frame contained a dribble nibble

9: Broadcast address detected

8: Multicast address detected

7: Reception OK

6: Length/Type field was neither a length nor type

5: Frame’s length field out of range

4: Frame contained a CRC error

3: Frame contained a code error

2: False carrier previously seen

1: RX_DV event previously seen

0: Whether or not a prior packet was dropped

Table 10-49. FIFO_CFG5

Bit Number Name Reset Value Description

[31:23] Reserved 0x0 Reserved

Ethernet MAC

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 401

...........continued
Bit Number Name Reset Value Description

22 cfghdplx 0x0 Assertion of this bit configures the A-MCXFIFO to enable the
half-duplex as a flow control mechanism. De-assertion of this bit
configures the A-MCXFIFO to enable pause frames as a flow
control mechanism.

21 srfull 0x0 Assertion of this read-only bit indicates that the maximum
capacity of the receive FIFO storage is met or exceeded.

20 hstsrfullclr 0x0 This bit should be written when it is desired to clear the srfull
indicator bit. After the hstfullclr assertion, the srfull should be
read until it becomes unasserted.

19 cfgbytmode 0x0 This bit should be asserted when the PE-MCXMAC is
configured for GMII mode.

18 hstdrplt64 0x0 Setting this bit causes the frame to be dropped if a receive
frame is less than 64 bytes in length.

[17:0] hstfltrfrmdc 0X3FFFF These configuration bits indicate which receive statistics vectors
are don’t care for A-MCXFIFO frame drop circuitry. Receive
statistics vector indicates the characteristics of the current
receive frame.
Setting of the hstfltrfrmdc bit, indicates a don’t care for the
receive statistics vector bit. These bits corresponds to receive
statistics vector on a one per one basis. The hstfltrfrmdc bit and
their corresponding receive statistics vector is as follows:

Bit Description

17: System receive unicast address

16: Truncated frame

15: Receive long event

14: VLAN Tagged frame: frame’s length/type field contained
0x8100 which is the VLAN protocol identifier

13: Frame was an unsupported Op-code

12: Frame was a PAUSE control frame

11: Long event detected

10: Frame contained a dribble nibble

9: Broadcast address detected

8: Multicast address detected

7: Reception OK

6: Length/Type field was neither a length nor type

5: Frame’s length field is out of range

4: Frame contained a CRC error

3: Frame contained a code error

2: False carrier previously seen

1: RX_DV event previously seen

0: Whether or not a prior packet was dropped

Ethernet MAC

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 402

Table 10-50. FIFO_RAM_ACCESS0

Bit Number Name Reset Value Description

31 hsttramwreq 0x0 Host transmit RAM write request

30 hsttramwack 0x0 Host transmit RAM write acknowledge

[29:24] Reserved 0x0 Reserved

[23:16] hsttramwdat
[39:32]

0x0 Host transmit RAM write data
This is the upper byte of the transmit FIFO RAM data that is
written at the address of hsttramwadx[10:0], if hsttramwadx[12]
is negated and hsttramwreq is asserted.

[15:13] Reserved 0x0 Reserved

[12:0] hsttramwadx 0x0 Host transmit RAM write address

Table 10-51. FIFO_RAM_ACCESS1

Bit Number Name Reset Value Description

[31:0] hsttramwdat 0x0 Host transmit RAM write data

Table 10-52. FIFO_RAM_ACCESS2

Bit Number Name Reset Value Description

31 hsttramrreq 0x0 Host transmit RAM read request

30 hsttramrack 0x0 Host transmit RAM read acknowledge

[29:24] Reserved 0x0 Reserved

[23:16] hsttramrdat 0x0 Host transmit RAM read data.
This is the upper byte of the transmit FIFO RAM data that
was read at the address of the hsttramwadx[10:0], if the
hsttramwadx[12] is negated and the hsttramwreq is asserted.

[15:13] Reserved 0x0 Reserved

[12:0] hsttramradx 0x0 Host transmit RAM read address

Table 10-53. FIFO_RAM_ACCESS3

Bit Number Name Reset Value Description

[31:0] hsttramrdat 0x0 Host transmit RAM read data

Table 10-54. FIFO_RAM_ACCESS4

Bit Number Name Reset Value Description

31 hstrramwreq 0x0 Host receive RAM write request

30 hstrramwack 0x0 Host receive RAM write acknowledge

[29:24] Reserved 0x0 Reserved

[23:16] hstrramwdat[39:32
]

0x0 Host receive RAM write data
This is the upper byte of the receive FIFO RAM data that
is written at the address of the hstrramwadx[11:0], if the
hstrramwadx[13] is negated and the hstrramwreq is asserted.

Ethernet MAC

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 403

...........continued
Bit Number Name Reset Value Description

[15:14] Reserved 0x0 Reserved

[13:0] hsttramwadx 0x0 Host receive RAM write address

Table 10-55. FIFO_RAM_ACCESS5

Bit Number Name Reset Value Description

[31:0] hstrramwdat 0x0 Host receive RAM write data

Table 10-56. FIFO_RAM_ACCESS6

Bit Number Name Reset Value Description

31 hstrramrreq 0x0 Host receive RAM read request

30 hstrramrack 0x0 Host receive RAM read acknowledge

[29:24] Reserved 0x0 Reserved

[23:16] hstrramrdat
[39:32]

0x0 Host receive RAM read data
This is the upper byte of the receive FIFO RAM data that is read
at the address of the hstrramwadx[10:0] if the hstrramwadx[13]
is negated and the hstrramwreq is asserted.

[15:14] Reserved 0x0 Reserved

[13:0] hstrramradx
[13:0]

0x0 Host receive RAM read address

Table 10-57. FIFO_RAM_ACCESS7

Bit Number Name Reset Value Description

[31:0] hstrramrdat 0x0 Host receive RAM read data

Table 10-58. TR64

Bit Number Name Reset
Value

Description

[31:18] Reserved 0x0 Reserved

[17:0] TR64 0x0 Transmit and receive 64 byte frame counter: Incremented for each good or bad
transmitted and received frame, which is 64 bytes in length inclusive (excluding
framing bits but including FCS bytes).

Table 10-59. TR127

Bit Number Name Reset
Value

Description

[31:18] Reserved 0x0 Reserved

[17:0] TR127 0x0 Transmit and receive 65 to 127 byte frame counter: Incremented for each good
or bad, transmitted and received frame, which is 65 to 127 bytes in length
inclusive (excluding framing bits but including FCS bytes).

Ethernet MAC

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 404

Table 10-60. TR255

Bit Number Name Reset
Value

Description

[31:18] Reserved 0x0 Reserved

[17:0] TR255 0x0 Transmit and receive 128 to 255 byte frame counter: Incremented for each
good or bad, transmitted and received frame, which is 128 to 255 bytes in
length inclusive (excluding framing bits but including FCS bytes).

Table 10-61. TR511

Bit Number Name Reset
Value

Description

[31:18] Reserved 0x0 Reserved

[17:0] TR511 0x0 Transmit and receive 256 to 511 byte frame counter: Incremented for each
good or bad, transmitted and received frame, which is 256 to 511 bytes in
length inclusive (excluding framing bits but including FCS bytes).

Table 10-62. TR1K

Bit Number Name Reset
Value

Description

[31:18] Reserved 0x0 Reserved

[17:0] TR1K 0x0 Transmit and receive 512 to 1023 byte frame counter: Incremented for each
good or bad, transmitted and received frame, which is 512 to 1023 bytes in
length inclusive (excluding framing bits but including FCS bytes).

Table 10-63. TRMAX

Bit Number Name Reset Value Description

[31:18] Reserved 0x0 Reserved

[17:0] TRMAX 0x0 Transmit and receive 1024 to 1518 byte frame counter:
Incremented for each good or bad, transmitted and received
frame, which is 1024 to 1518 bytes in length inclusive (excluding
framing bits but including FCS bytes).

Table 10-64. TRMGV

Bit Number Name Reset Value Description

[31:18] Reserved 0x0 Reserved

[17:0] TRMGV 0x0 Transmit and receive 1519 to 1522 byte VLAN frame counter:
Incremented for each good Virtual Local Area Network (VLAN)
transmitted and received frame which is 1519 to 1522 bytes in
length inclusive (excluding framing bits but including FCS bytes).

Table 10-65. RBYT

Bit Number Name Reset Value Description

[31:24] Reserved 0x0 Reserved

Ethernet MAC

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 405

...........continued
Bit Number Name Reset Value Description

[23:0] RBYT 0x0 Receive byte frame counter: The statistic counter register is
incremented by the byte count of all the frames received, including
those in the bad packets, excluding framing bits but including FCS
bytes.

Table 10-66. RPKT

Bit Number Name Reset Value Description

[31:18] Reserved 0x0 Reserved

[17:0] RPKT 0x0 Receive packet counter: Incremented for each frame received
packet (including bad packets, all the unicast, broadcast, and
multicast packets).

Table 10-67. RFCS

Bit Number Name Reset Value Description

[31:12] Reserved 0x0 Reserved

[11:0] RFCS 0x0 Receive FCS error counter: Incremented for each frame received
that has an integral 64 to 1518 length and contains a FCS error.

Table 10-68. RMCA

Bit Number Name Reset Value Description

[31:18] Reserved 0x0 Reserved

[17:0] RMAC 0x0 Receive multicast packet counter: Incremented for each multicast
good frame of lengths smaller than 1518 (non VLAN) or 1522
(VLAN) excluding the broadcast frames. This does not include
range, length errors.

Table 10-69. RBCA

Bit Number Name Reset Value Description

[31:22] Reserved 0x0 Reserved

[21:0] RBCA 0x0 Receive broadcast packet counter: Incremented for each
broadcast good frame of lengths smaller than 1518 (non VLAN)
or 1522 (VLAN) excluding the multicast frames. This does not look
at range/length errors.

Table 10-70. RXCF

Bit Number Name Reset Value Description

[31:18] Reserved 0x0 Reserved

[17:0] RXCF 0x0 Receive control frame packet counter: Incremented for each MAC
control frame received (PAUSE and Unsupported).

Table 10-71. RXPF

Bit Number Name Reset Value Description

[31:12] Reserved 0x0 Reserved

Ethernet MAC

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 406

...........continued
Bit Number Name Reset Value Description

[11:0] RXPF 0x0 Receive PAUSE frame packet counter: Incremented each time a
valid PAUSE MAC control frame is received.

Table 10-72. RXUO

Bit Number Name Reset Value Description

[31:12] Reserved 0x0 Reserved

[11:0] RXUO 0x0 Receive unknown OP-code counter: Incremented each time a
MAC control frame containing an op-code other than a PAUSE
is received.

Table 10-73. RALN

Bit Number Name Reset Value Description

[31:12] Reserved 0x0 Reserved

[11:0] RALN 0x0 Receive alignment error counter: Incremented for each received
frame from 64 to 1518.This contains an invalid FCS and is not an
integral number of bytes.

Table 10-74. RFLR

Bit Number Name Reset Value Description

[31:16] Reserved 0x0 Reserved

[15:0] RFLR 0x0 Receive frame length error counter: Incremented for each frame
received in which the 802.3 length field does not match with the
number of the data bytes actually received (46-1500 bytes).
The counter is not incremented if the length field is not a valid
802.3 length.

Table 10-75. RCDE

Bit Number Name Reset Value Description

[31:12] Reserved 0x0 Reserved

[11:0] RCDE 0x0 Receive code error counter: Incremented each time a valid carrier
is present and at least one invalid data symbol is detected.

Table 10-76. RCSE

Bit Number Name Reset Value Description

[31:12] Reserved 0x0 Reserved

[11:0] RCSE 0x0 Receive false carrier counter: Incremented each time a false
carrier is detected during idle, as defined by a 1 on RX_ER, and
an ‘0xE’ on RXD. The event is reported along with the statistics
generated on the next received frame. Only one false carrier
condition can be detected and logged between frames.

Ethernet MAC

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 407

Table 10-77. RUND

Bit Number Name Reset Value Description

[31:12] Reserved 0x0 Reserved

[11:0] RUND 0x0 Receive undersize packet counter: Incremented each time a
frame is received which is less than 64 bytes in length and
contains a valid FCS. This does not include range, length errors.

Table 10-78. ROVR

Bit Number Name Reset Value Description

[31:12] Reserved 0x0 Reserved

[11:0] ROVR 0x0 Receive oversize packet counter: Incremented each time a frame
is received which exceeded 1518 (non VLAN) or 1522 (VLAN) and
contains a valid FCS. This does not include range, length errors.

Table 10-79. RFRG

Bit Number Name Reset Value Description

[31:12] Reserved 0x0 Reserved

[11:0] RFRG 0x0 Receive fragments counter: Incremented for each frame received
which is less than 64 bytes in length and contains an invalid FCS.
The received frame includes integral and non-integral lengths.

Table 10-80. RJBR

Bit Number Name Reset Value Description

[31:12] Reserved 0x0 Reserved

[11:0] Reserved 0x0 Receive jabber counter: Incremented for frames received which
exceed 1518 (non VLAN) or 1522 (VLAN) bytes and contains an
invalid FCS. The received frame, includes alignment errors.

Table 10-81. RDRP

Bit Number Name Reset Value Description

[31:12] Reserved 0x0 Reserved

[11:0] RDRP 0x0 Receive dropped packets counter: Incremented for frames
received which are streamed to system but are later dropped due
to lack of system resources.

Table 10-82. TBYT

Bit Number Name Reset Value Description

[31:24] Reserved 0x0 Reserved

[23:0] TPKT 0x0 Transmit byte counter: Incremented by the number of bytes that
are transmitted including fragments of frames, which are involved
in collisions. This count does not include preamble/SFD or jam
bytes.

Ethernet MAC

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 408

Table 10-83. TPKT

Bit Number Name Reset Value Description

[31:18] Reserved 0x0 Reserved

[17:0] TPKT 0x0 Transmit packet counter: Incremented for each transmitted packet
(including bad packets, excessive deferred packets, excessive
collision packets, late collision packets, all unicast, broadcast, and
multicast packets).

Table 10-84. TMCA

Bit Number Name Reset Value Description

[31:18] Reserved 0x0 Reserved

[17:0] TPKT 0x0 Transmit packet counter: Incremented for each transmitted packet
(including bad packets, excessive deferred packets, excessive
collision packets, late collision packets, all unicast, broadcast, and
multicast packets).

Table 10-85. TBCA

Bit Number Name Reset Value Description

[31:18] Reserved 0x0 Reserved

[17:0] TBCA 0x0 Transmit broadcast packet counter: Incremented for each
broadcast frame transmitted (excluding multicast frames).

Table 10-86. TXPF

Bit Number Name Reset Value Description

[31:12] Reserved 0x0 Reserved

[11:0] TXPF 0x0 Transmit PAUSE frame packet counter: Incremented each time a
valid PAUSE MAC control frame is transmitted.

Table 10-87. TDFR

Bit Number Name Reset Value Description

[31:12] Reserved 0x0 Reserved

[11:0] TDFR 0x0 Transmit deferral packet counter: Incremented for each frame,
which is deferred on its first transmission attempt. This does not
include frames involved in collisions.

Table 10-88. TEDF

Bit Number Name Reset Value Description

[31:12] Reserved 0x0 Reserved

[11:0] TEDF 0x0 Transmit excessive deferral packet counter: Incremented for
aborted frames which are deferred for an excessive period of time
(3036 byte times).

Ethernet MAC

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 409

Table 10-89. TSCL

Bit Number Name Reset Value Description

[31:12] Reserved 0x0 Reserved

[11:0] TSCL 0x0 Transmit single collision packet counter: Incremented for each
transmitted frame which experiences exactly one collision during
the transmission.

Table 10-90. TMCL

Bit Number Name Reset Value Description

[31:12] Reserved 0x0 Reserved

[11:0] TMCL 0x0 Transmit multiple collision packet counter: Incremented for each
transmitted frame which experiences 2-15 collisions (including any
late collisions).

Table 10-91. TLCL

Bit Number Name Reset Value Description

[31:12] Reserved 0x0 Reserved

[11:0] TLCL 0x0 Transmit late collision packet counter: Incremented for each
transmitted frame which experiences a late collision during a
transmission attempt.

Table 10-92. TXCL

Bit Number Name Reset Value Description

[31:12] Reserved 0x0 Reserved

[11:0] TXCL 0x0 Transmit excessive collision packet counter: Incremented for each
frame that experiences 16 collisions during the transmission and is
aborted.

Table 10-93. TNCL

Bit Number Name Reset Value Description

[31:13] Reserved 0x0 Reserved

[12:0] TNCL 0X0 Transmit total collision counter:
Incremented by the number of collisions experienced during the
transmission of a frame due to simultaneous transmitting and
receiving.

Table 10-94. TPFH

Bit Number Name Reset Value Description

[31:12] Reserved 0x0 Reserved

[11:0] TPFH 0x0 Transmit PAUSE frames honored counter: Incremented each time a
valid PAUSE MAC control frame is transmitted and honored.

Ethernet MAC

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 410

Table 10-95. TDRP

Bit Number Name Reset Value Description

[31:12] Reserved 0x0 Reserved

[11:0] TDRP 0x0 Transmit drop frame counter: Incremented each time the transmit
PAUSE frame honored input to PE-MSTAT is asserted.

Table 10-96. TJBR

Bit Number Name Reset Value Description

[31:12] Reserved 0x0 Reserved

[11:0] TJBR 0x0 Transmit jabber frame counter: Incremented for each oversized
transmitted frame with an incorrect FCS value.

Table 10-97. TFCS

Bit Number Name Reset Value Description

[31:12] Reserved 0x0 Reserved

[11:0] TFCS 0x0 Transmit FCS error counter: Incremented for each valid sized
packet with an incorrect FCS value.

Table 10-98. TXCF

Bit Number Name Reset Value Description

[31:12] Reserved 0x0 Reserved

[11:0] TXCS 0x0 Transmit control frame counter: Incremented for each valid size
frame with a type field signifying a control frame.

Table 10-99. TOVR

Bit Number Name Reset Value Description

[31:12] Reserved 0x0 Reserved

[11:0] TOVR 0x0 Transmit oversize frame counter: Incremented for each oversized
transmitted frame with a correct FCS value.

Table 10-100. TUND

Bit Number Name Reset Value Description

[31:12] Reserved 0x0 Reserved

[11:0] TUND 0x0 Transmit undersize frame counter: Incremented for each frame less
than 64 bytes, with a correct FCS value.

Table 10-101. TFRG

Bit Number Name Reset Value Description

[31:12] Reserved 0x0 Reserved

[11:0] TFRG 0x0 Transmit fragment counter: Incremented for each frame less than
64 bytes, with an incorrect FCS value.

Ethernet MAC

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 411

Table 10-102. CAR1

Bit Number Name Reset Value Description

31 C164 0x0 Carry register 1 TR64 counter carry bit

30 C1127 0x0 Carry register 1 TR127 counter carry bit

29 C1255 0x0 Carry register 1 TR255 counter carry bit

28 C1511 0x0 Carry register 1 TR511 counter carry bit

27 C11k 0x0 Carry register 1 TR1K counter carry bit

26 C1MAX 0x0 Carry register 1 TRMAX counter carry bit

25 C1MGV 0x0 Carry register 1 TRMGV counter carry bit

[24:17] Reserved 0x0 Reserved

16 C1RBY 0x0 Carry register 1 RBYT counter carry bit

15 C1RPK 0x0 Carry register 1 RPKT counter carry bit

14 C1RFC 0x0 Carry register 1 RFCS counter carry bit

13 C1RMC 0x0 Carry register 1 RMCA counter carry bit

12 C1RBC 0x0 Carry register 1 RBCA counter carry bit

11 C1RXC 0x0 Carry register 1 RXCF counter carry bit

10 C1RXP 0x0 Carry register 1 RXPF counter carry bit

9 C1RXU 0x0 Carry register 1 RXUO counter carry bit

8 C1RAL 0x0 Carry register 1 RALN counter carry bit

7 C1RFL 0x0 Carry register 1 RFLR counter carry bit

6 C1RCD 0x0 Carry register 1 RCDE counter carry bit

5 C1RCS 0x0 Carry register 1 RCSE counter carry bit

4 C1RUN 0x0 Carry register 1 RUND counter carry bit

3 C1ROV 0x0 Carry register 1 ROVR counter carry bit

2 C1RFR 0x0 Carry register 1 RFRG counter carry bit

1 C1RJB 0x0 Carry register 1 RJBR counter carry bit

0 C1RDR 0x0 Carry register 1 RDRP counter carry bit

Table 10-103. CAR2

Bit Number Name Reset Value Description

[31:20] Reserved 0x0 Reserved

19 C2TJB 0x0 Carry register 2 TJBR counter carry bit

18 C2TFC 0x0 Carry register 2 TXFC counter carry bit

17 C2TCF 0x0 Carry register 2 TXCF counter carry bit

16 C2TOV 0x0 Carry register 2 TOVR counter carry bit

15 C2TUN 0x0 Carry register 2 TUND counter carry bit

14 C2TFG 0x0 Carry register 2 TFRG counter carry bit

Ethernet MAC

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 412

...........continued
Bit Number Name Reset Value Description

13 C2TBY 0x0 Carry register 2 TBYT counter carry bit

12 C2TPK 0x0 Carry register 2 TPKT counter carry bit

11 C2TMC 0x0 Carry register 2 TMCA counter carry bit

10 C2TBC 0x0 Carry register 2 TBCA counter carry bit

9 C2TPF 0x0 Carry register 2 TXPF counter carry bit

8 C2TDF 0x0 Carry register 2 TDFR counter carry bit

7 C2TED 0x0 Carry register 2 TEDF counter carry bit

6 C2TSC 0x0 Carry register 2 TSCL counter carry bit

5 C2TMA 0x0 Carry register 2 TMCL counter carry bit

4 C2TLC 0x0 Carry register 2 TLCL counter carry bit

3 C2TXC 0x0 Carry register 2 TXCL counter carry bit

2 C2TNC 0x0 Carry register 2 TNCL counter carry bit

1 C2TPH 0x0 Carry register 2 TPFH counter carry bit

0 C2TDP 0x0 Carry register 2 TDRP counter carry bit

Table 10-104. CAM1

Bit Number Name Reset Value Description

31 M164 0x1 Mask register 1 TR64 counter carry bit
0: Unmask the counter carry bit

1: Mask the counter carry bit

30 M1127 0x1 Mask register 1 TR127 counter carry bit
0: Unmask the counter carry bit

1: Mask the counter carry bit

29 M1255 0x1 Mask register 1 TR255 counter carry bit
0: Unmask the counter carry bit

1: Mask the counter carry bit

28 M1511 0x1 Mask register 1 TR511 counter carry bit
0: Unmask the counter carry bit

1: Mask the counter carry bit

27 M11k 0x1 Mask register 1 TR1K counter carry bit
0: Unmask the counter carry bit

1: Mask the counter carry bit

26 M1MAX 0x1 Mask register 1 TRMAX counter carry bit
0: Unmask the counter carry bit

1: Mask the counter carry bit

Ethernet MAC

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 413

...........continued
Bit Number Name Reset Value Description

25 M1MGV 0x1 Mask register 1 TRMGV counter carry bit
0: Unmask the counter carry bit

1: Mask the counter carry bit

[24:17] Reserved 0x0 Reserved

16 M1RBY 0x1 Mask register 1 RBYT counter carry bit
0: Unmask the counter carry bit

1: Mask the counter carry bit

15 M1RPK 0x1 Mask register 1 RPKT counter carry bit
0: Unmask the counter carry bit

1: Mask the counter carry bit

14 M1RFC 0x1 Mask register 1 RFCS counter carry bit
0: Unmask the counter carry bit

1: Mask the counter carry bit

13 M1RMC 0x1 Mask register 1 RMCA counter carry bit
0: Unmask the counter carry bit

1: Mask the counter carry bit

12 M1RBC 0x1 Mask register 1 RBCA counter carry bit
0: Unmask the counter carry bit

1: Mask the counter carry bit

11 M1RXC 0x1 Mask register 1 RXCF counter carry bit
0: Unmask the counter carry bit

1: Mask the counter carry bit

10 M1RXP 0x1 Mask register 1 RXPF counter carry bit
0: Unmask the counter carry bit

1: Mask the counter carry bit

9 M1RXU 0x1 Mask register 1 RXUO counter carry bit
0: Unmask the counter carry bit

1: Mask the counter carry bit

8 M1RAL 0x1 Mask register 1 RALN counter carry bit
0: Unmask the counter carry bit

1: Mask the counter carry bit

7 M1RFL 0x1 Mask register 1 RFLR counter carry bit
0: Unmask the counter carry bit

1: Mask the counter carry bit

6 M1RCD 0x1 Mask register 1 RCDE counter carry bit
0: Unmask the counter carry bit

1: Mask the counter carry bit

Ethernet MAC

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 414

...........continued
Bit Number Name Reset Value Description

5 M1RCS 0x1 Mask register 1 RCSE counter carry bit
0: Unmask the counter carry bit

1: Mask the counter carry bit

4 M1 RUN 0x1 Mask register 1 RUND counter carry bit
0: Unmask the counter carry bit

1: Mask the counter carry bit

3 M1ROV 0x1 Mask register 1 ROVR counter carry bit
0: Unmask the counter carry bit

1: Mask the counter carry bit

2 M1RFR 0x1 Mask register 1 RFRG counter carry bit
0: Unmask the counter carry bit

1: Mask the counter carry bit

1 M1RJB 0x1 Mask register 1 RJBR counter carry bit
0: Unmask the counter carry bit

1: Mask the counter carry bit

0 M1RDR 0x1 Mask register 1 RDRP counter carry bit
0: Unmask the counter carry bit

1: Mask the counter carry bit

Table 10-105. CAM2

Bit Number Name Reset Value Description

[31:20] Reserved 0x0 Reserved

19 M2TJB 0x1 Mask register 2 TJBR counter carry bit
0: Unmask the counter carry bit

1: Mask the counter carry bit

18 M2TFC 0x1 Mask register 2 TXFC counter carry bit
0: Unmask the counter carry bit

1: Mask the counter carry bit

17 M2TCF 0x1 Mask register 2 TXCF counter carry bit
0: Unmask the counter carry bit

1: Mask the counter carry bit

16 M2TOV 0x1 Mask register 2 TOVR counter carry bit
0: Unmask the counter carry bit

1: Mask the counter carry bit

15 M2TUN 0x1 Mask register 2 TUND counter carry bit
0: Unmask the counter carry bit

1: Mask the counter carry bit

Ethernet MAC

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 415

...........continued
Bit Number Name Reset Value Description

14 M2TFG 0x1 Mask register 2 TFRG counter carry bit
0: Unmask the counter carry bit

1: Mask the counter carry bit

13 M2TBY 0x1 Mask register 2 TBYT counter carry bit
0: Unmask the counter carry bit

1: Mask the counter carry bit

12 M2TPK 0x1 Mask register 2 TPKT counter carry bit
0: Unmask the counter carry bit

1: Mask the counter carry bit

11 M2TMC 0x1 Mask register 2 TMCA counter carry bit
0: Unmask the counter carry bit

1: Mask the counter carry bit

10 M2TBC 0x1 Mask register 2 TBCA counter carry bit
0: Unmask the counter carry bit

1: Mask the counter carry bit

9 M2TPF 0x1 Mask register 2 TXPF counter carry bit
0: Unmask the counter carry bit

1: Mask the counter carry bit

8 M2TDF 0x1 Mask register 2 TDFR counter carry bit
0: Unmask the counter carry bit

1: Mask the counter carry bit

7 M2TED 0x1 Mask register 2 TEDF counter carry bit
0: Unmask the counter carry bit

1: Mask the counter carry bit

6 M2TSC 0x1 Mask register 2 TSCL counter carry bit
0: Unmask the counter carry bit

1: Mask the counter carry bit

5 M2TMA 0x1 Mask register 2 TMCL counter carry bit
0: Unmask the counter carry bit

1: Mask the counter carry bit

4 M2TLC 0x1 Mask register 2 TLCL counter carry bit
0: Unmask the counter carry bit

1: Mask the counter carry bit

3 M2TXC 0x1 Mask register 2 TXCL counter carry bit
0: Unmask the counter carry bit

1: Mask the counter carry bit

2 M2TNC 0x1 Mask register 2 TNCL counter carry bit
0: Unmask the counter carry bit

1: Mask the counter carry bit

Ethernet MAC

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 416

...........continued
Bit Number Name Reset Value Description

1 M2TPH 0x1 Mask register 2 TPFH counter carry bit
0: Unmask the counter carry bit

1: Mask the counter carry bit

0 M2TDP 0x1 Mask register 2 TDRP counter carry bit
0: Unmask the counter carry bit

1: Mask the counter carry bit

Table 10-106. SGMII CONTROL

Bit Number Name Reset
Value

Description

15 PHY RESET 0x0 Setting this bit causes the PETEX, PEREX, and PEANX sub-
modules in the M-SGMII core to be reset. This bit is self-clearing.

14 LOOP BACK 0x0 Setting this bit causes the M-SGMII loopback. Clearing this bit
results in normal operation.

13 Reserved 0x0 Reserved

12 AUTO-
NEGOTIATION
ENABLE

0x0 Setting this bit enables the auto-negotiation process.

[11:10] Reserved 0x0 Reserved

9 RESET AUTO-
NEGOTIATION

0x0 Setting this bit causes the auto-negotiation process to restart. This
action is only available when auto-negotiation has been enabled.

[8:0] Reserved 0x0 Reserved

Table 10-107. SGMII STATUS

Bit Number Name Reset
Value

Description

[15:9] Reserved 0x0 Reserved

8 EXTENDED
STATUS

0x0 This bit returns “1” on read to indicate that the PHY status
information is also contained in EXTENDED STATUS register.

7 Reserved 0x0 Reserved

6 MF PREMABLE
SUPPRESSIO
N ENABLE

0x0 This bit indicates whether the PHY is capable of handling MII
management frames without the 32-bit preamble field.
Returns “1” on read to indicate the support for suppressed preamble
MII management frames.

5 AUTO-
NEGOTIATION
COMPLETE

0x0 This bit indicates that the auto-negotiation process is completed.
Returns “0” on read when either the auto-negotiation process is
underway or when the auto-negotiation function is disabled.

4 REMOTE
FAULT

0x0 This bit returns “1” on read to indicate a remote fault condition has
been detected between the M-SGMII and the PHY. This bit latches
high in order for software to detect the condition. Each read of the
STATUS register clears this bit.

Ethernet MAC

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 417

...........continued
Bit Number Name Reset

Value
Description

3 AUTO-
NEGOTIATION
ABILITY

0x0 When “1”, this bit indicates that the M-SGMII has the ability to
perform auto-negotiation. Returns “1” on read.

2 LINK STATUS This bit indicates that a valid link is established between the
M-SGMII and the PHY.
Returns “0” on read to indicate that there is no valid link is
established. This bit latches low to allow software polling to detect a
failure condition.

1 Reserved 0x0 Reserved

0 EXTENDED
CAPABILITY

0x1 This bit returns “1” on read to indicates that the M-SGMII contains
the extended set of registers (those beyond CONTROL and
STATUS).

Table 10-108. AN SGMII ADVERTISEMENT

Bit Number Name Reset Value Description

15 LINK UP 0x0 Assertion of this bit indicates that the link between M-SGMII and
PHY is up.

[14:13] Reserved 0x0 Reserved

12 FULL DUPLEX 0x0 Assertion of this bit indicates that the link between M-SGMII and
PHY is up and transferring data in full-duplex mode.

[11:10] LINK SPEED 0x0 Assertion of these two bits indicate that the link between M-SGMII
and PHY is up. The following table shows the speed at which the link
is transferring data:

LINK SPEED [11] LINK SPEED [10] Capability

1 1 Reserved

1 0 1000 Mbps

0 1 100 Mbps

0 0 10 Mbps

[9:0] Reserved 0x0 These bits must always be written ‘0000000001’ for correct M-SGMII
operation.

Table 10-109. AN LINK PARTNER BASE PAGE ABILITY

Bit
Number

Name Reset Value Description

15 LINK UP 0x0 When the M-SGMII is integrated to a MAC, such as the PE-
MCXMAC, and is communicating with another SGMII PHY module,
assertion of this bit indicates that the link is up. When the M-SGMII is
integrated to a PHY and is not integrated to MAC, this bit is invalid.

[14:13] Reserved 0x0 Reserved

12 FULL DUPLEX 0x0 Assertion of this bit indicates that LINK UP bit of the AN SGMII
partner base page ability register is asserted and the link is transfers
data in full-duplex mode.

Ethernet MAC

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 418

...........continued
Bit
Number

Name Reset Value Description

[11:10] LINK SPEED 0x0 Indicates the speed of the link as mentioned in the following table
when LINK UP bit of the AN SGMII partner base page ability register
is asserted.

LINK SPEED [11] LINK SPEED [10] Capability

1 1 Reserved

1 0 1000 Mbps

0 1 100 Mbps

0 0 10 Mbps

[9:0] Reserved 0x0 Reserved

Table 10-110. AN EXPANSION

Bit Number Name Reset Value Description

[15:3] Reserved 0x0 Reserved

2 NEXT PAGE ABLE 0x0 Returns “1” on read to indicate that the local device supports
the next page function.

1 PAGE RECEIVED 0x0 Returns “1” on read to indicate that a new page has been
received and stored in the applicable Table 10-109 or Table
10-111 register. This bit latches High for detection by software
when polling. The bit is cleared on a read to the register.

0 Reserved 0x0 Reserved

Table 10-111. AN NEXT PAGE TRANSMIT

Bit Number Name Reset Value Description

15 NEXT PAGE 0x0 Assert this bit to indicate additional Next Pages to follow. Clear
the bit to indicate the last page.

14 Reserved 0x0 Reserved

13 MESSAGE PAGE 0x0 Assert this bit to indicate a Message Page. Clear the bit to
indicate an Unformatted Page.

12 ACKNOWLEDGE 2 0x0 Used by the Next Page function to indicate that the device has
the ability to comply with the message. Assert this bit if the local
device will comply with the message. Clear the bit if the local
device cannot comply with message.

11 TOGGLE 0x0 This bit is read only. Used to ensure synchronization with
the Link Partner during Next Page exchange. This bit always
takes the opposite value to the toggle bit of the previously
exchanged Link Code Word. The initial value in the first Next
Page transmitted is the inverse of bit 11 in the base Link Code
Word.

[10:0] MESSAGE /
UNFORMATTED
CODE FIELD

0x0 Message pages are formatted pages that carry a predefined
Message Code, which is enumerated in IEEE 802.3u/Annex
28C.
Unformatted code fields take an arbitrary value.

Ethernet MAC

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 419

Table 10-112. AN NEXT PAGE TRANSMIT

Bit Number Name Reset Value Description

15 NEXT PAGE The link partner asserts this bit to indicate additional Next Pages
to follow. When “0”, indicates last Next Page from link partner.

14 Reserved Reserved

13 MESSAGE
PAGE

When “1”, indicates Message Page. When “0”, indicates
Unformatted Page.

12 ACKNOWLEDG
E 2

Indicates link partner’s ability to comply with the message.
When “1”, link partner complies with message. When “0”, link
partner cannot comply with message.

11 TOGGLE Used to ensure synchronization with the link partner during next
page exchange. This bit always takes the opposite value to the
toggle bit of the previously exchanged link code word. The initial
value in the first next page transmitted is the inverse of bit 11 in
the base link code word.

[10:0] MESSAGE /
UNFORMATTED
CODE FIELD

Message pages are formatted pages that carry a predefined
message code, which is enumerated in the IEEE 802.3u/Annex
28C.
Unformatted code fields take an arbitrary value.

Table 10-113. EXTENDED STATUS

Bit
Number

Name Reset Value Description

15 1000BASE-X
FULL-DUPLEX

0x1 When “1”, indicates that the PHY can operate in 1000BASE-X
full-duplex mode. When “0”, indicates that the PHY cannot operate
in 1000BASE-X full-duplex mode.

14 1000BASE-X
HALF-DUPLEX

0x0 When “1”, indicates that the PHY can operate in 1000BASE-X
half-duplex mode. When “0”, indicates that the PHY cannot
operate in 1000BASE-X half-duplex mode.

13 1000BASE-T
FULL-DUPLEX

0x1 When “1”, indicates that the PHY can operate in 1000BASE-T
full-duplex mode. When “0”, indicates that the PHY cannot operate
in 1000BASE-T full-duplex mode. Returns “1” on read.

12 1000BASE-T
HALF-DUPLEX

0x0 When “1”, indicates that the PHY can operate in 1000BASE-T
half-duplex mode. When “0”, indicates PHY cannot operate in
1000BASE-T half-duplex mode.

[11:0] Reserved 0x0 Reserved

Table 10-114. JITTER DIAGNOSTICS

Bit Number Name Reset Value Description

15 JITTER
DIAGNOSTIC
ENABLE

0x0 Set this bit to enable the M-SGMII to transmit the jitter test patterns
defined in IEEE 802.3z 36A. Clear this bit to enable normal transmit
operation.

Ethernet MAC

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 420

...........continued
Bit Number Name Reset Value Description

[14:12] JITTER
PATTERN
SELECT

0x0 Selects the jitter pattern to be transmitted in Diagnostics mode.
Encoding of this field is as follows:

Jitter Pattern Select Bit 14 Bit 13 Bit 12

User defined custom pattern 0 0 0

Annex 36A defined high
frequency

0 0 1

Annex 36A defined mixed
frequency

0 1 0

Custom defined low frequency 0 1 1

Random jitter pattern 1 0 0

Annex 36A defined low
frequency

1 0 1

Reserved 1 1 0

Reserved 1 1 1

[11:10] Reserved 0x0 Reserved

[9:0] CUSTOM
JITTER
PATTERN

0x0 Used in conjunction with JITTER PATTERN SELECT and JITTER
DIAGNOSTIC ENABLE. Set this field to the desired custom pattern,
which is transmitted continuously.

Table 10-115. TBI CONTROL

Bit Number Name Reset Value Description

15 SOFT RESET 0x0 This bit resets the functional modules in the M-SGMII. Clear it for
normal operation. Its default is “0”.

14 SHORTCUT LINK
TIMER

0x0 Set this bit to reduce the amount of simulation time needed to
time the 1.6 ms Link Timer. Clear it for normal operation.

13 DISABLE
RECEIVE
RUNNING
DISPARITY

0x0 Set this bit to disable the running disparity calculation and
checking in the receive direction. This bit must be “0” for correct
M-SGMII operation.

12 DISABLE
TRANSMIT
RUNNING
DISPARITY

0x0 Set this bit to disable the running disparity calculation and
checking in the transmit direction. This bit must be “0” for correct
M-SGMI operation.

[11:9] Reserved 0x0 Reserved

8 AUTO-
NEGOTIATION
SENSE

0x0 Set this bit to allow the auto-negotiation for 1000BASE-X, which
is used to exchange information between link partners.
Clear this bit when IEEE 802.3z Clause 37 behavior is desired,
which results in the link not coming up.

[7:6] Reserved 0x0 Reserved

Ethernet MAC

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 421

...........continued
Bit Number Name Reset Value Description

5 RECEIVE CLOCK
SELECT

0x0 Set this bit to configure the M-SGMII to accept a 125 MHz
receive clock from the SerDes PHY.
Clear this bit to allow the M-SGMII to accept dual split-phase
62.5 MHz receive clocks. This bit must be “0” for correct M-
SGMII operation.

4 GMII MODE 0x0 When cleared, this bit defines the M-SGMII as being in
1000BASE-X SerDes mode. This bit must be “0” for correct
M-SGMII operation.

[3:2] Reserved 0x0 Reserved

1 ENABLE WRAP 0x0 Set this bit to configure the SerDes in Loopback mode. Clear this
bit to permit normal operation.

0 ENABLE COMMA
DETECT

0x0 Set this bit to allow the SerDes PHY to perform code group
alignment based upon the detection of a comma.

10.9 CoreMACFilter Overview
CoreMACFilter provides a solution for SmartFusion 2 integrated Media Access Control (MAC) address filtering. The
core provides an external filtering mechanism based on unicast (UCAD), multicast (MCAD), and broadcast (BCAD)
flags. It implements the desired mechanism to pass the frames to upper layer. The upper layer determines to reject or
accept the frames.

The CoreMACFilter filters the unwanted frames based on the following:

• Local base station MAC address
• MCAD
• BCAD
• Hash-unicast
• Hash-multicast of filter operating modes

A 128-bit hash table is used for hash-unicast and hash-multicast frame filtering. The frame filtering is performed on
the destination MAC address of the received frame. The CoreMACFilter has an APB interface to allow the address
filtering configurations and other MAC configurations.

10.9.1 Features
CoreMACFilter supports the following:

• Provides an Advanced Peripheral Bus (APB) interface for control and status register access
• Supports UCAD, MCAD, and broadcast type of packets
• Supports hash based address filtering for UCAD and MCAD packets
• Provides mechanism to the upper layer to reject or accept the frames

The following figure shows the CoreMACFilter interaction with MSS MAC and GMII Ethernet PHY.

Ethernet MAC

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 422

Figure 10-13. CoreMACFilter Interaction with MSS MAC and GMII Ethernet PHY

SmartFusion® 2

MSS MAC

GMII Tx Data

10/100/1000Base-T
GMII Ethernet PHY

CoreMACFilter

GMII Rx Data

Rx_ERR

The following figure shows CoreMACFilter interaction with MSS MAC and SGMII Ethernet PHY.

Figure 10-14. CoreMACFilter Interaction with MSS MAC and SGMII Ethernet PHY

SmartFusion® 2

MSS MAC

TBI Tx Data

TBI Rx Data SerDes Rx Data

10/100/
1000Base-T

SGMII
Ethernet

PHY

SerDes

CoreMACFilter

For more information on CoreMACFilter, see CoreMACFilter Handbook.

CAN Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 423

11. CAN Controller
SmartFusion 2 SoC FPGAs contain an integrated Control Area Network (CAN) peripheral. The CAN controller is an
advanced peripheral bus (APB_1) slave on the MSS AHB bus matrix. For a detailed description, see 6. AHB Bus
Matrix. A master such as the Cortex-M3 processor or a master in the FPGA fabric configures the CAN controller
through the APB slave.

The CAN controller in the SmartFusion 2 device supports the concept of mailboxes. It is compliant to the international
CAN standard defined in ISO 11898-1. It contains 32 receive buffers. Each buffer has its own message filter and
32 transmit buffers with prioritized arbitration scheme. For optimal support of Higher-Layer Protocols (HLP) such as
DeviceNet, the message filter also covers the first two data bytes of the message payload. The following figure shows
the block diagram of the CAN controller. Transmit and receive message buffers are Single Error Corrected, Double
Error Detected (SECDED) through the Error Detection and Correction (EDAC) controller. The functional behavior
of the CAN instance must be defined at the application level using the SmartFusion 2 MSS CAN firmware driver
provided by Microchip. For more information, see CAN Firmware Driver User Guide.

Figure 11-1. CAN Controller Block Diagram

External
Transceiver

Chip

RX

TX

TX_EN_N

Interrupt
Controller

Status and
Configuration

Control and
Command

APB Slave
Interface

Receive Message
Handler

Transmit Message
Handler

E
D

A
C

R
A

M
 I/

F

APB_1 Bus

CAN Framer

Memory Arbiter

11.1 Features

11.1.1 Compliance
• Full CAN 2.0A and 2.0B compliant
• Conforms to ISO 11898-1

11.1.2 Receive Path
• 32 receive buffers
• Each buffer has its own message filter

CAN Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 424

• Message filter covers: ID, IDE, Remote Transmission Request (RTR), data byte 1, and data byte 2
• Message buffers can be linked together to build a bigger message array
• Automatic RTR response handler with optional generation of RTR interrupt

11.1.3 Transmit Path
• 32 transmit message holding registers with programmable priority arbitration
• Message abort command
• Single-Shot Transmission (SST); no automatic retransmission upon error or arbitration loss

11.1.4 EDAC
An internal 256 x 32 RAM in the CAN controller is EDAC protected. EDAC configurations and error counters related
to the CAN are maintained in MSS system registers. For example, to enable or disable the EDAC component of the
CAN, set the CAN_EDAC_EN bit (6th bit in the SYSREG EDAC_CR register) to 1. By default, EDAC is disabled
(CAN_EDAC_EN is set to 0). For more information, see Table 11-5.

After power-up, the internal SRAM is not initialized and any READ to the memory location would result in an ECC
error if EDAC is enabled. To initialize the SRAM, you can put the CAN controller into SRAM Test mode, initialize the
SRAM, and enable the EDAC. If SECDED is enabled, Microchip recommends that the CAN controller be put into
SRAM test mode and the RAM initialized with user defined known data before operation so that a future read or an
uninitialized address does not trigger a SECDED error. For more information on how to put the CAN controller into
SRAM test mode, see 11.5. Use Cases.

11.1.5 Enable or Disable Control
The CAN controller can be enabled or disabled using the MSS configurator in Libero SoC, depending on the
application needs. When it is disabled, the CAN controller is held in reset (lowest power state). For more information
on how to enable or disable the CAN controller using Libero SoC, see 11.4.1. Hardware Design Flow.

11.1.6 System Dependencies

11.1.6.1 Reset
The CAN controller resets to zero on power-up and is held in reset until enabled, as shown in Table 11-6 in
the SOFT_RESET_CR register. The CAN controller can be reset by writing to CAN_SOFTRESET (bit13) of the
SOFT_RESET_CR register. The SOFT_RESET_CR register is located in the SYSREG block. For more information,
see 21. System Register Block.

11.2 Functional Description

11.2.1 CAN Controller Interface Signals
This section describes the CAN bus interfaces. The following table lists the external interface signals that connects
the SmartFusion 2 device to an off-chip CAN transceiver.

Table 11-1. CAN Bus Interface

Signal Name Direction Description

RX Input CAN bus receive signal. This signal connects to the receiver bus of the external driver.

TX Output CAN bus transmit signal. This signal connects to the external driver.

TX_EN_N Output External driver enable control signal
This signal is used to enable or disable the external CAN transceiver.

TX_EN_N is asserted when the CAN controller is stopped or if the CAN state is bus-off
(shut down completely)

When enabled, by default the CAN ports are configured to connect to SmartFusion 2 Multi-Standard I/Os (MSIOs).
CAN signals are also configured to interface with the FPGA fabric and the MSS General Purpose Inputs/Outputs
(GPIOs). The CAN configurator within Libero SoC allows selection from among the fabric, MSIOs, and GPIOs.

CAN Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 425

Important: The MSIOs allocated to the CAN instance are shared with other MSS peripherals. These
shared I/Os are available to connect to the MSS GPIOs and other peripherals when the CAN instance is
disabled or if the CAN instance ports are only connected to the FPGA fabric. For more details, see MSS
CAN Configurator User Guide.

11.2.2 Transmit Procedures
The CAN controller provides 32 transmit message holding buffers. An internal priority arbiter selects the message
according to the chosen arbitration scheme. Upon transmission of a message or message arbitration loss, the priority
arbiter re-evaluates the message priority of the next message. The following figure gives an overall view of the
transmit message buffers.

Figure 11-2. Transmit Message Buffers

RX

TxReq

TxReq

TxReq

TxReq

TX

TX_EN_N

APB_1 Bus

External
Transceiver

Chip

CAN Framer

TxMessage0

TxMessage1

TxMessage2

TxMessage31

Priority
Arbiter

APB Slave
Interface

Two types of message priority arbitration are supported. The type of arbitration is selected using the configuration
register. Following are the arbitration types:

• Round Robin: Buffers are served in a defined order: 0-1-2... 31-0-1... A particular buffer is only selected if its
TxReq flag is set. This scheme guarantees that all buffers receive the same probability to send a message.

• Fixed Priority: Buffer 0 has the highest priority. This way it is possible to designate buffer 0 as the buffer for error
messages and it is ensured that they are sent first.

Important: RTR message requests are served before transmit message buffers are handled. For
example, RTRreq0, RTRreq31, TxMessage0, TxMessage1, and TxMessage31.

11.2.2.1 Procedure for Sending a Message
1. Write message into an empty transmit message holding buffer. An empty buffer is indicated by the TxReq that

is equal to zero.

CAN Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 426

2. Request transmission by setting the respective TxReq flag to 1.
3. The TxReq flag remains set as long as the message transmit request is pending. The content of the message

buffer must not be changed while the TxReq flag is set.
4. The internal message priority arbiter selects the message according to the chosen arbitration scheme.
5. Once the message is transmitted, the TxReq flag is set to zero and the tx_msg interrupt status bit is asserted.

11.2.2.2 Remove a Message from a Transmit Holding Register
A message can be removed from the transmit holding buffer by asserting the TxAbort flag. The content of a particular
transmit message buffer can be removed by setting TxAbort to 1 to request message removal. This flag remains set
as long as the message abort request is pending. It is cleared when either the message wins arbitration (tx_msg
interrupt active) or the message is removed (tx_msg interrupt inactive).

11.2.2.2.1 Single-Shot Transmission
Single-Shot Transmission (SST) mode is used in systems where the retransmission of a CAN message due to an
arbitration loss or a bus error must be prevented. An SST request is set by asserting TxReq and TxAbort at the same
time. Upon a successful message transmission, both flags are cleared.

If an arbitration loss or if a bus error happens during the transmission, the TxReq and TxAbort flags are cleared when
the message is removed or when the message wins arbitration. At the same time, the sst_failure interrupt is asserted.

11.2.3 Receive Procedures
The CAN controller provides 32 individual receive message buffers. Each one has its own message filter mask.
Automatic reply to RTR messages is supported. If a message is accepted in a receive buffer, its MsgAv flag is set.
The message remains valid as long as MsgAv flag is set. The host CPU has to reset the MsgAv flag to enable receipt
of a new message. The following figure shows the overall block diagram of the receive message buffers.

Figure 11-3. Receive Message Buffers

TxMessage1

RxMessage0

RxMessage1

RxMessage2

RxMessage31

External
Transceiver

Chip
CAN

Framer

Receive Message
Handler

RX

TX

TX_EN_N

11.2.3.1 Received Message Processing
After a new message is received, the receive message handler searches all receive buffers, starting from the receive
message0 until it finds a valid buffer. A valid buffer is indicated by:

CAN Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 427

• Receive buffer is enabled (indicated by RxBufferEbl = 1)
• Acceptance filter of receive buffer matches incoming message

If the receive message handler finds a valid buffer that is empty, then the message is stored and the MsgAv flag of
this buffer is set to 1. If the RxIntEbl flag is set, then the rx_msg flag of the interrupt controller is asserted.

If the receive buffer already contains a message indicated by MsgAv = 1 and the link flag is not set, then the
rx_msg_loss interrupt flag is asserted. See 11.2.3.3. Receive Buffer Linking.

If an incoming message has its RTR flag set and the RTR reply flag of the matching buffer is set, then the message
is not stored but an RTR auto-reply request is issued. For more information, see 11.2.3.2.1. RTR Auto-Reply and the
RX_MSG0_CTRL_CMD register.

11.2.3.2 Acceptance Filter
Each receive buffer has its own acceptance filter that is used to filter incoming messages. An acceptance filter
consists of Acceptance Mask Register (AMR) and Acceptance Code Register (ACR) pair. The AMR defines which
bits of the incoming CAN message match the corresponding ACR bits.

The following message fields are covered:

• ID
• IDE
• RTR
• Data byte 1 and data byte 2

Important: Some CAN HLPs such as Smart Distributed System (SDS) or DeviceNet carry additional
protocol related information in the first or first and second data bytes that are used for message
acceptance and selection. Having the capability to filter these fields provides a more efficient
implementation of the protocol stack running on the Cortex-M3 processor.

The AMR register defines whether the incoming bit is checked against the ACR register. The incoming bit is checked
against the respective ACR when the AMR register is 0. The message is not accepted when the incoming bit does
not match the respective ACR flag. When the AMR register is 1, the incoming bit is a “don't care”.

11.2.3.2.1 RTR Auto-Reply
The CAN controller supports automatic answering of RTR message requests. All 32 receive buffers support this
feature. If an RTR message is accepted in a receive buffer where the RTRreply flag is set, then this buffer
automatically replies to this message with the content of this receive buffer. The RTRreply pending flag is set
when the RTR message request is received. It is cleared when the message is sent or when the message buffer is
disabled. To abort a pending RTRreply message, use the RTRabort command.

If the RTR auto-reply option is selected, the RTR sent (RTRS) flag is asserted when the RTR auto-reply message is
successfully sent. It is cleared by writing 1 to it.

An RTR message interrupt is generated if the RTRS flag and RxIntEbl are set. This interrupt is cleared by clearing
the RTRS flag.

11.2.3.3 Receive Buffer Linking
Several receive buffers can be linked together to form a receive buffer array which acts almost like a receive FIFO.
For a set of receive buffers to be linked together, the following conditions must be met:

• All buffers of the same array must have the same message filter setting (AMR and ACR are identical).
• The last buffer of an array may not have its link flag set.

When a receive buffer already contains a message (MsgAv = 1) and a new message arrives for this buffer, this
message is discarded (rs_msg_loss Interrupt). To avoid this situation, several receive buffers can be linked together.
When the CAN controller receives a new message, the receive message handler searches for a valid receive buffer.
If one is found that is already full (MsgAv = 1) and the link flag is set (LF = 1); the search for a valid receive buffer
continues. If no other buffer is found, the rx_msg_loss interrupt is set and the message is discarded.

It is possible to build several message arrays. Each of these arrays must use the same AMR and ACR. The receive
buffer locations do not need to be contiguous.

CAN Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 428

11.2.4 Interrupt Generation
The interrupt int_n is asserted, if a particular interrupt status bit and the respective enable bit are set. The following
figure shows how the system interrupt is generated.

Figure 11-4. Interrupt Generation

INT_STATUS[3]

INT_STATUS[2]

INT_STATUS[4]

INT_STATUS[5]

INT_STATUS[6]

INT_STATUS[7]

INT_STATUS[8]

INT_STATUS[9]

INT_STATUS[10]

INT_STATUS[11]

INT_STATUS[13]

INT_STATUS[12]

INT_STATUS[14]

INT_STATUS[15]

INT_ENABLE[2]

INT_ENABLE[4]

INT_ENABLE[3]

INT_ENABLE[5]

INT_ENABLE[6]

INT_ENABLE[7]

INT_ENABLE[9]

INT_ENABLE[10]

INT_ENABLE[11]

INT_ENABLE[12]

INT_ENABLE[14]

INT_ENABLE[15]

INT_ENABLE[13]

INT_ENABLE[8]

RxIntEbI[RX_MSG0]

MsgAv[RX_MSG0]

RxIntEbI[RX_MSG31]

MsgAv[RX_MSG31]

INT_ENABLE[12]

INT_ENABLE[11]

TxIntEbI[TX_MSG31]

TxIntEbI[TX_MSG0]

TxReq done
[TX_MSG0]

TxReq done
[TX_MSG31]

arb_loss

ovr_load

Bit_err

stuff_err

ack_err

form_err

crc_err

buss_off

rx_msg_loss

tx_msg

rx_msg

rtr_msg

stuck_at_0

sst_failure

Int_enbl

Int_n

>=1

>=1

rx_msg

tx_msg

>=1

11.2.5 CAN Test Modes
Using the 11.6.4. Command Register loopback and the listen-only settings, the CAN controller performs certain test
operations as summarized in the following table.

Table 11-2. Test Modes

Loop back Listen-only Comment

0 0 Normal operation

0 1 Listen-only mode
The CAN controller receives all bus traffic but does not send any information to the
bus. This feature is useful for automatic bit-rate detection.

1 1 Internal loop back
The CAN controller receives the sending data. No data is sent to the network and no
data is received.

1 0 External loop back
The CAN controller participates in the regular CAN transmission and reception.
Furthermore, a copy of all sent messages is received. This mode works only if at
least one additional CAN node is on the network.

CAN Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 429

11.3 CAN Controller Configuration
The CAN Controller instance is accessed from the MSS configurator. Depending on the application, the CAN
instance gets enabled or disabled (default) from the MSS. When disabled, the CAN instance is held in reset (lowest
power state). When enabled, by default, the CAN ports are configured to connect to the CAN allocated device MSIO
CAN ports.

Important: The MSIOs allocated to the CAN instance are shared with other MSS peripherals. These
shared I/Os are available to connect to the MSS GPIOs.

Connecting the CAN ports to the allocated CAN MSIOs or fabric or both is done in the CAN Configurator. The
following figure shows the advanced options in the Configuration window that provides the option to enable extra
connectivity between the MSIOs and fabric or GPIOs (or both fabric and GPIOs).

Figure 11-5. CAN Configurator GUI

11.3.1 Peripheral Signals Assignment Table
The CAN configurator window is divided into the following two main sections:

• The Configuration window that displays all the Assignment options.
• The Connectivity Preview window that shows a graphical view based on the configurations and selections for

the highlighted signal row.

There are no hardware configuration options for the CAN peripheral.

The following table summarizes the valid connections for different configurations that are available in the CAN
configurator dialog.

CAN Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 430

Table 11-3. Summary of Different Valid CAN Connections

CAN Port Direction Main Connection Extra Connection

Fabric GPIO

RX IN CAN MSIO Yes Yes

Fabric N/A N/A

TX OUT CAN MSIO Yes N/A

Fabric N/A N/A

TX_EN_N OUT CAN MSIO Yes N/A

Fabric N/A N/A

Each port is connected to the allocated CAN MSIO or to the fabric through the Main Connection
drop-down menu.

Figure 11-6. Main Connection Options - Either MSIO or Fabric

When the main connection is I/O, the signal is routed through the fabric by selecting the Fabric under Extra
Connection. The Extra Connection option is available only when Advance Options is selected. The MSIO RX input is
routed to the GPIO and fabric.

Figure 11-7. Extra Connection to Fabric and GPIO Options

CAN Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 431

Because the MSS peripherals (MMUART, I2C, SPI, CAN, GPIO, USB, and Ethernet MAC) share MSIO and FPGA
fabric access resources, the configuration of any of these peripherals might result in a resource conflict when an
instance of the current peripheral is configured. Peripheral configurators provide clear indicators when such a conflict
arises. For more information, see MSS CAN Configurator User Guide.

The functional behavior of the CAN instance must be defined at the application level using the SmartFusion 2 MSS
CAN firmware driver provided by Microchip. For more information, see the CAN Firmware Driver User Guide.

11.3.2 EDAC CAN Configuration
In radiation prone environments, storage elements such as RAMs and FIFOs are susceptible to transient errors
caused by heavy ions. Errors can be detected and corrected by employing EDAC. The EDAC controller implemented
in SmartFusion 2 device supports SECDED. The CAN controller internal RAMs are one of the RAMs that are
protected by EDAC within SmartFusion 2 devices.

The values entered in the configurator are exported into the programming files to program the Flash bits that control
this functionality. The Flash bits are loaded in the system registers at power-up (or when the DEVRST_N external
pad is asserted or deasserted).

To configure (enable/disable) EDAC for the CAN controller, the SECDED configurator is used within the MSS
configurator in Libero SoC.

Figure 11-8. Enabling EDAC for the CAN from the SECDED Configurator

• Expose EDAC_ERROR Bus - Use to expose the EDAC_ERROR bus signal to the FPGA fabric, to be used by
the design.

CAN Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 432

• Enable EDAC - Use to enable EDAC functionality for the CAN controller.
• Enable EDAC Interrupt(s) - Use to enable the EDAC interrupts for the CAN controller. Interrupts for 1-bit error

and 2-bit error or both can be enabled, as shown in the preceding figure. For more information on the SECDED
configurator options and ports descriptions, see MSS EDAC Configuration User Guide.

Important: The MSS CAN does not support full behavioral simulation models. For more information, see
SmartFusion2 MSS BFM Simulation User Guide.

11.4 How to Use the MSS CAN Controller
Perform the following steps to use the CAN controller in an application.

11.4.1 Hardware Design Flow
The following figure shows how to enable the CAN controller in the MSS configurator for the Libero SoC design
project.

Figure 11-9. Enabling CAN Controller With MSS Configurator

When the CAN is enabled, CAN_RX, CAN_TX, and CAN_TX_EN_N gets promoted to the top MSS component.

CAN Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 433

Figure 11-10. CAN Signals

Generate the component by clicking Generate Component or by selecting Generate Component from the
SmartDesign menu. The firmware driver folder and the SoftConsole workspace are generated and included in the
project automatically.

For firmware development, double-click Export Firmware under Handoff Design for Firmware Development in the
Libero SoC design flow window to generate the SoftConsole Firmware Project. The SoftConsole folder contains the
required mss_driver, which provides a set of functions to control the MSS CAN peripheral.

Important: If the drivers are not generated, make sure that the CAN firmware driver downloaded into the
vault from the repositories is available and Generate option is enabled in the DesignFirmware window.

Figure 11-11. Firmware Driver Enable and Generate

11.5 Use Cases

11.5.1 Use Case 1: Automatic Bit Rate Detection
It is possible to use the CAN in Listen-only test mode. For more information on how to enable Listen-only mode, see
11.6.4. Command Register and 11.2.5. CAN Test Modes. In Listen-only mode, the CAN controller receives all bus
traffic but does not send any information to the bus. In this non-intrusive bus observation mode, the CAN controller
can be used to determine the actual bit rate. During the bit rate detection, the CAN controller listens to the on-going
CAN bus communication using a set of given bit rates and eventually detects the actual bit rate. The following flow
chart outlines the procedure to detect the bit rate.

CAN Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 434

Figure 11-12. Automatic Bit Rates Detection Flow Chart

System Startup

Ack Interrupt

Found Bitrate

YES

YES

NO

NO

Set Next
Bitrate

Error
Interrupt?

Receive Message
Interrupt?

Wait for Interrupt

Set Highest
Bitrate

Setup CAN Controller:
- Set Listen-only mode
- Enable all interrupts

11.5.2 Use Case 2: SRAM Test Mode
In addition to the test modes described in the Test Modes section, the CAN controller can be put into SRAM test
mode. The CAN controller has a built-in RAM, which is protected by EDAC that is used to store the receive and
transmit messages.

To support software based memory testing, the CAN controller is put into SRAM test mode. When this SRAM test
mode is active, the CAN controller operation is disabled and transparent access from the host APB interface to all
SRAM memory locations is available. SRAM test mode gets enabled or disabled by setting the CAN command bit[3]
of the CAN_COMMAND register. For more information, see 11.6.4. Command Register. SRAM test mode and CAN
controller operation are mutually exclusive. Thus, SRAM test mode gets enabled when CAN controller is stopped and
the CAN controller gets started when the SRAM test mode is stopped. In the SRAM test mode:

• Transparent read and write access to all SRAM memory locations is supported
• All message buffer write protect features are disabled
• Access to receive and transmit message buffer control registers is disabled

In SRAM test mode, the APB interface is used to access different SRAM address directly for test or initialization
purposes. At power-up, SRAM is not initialized and any READ action to the memory locations would result in an ECC
error if EDAC is enabled. Hence, putting the CAN controller into SRAM test mode enables initialization of the SRAM
so ECC errors at power-up do not occur if EDAC is enabled.

The following table provides address mapping between the APB and SRAM addresses.

Table 11-4. APB to SRAM Address Mapping

APB Address SRAM Address Description

0x020 0x000 TxObject0:Control Bits

0x024 0x001 TxObject0:Identifier Bits

CAN Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 435

...........continued
APB Address SRAM Address Description

0x028 0x002 TxObject0:Data High Bits

0x02C 0x003 TxObject0:Data Low Bits

0x030-0x03C 0x004-0x007 TxObject1

0x040-0x04C 0x008-0x00B TxObject2

0x050-0x05C 0x00C-0x00F TxObject3

0x060-0x06C 0x010-0x013 TxObject4

0x070-0x07C 0x014-0x017 TxObject5

0x080-0x08C 0x018-0x01B TxObject6

0x090-0x09C 0x01C-0x01F TxObject7

0x0A0-0x0AC 0x020-0x023 TxObject8

0x0B0-0x0BC 0x024-0x027 TxObject9

0x0C0-0x0CC 0x028-0x02B TxObject10

0x0D0-0x0DC 0x02C-0x02F TxObject11

0x0E0-0x0EC 0x030-0x033 TxObject12

0x0F0-0x0FC 0x034-0x037 TxObject13

0x100-0x10C 0x038-0x03B TxObject14

0x110-0x11C 0x03C-0x03F TxObject15

0x120-0x12C 0x040-0x043 TxObject16

0x130-0x13C 0x044-0x047 TxObject17

0x140-0x14C 0x048-0x04B TxObject18

0x150-0x15C 0x04C-0x04F TxObject19

0x160-0x16C 0x050-0x053 TxObject20

0x170-0x17C 0x054-0x057 TxObject21

0x180-0x18C 0x058-0x05B TxObject22

0x190-0x19C 0x05C-0x05F TxObject23

0x1A0-0x1AC 0x060-0x063 TxObject24

0x1B0-0x1BC 0x064-0x067 TxObject25

0x1C0-0x1CC 0x068-0x06B TxObject26

0x1D0-0x1DC 0x06C-0x06F TxObject27

0x1E0-0x1EC 0x070-0x073 TxObject28

0x1F0-0x1FC 0x074-0x077 TxObject29

0x200-0x20C 0x078-0x07B TxObject30

0x210-0x21C 0x07C-0x07F TxObject31

0x220 0x080 RxObject0:Control Bits

0x224 0x081 RxObject0:Identifier Bits

CAN Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 436

...........continued
APB Address SRAM Address Description

0x228 0x082 RxObject0:Data High Bits

0x22C 0x083 RxObject0:Data Low Bits

0x230 0x084 RxObject0:AMR - ID

0x234 0x085 RxObject0:ACR - ID

0x238 0x086 RxObject0:AMR - Data

0x23C 0x087 RxObject0:ACR - Data

0x240-0x25C 0x088-0x08F Receive Message Object 1

0x260-0x27C 0x090-0x097 Receive Message Object 2

0x280-0x29C 0x098-0x09F Receive Message Object 3

0x2A0-0x2BC 0x0A0-0x0A7 Receive Message Object 4

0x2C0-0x2DC 0x0A8-0x0AF Receive Message Object 5

0x2E0-0x2FC 0x0B0-0x0B7 Receive Message Object 6

0x300-0x31C 0x0B8-0x0BF Receive Message Object 7

0x320-0x33C 0x0C0-0x0C7 Receive Message Object 8

0x340-0x35C 0x0C8-0x0CF Receive Message Object 9

0x360-0x37C 0x0D0-0x0D7 Receive Message Object 10

0x380-0x39C 0x0D8-0x0DF Receive Message Object 11

0x3A0-0x3BC 0x0E0-0x0E7 Receive Message Object 12

0x3C0-0x3DC 0x0E8-0x0EF Receive Message Object 13

0x3E0-0x3FC 0x0F0-0x0F7 Receive Message Object 14

0x400-0x41C 0x0F8-0x0FF Receive Message Object 15

0x420-0x43C 0x100-0x107 Receive Message Object 16

0x440-0x45C 0x108-0x10F Receive Message Object 17

0x460-0x47C 0x110-0x117 Receive Message Object 18

0x480-0x49C 0x118-0x11F Receive Message Object 19

0x4A0-0x4BC 0x120-0x127 Receive Message Object 20

0x4C0-0x4DC 0x128-0x12F Receive Message Object 21

0x4E0-0x4FC 0x130-0x137 Receive Message Object 22

0x500-0x51C 0x138-0x13F Receive Message Object 23

0x520-0x53C 0x140-0x147 Receive Message Object 24

0x540-0x55C 0x148-0x14F Receive Message Object 25

0x560-0x57C 0x150-0x157 Receive Message Object 26

0x580-0x59C 0x158-0x15F Receive Message Object 27

0x5A0-0x5BC 0x160-0x167 Receive Message Object 28

0x5C0-0x5DC 0x168-0x16F Receive Message Object 29

CAN Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 437

...........continued
APB Address SRAM Address Description

0x5E0-0x5FC 0x170-0x177 Receive Message Object 30

0x600-0x61C 0x178-0x17F Receive Message Object 31

11.6 CAN Controller Register Map

11.6.1 SYSREG Control Registers
In addition to the specific CAN registers described in this chapter, the registers found in the CAN SYSREG Control
Registers also control the behavior of the CAN peripheral. For a more information on each register and bit, see
21. System Register Block.

Table 11-5. CAN SYSREG Control Registers

Register Name Addres
s Offset

Register
Type

Flash
Write
Protect

Reset Source Description

21.5.15. EDAC
Configuration Register

0x38 RW-P Register SYSRESET_
N

Configures EDAC component of the
CAN.
To enable or disable the EDAC for the
CAN, set the CAN_EDAC_EN bit (6th
bit in this register) as follows:

0: EDAC is disabled

1: EDAC is enabled

21.5.30. EDAC Interrupt
Enable Control Register

0x78 RW-P Register SYSRESET_
N

Configures EDAC interrupts
To set 1-bit error or 2-bit error,
set the CAN_EDAC_1E_EN and
CAN_EDAC_2E_N bits (the 12th and
13th bits in this register)

0: Disables the status signal

1: Enables the status signal

21.5.64. CAN EDAC
Count

0x108 RO SYSRESET_
N

CAN EDAC count
This is a 16-bit counter value in CAN.

It is incremented by CAN EDAC 1-bit or
2-bit error.

The counter does not roll back and
stays at its maximum value.

21.5.69. CAN EDAC
Address Register

0x11C RO SYSRESET_
N

CAN EDAC address register
CAN memory address on which 1-bit or
2-bit SECDED error occurs.

21.5.97. EDAC Status
Register

0x190 SW1C SYSRESET_
N

EDAC status register
This status is updated by CAN when a
1-bit or 2-bit SECDED error has been
detected and a single-bit error is
corrected for RAM memory.

CAN Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 438

...........continued
Register Name Addres

s Offset
Register
Type

Flash
Write
Protect

Reset Source Description

21.5.102. Clear EDAC
Counters

0x1A4 W1P SYSRESET_
N

Clear EDAC counters
This is a pulse generated to clear the
16-bit counter value in CAN
corresponding to the count value
of EDAC 1-bit or 2-bit errors. This
in turn clears the upper 16-bits of
CAN_EDAC_CNT register.

At power-up, the CAN_SOFTRESET bit is asserted as 1. This keeps the CAN controller in a reset state. To
release the CAN controller from reset, set this bit to 0 as described in Table 11-6. If CAN_SOFTRESET is 0, the
CAN controller could still be held in reset by other system reset sources. Before specifying the CAN controller
configurations, release it from reset.

Table 11-6. CAN Controller Soft Reset Bit in the SOFT_RESET_CR Register

Bit Number Name R/W Reset Value Description

13 CAN_SOFTRESET R/W 0x1 Controls reset input to CAN Controller
0: Release CAN controller from reset.

1: Keep CAN controller in reset.

11.6.2 CAN Controller Registers
This section describes the register and bit description of various categories of registers in the CAN controller. In
addition, system registers which are applicable to CAN are described in this section. This provides programmers
the view for firmware development. Microchip recommends using drivers provided in the tool set for application
development.

The CAN base address resides at 0x40015000 and extends to address 0x40015FFF in the Cortex-M3 processor
memory map. The registers set in the CAN controller are summarized in the following table.

Table 11-7. Summary of CAN Controller Registers

Register Name Address R/W Reset Value Description

Table 11-8 0x018 R/W 0 CAN configuration register.
The CAN controller has to be configured
prior to its use. The configuration
includes effective CAN data rate, CAN
data synchronization, and message buffer
arbitration. This register has to be configured
before the CAN controller is started (Run
mode).

Run or STOP of the CAN controller
is a different action than reset. See
11.6.4. Command Register for more details.

Table 11-9 0x014 R/W 0 The CAN controller is used in different
operating modes. By disabling transmitting
data, it is possible to use the CAN in
Listen-only mode, enabling features such as
automatic bit rate detection. Before starting
the CAN controller, all the CAN configuration
registers have to be set according to the
target application.

CAN Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 439

...........continued
Register Name Address R/W Reset Value Description

Table 11-10 0x020 R/W 0 Transmit Message0 buffer control and
command register

Table 11-11 0x024 R/W 0 Transmit Message0 buffer identifier register

Table 11-12 0x028 R/W 0 Transmit Message0 buffer data high register

Table 11-13 0x02C R/W 0 Transmit Message0 buffer data low register

Table 11-15 0x0C R 0 Transmit (TX) message buffer status.
This bundles transmit request (TxReq)
pending flags from all 32 receive message
buffers.

Table 11-16 0x220 R/W 0 Receive Message0 buffer command and
control register

Table 11-17 0x224 R/W 0 Receive Message0 buffer Identifier register

Table 11-18 0x228 R/W 0 Receive Message0 buffer data high register

Table 11-19 0x22C R/W 0 Receive Message0 buffer data low register

Table 11-20 0x230 R/W 0 Acceptance Mask Register (AMR)
The AMR register defines whether the
incoming bit is checked against the ACR
register

Table 11-21 0x234 R/W 0 Acceptance Code Register (ACR)

Table 11-22 0x238 R/W 0 AMR- Data

Table 11-23 0x23C R/W 0 ACR- Data

Table 11-25 0x08 R 0 Receive (RX) message buffer status. This
bundles message available (MsgAv) flags
from all 32 receive message buffers.

Table 11-26 0x01C RW 0 Error capture register
Can be used to perform additional CAN bus
diagnostics

Table 11-27 0x010 R 0 CAN error status indicator register
Provides visibility into CAN controller error
state, receive error count, and transmit error
count. Special flags to report error counter
values equal to or in excess of 96 errors are
available to indicate heavily disturbed bus
situations.

Table 11-28 0x004 R/W 0 Interrupt enable register
Writing 1 to a particular bit enables the
corresponding interrupt source as set in
INT_STATUS.

CAN Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 440

...........continued
Register Name Address R/W Reset Value Description

Table 11-29 0x00 R/W 0x00 Interrupt status register
Writing 1 to a particular bit sets the
corresponding interrupt source.

The associated enable bit in INT_ENABLE
must also be set for this interrupt to be
generated.

The following sections describe the functionality and the bit description of each of the registers in more details.

11.6.3 Configuration Register
The CAN configuration register CAN_CONFIG is a 32-bit register that is used to configure the functionality of the
CAN controller. The CAN controller has to be configured prior to its use. The following table shows the CAN_CONFIG
register and summarizes the bit description within the register.

Table 11-8. CAN_CONFIG

Bit Number Name Description

31 Reserved Reserved

[30:16] CFG_BITRATE Configuration bit rate
Prescaler for generating the time quantum which defines the TQ:

0: One time quantum equals 1 clock cycle

1: One time quantum equals 2 clock cycles

32767: One time quantum equals 32768 clock cycles

15 Reserved Reserved

14 ECR_MODE Error-capture mode
0: Free running. The ECR register shows the current bit position within the
CAN frame.

1: Capture mode. The ECR register shows the bit position and type of the last
captured CAN error.

13 SWAP_ENDIAN The byte position of the CAN receive and transmit data fields can be modified
to match the endian setting of the processor or the used CAN protocol.
0: CAN data byte position is not swapped (big endian)

1: CAN data byte position is swapped (little endian)

12 CFG_ARBITER Transmit buffer arbiter
0: Round robin arbitration

1: Fixed priority arbitration

[11:8] CFG_TSEG1 Time segment 1. Time segment 1 includes the propagation time
Length of the first time segment:

tseg1 = CFG_TSEG1+1

CFG_TSEG1 = 0 and CFG_TSEG1 = 1 are not allowed

CAN Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 441

...........continued
Bit Number Name Description

[7:5] CFG_TSEG2 Time segment 2
Length of the second time segment:

tseg2 = CFG_TSEG2+1

CFG_TSEG2 = 0 is not allowed

CFG_TSEG2 = 1 is only allowed in Direct-sampling mode

4 AUTO_RESTART The CAN can be set to restart either “by hand” or automatically after a bus-off.
0: After bus-off, the CAN must be restarted “by hand”. This is the
recommended setting.

1: After bus-off, the CAN restarts automatically after 128 groups of 11
recessive bits.

[3:2] CFG_SJW Synchronization Jump Width 1
sjw ≤ tseg1 and sjw ≤ tseg2

1 SAMPLING_MOD
E

CAN bus bit sampling
0: One sampling point is used in the receiver path

1: Three sampling points with majority decision are used

0 EDGE_MODE CAN bus synchronization logic
0: Edge from ‘R’ to ‘D’ is used for synchronization

1: Both edges are used

11.6.4 Command Register
The CAN controller is set to operate in different modes by setting the command register CAN_COMMAND, as listed
in the following table.

Table 11-9. CAN_COMMAND

Bit Number Name Reset
Value

Function

[31:16] Revision_Control This field contains the version of the CAN core in the following format.
This is a read-only field.
[major version].[minor version].[revision number]

[31:28]: Major version

[27:24]: Minor version

[23:16]: Revision number

[15:4] Reserved 0 Reserved

CAN Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 442

...........continued
Bit Number Name Reset

Value
Function

[3:0] CAN_COMMAND[3
]

0 SRAM Test mode
0: Normal operation

1: Enable SRAM Test mode

CAN_COMMAND[2
]

0 Loopback-test mode
0: Normal operation

1: Loopback mode is enabled[1]: Listen-only mode

CAN_COMMAND[1
]

0 Listen-only mode
0: Active

1: CAN listen only. The output is held at ‘R’ level. The CAN controller is
only listening.

CAN_COMMAND[0
]

0 Run/Stop mode
0: Sets the CAN controller into Stop mode

Returns 0 when stopped

1: Sets the CAN controller into Run mode

Returns 1 when running

11.6.5 Transmit Message Control and Command Register
Each transmit buffer gets configured through a set of registers. Those registers are broken down into a Control/
Command register, Identifier register, Data high register, and Data low register. In the Command/Control register,
some bits set a control flag and others set a command flag. The following tables provide a detailed description of
transmit message0 buffer registers bits.

Important: The rest of the transmit messages (message1 to message31) follow the same registers
definition as message0.

Table 11-10. TX_MSG0_CTRL_CMD

Bit Number Name Reset
Value

Description

[31:24] Reserved 0 Reserved

23 WPN 1 Write protect not
0: Bit[21:16] remain unchanged

1: The write protect is not set and bit[21:16] are modified, by default.

The read back value of this bit is undefined

Using the WPN flag enables simple retransmission of the same
message by only setting the TxReq and TxAbort flags without taking
care of the special flags

22 Reserved 0 Reserved

21 RTR 0 RTR; control flag bit
0: Standard message

1: RTR message

CAN Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 443

...........continued
Bit Number Name Reset

Value
Description

20 IDE 0 Extended identifier bit; Control flag bit
0: This is a standard format message

1: This is an extended format message

[19:16] DLC 0 Data length code; Control flag bit
Invalid values are transmitted as they are, but the number of data
bytes is limited to eight

0: Message has 0 data bytes

1: Message has 1 data byte

...

8: Message has 8 data bytes

9-15: Message has 8 data bytes

[15:4] Reserved 0 Reserved

3 WPN 1 Write protect not
0: Bit[2] remains unchanged

1: The write protect is not set and Bit[2] is modified, default.

2 TxIntEbl 0 Tx interrupt enable; Control flag bit
0: Interrupt is disabled

1: Interrupt is enabled, successful message transmission sets the
TX_MSG flag in the interrupt controller

1 TxAbort 0 Transmit abort request; Command flag bit
0: Idle

1: Requests removal of a pending message

The message is removed the next time an arbitration loss happens.
The flag is cleared when the message is removed or when the
message wins arbitration. The TxReq flag is cleared at the same time.

0 TxReq 0 Transmit request; Command flag bit
Write:

0: Idle. No message transmit request.

1: Message transmit request

The Tx message buffer must not be changed while TxReq is 1.

Read:

0: TxReq completed

1: TxReq pending

Table 11-11. TX_MSG0_ID

Bit Number Name Reset
Value

Description

[31:3] ID[28:0] 0 Transmit message0 buffer identifier (29-bit wide)

[2:0] Reserved 0 Reserved

CAN Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 444

Table 11-12. TX_MSG0_DATA_HIGH

Bit
Number

Name Reset Value Description

[31:0] TX_MSG0_DATA_HIGH [31:24]: CAN data byte 1
[23:16]: CAN data byte 2

[15:8]: CAN data byte 3

[7:0]: CAN data byte 4

The byte mapping can be set using the CAN
swap_endian configuration bit.
swap_endian = 0, default

[31:24]: CAN data byte 1

[23:16]: CAN data byte 2

[15:8]: CAN data byte 3

[7:0]: CAN data byte 4

swap_endian = 1

[31:24]: CAN data byte 4

[23:16]: CAN data byte 3

[15:8]: CAN data byte 2

[7:0]: CAN data byte 1

Table 11-13. TX_MSG0_DATA_LOW

Bit
Number

Name Reset Value Description

[31:0] TX_MSG0_DATA_LOW [31:24]: CAN data byte 5
[23:16]: CAN data byte 6

[15:8]: CAN data byte 7

[7:0]: CAN data byte 8

The byte mapping can be set using the CAN
swap_endian configuration bit
swap_endian = 0, default

[31:24]: CAN data byte 5

[23:16]: CAN data byte 6

[15:8]: CAN data byte 7

[7:0]: CAN data byte 8

swap_endian = 1

[31:24]: CAN data byte 8

[23:16]: CAN data byte 7

[15:8]: CAN data byte 6

[7:0]: CAN data byte 5

The rest of the transmit message buffers (TX_MSG1 to TX_MSG31) registers and registers bits have the same
descriptions as the TX_MSG0 registers shown above.

The following table lists the address offsets for the TX_MSG1 to TX_MSG31 registers.

Table 11-14. Transmit Message1 to Transmit Message31 Registers Description

Register Name Address
Offset

R/W Reset
Value

Description

TX_MSG1 Buffer 0x030-0x03C R/W 0 Transmit Message1 buffer registers

TX_MSG2 Buffer 0x0040-0x04C R/W 0 Transmit Message2 buffer registers

TX_MSG3 Buffer 0x050-0x05C R/W 0 Transmit Message3 buffer registers

CAN Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 445

...........continued
Register Name Address

Offset
R/W Reset

Value
Description

TX_MSG4 Buffer 0x060-0x06C R/W 0 Transmit Message4 buffer registers

TX_MSG5 Buffer 0x070-0x07C R/W 0 Transmit Message5 buffer registers

TX_MSG6 Buffer 0x080-0x08C R/W 0 Transmit Message6 buffer registers

TX_MSG7 Buffer 0x090-0x09C R/W 0 Transmit Message7 buffer registers

TX_MSG8 Buffer 0x0A0-0x0AC R/W 0 Transmit Message8 buffer registers

TX_MSG9 Buffer 0x0B0-0x0BC R/W 0 Transmit Message9 buffer registers

TX_MSG10 Buffer 0x0C0-0x0CC R/W 0 Transmit Message10 buffer registers

TX_MSG11 Buffer 0x0D0-0x0DC R/W 0 Transmit Message11 buffer registers

TX_MSG12 Buffer 0x0E0-0x0EC R/W 0 Transmit Message12 buffer registers

TX_MSG13 Buffer 0x0F0-0x0FC R/W 0 Transmit Message13 buffer registers

TX_MSG14 Buffer 0x100-0X10C R/W 0 Transmit Message14 buffer registers

TX_MSG15 Buffer 0x110-0X11C R/W 0 Transmit Message15 buffer registers

TX_MSG16 Buffer 0x120-0X12C R/W 0 Transmit Message16 buffer registers

TX_MSG17 Buffer 0x130-0X13C R/W 0 Transmit Message17 buffer registers

TX_MSG18 Buffer 0x140-0X14C R/W 0 Transmit Message18 buffer registers

TX_MSG19 Buffer 0x150-0X15C R/W 0 Transmit Message19 buffer registers

TX_MSG20 Buffer 0x160-0X16C R/W 0 Transmit Message20 buffer registers

TX_MSG21 Buffer 0x170-0X17C R/W 0 Transmit Message21 buffer registers

TX_MSG22 Buffer 0x180-0X18C R/W 0 Transmit Message22 buffer registers

TX_MSG23 Buffer 0x190-0X19C R/W 0 Transmit Message23 buffer registers

TX_MSG24 Buffer 0x1A0-0X1AC R/W 0 Transmit Message24 buffer registers

TX_MSG25 Buffer 0x1B0-0X1BC R/W 0 Transmit Message25 buffer registers

TX_MSG26 Buffer 0x1C0-0X1CC R/W 0 Transmit Message26 buffer registers

TX_MSG27 Buffer 0x1D0-0X1DC R/W 0 Transmit Message27 buffer registers

TX_MSG28 Buffer 0x1E0-0X1EC R/W 0 Transmit Message28 buffer registers

TX_MSG29 Buffer 0x1F0-0X1FC R/W 0 Transmit Message29 buffer registers

TX_MSG30 Buffer 0x200-0X20C R/W 0 Transmit Message30 buffer registers

TX_MSG31 Buffer 0x210-0X21C R/W 0 Transmit Message31 buffer registers

See TX_MSG0 buffer for description from Table 11-10 through Table 11-13.

11.6.6 Transmit Buffer Status Register
The following table lists the transmit buffer status indicator register TX_BUF_STATUS bits descriptions of the register.
For transmit, the status indicates if a message is ready to be sent out. This register consolidate the status of all
transmit message buffers.

CAN Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 446

Table 11-15. TX_BUF_STATUS

Bit Number Name Reset Value Description

31 TxMessage31 0 Message available in TxMessage buffer 31

30 TxMessage30 0 Message available in TxMessage buffer 30

29 TxMessage29 0 Message available in TxMessage buffer 29

28 TxMessage28 0 Message available in TxMessage buffer 28

27 TxMessage27 0 Message available in TxMessage buffer 27

26 TxMessage26 0 Message available in TxMessage buffer 26

25 TxMessage25 0 Message available in TxMessage buffer 25

24 TxMessage24 0 Message available in TxMessage buffer 24

23 TxMessage23 0 Message available in TxMessage buffer 23

22 TxMessage22 0 Message available in TxMessage buffer 22

21 TxMessage21 0 Message available in TxMessage buffer 21

20 TxMessage20 0 Message available in TxMessage buffer 20

19 TxMessage19 0 Message available in TxMessage buffer 19

18 TxMessage18 0 Message available in TxMessage buffer 18

17 TxMessage17 0 Message available in TxMessage buffer 17

16 TxMessage16 0 Message available in TxMessage buffer 16

15 TxMessage15 0 Message available in TxMessage buffer 15

14 TxMessage14 0 Message available in TxMessage buffer 14

13 TxMessage13 0 Message available in TxMessage buffer 13

12 TxMessage12 0 Message available in TxMessage buffer 12

11 TxMessage11 0 Message available in TxMessage buffer 11

10 TxMessage10 0 Message available in TxMessage buffer 10

9 TxMessage9 0 Message available in TxMessage buffer 9

8 TxMessage8 0 Message available in TxMessage buffer 8

7 TxMessage7 0 Message available in TxMessage buffer 7

6 TxMessage6 0 Message available in TxMessage buffer 6

5 TxMessage5 0 Message available in TxMessage buffer 5

4 TxMessage4 0 Message available in TxMessage buffer 4

3 TxMessage3 0 Message available in TxMessage buffer 3

2 TxMessage2 0 Message available in TxMessage buffer 2

1 TxMessage1 0 Message available in TxMessage buffer 1

0 TxMessage0 0 Message available in TxMessage buffer 0

11.6.7 Receive Message Control and Command Register
Each receive buffer is configured through a set of registers. Those registers are broken down into a Command/
Control register, Identifier register, Data high register, and Data low register, Acceptance Mask Register (AMR),

CAN Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 447

Acceptance Code Register (ACR), AMR data, ACR data. The following tables provide a detailed description of
receive message0 buffer registers bits.

Table 11-16. RX_MSG0_CTRL_CMD

Bit Number Name Reset Value Description

[31:24] Reserved 0 Reserved

23 WPNH 1 Write protect not high
0: Bit[21:16] remain unchanged

1: The write protect is not set and bit[21:16] are
modified, default

The read back value of this bit is undefined

22 Reserved 0 Reserved

21 RTR 0 RTR bit; Control bit
0: This is a regular message

1: This is an RTR message

20 IDE 0 Extended identifier bit; Control bit
0: This is a standard format message

1: This is an extended format message

[19:16] DLC 0 Data length code; Control bits
0: Message has 0 data byte

1: Message has 1 data byte

...

8: Message has 8 data bytes

9-15: Message has 8 data bytes

[15:8] Reserved 0 Reserved

7 WPNL 1 Write protect not low
0: Bits[6:3] remain unchanged

1: This write protect is not set and bits[6:3] are modified,
default.

This bit is always zero for read back

6 LF 0 Link flag; Control bit
0: This buffer is not linked to the next

buffer

1: This buffer is linked with the next buffer

5 RxIntEbl 0 Receive interrupt enable; Control bit
0: Interrupt generation is disabled

1: Interrupt generation is enabled

4 RTRreply 0 Automatic message reply upon receipt of an RTR
message; Control bit
0: Automatic RTR message handling disabled

1: Automatic RTR message handling enabled

CAN Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 448

...........continued
Bit Number Name Reset Value Description

3 TxBufferEbl 0 Transaction buffer enable; Control bit
0: Buffer is disabled

1: Buffer is enabled

2 RTRabort 0 RTR abort request; Command bit
0: Idle

1: Requests removal of a pending RTR message reply.

The flag is cleared when the message was removed or
when the message won arbitration.

The TxReq flag is cleared at the same time

1 RTRP 0 RTReply pending; Command bit
0: No RTR reply request pending

1: RTR reply request pending

0 MsgAv/RTRS 0 Message available/RTR sent; Command bit
If RTRreply flag is set, this bit shows if an RTR auto-
reply message has been sent, otherwise it indicates if
the buffer contains a valid message.

Read

0: Idle

1: New message available (RTRreply = 0), RTR
auto-reply message sent (RTRreply = 1)

Write

0: Idle

1: Acknowledges receipt of new message or
transmission of RTR auto-reply message.

Before acknowledging receipt of a new message, the
message content must be copied into system memory.
Acknowledging a message clears the MsgAv flag.

Table 11-17. RX_MSG0_ID

Bit Number Name Reset Value Description

[31:3] ID[28:0] RxMessage0 buffer identifier. For extended frame, the
received message ID is stored in [31:3]. For standard
frame, the message ID is stored in [31:21].

[2:0] Reserved 0 N/A

CAN Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 449

Table 11-18. RX_MSG0_DATA_HIGH

Bit Number Name Reset Value Description

[31:0] RX_MSG0_DATA_HIGH [31:24]: CAN data byte 1
[23:16]: CAN data byte 2

[15:8]: CAN data byte 3

[7:0]: CAN data byte 4

The byte mapping can be set using the
CAN swap_endian configuration bit.
swap_endian = 0, default:

[31:24]: CAN data byte 1

[23:16]: CAN data byte 2

[15:8]: CAN data byte 3

[7:0]: CAN data byte 4

swap_endian = 1

[31:24]: CAN data byte 4

[23:16]: CAN data byte 3

[15:8]: CAN data byte 2

[7:0]: CAN data byte 1

Table 11-19. RX_MSG0_DATA_LOW

Bit Number Name Reset Value Description

[31:0] RX_MSG0_DATA_LOW [31:24]: CAN data byte 5
[23:16]: CAN data byte 6

[15:8]: CAN data byte 7

[7:0]: CAN data byte 8

The byte mapping can be set using the
CAN swap_endian
configuration bit.

swap_endian = 0, default:

[31:24]: CAN data byte 5

[23:16]: CAN data byte 6

[15:8]: CAN data byte 7

[7:0]: CAN data byte 8

swap_endian = 1

[31:24]: CAN data byte 8

[23:16]: CAN data byte 7

[15:8]: CAN data byte 6

[7:0]: CAN data byte 5

CAN Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 450

Table 11-20. RX_MSG0_AMR

Bit Number Name Reset Value Description

[31:0] RX_MSG0_AMR Receive Message0 buffer AMR bits
[31:3]: Identifier

[2]: IDE

[1]: RTR

[0]: Reserved

AMR:

0: The incoming bit is checked against the respective
ACR. The message is not accepted when the incoming
bit does not match with the respective ACR flag.

1: The incoming bit is a “don't care”

Table 11-21. RX_MSG0_ACR

Bit Number Name Reset Value Description

[31:0] RX_MSG0_ACR Receive Message0 buffer ACR bits
[31:3]: Identifier

[2]: IDE

[1]: RTR

[0]: N/A

Table 11-22. RX_MSG0_AMR_DATA

Bit Number Name Reset Value Description

[31:0] RX_MSG0_AMR_DATA Receive Message0 buffer AMR Data bits
[15:8]: CAN data byte 1

[7:0]: CAN data byte 2

Table 11-23. RX_MSG0_ACR_DATA

Bit Number Name Reset Value Description

[31:0] RX_MSG0_ACR_DATA Receive Message0 buffer ACR Data bits
[15:8]: CAN data byte 1

[7:0]: CAN data byte 2

The rest of the receive message buffers (RX_MSG1 to RX_MSG31) and register bits have the same descriptions as
the RX_MSG0 registers shown above. The following table lists the address offset for the RX_MSG1 to RX_MSG31
registers.

Table 11-24. Receive Message1 to Receive Message 31 and ECR Registers Description

Register Name Address Offset R/W Reset Value Description

RX_MSG1 Buffer 0x240-0x25C R/W 0 Receive Message1 buffer registers

RX_MSG2 Buffer 0x260-0x27C R/W 0 Receive Message2 buffer registers

RX_MSG3 Buffer 0x280-0x29C R/W 0 Receive Message3 buffer registers

RX_MSG4 Buffer 0x2A0-0x2BC R/W 0 Receive Message4 buffer registers

CAN Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 451

...........continued
Register Name Address Offset R/W Reset Value Description

RX_MSG5 Buffer 0x2C0-0x2DC R/W 0 Receive Message5 buffer registers

RX_MSG6 Buffer 0x2E0-0x2FC R/W 0 Receive Message6 buffer registers

RX_MSG7 Buffer 0x300-0x31C R/W 0 Receive Message7 buffer registers

RX_MSG8 Buffer 0x320-0x33C R/W 0 Receive Message8 buffer registers

RX_MSG9 Buffer 0x340-0x35C R/W 0 Receive Message9 buffer registers

RX_MSG10 Buffer 0x360-0x37C R/W 0 Receive Message10 buffer registers

RX_MSG11 Buffer 0x380-0x39C R/W 0 Receive Message11 buffer registers

RX_MSG12 Buffer 0x3A0-0x3BC R/W 0 Receive Message12 buffer registers

RX_MSG13 Buffer 0x3C0-0x3DC R/W 0 Receive Message13 buffer registers

RX_MSG14 Buffer 0x3E0-0x3FC R/W 0 Receive Message14 buffer registers

RX_MSG15 Buffer 0x400-0x41C R/W 0 Receive Message15 buffer registers

RX_MSG16 Buffer 0x420-0x43C R/W 0 Receive Message16 buffer registers

RX_MSG17 Buffer 0x440-0x45C R/W 0 Receive Message17 buffer registers

RX_MSG18 Buffer 0x460-0x47C R/W 0 Receive Message18 buffer registers

RX_MSG19 Buffer 0x480-0x49C R/W 0 Receive Message19 buffer registers

RX_MSG20 Buffer 0x4A0-0x4BC R/W 0 Receive Message20 buffer registers

RX_MSG21 Buffer 0x4C0-0x4DC R/W 0 Receive Message21 buffer registers

RX_MSG22 Buffer 0x4E0-0x4FC R/W 0 Receive Message22 buffer registers

RX_MSG23 Buffer 0x500-0x51C R/W 0 Receive Message23 buffer registers

RX_MSG24 Buffer 0x520-0x53C R/W 0 Receive Message24 buffer registers

RX_MSG25 Buffer 0x540-0x55C R/W 0 Receive Message25 buffer registers

RX_MSG26 Buffer 0x560-0x57C R/W 0 Receive Message26 buffer registers

RX_MSG27 Buffer 0x580-0x59C R/W 0 Receive Message27 buffer registers

RX_MSG28 Buffer 0x5A0-0x5BC R/W 0 Receive Message28 buffer registers

RX_MSG29 Buffer 0x5C0-0x5DC R/W 0 Receive Message29 buffer registers

RX_MSG30 Buffer 0x5E0-0x5FC R/W 0 Receive Message30 buffer registers

RX_MSG31 Buffer 0x600-0x61C R/W 0 Receive Message31 buffer registers

See the RX_MSG0 buffer for description from Table 11-16 through Table 11-23.

11.6.8 Receive Buffer Status Register
The following table lists the receive buffer status indicator register RX_BUF_STATUS and the bits descriptions of the
register. For receive buffer, the status indicates if a message has arrived. This register consolidates the status of all
receive message buffers.

Table 11-25. RX_BUF_STATUS

Bit Number Name Reset Value Description

31 RxMessage31 0 Message available in RxMessage buffer 31

CAN Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 452

...........continued
Bit Number Name Reset Value Description

30 RxMessage30 0 Message available in RxMessage buffer 30

29 RxMessage29 0 Message available in RxMessage buffer 29

28 RxMessage28 0 Message available in RxMessage buffer 28

27 RxMessage27 0 Message available in RxMessage buffer 27

26 RxMessage26 0 Message available in RxMessage buffer 26

25 RxMessage25 0 Message available in RxMessage buffer 25

24 RxMessage24 0 Message available in RxMessage buffer 24

23 RxMessage23 0 Message available in RxMessage buffer 23

22 RxMessage22 0 Message available in RxMessage buffer 22

21 RxMessage21 0 Message available in RxMessage buffer 21

20 RxMessage20 0 Message available in RxMessage buffer 20

19 RxMessage19 0 Message available in RxMessage buffer 19

18 RxMessage18 0 Message available in RxMessage buffer 18

17 RxMessage17 0 Message available in RxMessage buffer 17

16 RxMessage16 0 Message available in RxMessage buffer 16

15 RxMessage15 0 Message available in RxMessage buffer 15

14 RxMessage14 0 Message available in RxMessage buffer 14

13 RxMessage13 0 Message available in RxMessage buffer 13

12 RxMessage12 0 Message available in RxMessage buffer 12

11 RxMessage11 0 Message available in RxMessage buffer 11

10 RxMessage10 0 Message available in RxMessage buffer 10

9 RxMessage9 0 Message available in RxMessage buffer 9

8 RxMessage8 0 Message available in RxMessage buffer 8

7 RxMessage7 0 Message available in RxMessage buffer 7

6 RxMessage6 0 Message available in RxMessage buffer 6

5 RxMessage5 0 Message available in RxMessage buffer 5

4 RxMessage4 0 Message available in RxMessage buffer 4

3 RxMessage3 0 Message available in RxMessage buffer 3

2 RxMessage2 0 Message available in RxMessage buffer 2

1 RxMessage1 0 Message available in RxMessage buffer 1

0 RxMessage0 0 Message available in RxMessage buffer 0

Important: In case of Extended frame, the received message ID is stored in [31:3] bits of RX ID register.
In case of Standard frame, the message ID is stored in [31:21] bits of RX ID register. Both message
identifier (standard frame and extended frame) are stored at different bit position of RX ID register.

CAN Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 453

11.6.9 Error Capture Register
The CAN controller contains a dedicated Error Capture Register (ECR) that is used to perform additional CAN bus
diagnostics. The ECR supports the following two different modes:

• Free-running mode: In Free-running mode, the ECR displays the field and bit position within the current CAN
frame.

• Error-capture mode: In Error-capture mode, the ECR displays the bit position and type of the last captured CAN
error.

In Error-capture mode, the ECR samples the field and bit position, when a CAN error is detected. In order to sample
such an event, the ECR needs to be set by performing a write access to it. When the CAN is set to sample the event,
the ECR only captures one error event. For successive error captures, the ECR needs to be set again. The following
table provides the bits descriptions in the ECR register.

Table 11-26. ECR

Bit Number Name Reset Value Description

[31:17] Reserved 0 Reserved

[16:12] Field 0 This specifies the field of the ECR
0x00: Stopped
0x01: Synchronize
0x05: Interframe
0x06: Bus idle
0x07: Start of frame
0x08: Arbitration
0x09: Control
0x0A: Data
0x0B: CRC
0x0C: ACK
0x0D: End of frame
0x10: Error flag
0x11: Error echo
0x12: Error delimiter
0x18: Overload flag
0x19: Overload echo
0x1A: Overload delimiter
Others: N/A

[11:6] Bit_number 0 Bit number inside of field

5 Rx_mode 0 When asserted, the CAN controller is the receiver.

4 Tx_mode 0 When asserted, the CAN controller is the transmitter.

[3:1] Error_type 0 Specifies different error types
0: Arbitration loss
1: Bit error
2: Bit stuffing error
3: Acknowledge error
4: Form error
5: CRC error
Others: N/A

0 Status 0 Status of the ECR register
0: The ECR register captured an error or is in free
running mode.

1: The ECR register set to sample the event.

CAN Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 454

11.6.10 Error Status Register
Status indicators are provided to report the CAN controller error state, receive error count, and transmit error count.
Special flags to report error counter values equal to or in excess of 96 errors are available to indicate heavily
disturbed bus situations.

The following table provides ERROR_STATUS register bit descriptions.

Table 11-27. ERROR_STATUS

Bit Number Name Reset Value Description

[31:20] Reserved 0 Reserved

19 rxgte96 0 The receive error counter is greater than or equal to 96 dec.

18 txgte96 0 The transmit error counter is greater than or equal to 96 dec.

[17:16] error_state[1:0] 0 The error state of the CAN mode:
00: error active (normal operation)

01: error passive

1x: bus off

[15:8] rx_err_cnt[7:0] 0 The receive error counter as defined in CAN 2.0
specification.
When in bus-off state, this counter is used to count 128
groups of 11 receive bits.

[7:0] tx_err_cnt[7:0] 0 The transmit error counter as defined in CAN 2.0
specification.
When it is greater than 255 dec, it is fixed at 255 dec.

11.6.11 Interrupt Registers
The interrupt controller contains an interrupt enable (INT_ENABLE) and an interrupt status (INT_STATUS) registers.

11.6.11.1 Interrupt Enable Register
The interrupt enable register controls which particular bits from the interrupt status register are used to assert the
interrupt output int_n. See 11.2.4. Interrupt Generation for more details. The bits in the INT_ENABLE register control
which bits in the INT_STATUS register are used to enable the final output, int_n, interrupt. The int_n interrupt is
asserted if a particular interrupt status bit and the respective enable bit are set. The following table provides the
INT_ENABLE register bit descriptions.

Table 11-28. INT_ENABLE

Bit Number Name Reset Value Description

[31:16] Reserved 0 Reserved

15 sst_failure_enbl 0 Single-shot transmission failure interrupt enable.

14 stuck_at_0_enbl 0 Stuck at dominant error interrupt enable.

13 rtr_msg_enbl 0 RTR auto-reply message sent interrupt enable.

12 rx_msg_enbl 0 Receive message available interrupt enable.

11 tx_msg_enbl 0 Message transmitted interrupt enable.

10 rx_msg_loss_enbl 0 Received message lost interrupt enable.

9 bus_off_enbl 0 Bus off interrupt enable.

8 crc_err_enbl 0 CRC error interrupt enable.

7 form_err_enbl 0 Format error interrupt enable.

CAN Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 455

...........continued
Bit Number Name Reset Value Description

6 ack_err_enbl 0 Acknowledge error interrupt enable.

5 stuff_err_enbl 0 Bit stuffing error interrupt enable.

4 bit_err_enbl 0 Bit error interrupt enable.

3 ovr_load_enbl 0 Overload message detected interrupt enable.

2 arb_loss_enbl 0 Arbitration loss interrupt enable.

1 Reserved 0 Reserved

0 Int_enbl 0 Global interrupt enable flag.
0: All interrupts are disabled

1: Enabled interrupt sources are available

11.6.11.2 Interrupt Status Register
The interrupt status register stores internal interrupt events. Once a bit is set, it remains set until it is cleared by
writing 1 to it. The interrupt enable register has no effect on the interrupt status register. The following table provides
INT_STATUS register bit descriptions. A pending interrupt indicates that its respective flag is set to 1. In order for an
interrupt to be acknowledged, set its flag to 1.

Table 11-29. INT_STATUS

Bit Number Name Reset Value Description

[31:16] Reserved 0 Reserved

15 SST_FAILURE 0 Single-shot transmission failure
0: Normal operation

1: A buffer set for single-shot transmission experienced an
arbitration loss or a bus error during transmission.

14 STUCK_AT_0 0 Stuck at dominant error
0: Normal operation

1: Indicates if receive (RX) input remains stuck at 0 (dominant
level) for more than 11 consecutive bit times.

13 RTR_MSG 0 RTR auto-reply message sent
0: Normal operation

1: Indicates that a RTR auto-reply message was sent.

12 RX_MSG 0 Receive message available
0: Normal operation

1: Indicates a new message was successfully received and
stored in a receive buffer which has its RxIntEbl flag asserted.

11 TX_MSG 0 Message transmitted
0: Normal operation

1: Indicates a message was successfully sent from a transmit
buffer which has its TxIntEbl flag asserted.

CAN Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 456

...........continued
Bit Number Name Reset Value Description

10 RX_MSG_LOSS 0 Received message lost
0: Normal operation

1: Indicates a newly received message couldn't be stored
because the target message buffer was full (for example, its
MsgAv flag was set).

9 BUS_OFF 0 Bus Off
0: Normal operation

1: Indicates that the CAN controller entered the bus-off error
state.

8 CRC_ERR 0 CRC error
0: Normal operation

1: Indicates that a CAN CRC error is detected.

7 FORM_ERR 0 Format error
0: Normal operation

1: Indicates that a CAN format error is detected.

6 ACK_ERR 0 Acknowledge error
0: Normal operation

1: Indicates that a CAN message acknowledgment error is
detected.

5 STUFF_ERR 0 Bit stuffing error
0: Normal operation

1: Indicates that a CAN bit stuffing error is detected.

4 BIT_ERR 0 Bit error
0: Normal operation

1: Indicates that a CAN bit error is detected.

3 OVR_LOAD 0 Overload message detected
0: Normal operation

1: Indicates that a CAN overload message is detected.

2 ARB_LOSS 0 Arbitration loss
0: Normal operation

1: The message arbitration was lost while sending a
message. The message transmission is retried once the CAN
bus is idle again.

[1:0] Reserved 0 Reserved

MMUART Peripherals

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 457

12. MMUART Peripherals
Multi-mode Universal Asynchronous/Synchronous Receiver/Transmitter (MMUART) performs serial-to-parallel
conversion on data originating from modems or other serial devices, and performs parallel-to-serial conversion
on data from the Cortex-M3 processor or fabric master to these devices. SmartFusion 2 SoC FPGAs contain two
identical MMUART peripherals in the microcontroller subsystem (MSS MMUART_0 and MSS MMUART_1), that
provide software compatibility with the popular 16550 UART device.

12.1 Features
SmartFusion 2 MMUART peripherals support the following features:

• Asynchronous and synchronous operations
• Full programmable serial interface characteristics

– Data width is programmable to 5, 6, 7, or 8 bits
– Even, odd, or no-parity bit generation/detection
– 1, 1½, and 2 stop bit generation

• 9-bit address flag capability used for multi-drop addressing topologies
• Separate transmit (Tx) and receive (Rx) FIFOs to reduce processor interrupt service loading
• Single-wire half-duplex mode in which Tx pad can be used for bi-directional data transfer
• Local Interconnect Network (LIN) header detection and auto baud rate calculation
• Communication with ISO 7816 smart cards
• Fractional baud rate capability
• Return to Zero Inverted (RZI) mod/demod blocks that allow Infrared Data Association (IrDA) and Serial Infrared

(SIR) communications
• The Most Significant Bit (MSB) or the Least Significant Bit (LSB) as the first bit while sending or receiving data

The following figure shows the MMUART peripherals within the MSS. The MMUART peripherals are interfaced to the
AHB bus matrix through APB interfaces (APB_0 and APB_1).

MMUART Peripherals

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 458

Figure 12-1. MSS Showing MMUART Peripherals

AHB Bus Matrix

eSRAM_0System
Controller

Cache
Controller

S D IC

Arm® Cortex®-M3
Processor

S D I

MSS DDR
Bridge

PDMA

MS6

MM3

AHB To AHB Bridge with Address Decoder
USB OTG

HPDMA

MDDR

APB_0SYSREGTriple Speed
Ethernet MAC

FIC_0

MM4 MS4

MS2 MS3 MS0

MS5

MS1

MM5 MM6

MM7

MM8

MM2 MM1 MM0 MM9

IDC
D/S eNVM_0 eNVM_1 eSRAM_1

FIC_2 (Peripheral
Initialization) APB_1

MMUART_0

SPI_0

I2C_0

PDMA
Configuration

WATCHDOG

FIIC

TIMERx2

MMUART_1

SPI_1

I2C_1

GPIO

CAN

RTC

COMM_BLK

FIC_1

M
SS

_F
IC

M
S6

_U
SB

MS5_MAC MS5_SR MS5_APB0 MS5_FIC2 MS5_APB1

12.2 Functional Description
This section provides the detailed description of the MMUART peripherals.

12.2.1 Architecture Overview
The following figure shows the functional block diagram of MMUART. The main components of MMUART include
Transmit and Receive FIFOs (TX_FIFO and RX_FIFO), baud rate generator, input filters, LIN Header Detection and
Auto Baud Rate Calculation block, RZI modulator and demodulator, and interrupt controller.

While transmitting data, the parallel data is written to TX_FIFO of the MMUART to transmit in serial form. While
receiving data to RX_FIFO, the MMUART transforms the serial input data into parallel form to facilitate reading by the
Cortex-M3 processor.

The baud rate generator contains free running counters and utilizes the asynchronous and synchronous baud rate
generation circuits. The input filters in MMUART suppress the noise and spikes of incoming clock signals and serial
input data based on the filter length. The RZI modulation/demodulation blocks are intended to allow for IrDA Serial
Infrared (SIR) communications. The operational details of these sub blocks are explained in 12.2.4. Details of
Operation.

MMUART Peripherals

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 459

Figure 12-2. MMUART Block Diagram

APB_X

RWCONTROL

MSB or
LSB First

LIN Header Detect
and Auto Buad Rate

Calc Regs

UART_REG and
FIFO CTRL

16 Byte
RX_FIFO

16 Byte
TX_FIFO

Buad Rate Generator

Sync Modes

Frac Buad Rate Calc

Filter

Filter

TX BLOCK

RX BLOCK

TX Time
Guard

RX
Timeout

Interupt
Control

RZI
Demod

RZI
Mod

MMUART
Interface

Block

MMUART_X_ESWM

MMUART_X_INTR

MMUART_X_TXD

MMUART_X_TXD

MMUART_X_TE

MMUART_X_SCK_IN

MMUART_X_SCK_OUTBUADRATEN

MMUART_X_E_MST_SCK

MMUART_X_RXD MMUART_X_RXD

MMUART_X_RTS

MMUART_X_DTR

MMUART_X_CTS

MMUART_X_DSR

MMUART_X_RI

MMUART_X_DCD

MMUART_X_SCK

12.2.2 Port List
The following table lists MMUART I/O signals. X is used as a place holder for 0 or 1 in register and signal
descriptions, indicating MMUART_0 or MMUART_1.

Table 12-1. MMUART I/O Signal Descriptions

Name Type Polarity Description

MMUART_X_CTS Input Low Clear to send.
This signal is used in the modem interface. The active-low signal
is an input that indicates when the attached device (modem) is
ready to accept data. MMUART passes the information to the
Cortex-M3 processor through the modem status register (Table
12-20). The register indicates that the CTSn signal is changed
since the register is read last time. This signal can either go to the
fabric or to the I/O pad.

MMUART_X_DSR Input Low Data set ready.
This signal is used in modem interface. The active-low signal is
an input that indicates when the attached device (modem) is ready
to set up a link with MMUART. MMUART passes the information
to the Cortex-M3 processor through the Table 12-20. This register
also indicates that the DSRn signal is changed since the register
was read last time. This signal can either go to the fabric or to the
I/O pad.

MMUART Peripherals

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 460

...........continued
Name Type Polarity Description

MMUART_X_DCD Input Low Data carrier detect.
This signal is used in the modem interface. The active-low signal
is an input that indicates when the attached device (modem) has
detected a carrier. MMUART passes this information to the Cortex-
M3 processor through the Table 12-20. This register also indicates
that the DCDn signal is changed since the register is read last
time. This signal can either go to the fabric or to the I/O pad.

MMUART_X_RI Input Low Ring indicator.
This signal is used in the modem interface. The active-low signal
is an input showing when the attached device (modem) senses a
ring signal on the telephone line. MMUART passes this information
to the Cortex-M3 processor through the Table 12-20. This register
also gives an indication when the RI trailing edge is sensed. This
signal can either go to the fabric or to the I/O pad.

MMUART_X_RTS Output Low Request to send.
This signal is used in the modem interface. The active-low
output signal is used to inform the attached device (modem) that
MMUART is ready to send data. It is programmed by the Cortex-
M3 processor through the Table 12-18. This signal can either go to
the fabric or to the I/O pad.

MMUART_X_DTR Output Low Data terminal ready.
This signal is used in the modem interface. The active-low output
signal informs the attached device (modem) that MMUART is
ready to establish a communications link. It is programmed by
the Cortex-M3 processor through the Table 12-18. This signal can
either go to the fabric or to the I/O pad.

MMUART_X_RXD Input Serial input data
This is the data transmitted into MMUART. It is synchronized with
the APB clock (master clock) input pin. This signal can either go to
the fabric or to the I/O pad.

MMUART_X_TXD Output Serial output data.
This is the data transmitted from MMUART. It is synchronized with
the BAUDOUT output pin. This signal can either go to the fabric or
to the I/O pad.

MMUART_X_SCK_IN Input Serial input synchronous clock. The MMUART_X_SCK can be
configured as an input synchronous clock from master when the
MMUART_X acts as a slave.

MMUART_X_SCK_OUT /
BAUDOUTN

Output Low In Synchronous mode, it is the serial output clock, SCK_OUT.
MMUART_X_SCK can be configured as an output synchronous
clock to a slave when MMUART_X acts as a master.
In Asynchronous mode, it is the baud rate clock derived from
APB_X_CLK and BAUDOUTN.

MMUART_X_ESWM Output High Single-wire, half-duplex enable.
If this signal is active-high, then the data I/O is configured for half-
duplex operation over a single-wire, using the Tx pad (out signal).
If Low, then the data I/O has separate Tx (out) and Rx (in) pins.
Single-wire mode enable (ESWM) signal goes to the FPGA fabric,
when it can be used on any pad.

MMUART Peripherals

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 461

...........continued
Name Type Polarity Description

MMUART_X_TE Output High Transmitter output enable.
This active-high signal is used as a bi-directional enable for single-
wire half-duplex operation. An active-high signal transmits out, and
a Low signal is received. TE usage implies that the MMUART is
configured in single-wire mode with the single-wire mode (SWM)
bit.

MMUART_X_E_MST_SCK Output High Enable master clock.
This active-high signal is used as a bi-directional enable for the
SCK_IN and SCK_OUT signals. If these signals are taken from a
single
bi-directional pad, E_MST_SCK active-high designates Master
mode and forces the bi-directional pad as an output. Otherwise
(in case of active-low), the pad is an input for SCK_IN.

MMUART_X_OUT1 Output Low Output 1.
This active-low output is a user-defined signal. It is programmed
by the processor via the Table 12-18 and is set to the opposite
value. It can be used as a bi-directional pad enable for bi-
directional topology use models.

MMUART_X_OUT2 Output Low Output 2.
This active-low output signal is a user-defined signal. It is
programmed by the processor via the Table 12-18 and is set to
the opposite value.

12.2.3 Initialization
This section describes the MMUART initialization sequence, reset, clock requirements, and interrupts. The MMUART
is initialized by configuring the MMUART control registers and SOFT_RESET_CR system registry.

12.2.3.1 MMUART Initialization Sequence
1. Release the MMUART from reset by using SOFT_RESET_CR system registry (Table 12-2).
2. Disable the MMUART interrupts by using Interrupt Enable Register (Table 12-12).
3. Clear the transmit and receive FIFO of MMUART by using FIFO Control Register (Table 12-7).
4. Clear the loopback and remote loopback modes by using Modem Control Register (Table 12-18).
5. Configure MMUART to send/receive MSB or LSB as a first bit by using Multi-Mode Control Register 1 (Table

12-23).
6. Set default transmit and receive ready by using ENABLE_TXRDY_RXRDY bit of FIFO Control Register (Table

12-7).
7. Disable 9-bit address flag mode and single-wire mode by using Multi-Mode Control Register 2 (Table 12-24).
8. Disable transmit time guard and fractional baud rate by using Multi-Mode Control Register 0 (Table 12-22).
9. Set default receive timeout by using Multi-Mode Control Register 0 (MM0) and Receiver Timeout Register

(Table 12-27).
10. Set transmit time guard by using Transmitter Time Guard Register (Table 12-26 and).
11. Set input filter length to suppress spikes by using Glitch Filter Register (Table 12-25).
12. Configure the baud rate of MMUART by using Baud Rate Registers (Table 12-8, Table 12-9, and Table 12-10).
13. Set the word length, stop bits and parity of MMUART by using Line Control Register (Table 12-17).
14. Disable LIN header detection and automatic baud rate calculation, RZI modulation/demodulation and smart

card modes by using ELIN(Table 12-22), EIRD(Table 12-23), and EERR(Table 12-24) bits.

12.2.3.2 MMUART Reset
MMUART resets to zero on power-up and is held in reset until it is enabled. An option is provided under software
control to reset the MMUART by writing to bit 7 or bit 8 of the SOFT_RESET_CR, located in the SYSREG block. At

MMUART Peripherals

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 462

power-up, the reset signals are asserted 1. This keeps MMUART peripherals in a reset state. MMUART peripheral
becomes active when the bit is set to 0, as mentioned in the following table.

Table 12-2. Soft Reset Bit Definition for the MMUART_x

Bit
Numbe
r

Name R/W Reset
Value

Description

8 MMUART1_SOFTRESET R/W 0x1 Controls reset input to MMUART_1
0: Release MMUART_1 from reset

1: Keep MMUART_1 in reset (reset value)

7 MMUART0_SOFTRESET R/W 0x1 Controls reset input to MMUART_0
0: Release MMUART_0 from reset

1: Keep MMUART_0 in reset (reset value)

12.2.3.3 Clock Requirements
The MMUART_0 and MMUART _1 peripherals are clocked by APB_0_CLK on APB bus 0 and APB_1_CLK on APB
bus 1. These clocks are derived from the main MSS clock M3_CLK. Each APB clock can be programmed individually
as M3_CLK divided by 1, 2, 4, or 8. For more information on clocks, see
UG0449: SmartFusion2 and IGLOO2 Clocking Resources User Guide.

The baud rate generator block receives the input from APB clock and divides by the value of the Baud Rate Registers
(Table 12-8, Table 12-9, and Table 12-10). The result is then divided further by 16 to produce the integer baud rate.
The resultant signal is the BAUDOUT signal. The MMUART also has a fractional baud rate generation capability.
These features are described in detail in 12.2.4.1. Baud Rate Generation.

12.2.3.4 Interrupts
There is one interrupt signal from each MMUART peripheral. The MMUART_0_INT signal is generated by
MMUART_0 and is mapped to INTISR[10] in the Cortex-M3 processor Nested Vectored Interrupt Controller (NVIC).
The MMUART_1_INT signal is generated by MMUART_1 and is mapped to INTISR[11] in the Cortex-M3 processor
NVIC. Both interrupt enable bits within NVIC-INTISR[10] and INTISR[11] correspond to bit locations 10 and 11.
MMUART interrupts are enabled by setting the appropriate bits in the IER register while the divisor latch access bit
of Table 12-17 (Table 12-17) is 0. Ensure the clearing of the appropriate bit in the IER interrupt service routine to
prevent a re-assertion of the interrupt.

Important: It should be noted that there is currently no priority scheme to interrupt within the MMUART
peripheral.

12.2.4 Details of Operation
This section provides functional description of MMURAT internal components and different modes of MMUART
operation.

12.2.4.1 Baud Rate Generation
The baud rate generator contains free-running counters that generate the internal clocks. The design utilizes an
asynchronous baud rate generation circuit and also allows for synchronous slave and master modes.

Following are the three major baud rate generation modes:

• Fractional Baud Rate Generation–Asynchronous and Synchronous–Master Mode: The baud rate generation
follows asynchronous operation, but with an averaging function which yields more precise, overall baud rate
values in fractions of system clock cycles.

• Clock-In Adaptation–Synchronous–Slave Mode: In this mode, the MMUART_X_SCK_IN (serial input
synchronous clock) determines the baud rate. MMUART may receive and transmit data based on this clock
(full-duplex).

MMUART Peripherals

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 463

• Clock-Out Generation–Synchronous–Master Mode: In this mode, MMUART_X_SCK_OUT (serial output
synchronous clock) determines baud rate based on the baud rate registers. MMUART may receive and transmit
data based on this clock (full-duplex).

Software may drive half-duplex communication based on the application, and a single line may be used for
MMUART_X_TXD and MMUART_X_RXD transmissions through a bi-directional pad. While transmitting data,
the reception is inhibited and vice-versa. This can be done by enabling the single-wire half-duplex enable
(MMUART_X_ESWM). The following figure illustrates different MMUART system topologies:

Figure 12-3. Synchronous and Asynchronous Mode Topologies
MMUART

MMUART

MMUART

SmartFusion® 2

MMUART

MMUART_X_SCK_OUT

MMUART_X_SCK_IN

SMART CARD

UART

USART

SPI

Full-Duplex Async

Full-Duplex Sync-Slave

Full-Duplex Sync-Master

Half-Duplex Sync-Master

S_IN_OUT

MMUART_X_RXD

MMUART_X_RXD

MMUART_X_RXD

MMUART_X_RXD

MMUART_X_TXD

MMUART_X_TXD
MMUART_X_TE

MMUART_X_TXD

MMUART_X_TXD

CLK_IN
DO
DIN

TX

TX

RX

RX
CLK_OUT

12.2.4.1.1 Fractional Baud Rate Generation–Asynchronous Mode
The following figure depicts accumulative baud rate difference error in the Asynchronous mode. It also describes how
fractional baud rate generation reduces this error by adding wait times, in the essence of forming a new average
baud rate value that is between two given integer baud rate values.

Specifically, fractional baud rate generation modulates the integer baud rate with the integer baud rate + 1/16th of a
Tbit time (bit transmit time) to yield a time averaged fractional value. The fractional resolution is 1/64th resolution. A
6-bit phase accumulator evenly distributes the fractional value over 64 Tbit times.

MMUART Peripherals

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 464

Figure 12-4. Sample Time Correction with Fractional Baud Rate

? ?

Received Baud Rate Matches Transmitted Baud Rate through injection of single APB CLK cycle
waits in the baud generation

Received Baud Rate Faster Than Transmitted Baud Rate

Received Baud Rate Matches Transmitted Baud Rate

*Accumulative Error is Reduced resulting in no Sample Error

*Accumulative Error results in Error on the Last Bits

*No Sample Error

Rxd

Rxd

Rxd

Sample Times

Stop
Bit

Stop
Bit

Stop
Bit

Start
Bit

Start
Bit

Start
Bit

Sample Times

Sample Times

Wait Times

d0 d1 d2 d3 d4 d5 d6 d7 p0

d0 d1 d2 d3 d4 d5 d6 d7 p0

d0 d1 d2 d3 d4 d5 d6 d7 p0

The following equation is used to calculate the fractional baud rate:

Figure 12-5. Fractional Baud Rate Equation

where,

APB_X_CLK: Input reference clock (APB_0_CLK for MMUART_0 and APB_1_CLK for MMUART_1)

DMR: Divisor latch for MSB

DLR: Divisor latch for LSB

DFR: Fractional divisor register

If a baud rate value of 1 and 1/64th (1.015625) is required, set the “DLR” to 1, the “DMR” to 0, and “DFR” to 1.
Following examples illustrate the use of fractional baud rate.

The following figure describes the timing for a fractional baud rate value of 4.5. Exact averaging is accomplished in
one Tbit (bit time) cycle.

MMUART Peripherals

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 465

Figure 12-6. Example with Fractional Baud Rate of 4.5
Bit Rate Modulation with Tbit Times

BR = 4 = 64 CCC per count

BR = 5 = 16x5 = 80 CCC per count
Integer + 1 Tbit

Integer Tbit Integer Tbit

Fractional Tbit

4 and 32/64th = 4.5

Shown is Tbit modulation of 4 and 5
integer divisor value bit rates to achieve
an average bit rate of 4 and 1/2 or 4.5.

BR = DMR+DLR

BR = DMR+DLR+1

0 0 01 1 12 2 233 44 55 66 70 1 2 3 4 5 6 73 4 5 677

0 01 12 2 33 44 5

5

5 66 77

0 01 12 2 33 44

4

55 66 77

Important: 
• Lowest Common Denominator Value of 32 requires two Tbit times to complete the time modulation

fractional baud rate. Lowest Common Denominator Value of 64 requires four Tbit times to complete
the time averaged fractional baud rate. Thus, depending on the fraction chosen, the Tbit time may or
may not be constant for 2 or 4 Tbit times max, but the time averaged Tbit time will be correct.

• Do not use the integer divisor value of 1 when in Fractional mode.

The following figure shows the timing for a fractional baud rate value of 2 and 3/64th. Exact averaging is
accomplished in four Tbit cycles due to 64th granularity.

MMUART Peripherals

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 466

Figure 12-7. Example with Fractional Baud Rate of 2 and 3/64th

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 1 2 4 4 5 60 3 6 7 0 1 2 3 7 0 1 2 3 4 5 6 7 0 1 2 4 5 6 7 1 2 4 4 5 60 3 5 6 7 0 1 2 3 75 30

0 01 12 2 33

3

44 55 66 77

Bit Rate Modulation with Tbit Times

BR = 3 = 16x3 = 48 CCC per count

BR = 2 = 32 CCC per count

Integer + 1 Tbit

Integer Tbit Integer Tbit Integer Tbit Integer Tbit

Fractional Tbit

Average BR = 2

Average BR = (2 x 61 + 3 x 3)/64 = 1 31/64 = 2 3/64

Fractional Tbit Fractional Tbit Fractional Tbit

BR = DMR+DLR

BR = DMR+DLR+1

th

12.2.4.1.2 Input Clock-Synchronous-Slave Mode
MMUART supports a synchronous master and slave mode. In the synchronous slave mode, the MMUART accepts
an input clock that is synchronized to the data. The asynchronous state machine is harnessed to self-synchronize the
start bit to a clock edge. With this circuit, the input clock can be positive-edge or negative-edge. The following figure
shows the first edge that detects a start bit aligns the state machine to sample data on the next same edge.

In the synchronous slave mode, the Tx block does not output a clock or baud rate signal as it is assumed that
the master provides clocking for any other slave peripherals. Additionally, the APB clock (APB_X_CLK) frequency
must be at least 2x the input MMUART_X_SCK_IN (serial input synchronous clock) since MMUART_X_SCK_IN gets
resynchronized.

MMUART Peripherals

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 467

Figure 12-8. Synchronous Input and Adaptation to Internal Baud Clocking

APB_X_CLK

MMUART_X_SCK_IN_filt

MMUART_X_SCK_IN_neg

MMUART_X_SCK_IN_pos

MMUART_X_RXD_filt

Sample TimeSample Time

Start
Bit

12.2.4.1.3 Clock Out-Synchronous-Master Mode
The synchronous master mode is similar to the synchronous slave mode except that an external clock source
(MMUART_X_SCK_IN), the receiver, and transmitter blocks use an internally generated synchronous clock which
must be no greater than ½ APB clock frequency. The output clock, MMUART_X_SCK_OUT, is provided to the slave
devices. The internally generated synchronous clock is set with the same baud rate divisor registers that are used in
the Asynchronous mode. The Fractional baud rate generation mode should not be used in the Synchronous mode as
the output clock can become unpredictable.

The MMUART_X_E_MST_SCK, master clock output enable (Table 12-1) is used for controlling a bi-directional pad
that is used for MMUART_X_SCK_IN and MMUART_X_SCK_OUT. MMUART_X_E_MST_SCK=1 indicates master
mode, forcing a bi-directional pad to be an output. Otherwise, the pad acts as input for MMUART_X_SCK_IN.
MMUART_X_E_MST_SCK=1 indicates master mode, forcing a bi-directional pad to be an output. Otherwise, the pad
acts as input for MMUART_X_SCK_IN.

Figure 12-9. Bi-Directional Synchronous Clock Configuration Options

SCK
PAD

FABRIC I/F

S
C

K
_D

P
I_

se
l

S
C

K
_f

ab
ric

MMUART_X_SCK_IN

MMUART_X_SCK_OUT

MMUART_X_E_MST_SCK

MMUART Peripherals

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 468

12.2.4.2 Input Filters
MMUART provides input filters for general purposes and suppression of noise and spikes. After resynchronization,
the input filters utilize all-zero/all-one unanimous sampling technique based on the system clock with a configurable
filter length of N FFs, set by the GLR bits of the Table 12-25 register. If all N FFs are 0, then 0 is set on the output.
Similarly, if all N FFs are 1, then 1 is set on the output. The input filters may be bypassed by setting GLR to 0 in which
case only two resynchronize flip-flops are used. Setting the GLR value to 1 adds a metastability flip-flop and provides
no spike filtering. GLR values 2 to 7 further filter the spikes in the output received from flip-flops. Thus, this method
helps to suppress spikes for GLR width greater than 1 APB clock cycle.

The following figure shows an example with GLR = 4. In all cases, positive edge and negative edge signals are
generated on the same cycle as the positive or negative edge of the resynchronized and/or filtered output signal.

Important: To obtain the maximum rate for synchronous UART operation (2x APB_X_CLK), set N to zero.

Filtering in synchronous mode is still possible, but the sampling rate would have to be decreased to less than the filter
length.

Figure 12-10. Input Filtering Circuit and Timing for GLR=4 (Pulses Less than 4 APB Clock Cycles Filtered
Out)

Resync

ff ff ff ff ff ff
ff

Set
Reset

MMUART_X_
SCK_IN_filt

GLR=4
MMUART_X_

SCK_IN

APB_X_CLK

MMUART_X_
SCK_IN

MMUART_X_SCK
_IN_resync

MMUART_X_SCK
_IN_filt

MMUART_X_SCK
_IN_negedge

MMUART_X_SCK
_IN_posedge

12.2.4.3 LIN Header Detection and Auto Baud Rate Calculation
The LIN is a serial communications protocol, which efficiently supports the control of mechatronics nodes in
distributed automotive applications. LIN is a broadcast serial network, comprising of one master and one or more
slaves.

In a LIN system, the master and slave nodes are initially set to a given baud rate between 1 and 20 Kbps. The master
controls the per-frame-change of the asynchronous baud rate with the LIN header's break/sync fields. The following
figure shows that the communication in an active LIN network is always initiated by the master task. The master

MMUART Peripherals

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 469

sends out a message header, which comprises the break field, synchronization byte field, followed by a protected
identifier field (PID).

Figure 12-11. LIN Header

Break Field Sync Byte (0x55)

PID Rest of Frame

12.2.4.3.1 Break/Sync Detection
When the LIN header detection block is enabled with the ELIN bit (Table 12-22), the LIN circuit automatically detects
break fields greater than 11 Tbits (bit time) of the currently running baud rate. The LIN circuit calculates the number
of APB clock cycles from the first sync byte falling edge to the fifth (and last) sync byte falling edge with a 23-bit
counter. The 23-bit counter is necessary to count eight Tbits at the slowest baud rate. Once the fifth edge is detected,
the LIN circuit automatically updates the integer and fractional divisor registers and the PID and rest of the frame can
be handled with the normal UART Rx/Tx paths. Every LIN frame begins with the break, which comprises of break
lengths greater than 11 Tbits.

This serves as a start-of-frame notice to all nodes on the bus. The following figure shows the break field signals the
start of a new frame.

Figure 12-12. LIN Break Field Width => 11 Tbit Count Interrupt
MMUART_X

_RXD

Break_Timer

LINBI

0 0

Break Field=13 Tbit Length

Break Timer Counting to atleast 11.5 Tbit, Resetting if SIN=1

The sync field is the second field transmitted by the master task in the header. Sync is defined as the character x55.
The sync field allows slave devices that perform automatic baud rate detection to measure the period of the baud
rate and adjust their internal baud rates to synchronize with the bus. The sync field allows for fine calibration of the
nominal baud rate, as shown in the following figure. After the LINBI bit is set in multi-mode interrupt register (Table
12-16), the first falling edge resets the sync timer and the fifth falling edge stops counting. The 23-bit count value is
divided by 128 (128 = 16 baud clocks per bit X 8 bits) to generate the integer baud rate by shifting the count value by
seven towards LSB. The fractional value is contained in the remaining bits, using the first insignificant bit to round the
result.

The PID field is the final field transmitted by the master task in the header. This field provides identification for
each message on the network and ultimately determines which nodes in the network receive or respond to each
transmission. All slave tasks continually listen for PID fields, verify their parities, and determine if they have to receive
data or send data for this particular identifier. The LINSI interrupt resets the FIFO address pointers so that the PID
stays in the first location. The firmware reading the PID byte determines if the application needs to send or receive
data, and the trigger level that needs to be set. A PID parity error check is performed on the fly and the interrupt,
PID_PEI, is asserted when there is a mismatch between the incoming P0 and P1 parity bits and the calculated P0
and P1 parity.

The following figure shows the PID field processed as the first byte and placed in the receive FIFO. The parity is
calculated as per the equations shown, and an interrupt (PID_PEI) is generated, if there is a mismatch between the
calculated PID parity and the received PID parity.

Figure 12-13. LIN PID Parity Error Interrupt

Break Field Sync Byte

PID

PID_PEI

Rest of Frame

PID Byte

ID3 P1P0ID4 ID5ID2ID1ID0

Parity Equations:
P0 = ID0+ID1+ID2+ID4
P1 = -(ID1+ID3+ID4+ID5)

MMUART Peripherals

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 470

12.2.4.3.2 Auto Baud Rate Update FSM
The following figure shows the receiving LIN FSM. The FSM simply follows through by parsing the break and sync
fields, and then auto-updating the integer and fractional baud rate divisor register before returning to idle.

Figure 12-14. LIN Receive FSM

Falling Edge Detected

Less than 11 zero Tbits in a
 Row Detected

11 zero Tbits in a Row Detected,
LINBI Set5 Falling Edges Detected,

LINSI Set,
Update Divisor Registers

Idle Break
Count

Sync
Count

12.2.4.4 RZI Modulation and Demodulation
The RZI modulation/demodulation blocks are intended to allow for IrDA Serial Infrared (SIR) communications. The
SIR specification uses RZI signaling for improving the peak power to average power ratio in low rate wireless
applications such as remote controls. The following figure shows the RZI modulation scheme, where a logic 0 is
represented as an infrared light pulse. A logic 0 is represented as a 3/16th high pulse, while no pulse in a given baud
rate bit time equates to logic 1. UART 16x over-sampling, start and stops bits are used. Modifications to a standard
UART consist of adding an IrDA modulator and demodulator in the TxD and RxD signal paths.

Figure 12-15. RZI Modulation

Start
Bit

Stop
Bit

Transmitter
Output

Data Bits

TxD

Bit Period 3/16 Bit Period

0 10 1 010 1 01

RZI demodulation takes pulses that are 3/16th of a baud rate clock long and transforms it to the standard non-return
to zero (NRZ) UART signal, which is then fed into the main UART Rx blocks. Similarly, RZI modulation takes the
outgoing UART NRZ Tx signal and creates 3/16th pulses out.

12.2.4.4.1 RZI to NRZ Demodulation
The RZI to NRZ demodulator looks for High to Low transitions on the input, marking each one as an RZI pulse for
applications such as IrDA. As High to Low transitions are detected, it is important to have any noise suppressed
before entering the demodulator. The input filter block (see 12.2.4.2. Input Filters) of the MMUART is used to
suppress noise.

MMUART Peripherals

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 471

However, true IrDA compliant optical transceivers must perform noise suppression and supply the MMUART with
noise free digital signals as per the IrDA specification.

After input filtering, the demodulator waits for a positive edge and sets a down counter based on the internal
16 samples per bit time baud rate clock. The output NRZ signal is set Low until the counter reaches 0, then
automatically it goes High.

When back-to-back pulses occur, the incoming pulse may not be aligned with the internal baud count enable and as
such may generate a 1/16 NRZ 1 level. This 1/16th pulse is a do not care situation because the sampling occurs in
the middle of the Tbit time (bit time).

The input to the demodulator can be an inverted version of the following figure using the EIRX configuration bit in the
multi-mode control register 1 (Table 12-23). Also, the EIRD bit in Table 12-23 has to be set to 1.

Figure 12-16. RX RZI-to-NRZ Demodulation

MMUART_X
_RXD_rzi

MMUART_X
_RXD_nrz

MMUART_X_
RXD_rzi_neg

br_dwn_cnt
internal

sample times
@ 8/16

3/16

16/16 = 1 Bit Time

10 ACDEF 1234569B 78 0 00 10 ACDEF 1234569B 78

12.2.4.4.2 NRZ to RZI Modulation
The NRZ to RZI modulation receives the MMUART_X_TXD_nrz signal which is in NRZ format and needs to be
converted into the RZI format. The modulator waits for a negative edge on the NRZ signal, sets a baud rate/16
decremented down counter and outputs a pulse for the first 3 or 4 counts. If the count reaches zero and the NRZ
signal is still Low, another output pulse is generated, otherwise, no pulse is generated.

The output of the modulator can be an inverted version of the following figure with the EITX configuration bit in the
Table 12-23. Additionally, the output can be 1/4 widths instead of 3/16th using the EITP bit. Also the EIRD (enable bit
RZI mod/demod) bit in Table 12-23 has to be enabled. The following example shows an output for a signal that has
two consecutive zeros and the value of EIRD=1, EITX=1, and EITP=0.

Figure 12-17. Tx NRZ-to-RZI Modulation

ACDEF 1234569B 78ACDEF 1234569B 78 00 0 0

16/16 = 1 Bit Time 16/16 = 1 Bit Time

3/16

MMUART_X_
TXD_nrz

MMUART_X_
TXD_nrz_neg

br_dwn_cnt

MMUART_X_
TXD_nzi

Multi-Mode Config Bits in this example: EIRD = 1, EITX + 1, EITP = 0

12.2.4.5 Transmitter Time Guard
When the transmitter time guard (TTG) feature is enabled and configured for a time value greater than 0, it allows
programmable wait periods between transmissions. It can be configured in the Table 12-26 register. On each byte

MMUART Peripherals

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 472

transfer, the transmitter enters a TTG wait state prior to sending out the stop bits. Tx Time Guard Value = TTG x Bit
Time (Tbit).

12.2.4.6 Receiver Timeout
In the Receiver timeout block (Rx timeout), a counter looks for the post filtered serial input to remain High until the
counter expires. Once the timeout occurs, an RTOII interrupt is generated that is cleared when the Table 12-27
register is rewritten.

Rx Timeout Value = 4 x RTO x Bit Time (Tbit)

12.2.4.7 LSB/MSB Orientation
MMUART_x allows either LSB or MSB to be received or transmitted first. LSB/MSB orientation is mapped based on
the Tx or Rx MSB bits of the Table 12-23. Remapping of the serial I/O occurs at the APB interface.

12.2.4.8 9-bit Transmit/Receive Mode
MMUART_x supports 9-bit address flag capability. The 9th bit mode is required for multi-drop addressing topologies.
Addressing mode is essentially 8-bit mode with 1 parity error bit or the 9th bit with parity set at stick 0, which means
that the parity is permanently set to 0 while receiving or transmitting data. The following figure shows an error
condition of 1 is used as an address flag.

Figure 12-18. 9-Bit Format
Stop
Bit(s)

Address Byte Flag equal to
‘1’ during Address Fields

Address Byte

Start
Bit A0 A5 A6 AFA7A4A3A2A1

There are two ways to handle 9-bit multi-drop addressing:

• Software Driven Parity Error Checking: This is accomplished by configuring the MMUART in
8-bit mode, with stick 0 parity (SP bit in Table 12-17) enabled. A parity error (PE) in the line status register (Table
12-19) is set whenever an address flag (AF) arrives by marking the address. Software then checks this address
byte to see if it matches its own address, and then proceed accordingly.

• Automatic Hardware Address Flag Comparison: When the automatic address flag comparison option is enabled
with the EAFM bit in the Multi-mode register 2 (Table 12-24), the MMUART initially disables the Rx FIFO and
continuously checks for the address flag. If an address flag is received and the associated 8-bit data matches
the address in the Table 12-28 register, the Rx FIFO is enabled. In this mode, the software does not check
the address, and only receives Rx data once the address is matched. Disabling the Rx FIFO occurs either by
address flag being re-sent with a non-matching address value (automatic), or the EAFC bit in Table 12-24 is set.
An example for using EAFC takes place when the address flag is received with the correct address. If the frame
length is known to be 4 bytes, then the software could set the EAFC bit to disable the Rx FIFO after the 4th
received byte, and begin searching for another address flag with matching address.

12.2.4.9 Loopback Modes
There are two loopback modes: Local loopback mode and Remote loopback mode. In the Local loopback mode,
MMUART_X_TXD is set to 1. The MMUART_X_RXD, MMUART_X_DSR, MMUART_X_CTS, MMUART_X_RI, and
MMUART_X_DCD inputs are disconnected. The output of the transmitter shift register is looped back into the
receiver shift register. The modem control outputs (MMUART_X_DTR, MMUART_X_RTS, MMUART_X_OUT1, and
MMUART_X_OUT2) are connected internally to the modem control inputs, and the modem control output pins are
set as 1. The transmitted data is immediately received, allowing the Cortex-M3 processor to check the operation of
the MMUART_X.

In Remote loopback mode, when a bit is received, it is sent directly out of the transmit line, bypassing the transmitter
block, and disabling the receiver. Local loopback has a higher priority over Remote loopback. In Automatic echo
mode, a bit is received and is sent directly out the transmit line, bypassing the transmitter block, while the receiver
is still enabled. Loopback modes are enabled or disabled by making changes to the modem control register (Table
12-18).

12.2.4.10 ISO7816-3 Modes
The ISO7816 is an international standard related to electronic identification cards. The ISO7816-3 utilizes a half-
duplex, bi-directional bus for data transfers. The MMUART provides the clock to the smart card IC and is therefore

MMUART Peripherals

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 473

considered the master in the system and smart card is the slave. MMUART supports T0/T1 addressing modes.
Protocol T=0 is the asynchronous half-duplex character transmission protocol; whereas T=1 is the asynchronous
half-duplex block transmission protocol. The T0 protocol is a byte-oriented protocol where a character is transmitted
across the channel between the reader (MMUART) and the card.

In addition, error handling is performed on each byte by looking at the parity bit. If the actual parity bit does not
correspond to the parity of the transmitted data, then an error must have occurred. In the T0 protocol, the receiving
side signals that require the byte to be retransmitted in case of detecting a parity error. This is done by holding the I/O
line low (the I/O line is set High preceding the transfer of a byte). When the transmitting side detects this, it resends
the byte that was not received correctly. The transmitter output enable is enabled during the transmission of the start
bit and data byte and is disabled during the stop bit.

For T = 0 protocol, the format of the data is composed of 1 start bit, 8 data bits, 1 parity bit, and 1 guard time, which
is composed of 2-bit times. The transmitter shifts all the data out except during the guard time. The guard time is
used by the receiver to NACK the transmission. When the EERR bit in MM2 is set, the receiver will force an error
signal to transmit out, if an incoming parity error is detected. In this case the I/O signal is held Low for one Tbit
time starting from 10.5. When transmitting, the 11th Tbit in the ACK/NACK window is sampled from the Rx input,
generating an interrupt if NACK (NACKI interrupt can be enabled by modifying Table 12-13 register) is detected. The
following figures show the timing diagrams for I/O signals, the Transmit mode output enable and the Receive mode
output enable when EERR is set to 1.

Important: The Tx Transmit mode output enable (TE) is disabled during a parity error to prevent any
wrong data from being transmitted.

Similarly, the Rx mode output enable (TE) is enabled during parity error to allow the retransmission of data.

Figure 12-19. Single Wire Error Signal Timing when EERR=1

I/O Data
Signal

2 Stops Bits

TbitTbit TbitTbitTbitTbit TbitTbitTbit Tbit TbitTbit TbitTbit
ACK/
NACK

210121110.5109876543210

If there is an input received
parity error, the output is

held low for 1.0 Tbits
starting at 10.5

The output transmitter
samples the received signal

at the 11th Tbit for ACK/
NACK and sets an interrupt

if NACK (NACKI)

Parity

MMUART Peripherals

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 474

Figure 12-20. Transmit Mode TE Output Enable Timing when EERR=1
2 Stops Bits

TbitTbit TbitTbitTbitTbit TbitTbitTbit Tbit TbitTbit TbitTbit

ACK/NACK

210121110.5109876543210

Tx Transmit Enable Output
disabled during ACK/NACK

window

Parity
Tx Data

TE

Figure 12-21. Receive Mode TE Output Enable and NACK Timing when EERR=1
2 Stops Bits

TbitTbit TbitTbitTbitTbit TbitTbitTbit Tbit TbitTbit TbitTbit

ACK/NACK

210121110.5109876543210
Parity

Rx Data

TE

Tx (sout)

Parity Error

NACK

Transmit Enable Output enabled during Rx ACK/NACK
window when there is a parity error. If no parity error, then

TE remains deasserted.

12.3 How to Use MMUART
This section describes how to use MMUART in an application.

12.3.1 Design Flow
The following steps are used to enable MMUART in the application by using Libero SoC.

1. Enable MMUART_0 and/or MMUART_1 instance by using the MSS configurator in the application, as shown
in the following figure.

MMUART Peripherals

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 475

Figure 12-22. Enable MMUART

2. Configure Duplex Mode to Full Duplex and Async/Sync Mode to Asynchronous by using MSS MMUART_0
Configurator as shown in the following figure. Use the Main Connection drop-down list to connect the ports
of enabled MMUART_0 instance to an I/O. Click the highlighted Users Guide button to find more information
about MMUART configuration details.

MMUART Peripherals

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 476

Figure 12-23. MSS MMUART Configurator

3. The MMUART_0 interface signals in the MSS component are shown in the following figure.
Figure 12-24. MMUART Interface Signals

4. Generate the component by clicking Generate Component or by selecting SmartDesign > Generate
Component > . For more information about generation of the component, see the latest SmartDesign user
guide on Libero SoC Documentation. The firmware driver folder and SoftConsole workspace are included into
the project. Click the highlighted Configure firmware as shown in the following figure to find the MMUART
driver information.

MMUART Peripherals

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 477

Figure 12-25. MMUART Driver User Guide

5. Click Generate Bitstream under Program Design to complete the .fdb file generation.
6. Double click Export Firmware under Handoff Design for Firmware Development in the Libero SoC

design flow window to generate the SoftConsole Firmware Project. The SoftConsole folder contains the
mss_uart firmware driver. The firmware driver, mss_uart (mss_uart.c and mss_uart.h), which provides
a set of functions for controlling the MSS MMUARTs can also be downloaded from the Microchip Firmware
Catalog. The following table lists main APIs for MMUART. For complete information about the APIs, see the
SmartFusion 2 MSS UART Driver User Guide as shown in the preceding figure.

Table 12-3. MSS MMUART APIs

Category API Description

Initialization and
configuration functions

MSS_UART_init Initializes and configures the MMUART.

MSS_UART_lin_init Initializes and configures the MMUART for LIN mode
of operation.

MSS_UART_irda_init Initializes and configures the MMUART for IrDA
mode of operation.

MSS_UART_smartcard_init Initializes and configures the MMUART for ISO 7816
(smart-card) mode of operation.

Polled transmit and receive
functions

MSS_UART_polled_tx Transmits the data.

MSS_UART_polled_tx_string Transmits a NULL (”\0”) terminated string.

MSS_UART_fill_tx_fifo Fills the UART's hardware transmitter FIFO.

Interrupt driven transmit and
receive functions

MSS_UART_set_rx_handler Registers a receive handler function.

MSS_UART_set_tx_handler Registers a transmit handler function.

MSS_UART_irq_tx Initiates an interrupt driven transmission.

MSS_UART_get_rx Reads the content of the UART receiver's FIFO and
stores it in the receive buffer.

For more information on MMUART usage, the sample projects are available and can be generated as shown in the
following figure.

MMUART Peripherals

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 478

Figure 12-26. MMUART Sample Project

Important: MSS MMUART does not support full behavioral simulation models. See the SmartFusion2
MSS BFM Simulation User Guide for more information.

12.3.2 MMUART Use Models
The following section discusses MMUART use models.

12.3.2.1 Use Model: Communicating with Host PC through MMUART Peripheral Interface
This use model explains the configuration of MSS MMUART to communicate with the Host PC
Hyper-Terminal program.

MMUART Peripherals

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 479

Figure 12-27. Setup to Communicate With Host PC Through MMUART Interface - Block Diagram

HyperTerminal
program running

on Host PC

SmartFusion® 2

M
M

U
A

R
T_0

MSS

Fabric

RS 232
Transceiver USB-UART

cable

Follow 12.3.1. Design Flow to configure MMUART_0 in the application.

12.3.2.1.1 Software Design Flow
This section explains MMUART initialization and data transfers between the MMUART peripheral and a Host PC.

Initialization of MMUART Peripheral

Initialize the MMUART instance MMUART_0 by using MSS_UART_init API. Specify the baud rate and line
configuration information such as bit length, parity, and stop bits to configure the MMUART instance. The same
baud rate and line information must be used to configure the Host PC HyperTerminal program.

Data Transfer

Use MSS_UART_polled_tx API with the MMUART_0 instance and data buffer to send the data to the Host PC. Use
MSS_UART_get_rx API with the MMUART_0 instance and data buffer to receive the data from the Host PC.

12.4 MMUART Register Map
The MMUART_0 base address resides at 0x40000000 and extends to address 0x40000FFF in the Cortex-M3
processor memory map. The MMUART_1 base address resides at 0x40010000 and extends to address 0x40010FFF
in the Cortex-M3 processor memory map. The following table summarizes the control and status registers for
MMUART _0 and MMUART_1.

Table 12-4. MMUART Register Definitions

Register
Name

Divisor Latch
Access Bit
(DLAB)1

Addres
s
Offset

Read/
Write

Reset
Value

Description

Table
12-5

0 0x0 R N/A Receiver buffer register

MMUART Peripherals

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 480

...........continued
Register
Name

Divisor Latch
Access Bit
(DLAB)1

Addres
s
Offset

Read/
Write

Reset
Value

Description

Table
12-6

0 0x0 W N/A Transmit holding register

Table
12-8

1 0x0 R/W 0x01 Divisor latch (LSB)

Table
12-9

1 0x04 R/W 0 Divisor latch (MSB)

Table
12-10

N/A 0x3C R/W 0 Fractional divisor register

Table
12-12

0 0x04 R/W 0 Interrupt enable register

Table
12-13

N/A 0x24 R/W 0 Multi-mode interrupt enable register

Table
12-14

N/A 0x08 R 0x01 Interrupt identification register

Table
12-16

N/A 0x28 Clear on R 0 Multi-mode interrupt identification register

Table
12-7

N/A 0x08 W 0 FIFO control register

Table
12-17

N/A 0x0C R/W 0 Line control register

Table
12-18

N/A 0x10 R/W 0 Modem control register

Table
12-19

N/A 0x14 R 0x60 Line status register

Table
12-20

N/A 0x18 R 0 Modem status register

Table
12-21

N/A 0x1C R/W 0 Scratch register

Table
12-22

N/A 0x30 R/W 0 Multi-mode control register0

Table
12-23

N/A 0x34 R/W 0 Multi-mode control register1

Table
12-24

N/A 0x38 R/W 0 Multi-mode control register2

Table
12-25

N/A 0x44 R/W 0 Glitch filter register

Table
12-26

N/A 0x48 R/W 0 Transmitter time guard register

Table
12-27

N/A 0x4C R/W 0 Receiver time-out register

MMUART Peripherals

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 481

...........continued
Register
Name

Divisor Latch
Access Bit
(DLAB)1

Addres
s
Offset

Read/
Write

Reset
Value

Description

Table
12-28

N/A 0x50 R/W 0 Address register

Note: 
1. DLAB is the MSB of the line control register (LCR bit 7).

The following tables provide the register bit descriptions in detail.

12.4.1 Receiver Buffer Register (RBR)
Table 12-5. RBR

Bit
Number

Name R/W Reset
Value

Description

[7:0] RBR R N/A This register holds the receive data bits for MMUART_x. The default value
is unknown as the register is loaded with data in the receive FIFO. Bit 0 is
the LSB and it is the first bit received. It might be configured as the MSB
by configuring the E_MSB_RX bit in the MM1. The divisor latch access bit
(DLAB), bit 7 of LCR, must be 0 to read this register. This register is read
only. Writing to this register with the DLAB 0 changes the transmit holding
register (Table 12-6) register value.

12.4.2 Transmit Holding Register (THR)
Table 12-6. THR

Bit
Number

Name R/W Reset
Value

Description

[7:0] THR W N/A This register holds the data bits to be transmitted. Bit 0 is the LSB and is
transmitted first. The MSB might be transmitted first, if it is configured with
the E_MSB_TX bit in the MM1. The reset value is unknown as the register
is loaded with data in the transmit FIFO. The DLAB, bit 7 of LCR, must be 0
to write to this register. This register is write only. Reading from this register
with the DLAB 0 reads the Table 12-5 register value.

12.4.3 FIFO Control Register (FCR)
Rx and Tx FIFOs are 16 bytes deep.

Table 12-7. FCR

Bit
Number

Name R/W Defaul
t State

Description

[7:6] RX_TRIG W 0b11 These bits are used to set the trigger level for the Rx FIFO
interrupt. Rx FIFO trigger level (bytes) are:
0b00: 1 byte

0b01: 4 bytes

0b10: 8 bytes

0b11: 14 bytes

MMUART Peripherals

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 482

...........continued
Bit
Number

Name R/W Defaul
t State

Description

[5:4] Reserved W 0 Software must not rely on the value of a reserved bit. To
provide compatibility with future products, the value of a
reserved bit must be preserved across a read-modify-write
operation.

3 ENABLE_TXRDY_RXRD
Y

W 0 Software must always set this bit to 1 for efficient data
transfer from transmit FIFO to PDMA.

2 CLEAR_TX_FIFO W 0 Clears all bytes in the Tx FIFO and resets its counter logic.
The shift register is not cleared.
0: Disabled (default)

1: Enabled

1 CLEAR_RX_FIFO W 0 Clears all bytes in Rx FIFO and resets counter logic. This
shift register is not cleared.
0: Disabled (default)

1: Enabled

0 ENABLE_TX_RX_FIFO W 1 It enables both the Tx and Rx FIFOs and is hardwired to 1,
which means it is always enabled and cannot be changed.

12.4.4 Baud Rate Divisor Registers
Baud rate clock can be generated in three modes: Asynchronous mode, Synchronous Master mode, and
Synchronous Slave mode. Apart from this, MMUART has an option of generating a fractional baud rate that provides
more precision. For more details, see 12.2.4.1. Baud Rate Generation.

12.4.4.1 Asynchronous/Synchronous Mode Context
In Asynchronous mode, the Baud Rate (BR) clock is generated by dividing the input reference clock's frequency
(APB_0_CLK for MMUART_0 and APB_1_CLK for MMUART_1) by 16 and the integer plus fractional divisor value,
as shown in the following equation.

Divisor Value = Integer Value (DMR + DLR registers) plus Fractional Value (DFR/64).

In the Synchronous Master mode, the baud rate clock is generated by dividing the input reference clock's frequency
(APB_0_CLK for MMUART_0 and APB_1_CLK for MMUART_1) by 2 and the integer divisor value, as shown in the
following equation.

DivisorValue = Integer Value (DMR + DLR registers).

In the Synchronous Slave mode, the baud rate clock is generated directly from the input clock, and as such the
divisor registers are not used.

Important:  The maximum input clock frequency is 1/2 APB_X_CLK (master clock) frequency if input
filtering is not used. If input filtering is used, then the maximum input clock frequency is determined by the
following equation:

MMUART Peripherals

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 483

The Glitch Filter Length (GLR) can be configured by setting the bits in glitch filter register (Table 12-25).

12.4.4.2 Fractional Baud Rate Register
The baud rate divisor value is a 22-bit number consisting of a 16-bit integer and a 6-bit fractional part. This is used
by the baud rate generator to determine the bit period. The fractional baud rate divider enables the use of any clock
with a frequency >3.6864 MHz to act as input clock, while it is still possible to generate all the standard baud rates.
The 16-bit integer is written to the integer baud rate register (Table 12-8). The 6-bit fractional part is written to the
fractional baud rate register (Table 12-10). Table 12-10s are accomplished for divisor values greater than one using
time averaging of the two nearest integer value baud rates based on the fractional value in the Table 12-8:

The special case of the integer divisor value (DLR+DMR) equal to one is not allowed in fractional mode as maximum
error comes when the value is one. Therefore, use integer divisor values of two or more when using fractional mode.

12.4.5 Baud Rate Registers (DLR, DMR, and DFR)
Table 12-8. DLR

Bit
Number

Name R/W Reset
Value

Description

[7:0] DLR R/W 0x01 This divisor latch LSB register (Table 12-8) holds the LSB of the integer
divisor value used to calculate the baud rate. The baud rate can be
calculated using EQ 1, 2, 3, or 4.

Table 12-9. DMR

Bit
Number

Name R/W Reset
Value

Description

[7:0] DMR R/W 0x00 This divisor latch MSB register (Table 12-9) holds the MSB of the integer
divisor value used to calculate the baud rate. The baud rate can be
calculated using EQ 1, 2, 3, or 4.

Table 12-10. DFR

Bit
Number

Name R/W Reset
Value

Description

[5:0] DFR R/W 0x00 The fractional divisor register (Table 12-10) is used to store the fractional
divisor used to calculate the fractional baud rate value in 1/64th.
0x0: 0/64

0x1: 1/64

….

0x3F: 63/64

As explained earlier, the divisor value has an integer part and a fractional part. Calculate the 6-bit number (k) which
is the fractional divisor in Table 12-10 register by taking the fractional part of the required baud rate divisor and
multiplying it by 64 (that is, 2n, where n is the fractional part which is 6) and adding 0.5 to account for rounding errors:

k = integer (fractional part of divisor value × 2n + 0.5)

For example, to generate the baud rate of 134.5 the reference clock is 18.432 MHz.

FAPBCLK = 18.432 MHz, Fractional BR = 134.5,
Hence, calculate the divisor value = (18.432 × 106) / (16 × 134.5) = 8,565.05

The integer part of divisor = 8565 and fractional part of divisor = 0.05

Therefore, the fractional part, k = integer ((0.05 × 64) + 0.5) = 3.7 ~ = 4

MMUART Peripherals

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 484

The following table contains the list of baud rates and corresponding values of DFR and DMR+DLR registers.

Table 12-11. Baud Rates and Divisor Values for the 18.432 MHz Reference Clock

Baud Rate Divisor DLR + DMR Integer
Divisor

DFR Fractional
Divisor in 64th

Percent Error

50 23,040 23,040 0 0.00000%

75 15,360 15,360 0 0.00000%

110 10,472.72 10,472 47 0.00007%

134.5 8,565.05 8,565 4 0.00008%

150 7,680 7,680 0 0.00000%

2,000 576 576 0 0.00000%

38,400 30 30 0 0.00000%

56,000 21.57 21 37 0.03255%

12.4.6 Interrupt Enable Register (IER)
Table 12-12. IER

Bit
Number

Name R/W Reset
Value

Description

[7:4] Reserved R/W 0 Software must not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit must be
preserved across a read-modify-write operation.

3 EDSSI R/W 0 Modem status interrupt enable
0: Disabled (default)

1: Enabled

2 ELSI R/W 0 Receiver line status interrupt enable
0: Disabled (default)

1: Enabled

1 ETBEI R/W 0 Transmitter holding register empty interrupt enable
0: Disabled (default)

1: Enabled

0 ERBFI R/W 0 Enables received data available interrupt
0: Disabled (default)

1: Enabled

12.4.7 Multi-Mode Interrupt Enable Register (IEM)
Table 12-13. IEM

Bit
Number

Name R/W Reset
Value

Description

[7:5] Reserved R/W 0 Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

MMUART Peripherals

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 485

...........continued
Bit
Number

Name R/W Reset
Value

Description

4 ELINSI R/W 0 Enables the LIN sync detection interrupt
0: Disabled (default)

1: Enabled

3 ELINBI R/W 0 Enables LIN break interrupt
0: Disabled (default)

1: Enabled

2 EPID_PEI R/W 0 Enables PID parity error interrupt
0: Disabled (default)

1: Enabled

1 ENACKI R/W 0 Enables NACK interrupt
0: Disabled (default)

1: Enabled

0 ERTOI R/W 0 Enables receiver timeout interrupt
0: Disabled (default)

1: Enabled

12.4.8 Interrupt Identification Register (IIR)
Table 12-14. IIR

Bit
Number

Name R/W Reset
Value

Description

[7:6] Mode R 0b11 Always 0b11. Enables FIFO mode.

[5:4] Reserved R 0 Software must not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit must be
preserved across a read-modify-write operation.

MMUART Peripherals

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 486

...........continued
Bit
Number

Name R/W Reset
Value

Description

[3:0] IIR R 0b0001 Interrupt identification bits.
0b0110: Highest priority. Receiver line status interrupts due to overrun
error, parity error, framing error, or break interrupt. Reading the line
status register resets this interrupt.

0b0100: Second priority. Receive data available interrupt modem
status interrupt. Reading the receiver buffer register (Table 12-5) or
FIFO drops below the trigger level resets this interrupt.

0b1100: Second priority. Character timeout indication interrupt occurs
when no characters have been read from the Rx FIFO during the last
four character times and there was at least one character in it during
this time. Reading the RBR resets this interrupt.

0b0010: Third priority. Transmit holding register empty interrupt.
Reading the IIR or writing to the transmit holding register (Table 12-6)
resets the interrupt.

0b0000: Fourth priority. Modem status interrupt due to clear to send,
data set ready, ring indicator, or data carrier detect being asserted.
Reading the modem status register resets this interrupt.

0b0011: Fifth priority. Multi-mode interrupts can occur due to any of the
interrupts mentioned in IIM. For more details, see Table 12-15.

Table 12-15. Interrupt Identification Bit Values

IIR
Value[3:0
]

Priority
Level

Interrupt Type Interrupt Source Interrupt Reset Control

0110 Highest Receiver line status Overrun error, parity error, framing
error, or break interrupt

Reading the line status register.

0100 Second Received data
available

Receiver data available Reading the receiver buffer
register or FIFO drops below
the trigger level.

1100 Second Character timeout
indication

No characters have been read from
the Rx FIFO during the last four
character times and there was at
least one character in it during this
time.

Reading the receiver buffer
register.

0010 Third Transmitter holding
register empty

Transmitter holding register empty Reading the IIR or writing into
the transmitter holding register.

0000 Fourth Modem status Clear to send, data set ready, ring
indicator, or data carrier detect

Reading the modem status
register.

0011 Fifth Multi mode interrupt Any of the multi-mode interrupts in
the Table 12-16 register.

See Table 12-16 (Table 12-16).

MMUART Peripherals

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 487

12.4.9 Multi-Mode Interrupt Identification Register (IIM)
Table 12-16. IIM

Bits Name R/W Reset
Value

Description

[7:5] Reserve
d

Clean on
R

0 Software must not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit must be
preserved across a read-modify-write operation.

4 LINSI Clean on
R

0 LIN sync detection interrupt ID. This bit is set when 5th falling edge is
detected by the sync timer. It resets the FIFO address pointers so that
PID will be in the first location. Reading the Table 12-16 register clears
this interrupt.

3 LINBI Clean on
R

0 LIN break interrupt, set automatically when break length of 11.5 Tbits is
detected. Reading the Table 12-16 register clears this interrupt.

2 PID_PEI Clean on
R

0 Protected Identifier Field (PID) parity error interrupt is generated when
there is a mismatch in PID in LIN header, that is, when either the P0 or
P1 bits in the incoming PID byte do not match the calculated P0 and P1
error.

1 NACKI Clean on
R

0 NACK interrupt is asserted when EERR bit is set in Table 12-24.
Reading the Table 12-24 clears the interrupt.

0 RTOII Clean on
R

0 Receiver Time Out (RTO) interrupt ID. RTO interrupt is asserted when
RTO value is reached by the counter. It gets cleared when writing to the
RTO register.

12.4.10 Line Control Register (LCR)
Table 12-17. LCR

Bit
Number

Name R/W Reset
Value

Description

7 DLAB R/W 0 Divisor latch access bit. Enables access to the divisor latch registers
during read or write operation to address 0 and 1.
0: Disabled (default)

1: Enabled

6 SB R/W 0 Set break. Enabling this bit sets MMUART_x_TXD to 0. This does not
have any effect on transmitter logic. The break is disabled by setting the
bit to 0.
0: Disabled (default)

1: Set break

5 SP R/W 0 Stick parity
0: Disabled (default)

1: Enabled

When stick parity is enabled, the parity is set according to bits [4:3] as
follows:

11: 0 will be sent as a parity bit and checked when receiving.

01: 1 will be sent as a parity bit and checked when receiving.

MMUART Peripherals

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 488

...........continued
Bit
Number

Name R/W Reset
Value

Description

4 EPS R/W 0 Even parity select
0: Odd parity (default)

1: Even parity

3 PEN R/W 0 Parity enable
0: Disabled

1: Enabled. Parity is added in transmission and checked in receiving.

2 STB R/W 0 Number of stop bits (STB)
0: 1 stop bit (default)

1: 11/2 stop bits when WLS = 00

The number of stop bits is 2 for all other cases not described above
(STB = 1 and WLS = 01, 10, or 11).

[1:0] WLS R/W 0 Word length select
0b00: 5 bits (default)

0b01: 6 bits

0b10: 7 bits

0b11: 8 bits

12.4.11 Modem Control Register (MCR)
Table 12-18. MCR

Bit
Number

Name R/W Reset
Value

Description

7 Reserved R/W 0 The software must not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit must be
preserved across a read-modify-write operation.

[6:5] RLoop R/W 0 Remote loopback enable bits. In the Remote loopback mode, when a
bit is received, it is sent directly out the transmit line, bypassing the
transmitter block, and disabling the receiver.
In the Automatic echo mode, when a bit is received, it is sent directly out
the transmit line, bypassing the transmitter block, while the receiver is
still enabled.

00: Disabled (default)

01: Remote loopback enabled

10: Automatic echo enabled

11: Reserved

Local loopback mode has priority over the remote/echo loopback modes.

MMUART Peripherals

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 489

...........continued
Bit
Number

Name R/W Reset
Value

Description

4 Loop R/W 0 In the Loopback mode, MMUART_x_TXD is set to 1.
The MMUART_x_RXD, MMUART_x_DSR, MMUART_x_CTS,
MMUART_x_RI, and MMUART_x_DCD inputs are disconnected. The
output of the transmitter shift register is looped back into the
receiver shift register. The modem control outputs (MMUART_x_DTR,
MMUART_x_RTS, MMUART_x_OUT1, and MMUART_x_OUT2) are
connected internally to the modem control inputs, and the modem
control output pins are set as 1. The transmitted data is immediately
received, allowing Cortex®-M3 processor to check the operation of the
MMUART_x. The interrupts are operating in the Loopback mode.
0: Disabled (default)

1: Local loopback enabled

The local loopback mode has priority over the remote loopback modes.
LOOPBACK is only implemented in basic UART mode. It does function
in LIN IRDA or Smart card modes.

3 OUT2 R/W 0 Controls the output2 (OUT2) signal. Active Low
0: OUT2n is set to 1 (default)

1: OUT2n is set to 0

2 OUT1 R/W 0 Controls the output1 (OUT1) signal. Active Low
0: OUT1n is set to 1 (default)

1: OUT1n is set to 0

1 RTS R/W 0 Controls the request to send (MMUART_x_RTS) signal. Active Low
0: RTSn is set to 1 (default)

1: RTSn is set to 0

0 DTR R/W 0 Data terminal ready (MMUART_x_DTR) output. Active Low
0: DTRn output is set to 1 (default)

1: DTRn output is set to 0

12.4.12 Line Status Register (LSR)
Table 12-19. LSR

Bit
Number

Name R/W Reset
Value

Description

7 FIER R 0 This bit is set when there is at least one parity error, framing error, or
break indication in FIFO. FIER is cleared when Cortex®-M3 processor
reads the LSR, if there are no subsequent errors in the FIFO.

6 TEMT R 1 Transmit empty (TEMT). This bit is set to 1 when both the transmitter
FIFO and shift registers are empty.

5 THRE R 1 Transmitter holding register empty (THRE). Indicates that the
MMUART_x is ready to transmit a new data byte. THRE causes an
interrupt to the Cortex-M3 processor when bit 1 (ETBEI) in the interrupt
enable register is 1. This bit is set when the Tx FIFO is empty. It is
cleared when at least one byte is written to the Tx FIFO.

MMUART Peripherals

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 490

...........continued
Bit
Number

Name R/W Reset
Value

Description

4 BI R 0 Break interrupt (BI). Indicates that the receive data is at 0 longer than
a full word transmission time (start bit + data bits + parity + stop bits).
BI is cleared when Cortex-M3 processor reads the line status register
(Table 12-19). This error is revealed to the Cortex-M3 processor when
it is associated character is at the top of the FIFO. When break occurs,
only one zero character is loaded into FIFO.

3 FE R 0 Framing error (FE). Indicates that the receive byte did not have a valid
stop bit. FE is cleared when Cortex-M3 processor reads the Table 12-19.
The MMUART_x tries to resynchronize after a framing error. To do this,
it assumes that the framing error was due to the next start bit, so it
samples this start bit twice, and then starts receiving the data. This error
is revealed to Cortex-M3 processor when it is associated character is at
the top of FIFO.

2 PE R 0 Parity error (PE). Indicates that the receive byte had a parity error. PE is
cleared when the Cortex-M3 processor reads the Table 12-19. This error
is revealed to the Cortex-M3 processor when it is associated character is
at the top of FIFO.

1 OE R 0 Overrun error (OE). Indicates that the new byte was received before the
Cortex-M3 processor reads the byte from the receive buffer, and that
the earlier data byte was destroyed. OE is cleared when the Cortex-M3
processor reads the Table 12-19. If the data continues to fill the FIFO
beyond the trigger level, an overrun error occurs once the FIFO is full
and the next character has been completely received in the shift register.
The character in the shift register is overwritten, but it is not transferred
to the FIFO.

0 DR R 0 Data ready (DR). Indicates when a data byte is received and stored in
the receive buffer or the FIFO. DR is cleared to 0 when the Cortex-M3
processor reads the data from the receive buffer or the FIFO.

12.4.13 Modem Status Register (MSR)
Table 12-20. MSR

Bit
Number

Name R/W Reset
Value

Description

7 DCD R 0 Data carrier detect (DCD) (MMUART_x_DCD).The complement of DCD
input. When bit 4 of the Table 12-18 is set to 1 (loop), this bit is
equivalent to OUT2 in the Table 12-18.

6 RI R 0 Ring indicator (RI) (MMUART_x_RI). The complement of the RI input.
When bit 4 of the Table 12-18 is set to 1 (loop), this bit is equivalent to
OUT1 in the Table 12-18.

5 DSR R 0 Data set ready (DSR) (MMUART_x_DSR). The complement of the DSR
input. When bit 4 of the Table 12-18 is set to 1 (loop), this bit is
equivalent to RTS in the Table 12-18.

4 CTS R 0 Clear to send (CTS) (MMUART_x_CTS). The complement of the CTS
input. When bit 4 of the Table 12-18 is set to 1 (loop), this bit is
equivalent to DTR in the Table 12-18.

MMUART Peripherals

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 491

...........continued
Bit
Number

Name R/W Reset
Value

Description

3 DDCD R 0 Delta data carrier detect (DDCD) indicator. Indicates that DCD input has
changed state.
Whenever bit 0, 1, 2, or 3 is set to 1, a modem status interrupt is
generated.

2 TERI R 0 Trailing edge of ring indicator (TERI) detector. Indicates that RI input has
changed from 0 to 1.
Whenever bit 0, 1, 2, or 3 is set to 1, a modem status interrupt is
generated.

1 DDSR R 0 Delta data set ready (DDSR) indicator. Indicates that the DSRn input
has changed state since the last time it was read by the Cortex-M3
processor.
Whenever bit 0, 1, 2, or 3 is set to 1, a modem status interrupt is
generated.

0 DCTS R 0 Delta clear to send (DCTS) indicator. Indicates that the CTSn input
has changed state since the last time it was read by the Cortex-M3
processor.
Whenever bit 0, 1, 2, or 3 is set to 1, a modem status interrupt is
generated.

12.4.14 Scratch Register (SR)
Table 12-21. SR

Bit
Number

Name R/W Reset
Value

Description

[7:0] SCR R/W 0 Scratch register. This register has no effect on MMUART_x operation.

12.4.15 Multi-Mode Control Register 0 (MM0)
Table 12-22. MM0

Bit
Number

Name R/W Defaul
t State

Description

7 EFBR R/W 0 Enable fractional baud rate (FBR) mode.
0: Disabled (default)

1: Enabled

6 ERTO R/W 0 Enable receiver timeout (RTO). Writing this bit enables the timeout and
restarts the counter value. The timeout value is determined by the Table
12-27 register.
0: Disabled (default)

1: Enabled

5 ETTG R/W 0 Enable transmitter time guard (TTG). The time guard value is
determined by the Table 12-26 Register.
0: Disabled (default)

1: Enabled

MMUART Peripherals

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 492

...........continued
Bit
Number

Name R/W Defaul
t State

Description

4 Reserved R/W 0 Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read- modify-write operation

3 ELIN R/W 0 Enable LIN header detection and automatic baud rate calculation.
0: Disabled (default)

1: Enabled

[2:0] ESYN R/W 0 Enable synchronous operation. There are four types of Synchronous
Operation modes that can be enabled.
0b000: Disabled, that is, Asynchronous mode (default)

0b001: Synchronous slave enabled, positive-edge clock

0b010: Synchronous slave enabled, negative-edge clock

0b011: Synchronous master enabled, positive-edge clock

0b100: Synchronous master enabled, negative-edge clock

0b101, 0b110, and 0b111: Reserved

12.4.16 Multi-Mode Control Register 1 (MM1)
Table 12-23. MM1

Bit
Number

Name R/W Defaul
t State

Description

[7:6] Reserved R/W 0 Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

5 EITP R/W 0 Output pulse width for RZI mod can be modified using this bit.
0: 3/16th Tbit pulse width (default)

1: 1/4th Tbit pulse width

4 EITX R/W 0 You can configure output polarity for RZI modulation.
0: RZI output pulses are active Low and signify a low NRZ value
(default).

1: RZI output pulses are active High and signify a high NRZ value.

3 EIRX R/W 0 You can configure input polarity for RZI demodulation.
0: RZI input pulses are active Low, signifying a low NRZ value (default).

1: RZI input pulses are active High, signifying a high NRZ value.

2 EIRD R/W 0 Enables RZI modulation/demodulation.
0: Disabled (default)

1: Enabled

1 E_MSB_T
X

R/W 0 LSB or MSB can be sent first by configuring this bit. By default, the Table
12-6 bit 0 is the LSB and is the first transmitted bit. Bit 0 of the THR may
be configured as the last transmitted bit, MSB.
0: THR's bit 0 is the first transmitted bit, LSB (default).

1: THR's bit 0 is the last transmitted bit, MSB.

MMUART Peripherals

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 493

...........continued
Bit
Number

Name R/W Defaul
t State

Description

0 E_MSB_R
X

R/W 0 LSB or MSB can be received first by configuring this bit. By default,
the receiver buffer register's (Table 12-5) bit 0 is the LSB, and is the
first received bit. Bit 0 of the Table 12-5 may be configured as the last
received bit, MSB.
0: RBR's bit 0 is the first received bit, LSB (default).

1: RBR's bit 0 is the last received bit, MSB.

12.4.17 Multi-Mode Control Register 2 (MM2)
Table 12-24. MM2

Bit
Number

Name R/W Reset
Value

Description

[7:4] Reserved R/W 0 The software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

3 ESWM R/W 0 Enable single-wire, half-duplex mode.
0: Disabled (default)

1: Enabled

2 EAFC R/W 0 Enable a flag clear (EAFC). When EAFM is enabled the Rx FIFO is
disabled until another address flag with matching address is received.
The bit gets cleared on write in multi-mode control registers 2.
0: Disabled (default)

1: Enabled

1 EAFM R/W 0 Enable automatic 9-bit address flag mode (EAFM). It should be noted
that for enabling this bit it requires, the LCR should be in an 8-bit and
stick parity (SP) bit configured to 0. If EAFM bit is disabled, the Rx FIFO
is enabled by receiving all the bytes. When EAFM bit is enabled, the Rx
FIFO is disabled until an address flag with matching address is received.
If an address match occurs and the Rx FIFO is enabled then it can be
disabled, if either another address flag occurs or there is a mismatch
or the EAFC bit is set. In either case, the Address flag compare will
continue as long as the EAFM bit is set.

0: Disabled (default)

1: Enabled

0 EERR R/W 0 When the EERR bit is set, the receiver forces an error signal transmit
out, if an incoming parity error is detected. Error signal (ACK/NACK) is
sent during stop time enable.
The EERR only applies in an 8-bit data length, 2 stop bit configuration.
Error signal occurs during the last 1.5 stop bits as per Figure 12-19.

0: Disabled (default)

1: Enabled

MMUART Peripherals

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 494

12.4.18 Glitch Filter Register (GFR)
Table 12-25. GFR

Bit
Number

Name R/W Reset
Value

Description

[7:3] Reserved R/W Reserved Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

[2:0] GLR R/W 0 The glitch filter resynchronizes (GLR) and suppresses random
input noise from MMUART_x_RXD (serial input data) and
MMUART_x_SCK_IN (serial input clock in synchronous mode) based
on the filter length given in number system clock cycles. The following
are the different filter lengths in the APB clock cycles that can be written
into the GLR register and their description.
0b000: Two resynchronize flip-flops are used but there is no spike
suppression.

0b001: Three resynchronize flip-flops are used but there is no spike
suppression.

0b010: Three resynchronize flip-flops are used and it also causes 1
APB clock cycle suppression.

0b011: Three resynchronize flip-flops are used and it also causes 2
APB clock cycle suppression.

0b100: Three resynchronize flip-flops are used and it also causes 3
APB clock cycle suppression.

0b101: Three resynchronize flip-flops are used and it also causes 4
APB clock cycle suppression.

0b110: Three resynchronize flip-flops are used and it also causes 5
APB clock cycle suppression.

0b111: Three resynchronize flip-flops are used and it also causes 6
APB clock cycle suppression.

12.4.19 Transmitter Time Guard Register (TTG)
Table 12-26. TTG

Bit
Number

Name R/W Reset
Value

Description

[7:0] TTG R/W 0 If the transmitter time guard is enabled from the multi-mode control
register 0 (Table 12-22), the transmitter time guard value determines the
amount of system clock cycles to wait between transmissions. The time
guard equation is based on the baud rate bit time (Tbit) value as follows:
Tx Time Guard Value = TTG x Bit Time (Tbit)

MMUART Peripherals

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 495

12.4.20 Receiver Timeout Register (RTO)
Table 12-27. RTO

Bit
Number

Name R/W Reset
Value

Description

[7:0] RTO R/W 0 Writing to the RTO register sets the counter value and enables, if
the ERTO bit in the Table 12-22 is enabled. You can configure the
timeout value by writing into this register. The RTO counts when the
Rx block input state is idle; is reset when a start condition occurs, and
restarts counting upon returning to the idle state. When the RTO value
is reached, the RTOII interrupt is set. Re-writing the RTO register clears
the interrupt and sets the counter.
The receiver timeout value equation is based on the baud rate bit time
(Tbit) as follows:

Rx Timeout Value = 4 x RTO x Bit Time (Tbit)

12.4.21 Address Register (ADR)
Table 12-28. ADR

Bit
Number

Name R/W Reset
Value

Description

[7:0] ADR R/W 0 The address register is used in 9-bit Address Flag mode. When an
address flag is received on the 9th bit, and EAFM is set in Table 12-24,
the incoming data is checked against the address register. If a match
occurs, the Rx FIFO is enabled.

Serial Peripheral Interface Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 496

13. Serial Peripheral Interface Controller
Serial Peripheral Interface (SPI) is a synchronous serial data protocol that enables the microprocessor or
microcontroller and peripheral devices to communicate with each other. The SPI controller is an APB slave in
the SmartFusion 2 device that provides a serial interface compliant with the Motorola SPI, Texas Instruments
synchronous serial, and National Semiconductor MICROWIRE™ formats. In addition, SPI supports interfacing with
large SPI flash and EEPROM devices and a hardware-based slave protocol engine.

13.1 Features
SmartFusion 2 SPI peripherals support the following features:

• Master and Slave modes
• Selectable slaves up to 8
• Configurable slave select operation
• Configurable clock polarity
• Separate transmit (Tx) and receive (Rx) FIFOs to reduce interrupt service loading
• Processor controlled and PDMA controlled mode of data transfer

The following figure shows details of the Microcontroller Subsystem (MSS). The SPI peripherals are interfaced to the
AHB bus matrix through the APB interfaces (APB_0 and APB_1).

Figure 13-1. Microcontroller Subsystem Showing SPI Peripherals

AHB Bus Matrix

eSRAM_0System
Controller

Cache
Controller

S D IC

Arm® Cortex®-M3
Processor

S D I

MSS DDR
Bridge

PDMA

MS6

MM3

AHB To AHB Bridge with Address Decoder
USB OTG

HPDMA

MDDR

APB_0SYSREGTriple Speed
Ethernet MAC

FIC_0

MM4 MS4

MS2 MS3 MS0

MS5

MS1

MM5 MM6

MM7

MM8

MM2 MM1 MM0 MM9

IDC
D/S eNVM_0 eNVM_1 eSRAM_1

FIC_2 (Peripheral
Initialization) APB_1

MMUART_0

SPI_0

I2C_0

PDMA
Configuration

WATCHDOG

FIIC

TIMERx2

MMUART_1

SPI_1

I2C_1

GPIO

CAN

RTC

COMM_BLK

FIC_1

M
SS

_F
IC

M
S6

_U
SB

MS5_MAC MS5_SR MS5_APB0 MS5_FIC2 MS5_APB1

13.2 Functional Description
This section provides the detailed description of SPI peripherals.

Serial Peripheral Interface Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 497

13.2.1 Architecture Overview
The SPI controller supports master and slave modes of an operation.

• In master mode, the SPI generates SPI_X_CLK, selects a slave using SPI_X_SS[x], transmits the data on
SPI_X_DO, and receives the data on SPI_X_DI.

• In slave mode, the SPI is selected by SPI_X_SS[0]. The SPI receives a clock on SPI_X_CLK and incoming data
on SPI_X_DI.

The SPI peripherals consist mainly of the following components (see Figure 13-2).

• Transmit and receive FIFOs
• Configuration and control logic
• SPI clock generator

The following figure shows the SPI controller block diagram.

Serial Peripheral Interface Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 498

Figure 13-2. SPI Controller Block Diagram

Configuration
and

Control logic
SPI_X_INT

APB Bus

PWDATA[31:0]

PRDATA[31:0]

4X32 Transmit FIFO

4X32 Receive FIFO
TX/RX
Logic

SPI_X_DO

SPI_X_DI

SPI_X_SS0

SPI_X_TXRFM

SPI_X_RXAVAIL

SPI_X_DOE_N

SPI_X_CLKSPI Clock
Generator

APB_X_CLK

Note:
- The SPI_X_DO, SPI_X_DI, SPI_X_SS0, and SPI_X_CLK signals are available
 to the FPGA fabric.
- SPI_X_DOE_N is accessible through the SPI control register.
- SPI_X_TXRFM and SPI_X_RXAVAIL signals are used only by PDMA.
- SPI_X_INT is sent to the Cortex-M3 processor.

Serial Peripheral Interface Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 499

Important: X is used as a place holder for 0 or 1 in the register and signal descriptions. It indicates SPI _0
(on the APB_0 bus) or SPI_1 (on the APB_1 bus).

13.2.1.1 Transmit and Receive FIFOs
The SPI controller embeds two 4 × 32 (depth × width) FIFOs for receive and transmit, as shown in Figure 13-2.
These FIFOs are accessible through RX data and TX data registers (see the 13.4.3. SPI Register Details). Writing
to the TX data register causes the data to be written to the transmit FIFO. This is emptied by the transmit logic.
Similarly, reading from the RX data register causes the data to be read from the receive FIFO. The not-empty port of
the receive FIFO and the not-full port of the transmit FIFO flags (of the FIFOs) are exposed as SPI_X_RXAVAIL (SPI
has data to be read) and SPI_X_TXRFM (SPI has room for more data to send) ports. These are connected to the
peripheral DMA (PDMA) engine to allow continuous DMA streaming for large SPI transfers and to help free up the
Cortex-M3 processor.

13.2.1.2 Configuration and Control Logic
The SPI peripheral can be configured for master or slave mode by using the mode bit of the SPI Table 13-9 register.
The type of data transfer protocol can be configured by using the TRANSFPRTL bit of the SPI Table 13-9 register.
The control logic monitors the number of data frames to be sent/received and enables the interrupts when the data
frame transmission/reception is completed. During data frames transmission/reception, if a transmit under-run error/
receive overflow error is detected, the Table 13-11 register is updated (see the Table 13-25 register for bit definitions).

13.2.1.3 SPI Clock Generator
In master mode, the SPI clock generator generates the serial programmable clock from the APB clock. For more
information, see the 13.2.3.3. SPI Clock Requirements.

13.2.2 Interface
This section provides the details of the SPI interfacing ports and various data transfer protocols.

13.2.2.1 Port List
The following table lists the SPI signals.

Table 13-1. SPI Interface Signals

Name Type Polarity Description

SPI_X_DI Input High Serial data input

SPI_X_DO Output High Serial data input

SPI_X_CLK Input/
Output

High Serial clock. It is a serial programmable bit rate clock out
signal.
Input when SPI is in the slave mode.

Output when SPI is in the master mode.

SPI_X_SS[0] Input/
Output

Low,
except for TI
mode

Slave select.
Input when SPI is in the slave mode.

Output when SPI is in the master mode.

The slave select output polarity is active Low. In TI mode the
slave select output is inverted to become active High.

SPI_X_SS[7:1] Output Low,
except for TI
mode

Extra slave select signal. Valid only in the Master mode.
The slave select output polarity is active-low. In TI mode, the
slave select output is inverted to become active-high.

SPI_X_INT Output High SPI interrupt

SPI_X_DOE_N Output High Output enable

Serial Peripheral Interface Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 500

...........continued
Name Type Polarity Description

SPI_X_TXRFM Output High SPI ready to transmit. Used only by MSS PDMA engine

SPI_X_RXAVAIL Output High SPI received data. Used only by MSS PDMA engine.

13.2.2.2 Data Transfer Protocol Details
The SmartFusion 2 SPI controller supports the following data transfer protocols:

• Motorola SPI Protocol
• National Semiconductor MICROWIRE Protocol
• Texas Instruments Synchronous Serial Protocol
• Slave Protocol Engine

This section describes the data transfer protocols, timing diagrams, signal requirements, and error case scenarios for
the preceding protocols.

13.2.2.3 Motorola SPI Protocol
The Motorola SPI is a full-duplex, four-wire synchronous transfer protocol that supports programmable clock polarity
(SPO) and clock phase (SPH). The state of SPO and SPH control bits decides the data transfer modes as detailed in
the following table.

Table 13-2. Data Transfer Modes

Data Transfer Mode SPO SPH

Mode 0 0 0

Mode 1 0 1

Mode 2 1 0

Mode 3 1 1

The SPH control bit determines the clock edge that captures the data.

• When SPH is Low, data is captured on the first clock transition.
– Data is captured on the rising edge of SPI_CLK when SPO = 0 (Figure 13-3).
– Data is captured on the falling edge of SPI_CLK when SPO = 1 (Figure 13-6).

• When SPH is High, data is captured on the second clock transition (rising edge if SPO = 1).
– Data is captured on the falling edge of SPI_CLK when SPO = 0 (Figure 13-5).
– Data is captured on the rising edge of SPI_CLK when SPO = 1 (Figure 13-7).

The SPO control bit determines the polarity of the clock and SPS defines the slave select behavior.

• When SPO is Low and no data is transferred, SPI_CLK is driven to Low (Figure 13-4).
• When SPO is High and no data is transferred, SPI_CLK is driven to High (Figure 13-6).

The following table summarizes the clock active edges in various SPI master modes.

Serial Peripheral Interface Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 501

Table 13-3. Summary of Master SPI Modes

Mode SPS SPO SPH Clock
in Idle

Sample
Edge

Shift
Edge

Select
in Idle

Select Between Frames

Motorola 0 0 0 Low Rising Falling High Pulses between all frames

0 1 0 High Falling Rising High

0 0 1 Low Falling Rising High Does not pulse between back-to-
back frames. Pulses if transmit FIFO
empties.

0 1 1 High Rising Falling High Does not pulse between back-to-
back frames. Pulses if transmit FIFO
empties.

1 0 0 Low Rising Falling High Stays active until all the frames set
by frame counter are transmitted.

1 0 1 Low Falling Rising High

1 1 0 High Falling Rising High

1 1 1 High Rising Falling High

Texas
Instruments

0 0 0 Low Falling Rising Low Normal operation
SPI_X_CLK only generated with
select and data bits.

1 Low Falling Rising Low Removes SPI_X_SS[0] on
consecutive frames (back-to-back),
making them appear to be big
frames.

1 Running Falling Rising Low SPI_X_CLK is free running.

National
Semiconductor
Microwire

0 0 0 Low Rising Falling High Normal operation
SPI_X_CLK only generated with
select and data bits.

1 Low Rising Falling High Forces IDLE cycles (SPI_X_SS[0]
deactivated) between back-to-back
frames.

1 Running Rising Falling High SPI_X_CLK is free running.

1 Low Rising Falling High After sending the command part of
the frame, the subsequent frames
are concatenated to create a single
large data frame (master operation
only).

13.2.2.3.1 Motorola SPI Modes
Motorola SPI modes are shown in the following figures.

Single Frame Transfer – Mode 0: SPO = 0, SPH = 0

Serial Peripheral Interface Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 502

Figure 13-3. Motorola SPI Mode 0

SPI_CLK

SPI_DI

SPI_DO

SPI_DOE_N

SPI_SS[x]

MSB

LSB

LSB

MSB

4 to 32 Bits

Q

Multiple Frame Transfer – Mode 0: SPO = 0, SPH=0

Figure 13-4. Motorola SPI Mode 0 Multiple Frame Transfer

4 to 32 Bits

SPI_CLK

SPI_DI

SPI_DO

SPI_DOE_N

SPI_SS[x]

MSB MSBLSBLSB

Important: 
• Between frames, the slave select (SPI_SS[x]) signal is asserted for the duration of the clock pulse.
• Between frames, the clock (SPI_CLK) is Low.
• Data is transferred to Most Significant Bit (MSB) first.
• The output enable (SPI_DOE_N) signal is asserted during the transmission and deasserted at the

end of the transfer (after the last frame is sent).

Single Frame Transfer – Mode 1: SPO = 0, SPH = 1

Figure 13-5. Motorola SPI Mode 1

SPI_CLK

SPI_DI

SPI_DO

SPI_DOE_N

SPI_SS[x]

MSB

LSB

LSB

MSB

4 to 32 Bits

QQ

Single Frame Transfer – Mode 2: SPO = 1, SPH = 0

Serial Peripheral Interface Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 503

Figure 13-6. Motorola SPI Mode 2

SPI_CLK

SPI_DI

SPI_DO

SPI_DOE_N

SPI_SS[x]

MSB

LSB

LSB

MSB

4 to 32 Bits

Q

Single Frame Transfer – Mode 3: SPO = 1, SPH = 1

Figure 13-7. Motorola SPI Mode 3

SPI_CLK

SPI_DI

SPI_DO

SPI_DOE_N

SPI_SS[x]

MSB

LSB

LSB

MSB

4 to 32 Bits

QQ

13.2.2.3.2 Output Enable (SPI_X_DOE_N) Timing
Each SPI mode comprises two phases: transmit and receive. It is a requirement that the output enable
(SPI_X_DOE_N) line, which enables the output signal, should be driven so that the following occurs:

• The output signal is ready to transmit when the data is available (setup time).
• The output signal is held on long enough for the recipient to sample the data (hold time).

The minimum setup and hold time is one half SPI_X_CLK. In slave mode, the input clock is withdrawn at the end of
the transfer. For example, consider the waveform for Single Frame Transfer – Mode 2: SPO = 1, SPH = 0. In this
case, data is sampled on the falling edge of the clock and shifted on the rising edge of the clock. The data is sampled
on the falling edge and must be held for one half SPI_X_CLK after the last falling edge at the end of the transmission.
This means that SPI_X_DOE_N must be held High for at least one half SPI_X_CLK after the last falling edge to
satisfy the hold time requirement.

Table 13-4. Behavior of the Output Enable Signal

Mode Master Slave

MOTOROLA SPI_X_DOE_N is asserted with identical timing
to that of SPI_X_SS[0]. This provides an
additional half SPI_X_CLK cycle of data turn
on and off relative to the data bit valid
requirements.

The incoming SPI_X_SS[0] signal is used to
directly generate the SPI_X_DOE_N. Similar to
the master case, it provides an additional half
clock cycle of data turn on and off.

Texas
Instruments

SPI_X_DOE_N is asserted on the negative
clock edge prior to the MSB (while
SPI_X_SS[0] is asserted) and if the
uninterrupted data is deasserted on the falling
SPI_X_CLK edge following the LSB. This
provides half a clock cycle of data turn on off
time.

SPI_X_DOE_N is asserted on the positive
SPI clock edge as the MSB is the output.
SPI_X_DOE_N is deasserted on the positive SPI
clock edge at the end of the LSB data bit,
assuming no consecutive data.

Serial Peripheral Interface Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 504

...........continued
Mode Master Slave

National
Semiconductor
MICROWIRE

SPI_X_DOE_N is asserted with SPI_X_SS[0],
and then removed at the start of the ninth data
bit (turn around cycle).

SPI_X_DOE_N is asserted at the start of the
tenth bit as data becomes valid. SPI_X_DOE_N
is deasserted at the end of the LSB, if a falling
clock edge occurs or when SPI_X_SS[0] is
deasserted.

13.2.2.3.3 Motorola SPI Error Case Scenarios
The SPI protocol does not specify any error recovery strategy. The master and slave require prior knowledge of clock
rates and data-frame layouts. However, there are built-in mechanisms in the SPI controller to recover from error. If
the slave encounters an error, the master can toggle the slave clock until it comes to a known state. Here are three
specific scenarios and error the behavior of the SPI controller in Motorola protocol mode.

• If the slave select signal is withdrawn in the middle of a transfer, the transfer continues until the end of the data
frame.

• If the input clock is withdrawn, the SPI controller remains paused until the clock is restarted. It picks-up where it
left off.

• If the slave select signal is withdrawn before a transfer occurs, the slave remains in the idle state (no data
transfer having been initiated).

The SPI controller has no built-in timer. For applications where there is a possibility of a slave going to sleep for a
long time, or in the case of very long transfers, the application should use a timer created from user logic.

13.2.2.3.4 SPI Data Transfer for Large Flash/EEPROM Devices in Motorola SPI Modes
Serial Flash and EEPROM devices can be driven using Motorola SPI modes. Following is an outline of the interfaces
to the required Flash/EEPROM devices that shows how they can be driven using Motorola SPI modes. In each of
these modes, the SPI controller is configured as a master with the slave select line connected to the chip select of the
memory device.

Devices Requiring Data Frame Sizes of Up to 32 Bits

Serial Flash/EEPROM devices, such as the Atmel 25010/020/040, have a data frame size smaller than 32 bits and
can be directly driven from SPI mode.

Write Operation for Atmel 25010/020/040 Devices

The following figure shows the write operation timing for Atmel 25010/020/040 devices. The SPI controller selects the
devices using the slave select signal. The data frame size is set to 24 bits. The SPI is configured with SPO = 0, SPH
= 0. The first byte is the instruction. Bit 5 of the instruction is part of the address (the 9th bit as required by the Atmel
part). Bits 8-15 form a byte address. The residual 8 bits correspond to the data to be written.

Serial Peripheral Interface Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 505

Figure 13-8. Write Operation Timing
SPI_SS[x]

SPI_CLK

SPI_DO

SPI_DI

Instruction Byte Address Data In

9th Bit of Address

High Impedance

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20 21 22 2319

02345678 1 0234567 1

1

Important: The first byte contains the opcode that defines the operations to be performed. The opcode
also contains address bit A8 in both the READ and WRITE instructions. This is mandated by the Atmel
device.

Read Operation for Atmel 25010/020/040 Devices

The following figure shows the read operation timing for Atmel 25010/020/040 devices. For the read operation, the
data frame size is set to 24 bits and the SPI controller is configured with SPO = 0, SPH = 0. On completing, the least
significant byte of the received data frame corresponds to the data read.

Figure 13-9. Read Operation Timing

SPI_SS[x]

SPI_CLK

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20 21 22 23191

02345678 1

0234567 1

Data Out

MSB

Byte Address

9th Bit of Address

Instruction

High ImpedenceSPI_DI

SPI_DO

Serial Peripheral Interface Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 506

Important: The first byte contains the opcode that defines the operations to be performed. The opcode
also contains address bit A8 in both the read and write instructions. This is mandated by the Atmel device.

13.2.2.3.5 Devices Requiring Data Frame Sizes of More than 32 Bits
Serial Flash devices such as the Atmel AT25DF321 that support mode 3 (SPO = 1 and SPH = 1) require more than
32 bits of frame data in some modes. To drive these devices, continuous transfers are required from the SPI interface
while holding the slave select low continuously (which is connected to the chip select of the target device). This is
accomplished by using the transmit FIFO from the SPI, which enforces continuous back-to-back transfers, if it is not
empty. The slave select continues to be held low (active) in SPI mode 3 (SPO = 1 and SPH = 1) and not pulsed
between data frames.

For example, to send 64 bits to the AT25DF321 (8-bit opcode, 24-bit address, 4 data bytes), the data frame size
(Table 13-10) can be set to 32 and the data frame count set to 2 (Table 13-9[TXRXDFCOUNT] field).

TXRXDFCOUNT Register

The SPI peripheral contains a TXRXDFCOUNT counter (found in the Table 13-9 register) that counts the number of
transmitted and received frames. Its function varies in master and slave modes.

TXRXDFCOUNT in master mode controls the following:

• The Tx and Rx done interrupts
• Terminates the auto fill and empty operations
• Holds slave select active

TXRXDFCOUNT in slave mode controls the following:

• The Tx and Rx done interrupts
• Terminates the auto fill operation

In slave operation, it is possible for TXRXDFCOUNT to miscount actual transmitted and received frames if
the transmit FIFO under-run condition occurs. If this is likely in an application, Microchip recommends that
TXRXDFCOUNT not be used and that it be disabled. Instead use the CMDINT and SSEND bits in the Raw Interrupt
Status (RIS) register to monitor operation, or simply count how many frames it is received.

Page Program for Atmel AT25DF321

The following figure shows the Page Programming Timing for Atmel AT25DF321. In this mode, the opcode, address,
and data require more than 32 clock periods. To drive this device, the chip select (CS) can be connected to the
slave select signal, the data frame size set to 16, and the FIFO repeatedly filled until the target Flash device is
programmed. As long as the data is available to transmit in the FIFO, the chip select signal (connected to slave select
on the SPI controller) is asserted Low.

Figure 13-10. Page Program Timing

Data in Byte nData in Byte 1Opcode Address Bits A23-A0

MSB MSB MSB MSB

High Impedance

0

0 0 0 0 0 0 0 A DA DA DA DA DA D D D D DD D D DD D

1

1

2 3 4 5 6 7 8 9 29 30 31 32 33 34 35 37 38 3936

SPI_SS[x]

SPI_CLK

SPI_DO

SPI_DI

Devices That Do Not Support Mode 1 (SPO = 0 and SPH = 1) or Mode 3 (SPO = 1 and SPH = 1)

Serial Peripheral Interface Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 507

For Flash devices that do not support mode 1 (SPO = 0 and SPH = 1) or mode 3 (SPO = 1 and SPH = 1), it is
necessary to use a dedicated GPIO pin to drive the chip select signal.

13.2.2.4 National Semiconductor MICROWIRE Protocol
The National Semiconductor MICROWIRE serial interface is a half-duplex protocol using a master/slave message
passing technique. Each serial transmission begins with an 8-bit control word, during which time no incoming data is
received. After the control word is sent, the external slave decodes it, and after waiting one serial clock cycle from the
end of the control word, responds with the required data, which may be 4 to 16 bits in length.

13.2.2.4.1 Single Frame Transfer
In single frame transfer mode (shown in the following figure), the most significant byte of the FIFO transmit word is
the control byte. The total data frame size supplied must be at least 12 bits long (8 bits for the control word and a
minimum of 4 bits for data payload). Only the output data is sampled and inserted in the receive FIFO.

Figure 13-11. National Semiconductor MICROWAVE Single Frame Transfer

4 to 16 Bits
Output Data

SPI_CLK

SPI_DI

SPI_DOE_N

SPI_DO

SPI_SS[x]

8-Bit Control

MSB

LSB

LSB

MSB0

13.2.2.4.2 Multiple Frame Transfer
In the multiple frame transfer (shown in the following figure), the slave select signal (SPI_X_SS[x]) is continuously
asserted (held Low) while SPI_X_DOE_N (output Enable) is also asserted (or held Low) for the duration of each
control byte. The other data transfers proceed in back-to-back manner.

Figure 13-12. National Semiconductor MICROWIRE Multiple Frame Transfer

8-Bit Control

4 to 16 Bits
Output Data

SPI_CLK

SPI_DI

SPI_DOE_N

SPI_DO

SPI_SS[x]

MSB

MSBLSB

LSB

LSB

MSB0

13.2.2.5 Texas Instruments Synchronous Serial Protocol
The Texas Instruments (TI) synchronous serial interface is based on a full-duplex, four-wire synchronous transfer
protocol. The transmit data pin is put in a high-impedance mode (tristated) when no data is transmitted.

Serial Peripheral Interface Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 508

• The slave select (SPI_X_SS[x]) signal is pulsed between transfers to guarantee a high-to-low transition between
each frame.

• The slave select output polarity is inverted to become active-high. In an idle state, the slave select
(SPI_X_SS[x]) signal is kept low.

• Data is available on the clock cycle immediately following the slave select (SPI_X_SS[x]) assertion.
• Both the SPI master and the SPI slave capture each data bit into their serial shift registers on the falling edge of

the clock (SPI_X_CLK). The received data is latched on the rising edge of the clock (SPI_X_CLK).
• The output enable signal (SPI_X_DOE_N) is asserted (active Low) throughout the transfer.

The following figures show the TI synchronous single frame transfer and TI synchronous multiple frame transfer.

Figure 13-13. TI Synchronous Serial Single Frame Transfer

4 to 16 Bits

SPI_CLK

SPI_DI

SPI_DOE_N

SPI_DO

SPI_SS[x]

LSBMSB

Figure 13-14. TI Synchronous Serial Multiple Frame Transfer

4 to 16 Bits

SPI_CLK

SPI_DI

SPI_DOE_N

SPI_DO

SPI_SS[x]

LSBMSB

13.2.2.5.1 TI Synchronous Serial Error Case Scenarios
When the SPI controller is configured for the TI synchronous serial protocol, while in slave mode, it responds to
failure events. These failure events on slave select (SPI_X_SS[x]) and the slave clock (SPI_X_CLK) are described
below:

• Withdrawal of SPI_X_CLK: In this case, the device pauses and resumes on reasserting the clock.
• Premature pulsing of slave select: If the slave select is pulsed during a data frame transmission, it will be

ignored.
• Disconnecting the slave select before a transfer: The transfer is not initiated unless the pulse is issued.

13.2.2.6 Slave Protocol Engine
The Slave Protocol Engine (SPE) implements a Microchip-defined hardware protocol that allows the transfer of
command and data from an SPI master to the SPI slave. The SPE controller logically sits between the SPI transmit/
receive logic and FIFOs. The SPE controller removes the command bytes and inserts status bytes from the data
stream. Only one command byte is defined by Microchip (POLL command). All other command bytes are user
defined. To use the SPE, the BIGFIFO, AUTOSTATUS, AUTOPOLL, FRAMEURUN, and SPS bits should be set
(see the SPI Table 13-9 register for bit definitions). The following descriptions assume that the frame size (Table
13-10[TXRXDFS] field) is set to 8 bits, although, other frame size settings are acceptable (up to 32 bits).

Serial Peripheral Interface Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 509

13.2.2.6.1 SPI Slave Frame Format
The frame format consists of a command frame followed by 0 to 31 data frames. The size of the command frame and
data frame must be equal and is defined by TXRXDFS. A typical use model would be to define the command frame
as 8 bits followed by 31 bytes of data. This assumes BIGFIFO is set to 1 and TXRXDFS is set to 0x08.

The following figure shows the command and data bytes. Transmit and receive refer to the SPI peripheral as the
slave. Data bytes are optional.

Figure 13-15. SPE Command/Data Format

SPI_SS[x]

RxDATA

TxDATA

SPI_SS[x]

RxDATA

TxDATA

Command Byte

Command Byte

Status Byte

Status Byte

Receive Data (1-31 Bytes)

Transmit Data (1-31 Bytes)

The first receive byte of the sequence after SPI_X_SS[x] asserts is always a command byte. The slave always
responds with a status byte, which is the contents of the Table 13-24 register.

Important: Set two bits in the HWSTATUS register to facilitate additional handshaking schemes between
SPI master and SPI slave.

13.2.2.6.2 POLL Command
All command bytes except the POLL command are stored in the receive FIFO. Once received, the CMD interrupt is
generated. The command size can be set by the Table 13-23 register and can be 1 to 32 bits wide, although typically
commands and data will be 8 bits wide. The POLL command is encoded as 0xFF and is the only encoded command.
All other command byte encodings are user defined. If a POLL command is received, the contents of the Table 13-24
register are sent back to the master and the POLL command is discarded. It will not be stored in FIFO.

13.2.2.6.3 Hardware Status Frame
A hardware status frame is automatically sent back by the SPE in response to every command. It provides status
information back to the master. The byte contains the contents of the Table 13-24 register.

13.2.2.6.4 Simple Commands
To send a command with no data to the slave, the master does the following:

1. Sends a POLL command and verifies that the slave is ready (no RXBUSY from Table 13-24 register).
2. This is repeated until the slave indicates it is ready.
3. The master sends the other command with no data. The command is queued in the receive FIFO for the slave

to process.

13.2.2.6.5 Data Receive Operation
To send data to the slave, the master does the following:

Serial Peripheral Interface Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 510

1. Sends a POLL command and verifies that the slave is ready and can accept the data.
2. This is repeated until the slave indicates that it is ready and can accept the data (no RXBUSY from Table

13-24 register).
3. The master sends the write command and data bytes. On receiving, the slave stores the command and data

bytes in the receive FIFO. After CMDSIZE bits have been received, the CMD interrupt is generated.
4. The hardware automatically sets RxBUSY, if there are less than Table 13-22 storage locations left in the

receive FIFO after the sequence completes.

Important: The slave reports under-run events having occurred, if no data is available for transmit.

13.2.2.6.6 Data Transmit Operation
To receive data from the slave, the master does the following:

1. Sends a POLL command and verifies that the slave is ready and can accept the data.
2. This is repeated until the slave indicates it is ready and can accept any associated command data (no

RxBUSY).
3. The master sends a read command and any associated data bytes (for example, a read address). On

receiving the sequence, the slave stores the command byte and data in the receive FIFO. User logic examines
the command and data bytes and puts the requested data in the transmit FIFO. As soon as it has written
PKTSIZE bytes to the transmit FIFO, the TxBUSY status bit in the Table 13-24 register is cleared.

4. The master starts polling the device until the TxBUSY bit is cleared, indicating that the data is available.
5. The master now sends a read command followed by data words. The slave returns the contents of the Table

13-24 register and required data words.

13.2.2.6.7 Under-Run in Slave Mode
Under normal operating conditions, the SPI slave core in slave mode has a transmit FIFO under-run condition as the
master initiates transfers when the slave transmit FIFO is empty (or attempts to transmit data faster than the slave
processor loads data).The core's operation can be modified by setting FRAMEURUN (Table 13-9 register). Once set,
the core ignores the under-run conditions and simply transmit zero frames when the transmit FIFO is empty at the
start of a series of frames. If the first data frame of a packet is read from the FIFO and transmitted, the under-run
detection is enabled such that if the transmit FIFO fails to provide any of the rest of the data packet (assuming
SPI_X_SS[x] is active for the whole packet), an over-run condition is signaled.

13.2.3 Initialization
This section describes the SPI initialization sequence, the SPI status at reset, and clock requirements. The SPI can
be initialized by configuring the SPI Table 13-9 register and the SOFT_RESET_CR system registry.

13.2.3.1 Initialization Sequence
1. Select the type of transfer protocol by using the TRANSFPRTL bit of the SPI Table 13-9 register.
2. Enable SPI by writing 0 to the RESET bit of the Table 13-9 register.
3. Reset the transmit/receive buffers and the data frame size.

13.2.3.2 SPI Status at Reset
After SPI reset, the slave select (SPI_X_SS[X]) pins are held to the default values of logic High. After selecting SPI
mode and enabling the SPI controller, the SPI_X_SS[x] lines are changed to the default values for each protocol.
Refer to the 13.4.3.1. SPI Control Register (CONTROL). After reset, the clock out (SPI_X_CLK) is at logic Low. At
reset, the FIFOs are cleared and their respective read and write pointers are set to zero. Similarly, all the internal
registers of the SPI controller are reset to their default values, as explained in the 13.4.2. SPI Register Summary.

An option is provided to reset the SPI peripherals by writing to bit 9 or bit 10 in the system register,
SOFT_RESET_CR. The soft resets are encoded in the following table. At power-up, the reset signals are asserted 1.
It keeps the SPI peripherals in a reset state. The SPI peripheral becomes active when the bit is set to 0, as shown in
the table.

Serial Peripheral Interface Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 511

Table 13-5. Soft Reset Bit Definitions for SPI Peripheral

Bit Number Name R/W Reset Value Description

10 SPI1_SOFTRESET R/W 0x1 Controls reset input to SPI_1
0: Release SPI _1 from reset

1: Keep SPI _1 in reset

9 SPI0_SOFTRESET R/W 0x1 Controls reset input to SPI _0
0: Release SPI _0 from reset

1: Keep SPI _0 in reset

13.2.3.3 SPI Clock Requirements
The SPI_0 and SPI_1 peripherals are clocked by APB_0_CLK on APB bus 0, and APB_1_CLK on APB bus 1. These
clocks are derived from the main MSS clock, M3_CLK. Each APB clock can be programmed individually as M3_CLK
is divided by 1, 2, 4, or 8. For more information, UG0449: SmartFusion2 and IGLOO2 Clocking Resources User
Guide.

The SPI clocks in master mode are derived from APB_0_CLK / APB_1_CLK. Master mode and slave mode SPI data
rates depend on the APB clock, as given below.

• Master mode SPI data rate
– Programmable from APB_X_CLK/256 to APB_X_CLK/2
– Programmable from APB_X_CLK /65556 to APB_X_CLK /256 in powers of 2
– Maximum data rate is APB_X_CLK/2

• Slave mode SPI data rate operates up to
– APB_X_CLK for frame sizes (frame size ≥ 8)
– APB_X_CLK /2 for frame sizes (frame size 4 to 7)

13.2.4 Details of Operation
This section describes the SPI controller operation including FIFO, modes of data transfer, interrupts, and error
handling.

13.2.4.1 SPI Transmit and Receive FIFO Flags
The SPI controller contains two, 4×32 (depth x width) FIFOs, as shown in Figure 13-2. One is for the receive side and
the other is for the transmit side. The TXFIFOFUL and TXFIFOEMP bits of the Table 13-11 register indicate the full or
empty status of the transmit FIFO. The RXFIFOFUL and RXFIFOEMP bits of the Table 13-11 register indicate the full
or empty status of the receive FIFO. User logic can poll these bits to obtain the status of the corresponding FIFO.

For large data transfers, the full depth of transmit FIFO can be used by setting the number of data frames (more
than one) in a burst (maximum is 64 k frames). When the interrupts are enabled, the TXDONE bit of the Table 13-19
register is asserted after all the data frames in the burst are sent.

For example, if the data frame size is set to 32 and the count is set to 2, the interrupt TXDONE is generated
after every 2 words (each word is 32 bits). The default value for the frame count is 1. The TXUNDERRUN and
RXOVERFLOW bits of the Table 13-11 register indicate that a FIFO under-run or FIFO overflow has occurred.

13.2.4.1.1 FIFO Under-Run Condition
If the transmit FIFO is accessed to transfer the data and there is no data in the FIFO, a transmit under-run error
(TXUNDERRUN) is generated. This can be conditionally used to generate an interrupt. In this case, the transmission
is assumed to have been lost and the application must catch the error and restart the transmission from the
beginning. Internally, the transmit logic returns to an idle state and the entire transmission is deemed lost.

13.2.4.1.2 FIFO Overflow Condition
If the channel attempts to write into a receive FIFO which is already full, a receive overflow error (RXOVERFLOW)
is generated. This can be conditionally used to generate an interrupt. In this case, the transmission continues but
the data is now corrupted because the data frame is missing. It is assumed that the software clears the interrupt
and recover; possibly by reading from the receive FIFO to clear the source of the interrupt, allowing more data to be
received, or even by halting the transmission and resetting the SPI controller.

Serial Peripheral Interface Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 512

13.2.4.2 SPI Controller Modes of Data Transfer
There are two basic modes of transfer.

• Processor controlled mode: The data transfers are controlled by a firmware that either polls the Table 13-11
register or responds to interrupts.

• PDMA controlled mode: The data transfers are autonomously controlled by the PDMA engine.

13.2.4.2.1 Processor Controlled Mode
In this mode, the size of the data frames (set in register Table 13-10) and their numbers (set in the Table
13-9[TXRXDFCOUNT] field) are specified. The data frame size specifies the number of bits being shifted out or
being received per-frame. On completing each transfer, after a specified number of data frames (1 by default) are
sent, an optional interrupt is generated. The SPI controller keeps track of the number of data frames so that special
signals, like output enable, can be deactivated at the end of a transfer.

For example, to transmit one 17-bit word, the data frame size is set to 17, and the number of data frames is set to 1.
Then depending on the operating mode, the 17 bits are transferred and the TXDATSENT Table 13-11 register bit (0)
is set. If enabled, an interrupt is also generated.

For example, consider the transmission of 64 KB of data to an external EEPROM from the processor controlled SPI
controller. The data frame size is set to eight and the number of data frames per-transfer is set to one. After each
transfer, the software must respond to the interrupt-transmit done-and-reload the FIFO until the 64 KB of data is sent.
To improve throughput, the number of data frames per each transfer can be set to 4 to utilize the full depth of the
transmit FIFO.

13.2.4.2.2 PDMA Controlled Mode
In PDMA mode, the interrupts are turned OFF and the PDMA controller uses SPI_X_TXRFM and SPI_X_RXAVAIL
signals to govern the filling and emptying of the FIFOs. The SPI_X_RXAVAIL signal indicates that the data is
available to be read and SPI_X_TXRFM indicates that the transmit is done and it is ready to receive more data.

For example, consider the transmission of 64 KB of data to an external EEPROM from a PDMA controlled SPI
controller. The data frame size is set to eight and the number of data frames
per- transfer is set to one. The transmit FIFO is repeatedly filled and emptied by the PDMA engine, using the
SPI_X_TXRFM and SPI_X_RXAVAIL signals. In PDMA mode, the transmit done and receive data available interrupts
are masked, and the PDMA engine is used to notify the application on completion.

13.2.4.3 Interrupts
Interrupts can be set up to signal the completion of a data frame transmission or reception. There is one interrupt
signal from each SPI peripheral. The SPI_0_INT signal is generated by SPI_0 and is mapped to INTISR [2] in the
Cortex-M3 processor nested vectored interrupt controller (NVIC). The SPI_1_INT signal is generated by SPI_1 and is
mapped to INTISR [3] in the Cortex-M3 processor NVIC.

13.2.4.4 SPI Error Recovery and Handling
The SPI protocol defines only the packet formats for data transmission and does not include any error recovery
strategy for physical layer protocols. Specifically, if an error occurs on a slave, such as failing to respond to the chip
select or being overwhelmed with incoming data, the master will not necessarily be aware of it. The master and slave
must therefore have prior knowledge of each other's capabilities before the transmission begins.

13.2.4.4.1 RX Overflow
An Rx overflow condition arises when the receive FIFO has not been emptied in time. As a result, the last write
to the receive FIFO from the channel, overwrites the data that is received earlier and which is not read by the
host processor. Eventually, the FIFO fills up and subsequent writes by the channel cause the Rx to overflow. The
corrective action for the bus master is to read from the FIFO until the FIFO is empty. This can be checked by reading
the FIFO status in the Table 13-11 register.

13.2.4.4.2 TX Under-Run
A Tx under-run condition arises when a channel requests to send data while no data is available in the transmit FIFO.
For example, when the SPI controller operates in slave mode and receives a request to send data, when no data is
available in transmit FIFO. The corrective action for the bus master is to write data into the transmit FIFO. The status
flags (TXFIFOEMP or TXFIFOEMPNXT of the Table 13-11 register) indicate whether the FIFO is empty or will be
empty after the next read operation.

Serial Peripheral Interface Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 513

13.3 How to Use SPI
This section describes how to use SPI in an application.

13.3.1 Design Flow
The following steps are used to enable SPI in the application by using Libero SoC.

1. Enable SPI_0 and/or SPI_1 instance by using the MSS configurator in the application, as shown in the
following figure.
Figure 13-16. Enable SPI

2. Configure the number of Slaves to 1 and the ports of enabled SPI_0 instance to an I/O or Fabric by using MSS
SPI_0 Configurator as shown in the following figures. Click the highlighted Users Guide button to find more
information on SPI configuration details.

Serial Peripheral Interface Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 514

Figure 13-17. MSS SPI Configurator - Connection Type I/O

Figure 13-18. MSS SPI Configurator - Connection Type Fabric

Serial Peripheral Interface Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 515

3. The SPI_0 interface signals in the MSS component are shown in the following figure.
Figure 13-19. SPI Interface Signals - Connection Type I/O

Figure 13-20. SPI Interface Signals - Connection Type Fabric

4. Generate the component by clicking Generate Component or by selecting SmartDesign > Generate
Component.
For more information about generation of the component, see the latest SmartDesign User Guide on
Libero SoC Documentation page. The firmware driver folder and SoftConsole workspace are included into
the project. Click the Configure firmware button highlighted in the following figure to find the SPI driver
information.

Serial Peripheral Interface Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 516

Figure 13-21. SPI Driver User's Guide

5. Click Generate Bitstream under Program Design to complete the .fdb file generation.
6. Double-click the Export Firmware under Handoff Design for Firmware Development in the Libero SoC

design flow window to generate the SoftConsole Firmware Project. The SoftConsole folder contains the
mss_spi firmware driver. The firmware driver, mss_spi (mss_spi.c and mss_spi.h), which provides a set of
functions for controlling the MSS SPIs can also be downloaded from the Microchip Firmware Catalog.

7. The following table lists main APIs for SPI. For complete information on the APIs, see
SmartFusion2_MSS_SPI_Driver_UG as shown in the preceding figure.

Table 13-6. MSS SPI APIs

Category API Description

Initialization and
configuration
functions

MSS_SPI_init() Initializes the SPI

MSS_SPI_configure_master_mode() Configures the protocol mode, serial clock speed and
frame size for a specific target SPI slave device

MSS_SPI_configure_slave_mode() Configures a MSS SPI block for operations as a SPI
slave device

Data transfer
functions

MSS_SPI_set_slave_select() Selects a specific slave by a MSS SPI master

MSS_SPI_transfer_frame() Used by a MSS SPI master to transmit and receive a
frame up to 32 bits long

MSS_SPI_transfer_block() Used by MSS SPI masters to transmit and receive
blocks of data

MSS_SPI_clear_slave_select() To deselect a specific slave by a MSS SPI master

MSS_SPI_set_slave_tx_frame() Used by MSS SPI slaves to specify the frame that will be
transmitted

MSS_SPI_set_frame_rx_handler() Used by MSS SPI slaves to specify the receive handler
function

DMA block
transfer functions

MSS_SPI_disable() To temporarily disable a MSS SPI

MSS_SPI_set_transfer_byte_count() Specifies the number of bytes

MSS_SPI_enable() To re-enable a MSS SPI

MSS_SPI_tx_done() To find out if a DMA controlled transfer has completed

8. For more information on SPI usage, the sample projects are available and can be generated, as shown in the
following figure.

Serial Peripheral Interface Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 517

Figure 13-22. SPI Sample Project

Important: The MSS SPI does not support full behavioral simulation models. For more information, see
SmartFusion2 MSS BFM Simulation User Guide.

13.3.2 SPI Use Models

13.3.2.1 Use Model 1: Accessing an External SPI Flash Using MSS SPI_0
The external SPI Flash can be interfaced to either the MSS SPI_0 or SPI_1 peripherals of the SmartFusion 2 MSS. In
this example, the external SPI Flash is interfaced to MSS SPI_0. MSS SPI_0 is configured as a master with the slave
select line connected to the chip select of the external SPI Flash.

The following figure shows interfacing the external SPI Flash to MSS SPI_0.

Figure 13-23. Interfacing an External SPI Flash to MSS SPI_0-Block Diagram

SPI_0_DO

SPI_0_CLK

SPI_0_SSO

SPI_0_DI

SI

SCK

CS

SO

MSS

FPGA Fabric

S
P

I_0

External Flash Memory

SmartFusion 2

Follow the instructions provided in the 13.3.1. Design Flow to configure SPI_0 in the application. The external SPI
Flash is the target SPI slave device in this example.

13.3.2.2 Use Model 2: Interfacing Any SPI Slave Device Using MSS SPI Routing Through Fabric
The external SPI slave devices such as serial display device can be interfaced using SmartFusion 2 MSS SPI routing
through fabric ports. The fabric ports can be brought out to the GPIO header to interface the SPI slave device
with SmartFusion 2 device. Follow the instructions provided in the 13.3.1. Design Flow to configure SPI_0 with

Serial Peripheral Interface Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 518

connection type fabric in the application. Double click IO- Constraints under Edit Constraints in the Libero SoC
design flow window to configure the appropriate GPIO header pin numbers for MSS SPI_0 fabric ports to brought out
the SPI signals to interface the SPI slave device with SmartFusion 2 Device.

Figure 13-24. Interfacing External SPI Slave Device Using MSS SPI Routing Through Fabric Block Diagram

MSS

FPGA
Fabric

SPI_0

External SPI Slave
Device

SPI_0_DO_M2F

SPI_0_CLK_M2F

SPI_0_SSO_M2F

SPI_0_DI_F2M

SI

SCK

CS

SO

SmartFusion® 2

13.3.2.2.1 Software Design Flow
Initialization of the SPI Peripheral

Initialize the SPI instance SPI_0 by using MSS_SPI_init API.

SPI Master Mode Configuration

Configure MSS SPI_0 in master mode by using MSS_SPI_configure_master_mode API. The SPI peripheral
generates a serial clock and data to the slave device.

The following parameters are required to configure SPI_0 so it can operate as a SPI Master.

• SPI_0 instance data structure
• Target SPI slave (SPI Flash, for example)
• Serial peripheral interface operating mode
• Divider value to generate serial interface clock signal from PCLK
• Frame bit length

Data Transfer

Follow the steps to transfer data to SPI Flash or to receive data from SPI Flash.

• Set the slave by using MSS_SPI_set_slave_select API.
• Transfer the data frame by using MSS_SPI_transfer_frame API.
• Deselect the slave after data transfer by using MSS_SPI_clear_slave_select API.

For more information about how to access Flash memory through SPI interface, see TU0548: Accessing Serial Flash
Memory Using SPI Interface - Libero SoC v11.6 SoC and Keil uVision Flow for SmartFusion2 Tutorial.

For more information about the usage of SPI_0 peripheral in IAP, see the In-Application Programming chapter of
UG0451: IGLOO2 and SmartFusion2 Programming User Guide.

13.4 SPI Register Map
This section provides SPI registers along with the address offset, functionality, and bit definitions.

Serial Peripheral Interface Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 519

13.4.1 SYSREG Configuration Register Summary
The registers listed in the following table control the behavior of the SPI peripherals. For a detailed description of
each register and bit, see the 13. Serial Peripheral Interface Controller.

Table 13-7. SYSREG Control Registers

Register Name Register
Type

Flash Writer
Protect

Reset Source Description

Table 21-25 RW-P Bit SYSRESET_N Soft reset control

21.5.22. Loopback Control
Register

RW-P Register SYSRESET_N Loop back control

21.5.27. Peripheral Clock MUX
Select Control Register

RW-P Register PORESET_N Peripheral clock MUX select

13.4.2 SPI Register Summary
The following table summarizes each of the SPI registers described in this document. The SPI_0 base address
resides at 0x40001000 and extends to address 0x40001FFF in the Cortex-M3 processor memory map. The SPI_1
base address resides at 0x40011000 and extends to address 0x40011FFF in the Cortex-M3 processor memory map.

Table 13-8. SPI Register Summary

Register Name Address Offset R/W Reset
Value

Description

Table 13-9 0x00 R/W 0x8000010
2

Control register

Table 13-10 0x04 R/W 0x04 Transmit and receive data frame size

Table 13-11 0x08 R 0x2440 Status register

Table 13-12 0x0C W 0x0 Interrupt clear register

Table 13-13 0x10 R 0x0 Receive data register

Table 13-14 0x14 W 0x0 Transmit data register

Table 13-15 0x18 R/W 0x07 Output clock generator (master mode)

Table 13-17 0x1C R/W 0x0 Specifies slave selected (master mode)

Table 13-18 0x20 R 0x0 Masked interrupt status

Table 13-19 0x24 R 0x0 Raw interrupt status

Table 13-20 0x28 R/W 0x0 Control bits for enhanced modes

Table 13-21 0x2C R/W 0x0 Command register

Table 13-22 0x30 R/W 0x0 Packet size

Table 13-23 0x34 R/W 0x0 Command size

Table 13-24 0x38 R/W 0x0 Slave hardware status

Table 13-25 0x3C R 0x44 Status register

CTRL0 0x40 R/W 0x02 Aliased Table 13-9 register bits 7:0. This register allows
byte operations from an 8-bit processor in the fabric. It
is not intended for access from internal MSS masters.

Serial Peripheral Interface Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 520

...........continued
Register Name Address Offset R/W Reset

Value
Description

CTRL1 0x44 R/W 0x01 Aliased Table 13-9 register bits 15:8. This register
allows byte operations from an 8-bit processor in the
fabric. It is not intended for access from internal MSS
masters.

CTRL2 0x48 R/W 0x0 Aliased Table 13-9 register bits 23:16. This register
allows byte operations from an 8-bit processor in the
fabric. It is not intended for access from internal MSS
masters.

CTRL3 0x4C R/W 0x0 Aliased Table 13-9 register bits 25:24. This register
allows byte operations from an 8-bit processor in the
fabric. It is not intended for access from internal MSS
masters.

13.4.3 SPI Register Details
This section describes the SPI registers in detail.

13.4.3.1 SPI Control Register (CONTROL)
The following table provides details about the SPI Control register. Using this register, the SPI mode (Master/Slave),
the type of the protocol it uses, and the data frame count can be set.

Table 13-9. CONTROL

Bit
Number

Name R/W Reset
Value

Description

31 RESET R/W 1 0: SPI is enabled.
1: SPI is held in Power reset state.

30 OENOFF R/W 0 0: SPI output enable active as required.
1: SPI output enable is not asserted. Allows multiple slaves to share a
single slave select signal with a single master.

29 BIGFIFO R/W 0 Alters FIFO depth when frame size is [4-8] bits.
0: FIFO depth is 4 frames.

1: FIFO depth is 32 frames when frame size is [9-16] bits FIFO depth
is 16; and when frame size is [17-32] bits FIFO depth is 8.

28 CLKMODE R/W 0 Specifies the methodology used to calculate the SPICLK divider.
0: SPICLK = 1 / (2CLK_GEN + 1) where CLK_GEN = 0 to 15.

1: SPICLK = 1 / (2 × (CLK_GEN + 1)) where CLK_GEN = 0 to 255.

27 FRAMEURUN R/W 0 0: The under-runs are generated whenever a read is attempted from
an empty transmit FIFO.
1: The under-run condition is ignored for the complete frame, if the
first data frame read resulted in a potential overflow; that is, the slave
was not ready to transmit any data. If the first data frame is read from
the FIFO and transmitted, an under-run is generated, when the FIFO
becomes empty for any of the remaining packet frames (that is, while
SSEL is active). Master operation does not create a transmit FIFO
under-run condition.

26 SPS R/W 0 Defines slave select behavior. See Table 13-3.

25 SPH R/W 0 Clock phase

Serial Peripheral Interface Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 521

...........continued
Bit
Number

Name R/W Reset
Value

Description

24 SPO R/W 0 Clock polarity

[23:8] TXRXDFCOUN
T

R/W 0001 Number of data frames to be sent or received. Counts from 1.
Maximum value is 0XFFFF.

7 INTTXTURUN R/W 0 Interrupt on transmit the under-run
0: Interrupt disabled
1: Interrupt enabled

6 INTRXOVRFLO R/W 0 Interrupt on receive overflow
0: Interrupt disable
1: Interrupt enabled

5 INTTXDATA R/W 0 Interrupt on transmit data
0: Interrupt disabled
1: Interrupt enabled

4 INTRXDATA R/W 0 Interrupt on receive data
0: Interrupt disabled
1: Interrupt enabled

[3:2] TRANSFPRTL R/W 0 Transfer protocol
Decode:

0b00: Motorola SPI

0b01: TI synchronous serial
0b10: National Semiconductor MICROWIRE
0b11: Reserved

The transfer protocol cannot be changed while the SPI is enabled.

1 MODE R/W 1 SPI implementation
0: Slave
1: Master (default)

0 ENABLE R/W 0 Core enable
0: Disable (default)
1: Enable

The core does not respond to external signals (SPI_X_DI, SPI_X_DO)
until this bit is enabled. SPI_X_CLK is driven low and SPI_X_DOE_N
and SPI_X_SS (slave select) are driven inactive.

13.4.3.2 SPI TxRx Data Frame Register (TXRXDF_SIZE)
The following table provides details about the Transmit Receive Data Frame register. The width of the data frame is
set using this register.

Table 13-10. TXRXDF_SIZE

Bit
Numbe
r

Name R/W Reset
Value

Description

[31:6] Reserved R/W 0 Software must not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit must be
preserved across a read-modify-write operation.

Serial Peripheral Interface Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 522

...........continued
Bit
Numbe
r

Name R/W Reset
Value

Description

[5:0] TXRXDFS R/W 0x04 Transmit and receive data size. Maximum value is 32. Number of bits
shifted out and received per frame (count starts from 1).
In National Semiconductor MICROWIRE mode, this is the number of
shifts to be done after the control byte is sent.

This register must be set before SPI is enabled. Writes to this register
are ignored after SPI is enabled.

13.4.3.3 SPI Status Register (STATUS)
The following table provides the SPI Status register details. This register indicates the state of SPI such as Tx/Rx
FIFO, Tx under-run, and Rx overflow.

Table 13-11. Status

Bit
Numbe
r

Name R/W Reset
Value

Description

[31:15] Reserved R/W 0 Software must not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit must be
preserved across a read-modify-write operation.

14 ACTIVE R SPI is still transmitting or receiving data.

13 SSEL R Current state of SPI_X_SS[0]

12 FRAMESTART 0: SPI output enable is active as required.
1: SPI output enable is not asserted. Allows multiple slaves to share
a single slave select signal with a single master.

11 TXFIFOEMPNXT R 0 Transmit FIFO empty on next read

10 TXFIFOEMP R 1 Transmit FIFO is empty

9 TXFIFOFULNXT R 0 Transmit FIFO full on next write

8 TXFIFOFUL R 0 Transmit FIFO is full

7 RXFIFOEMPNXT R 0 Receive FIFO empty on next read

6 RXFIFOEMP R 1 Receive FIFO empty

5 RXFIFOFULNXT R 0 Receive FIFO full on next write

4 RXFIFOFUL R 0 Receive FIFO is full

3 TXUNDERRUN RO 0 No data available for transmission. The channel cannot read data
from the transmit FIFO because the transmit FIFO is empty.
Certainly, this can only be raised in slave mode because the master
will not attempt to transmit unless there is data in FIFO.

2 RXOVERFLOW RO 0 Channel is unable to write to receive FIFO as it is full. Applies to
master and slave modes.

1 RXDATRCED RO 0 When set, it indicates that the number of frames specified by
TXRXDFCOUNT has been received and can be read. Applies to
master and slave modes.

0 TXDATSENT RO 0 When set, it indicates that the numbers of frames specified by
TXRXDFCOUNT has been sent. Applies to master and slave modes.

Serial Peripheral Interface Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 523

Important: 
• Bits [11:4] correspond to FIFO status.
• None of these status bits are sticky. During run-time, the status of these bits reflects the current status

of SPI.
• To determine the cause of an interrupt, the Masked Interrupt Status (MIS) register must be read.

13.4.3.4 SPI Interrupt Clear Register (INT_CLEAR)
The following table describes the Interrupt Clear register. A read to this register has no effect. It returns all zeroes.

Table 13-12. INT_CLEAR

Bit
Numbe
r

Name R/W Reset
Value

Description

[31:6] Reserved W 0 Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

5 SSEND W Write one to clear the interrupt

4 CMDINT W Write one to clear the interrupt

3 TXCHUNDRUN W 0 Transmit channel under-run

2 RXCHOVRFLW W 0 Receive channel over flow

1 RXRDYCLR W 0 Clears receive ready (RX_RDY)

0 TXDONECLR W 0 Clears transmit done (TX_DONE)

13.4.3.5 SPI Receive Data Register (RX_DATA)
The following table describes the Receive Data register.

Table 13-13. RX_DATA

Bit
Number

Name R/W Reset
Value

Description

[31:0] RXDATA R 0 Received data. Reading this clears the register of the received
data.

13.4.3.6 SPI Transmit Data Register (TX_DATA)
The following table describes the Transmit Data register.

Table 13-14. TX_DATA

Bit
Number

Name R/W Reset
Value

Description

[31:0] TXDATA W 0 Data to be transmitted. Writing to this clears the last data
transmitted.

13.4.3.7 SPI SCLK Generation Register (CLK_GEN)
The following table describes the clock modes used to calculate the SPICLK divider. Table 13-16 describes the
SPICLK rates in different modes.

Serial Peripheral Interface Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 524

Table 13-15. CLK_GEN

Bit
Number

Name R/W Reset
Value

Description

[31:8] Reserved R/W 0 Software must not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit must be
preserved across a read-modify-write operation.

[7:0] CLK_GEN R/W 0 Specifies the methodology used to calculate the SPICLK divider.
CLK_MODE = 0:

SPICLK = 1 / (2 CLK_GEN + 1) where CLK_GEN = 0 to 15

CLK_MODE = 1:

SPICLK = 1 / (2 × (CLK_GEN + 1)) where CLK_GEN = 0 to 255

The following table lists the SPICLK rates in different modes.

Table 13-16. CLK_MODE Example, APB Clock = 153.8 MHz

CLK_MODE=0 CLK_MODE=1

SPICLK = 1 / (2CLKRATE + 1)
where CLKRATE = 0 to 15

SPICLK = 1 / (2 × (CLKRATE + 1))
where CLKRATE = 0 to 255

CLKRATE SPI Clock CLKRATE SPI Clock

0 76,900,000 0 76,900,000

1 38,450,000 1 38,450,000

2 19,225,000 2 25,633,333.33

3 9,612,500 3 19,225,000

4 4,806,250 4 15,380,000

5 2,403,125 5 12,816,666.67

6 1,201,562.5 6 10,985,714.29

7 600,781.25 7 9,612,500

8 300,390.625 8 8,544,444.444

9 150,195.312 9 7,690,000

10 75,097.656 10 6,990,909.091

11 37,548.828 11 6,408,333.333

12 18,774.414 12 5,915,384.615

13 9,387.207 13 5,492,857.143

14 4,693.603 14 5,126,666.667

15 2,346.801 15 4,806,250

… …

255 300,390.625

13.4.3.8 SPI Slave Select Register
The following table describes the register that specifies the slave that has been selected.

Serial Peripheral Interface Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 525

Table 13-17. SLAVE_SELECT

Bit
Number

Name R/W Reset
Value

Description

[31:8] Reserved R/W 0 Software must not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit must
be preserved across a read-modify-write operation.

7:0 SLAVE SELECT R/W 0 Specifies the slave selected. Writing one to a bit position selects
the corresponding slave.
SLAVESELECT[7:1] are available at the FPGA fabric interface,
while SLAVESELECT[0] is available at the SPI_X_SS[0] pin.

The slave select output polarity is active-low. In TI mode, the
slave select output is inverted to become active-high.

13.4.3.9 SPI Masked Interrupt Status Register
The following table describes the Masked Interrupt Status (MIS) register. It is a read-only register. On a read, this
register gives the current masked status value of the corresponding interrupt. A write has no effect.

Table 13-18. MIS

Bit
Number

Name R/W Reset
Value

Description

[31:6] Reserved R/W 0 Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit
should be preserved across a read-modify-write operation.

5 SSEND R Indicates that SPI_X_SS[x] has gone inactive. When this is high,
the interrupt is active.

4 CMDINT R Indicates that the number of frames set by the CMDSIZE register
has been received as a single packet of frames (SPI_X_SS[x]
held active). When this is high, the interrupt is active.

3 TXCHUNDDMSKIN
T

R 0 Masked interrupt status. Reading this returns interrupt status.
Masked interrupt status = Raw interrupt status and interrupt mask
(Table 13-9 register)

MIS = RIS and Table 13-9[7:4]

Masked status of transmit channel under-run
TXCHUNDMSKINT=TXCHUNDRINT and INTTXUNRRUN

2 RXCHOVRFMSKIN
T

R 0 Masked status of receive channel overflow.
RXCHOVRFMSKINT = RXCHOVRFINT and INTRXOVRFLO

1 RXRDYMSKINT R 0 Masked status of receive data ready (data received in FIFO).
RXRDYMSKINT = RXRDY and INTTXDATA

0 TXDONEMSKINT R 0 Masked status of transmit done (data shifted out)
TXDONEMSKINT = TXDONE and INTRXDATA

13.4.3.10 SPI Raw Interrupt Status Register
The following table describes the Raw Interrupt Status (RIS) register. This register returns the current raw status
value, prior to masking, of the corresponding interrupt.

Serial Peripheral Interface Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 526

Table 13-19. RIS

Bit
Number

Name R/W Reset
Value

Description

[31:6] Reserved R/W 0 Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit
should be preserved across a read-modify-write operation.

5 SSEND R/W Indicates that SPI_X_SS[x] has gone inactive.

4 CMDINT R/W Indicates that the number of frames set by the CMDSIZE register
has been received as a single packet of frames (SPI_X_SS[x]
held active).

3 TXCHUNDR R 0 RAW interrupt status. Reading this returns raw interrupt status.
Raw status of transmit channel under-run

2 RXCHOVRF R 0 Raw status of receive channel overflow

1 RXRDY R 0 Receive data ready (data received in FIFO)

0 TXDONE R 0 Raw status of transmit done (data shifted out)

13.4.3.11 SPI Control2 Register
The following table describes the Control2 register details as the terminal frame counter, SPI slave select, and auto
status of SPI.

Table 13-20. CONTROL2

Bit
Number

Name R/W Reset
Value

Description

[31:6] Reserved R/W 0 Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit
should be preserved across a read-modify-write operation.

5 INTEN_SSEND R/W Indicates that SPI_X_SS[x] has gone inactive.

4 INTEN_CMD R/W Indicates that the number of frames set by the CMDSIZE register
have been received as a single packet of frames (SPI_X_SS[x]
held active).

3 Reserved R/W 0 Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit
should be preserved across a read-modify-write operation.

2 DISFRMCNT R/W 0 0: The internal frame counter is active. When the counter reaches
the programmed limit, it will pause the current SPI transfer
inserting idle cycles and generate the appropriate interrupts.
1: The internal frame counter is not active. The core transmits
data until the transmit FIFO empties. The FRAMECNT (Table
13-9 register) should also be programmed to zero.

1 AUTOPOLL R/W 0 0: No effect
1: The first receive frame after SPI_X_SS[0] is active. It is
discarded (not written to the FIFO) and supports the POLL
function.

0 AUTOSTATUS R/W 0 0: No effect
1: The first transmitted frame (slave mode) contains the hardware
status, not data from the transmit FIFO.

Serial Peripheral Interface Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 527

13.4.3.12 SPI Command Register
The following table describes the Command register..

Table 13-21. COMMAND

Bit
Number

Name R/W Reset
Value

Description

[31:7] Reserved R/W 0 Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit
should be preserved across a read-modify-write operation.

6 TXNOW R/W 0 0: No effect
1: Writing one clears the TxBUSY bit in slave mode immediately
rather than waiting for PKTSIZE frames to be available, telling
the master that there is data available. This is intended to
use when less than the programmed PKTSIZE data frames are
being transmitted, removing the requirement to transmit PKTSIZE
frames. This bit stays set until the first data frame is transmitted.

5 AUTOSTALL R/W 0: No effect
1: Writing one will cause the master to delay transmission until
the transmit FIFO contains the number of frames specified by
the Table 13-22 register. This guarantee that the frames are
transmitted with no idle cycles or time gaps between them.
This bit will be automatically cleared as soon as the core starts
transmitting the frames.

4 CLRFRAMECNT R/W 0: No effect
1: Writing one clears the internal frame counter. This bit always
reads as zero. The counter is also cleared when the core is
disabled, CTL1, or CTL2 are written (that is, the frame count limit
changed).

3 TXFIFORST R/W 0 0: No effect
1: Writing one resets the Tx FIFO. This bit always reads as zero.

2 RXFIFORST R/W 0 0: No effect
Writing one resets the Rx FIFO. This bit always reads as zero.

1 AUTOEMPTY R/W 0 0: No effect
1: Writing one causes the SPI core to automatically discard any
further received data until the number of frames requested in
the FRAMECNT register has been received or (in slave mode)
SSEL goes inactive. This bit will stay set until all the frames are
complete or it is cleared.

0 AUTOFILL R/W 0 0: No effect
1: Writing one causes the SPI core to automatically fill the
transmit FIFO with zeros to match the number of frames
requested in the FRAMECNT register. Typically, the five
command bytes must be written to the TxDATA register and then
this bit must be set. Data can be read from the receive FIFO until
the complete set of frames has been read. This bit will stay set
until all the frames are complete or it is cleared.

13.4.3.13 SPI Packet Size Register
The following table provides the details of the Packet Size registers that are used to set the SPI CMD/data frame
size.

Serial Peripheral Interface Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 528

Table 13-22. PKTSIZE

Bit
Number

Name R/W Reset
Value

Description

[31:8] Reserved R/W 0 Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit
should be preserved across a read-modify-write operation.

[7:0] PKTSIZE R/W 0 Sets the size of the SPI CMD/data frame. PKTSIZE cannot be
greater than the FIFO size.

13.4.3.14 SPI Command Size Register
The following table describes the Command size register.

Table 13-23. CMD_SIZE

Bit
Number

Name R/W Reset
Value

Description

[31:8] Reserved R/W 0 Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit
should be preserved across a read-modify-write operation.

[7:0] CMDSIZE R/W 0 Number of frames after SPI_SS[0] going active that the CMD
interrupt should be generated.
This controls the RxCMD interrupt. The internal counters count
frames from SPI_SS[0] going low. It automatically resets and
starts counting again once SSEL goes inactive. In TI mode, back-
to-back frames are counted, any gaps in data causes the counter
to start counting again.

13.4.3.15 SPI Hardware Status Register
The following table describes the Hardware Status register. This register allows the Cortex-M3 processor to control
the hardware Status register used in the slave protocol controller.

Table 13-24. HWSTATUS

Bit
Number

Name R/W Reset
Value

Description

[31:4] Not used R/W 0 These bits are undefined. The value that the slave transmits
depends on the data that is queued in the transmit FIFO.

[3:2] USER R/W 0 These bits are set by the CPU. Their function is undefined but
could be used to send additional status or request information to
the master.

1 TXBUSY R/W 0 0: Master may request the requested data. There are PKTSIZE
frames of data in the transmit FIFO (when AUTOPOLL is set to
PKTSIZE - 1)
1: Indicates not ready to transmit data.

0 RXBUSY R/W 0 1: Indicates that the receive buffer is busy (not empty).
0: Indicates that up to PKTSIZE frames of command followed by
data may be sent to the slave.

13.4.3.16 SPI Status 8 Register
The following table describes the SPI status 8 (STAT8) register. This register allows the important status bits to be
read as a single 8-bit value. This reduces the overhead of checking the Status register bits when an 8-bit processor is
being used.

Serial Peripheral Interface Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 529

Table 13-25. STAT8

Bit
Number

Equivalent STATUS
Register Bit
Position

Name R/W Reset
Value

Description

[31:8] Reserved R/W 0 Software should not rely on the value of a
reserved bit. To provide compatibility with future
products, the value of a reserved bit should be
preserved across a read-modify-write operation.

7 14 ACTIVE R 0 SPI is still transmitting the data

6 13 SSEL R 0 Current state of SPI_X_SS[0]

5 3 TXUNDERRUN R 0 Transmit FIFO underflowed

4 2 RXOVERFLOW R 0 Receive FIFO overflowed

3 8 TXFIFOFUL R 0 Transmit FIFO is full

2 6 RXFIFOEMP R 0 Receive FIFO is empty

1 0 and 1 DONE R 0 The number of request frames have been
transmitted and received.

0 12 FRAMESTART R 0 Next frame in receive FIFO was received after
SPI_X_SS[x] went active (command frame).

Inter-Integrated Circuit Peripherals

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 530

14. Inter-Integrated Circuit Peripherals
Philips inter-integrated circuit (I2C) is a two wire serial bus interface that provides data transfer between many
devices. SmartFusion 2 SoC FPGAs contain two identical I2C peripherals in the microcontroller subsystem (MSS
I2C_0 and MSS I2C_1), that provide a mechanism for serial communication between the SmartFusion 2 device and
external I2C compliant devices.

SmartFusion 2 I2C peripherals support the following protocols:

• I2C protocol as per v2.1 specification
• SMBus protocol as per v2.0 specification
• PMBus protocol as per v1.1 specification

14.1 Features
SmartFusion 2 I2C peripherals support the following features:

• Master and Slave modes
• 7-bit addressing format and data transfers up to 100 Kbit/s in Standard mode and up to 400 Kbit/s in Fast mode
• Multi-master collision detection and arbitration
• Own slave address and general call address detection
• Second slave address detection
• System management bus (SMBus) timeout and real-time idle condition counters
• Optional SMBus signals, SMBSUS_N and SMBALERT_N, which are controlled through the APB interface
• Input glitch or spike filters

The following figure shows the I2C peripherals within MSS. The I2C peripherals are connected to the advanced
high-performance bus (AHB) matrix through the advanced peripheral bus (APB) interfaces (APB_0 and APB_1).

Inter-Integrated Circuit Peripherals

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 531

Figure 14-1. Microcontroller Subsystem Showing I2C Peripherals

AHB Bus Matrix

eSRAM_0System
Controller

Cache
Controller

S D IC

Arm® Cortex®-M3
Processor

S D I

MSS DDR
Bridge

PDMA

MS6

MM3

AHB To AHB Bridge with Address Decoder
USB OTG

HPDMA

MDDR

APB_0SYSREGTriple Speed
Ethernet MAC

FIC_0

MM4 MS4

MS2 MS3 MS0

MS5

MS1

MM5 MM6

MM7

MM8

MM2 MM1 MM0 MM9

IDC
D/S eNVM_0 eNVM_1 eSRAM_1

FIC_2 (Peripheral
Initialization) APB_1

MMUART_0

SPI_0

I2C_0

PDMA
Configuration

WATCHDOG

FIIC

TIMERx2

MMUART_1

SPI_1

I2C_1

GPIO

CAN

RTC

COMM_BLK

FIC_1

M
SS

_F
IC

M
S6

_U
SB

MS5_MAC MS5_SR MS5_APB0 MS5_FIC2 MS5_APB1

14.2 Functional Description
This section provides a detailed description of the I2C peripherals.

14.2.1 Architecture Overview
The I2C peripherals consist mainly of the following components (shown in the following figure).

• Input Glitch Filter
• Arbitration and Synchronization Logic
• Address Comparator
• Serial Clock Generator

Inter-Integrated Circuit Peripherals

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 532

Figure 14-2. I2C Block Diagram

I2C_X_SCLI

Address Comparator

A
P

B
 In

te
rf

a
ce

I2C_X_BCLK

Input Glitch Filter

I2C_X_SCLO

I2C_X_SDAI

I2C_X_SDLO

SMBus Register
Frequency Register

I2C_X_SMBSUS_NI

I2C_X_SMBALERT_NI
I2C_X_SMBALERT_NO

Glitch Filter Register

Input Glitch Filter

Output

Output

I2C_X_SMBSUS_NO

Control Register
Status Register

Serial Clock
Generator

SMBus and
Filtering

Registers

I2C_X_SMBA_INT

I2C_X_SMBS_INT

Shift Register
Slave0 and Slave1
Address Registers

Arbitration and
Synchronization Logic

14.2.1.1 Input Glitch Filter
The I2C Fast mode (400 Kbit/s) specification states that glitches 50 ns or less should be filtered out of the incoming
clock and data lines. The input glitch filter performs this function by filtering glitches on incoming clock and data
signals. Glitches shorter than the glitch filter length are filtered out. The glitch filter length is defined in terms of APB
interface clock cycles and configurable from 3 to 21 APB interface clock cycles. Input signals are synchronized with
the internal APB interface clock (APB_0_CLK and APB_1_CLK).

For more information about Glitch register bit definitions, see 14.4.7. Glitch Register.

14.2.1.2 Arbitration and Synchronization Logic
In Master mode, the arbitration logic monitors the data line. If any other device on the bus drives the data line Low,
the I2C peripheral immediately changes from Master-Transmitter mode to Slave-Receiver mode. The synchronization
logic synchronizes the serial clock generator block with the transmitted clock pulses coming from another master
device.

The arbitration and synchronization logic implements the timeout requirements as per the SMBus specification
version 2.0.

14.2.1.3 Address Comparator
When a master transmits a slave address on the bus, the address comparator checks the 7-bit slave address with
its own slave address. If the transmitted slave address does not match, the address comparator compares the
first received byte with the general call address (0x00). If the address matches, the status register is updated. The
general call address is used to address each device connected to the I2C-bus.

14.2.1.4 Serial Clock Generator
In Master mode, the serial clock generator generates the serial clock line (SCL). The clock generator is switched
off when I2C is in Slave mode. For information about the baud rate clock (BCLK), see 14.2.3.2. I2C Clock
Requirements.

14.2.2 Port List
The following table lists the various I2C signals. The letter X is used as a placeholder for 0 or 1 in register and signal
descriptions.

Inter-Integrated Circuit Peripherals

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 533

Table 14-1. I2C Interface Signals

Name Type Polarity Description

I2C_X_SCL Input/
Output

High Serial clock

I2C_X_SDA Input/
Output

High Serial data

I2C_X_SMBALERT_NI Input High Input interrupt signal; used in Master mode to monitor whether the
slave wants to force communication with the master.

I2C_X_SMBALERT_N
O

Output High Output interrupt signal; used in Slave mode if the slave wants to
force communication with the master.

I2C_X_SMBSUS_NI Input High Input Suspend Mode signal; used in I2C Slave mode.

I2C_X_SMBSUS_NO Output High Output Suspend Mode signal; used in I2C Master mode.

14.2.2.1 I2C Byte Transfer
A typical I2C 8-bit data transfer cycle is shown in the following figure. A start condition is signaled when the SDA line
goes Low while the SCL line is High. After a start condition, the master transmits the 7-bit slave address followed by
a direction bit, which is decoded and acknowledged (ACK) by the slave. Following the address phase, multiple bytes
can be transferred with an ACK for each byte. The end of the transaction is signaled by a stop condition. The stop
condition is signaled by the SDA line asserted High while the SCL line is High.

When the I2C peripheral is in a receiver (Master or Slave) mode, it might acknowledge or ignore the data sent by the
transmitter. The I2C peripheral must send a no-acknowledge (NACK) bit during the acknowledge cycle on the bus to
disable the data transfer by signaling the stop condition.

Figure 14-3. 8-bit Data Transfer Cycle

SCL

SDA ACK

S

Start

S

Start

P

Stop

7-bit Slave Address 8 -bit Data

MSB LSB ACK

Direction
bit

Start Slave Address Direction ACK Data ACK Stop

7-bit 1-bit 8-bit1-bit to

14.2.3 Initialization
The I2C peripheral can be initialized in the user application software by configuring the I2C Control register and
SOFT_RESET_CR system registry. The initialization sequence is as follows:

1. Release the I2C from reset by using SOFT_RESET_CR system registry (Table 14-1).
2. Enable I2C by writing ‘1’ to the ENS1 bit of 14.4.1. Control Register.
3. Configure the serial clock rate by using CR0, CR1, and CR2 bits of 14.4.1. Control Register.
4. Set the slave address to Slave0 Address Register (14.4.4. Slave0 Address Register).

14.2.3.1 I2C Reset
The I2C peripherals reset to zero on power-up and are held in reset until enabled. An option is provided under
software control to reset the I2C peripherals by writing to bit 11 or bit 12 in the System register, SOFT_RESET_CR.
The soft resets are encoded in the following table.

Inter-Integrated Circuit Peripherals

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 534

Table 14-2. Soft Reset Bit Definitions For I2C Peripherals

Bit
Number

Name R/W Reset Value Description

12 I2C1_SOFTRESET R R/W 1 Controls reset input to I2C_1
0: Release I2C_1 from reset

1: Keep I2C_1 in reset (reset value)

11 I2C0_SOFTRESET R/W 1 Controls reset input to I2C_0
0: Release I2C_0 from reset

1: Keep I2C_0 in reset (reset value)

At power-up, the reset signals are asserted as 1. This keeps the I2C peripherals in a reset state. The I2C peripheral
becomes active when the bit is set to 0, as shown in Table 14-2.

14.2.3.2 I2C Clock Requirements
The I2C_0 and I2C_1 peripherals are clocked by APB_0_CLK on APB bus 0 and APB_1_CLK on APB bus 1. These
clocks are derived from the main MSS clock M3_CLK. Each APB clock can be programmed individually as M3_CLK
divided by 1, 2, 4 or 8. For more information, see UG0449: SmartFusion2 and IGLOO2 Clocking Resources User
Guide.

14.2.3.2.1 Baud Rate Clock
BCLK is a pulse-for-transmission speed control signal and is internally synchronized with the clock input. BCLK
is used to set the serial clock frequency from a clock sourced within the FPGA fabric when the CR[2:0] bits in
the Control register are set to 0b111(0x7). Otherwise, either APB_0_CLK or APB_1_CLK is used to determine the
serial clock frequency. The actual non-stretched serial bus clock frequency can be calculated based on the settings
in the CR[2:0] fields of the Control register and the frequencies of APB_0_CLK or APB_1_CLK and BCLK. See
14.4.1. Control Register for more information on bit settings.

14.2.3.2.2 Clock Stretching
The I2C peripherals support the clock stretching feature as defined in Philips I2C v2.1 specifications. This addresses
the condition where the I2C slave is unable to meet the clock speed provided by the I2C master and needs to slow
down. Care should be taken so that the slowest I2C device does not dominate the bus performance. The I2C slave is
allowed to hold down the clock if it needs to reduce the bus speed. The I2C master reads back the clock signal after
releasing it to a High state and waits until the line goes High.

Clock stretching is a common practice. However, the total bandwidth of the shared bus might significantly decrease.
Estimating the impact of clock stretching is required to share I2C bus among multiple devices.

14.2.4 Details of Operation
The I2C logic operates in the following modes:

• Master Mode
– Master-Transmitter mode: The master transmits serial data on SDA and drives the SCL.
– Master-Receiver mode: The master receives serial data on SDA and drives the SCL.

• Slave Mode
– Slave-Receiver mode: Serial data and the serial clock are received through SDA and SCL.
– Slave-Transmitter mode: Serial data is transmitted through SDA while the master drives SCL.

14.2.4.1 Master Mode
When the Cortex-M3 processor or any other bus master becomes the master, the I2C peripheral waits until the serial
bus is free. When the serial bus is free, the I2C peripheral generates a start condition, sends the slave address, and
transfers the direction bit. The I2C peripheral operates as a master transmitter or as a master receiver, depending on
the transfer direction bit.

14.2.4.1.1 Transfer Example
1. The Cortex-M3 processor sets the ENS1 and STA bits of the Control register.

Inter-Integrated Circuit Peripherals

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 535

2. The I2C peripheral sends a START condition and then generates an interrupt request, (STATUS register =
0x08).

3. The Cortex-M3 processor writes to the data register (7-bit slave address and direction bit) and then clears the
serial interrupt (SI) bit in the Control register.

4. The I2C peripheral sends the data register contents and then generates the interrupt request.
5. The Status register contains a value of 0x18 or 0x20, depending on the received ACK bit

(Table 14-8).
6. The transfer is continued according to the STATUS Register – Master-Transmitter mode.

14.2.4.2 Slave Mode
After setting the ENS1 bit in the 14.4.1. Control Register, the I2C peripheral is in Slave mode (which is not addressed
by the master). The I2C peripheral checks for its own slave address and the general call address. If one of these
addresses is detected, the I2C peripheral is addressed by the master and then an interrupt is requested. The I2C
peripheral can operate as a slave transmitter or a slave receiver.

14.2.4.2.1 Transfer Example
1. The Cortex-M3 processor sets the ENS1 and AA bits of the Control register.
2. The I2C peripheral receives its own address and the direction bit from master.
3. The I2C peripheral generates an interrupt request, Status register = 0x60 (Table 14-10).
4. The Cortex-M3 processor prepares to receive the data and then clears the SI bit in Control register.
5. The I2C peripheral receives the next data byte and generates the interrupt request. The Status register

contains a value of 0x80 or 0x88, depending on the AA bit. See Table 14-10.
6. The transfer is continued according to the STATUS Register – Slave-Receiver Mode.

14.2.4.3 SMBus and PMBus Overview
The SMBus is a two-wire interface through which devices can communicate with each other. The SMBus interface
can operate as a master or a slave. It is derived from the principles of operation of I2C. See SMBus protocol v2.0
specification for more information.

Power management bus (PMBus) is an open standard two-wire communications protocol through which devices can
communicate with each other. See PMBus protocol v1.1 specification for more information.

The following figure shows a PMBus or SMBus device interface example using the Cortex-M3 processor, I2C, MSS,
and general purpose input/output (GPIO).

PMBus protocols are run through the serial bus, and the additional PMBus control signal is routed through MSS
GPIO. External SMBus devices may also be connected to the same bus, as shown in the figure.

For an SMBus application, it is advised to choose a PCLK so that the SCL transfers data at near the maximum
frequency to ensure that other potential clock-stretching devices on the bus do not slow the clock frequency to below
the minimum allowed SMBus clock frequency.

Inter-Integrated Circuit Peripherals

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 536

Figure 14-4. PMBus and SMBus Devices Interface

I2C

I2 C Driver Source
Code

APBCortex- M3
Processor

SMBus and PMBus Host Controller (Master /Slave Mode)

SMBus Device

VCC VCC

Rp Rp

I2C_X_SDAI

I2C_X_SDAO

I2C_X_SCLI

I2C_X_SCLO

I2C_X_SDA

I2C_X_SCL

I2C_X_SMBALERTI

I2C_X_SMBALERTO

VCC

Rp

I2C_X_SMBALERT

MSS GPIO

PMBus Device

I2C_X_PMB_Control

MSS

14.2.4.4 I2C Interrupts
There are three interrupt signals for each I2C peripheral (I2C_0_INT, I2C_0_SMBALERT, and I2C_0_SMBSUS).
These signals are generated by MSS I2C_0 and are mapped to INTISR 4, INTISR 5, and INTISR 6 in the Cortex-M3
processor NVIC controller. The I2C_1_INT, I2C_1_SMBALERT, and I2C_1_SMBSUS signals are generated by MSS
I2C_1 and are mapped to INTISR 7, INTISR 8, and INTISR 9 in the Cortex-M3 processor NVIC controller. All
interrupts enable bits within the NVIC, INTISR 4 through INTISR 9, correspond to bit locations 4 through 9.

Enable SMBus interrupts (I2C_X_SMBALERT and I2C_X_SMBSUS) in the I2C peripheral by setting the appropriate
bits in the SMBUS register and clears the appropriate bit in the SMBus register in the interrupt service routine to
prevent a reassertion of the interrupt.

The I2C_X_INT, I2C_X_SMBALERT, and I2C_X_SMBSUS I2C interrupt signals can be monitored by the FPGA logic
through the fabric interface interrupt controller (FIIC). See Table 22-1 for further details.

14.3 How to Use I2C
This section describes how to use I2C in an application.

14.3.1 Design Flow
The following steps are used to enable I2C in the application by using Libero SoC.

1. Enable I2C_0 and/or I2C_1 instance by using the MSS configurator in the application, as shown in the
following figure.

Inter-Integrated Circuit Peripherals

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 537

Figure 14-5. Enable I2C

2. Configure the ports of enabled I2C_0 instance to an I/O by using MSS I2C_0 Configurator as shown in the
following figure. Click the highlighted Users Guide button to find more information on I2C configuration details.

Inter-Integrated Circuit Peripherals

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 538

Figure 14-6. MSS I2C Configurator

3. The I2C_0 interface signals in the MSS component are shown in the following figure.
Figure 14-7. I2C Interface Signals

4. Generate the component by clicking Generate Component or by selecting SmartDesign > Generate
Component. For more information on generation of the component, see the latest SmartDesign User Guide
on Libero SoC Documentation. The firmware driver folder and SoftConsole workspace are included into the
project. Click Configure firmware, as shown in the following figure to find the I2C driver information.

Inter-Integrated Circuit Peripherals

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 539

Figure 14-8. I2C Driver User's Guide

5. Click Generate Bitstream under Program Design to complete *.fdb file generation.
6. Double click Export Firmware under Handoff Design for Firmware Development in the Libero SoC design

flow window to generate the SoftConsole Firmware Project. The SoftConsole folder contains the mss_i2c
firmware driver. The firmware driver, mss_i2c (mss_i2c.c and mss_i2c.h) which provides a set of functions
for controlling the MSS I2Cs can also be downloaded from the Microchip firmware catalog. The following table
lists the main APIs for I2C. For more information on APIs, see the SmartFusion2_MSS_I2C_Driver_UG, as
shown in the preceding figure.

Table 14-3. MSS I2C APIs

Category API Description and Usage

Initialization and
configuration function

MSS_I2C_init() Initializes and configures the I2C with MSS I2C's
configuration as parameters

I2C master operation
functions

MSS_I2C_write() Initiates an I2C master write transaction

MSS_I2C_read() Initiates an I2C master read transaction

MSS_I2C_write_read() Initiates an I2C write-read transaction

MSS_I2C_wait_complete() Waits for the current I2C transaction to complete

MSS_I2C_get_status() Gets the current state of an MSS I2C instance

I2C slave operation
functions

MSS_I2C_set_slave_tx_buffer() Specifies the memory buffer holding the data
that will be sent to the I2C master

MSS_I2C_set_slave_rx_buffer() Specifies the memory buffer that will be used by
the MSS I2C slave instance to receive data

MSS_I2C_set_slave_mem_offset_length(
)

Specifies the number of bytes expected as part
of the write phase of a write-read transaction

MSS_I2C_register_write_handler() Registers the function that is called to process
the data written to MSS I2C instance when it is
the slave in an I2C write transaction

MSS_I2C_enable_slave() Enables the MSS I2C slave

MSS_I2C_disable_slave() Disables the MSS I2C slave

Inter-Integrated Circuit Peripherals

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 540

...........continued
Category API Description and Usage

SMBus control
functions

MSS_I2C_smbus_init() Initializes SMBus timeouts and status logics

MSS_I2C_suspend_smbus_slave() Forces slave devices into power-down or
suspend mode

MSS_I2C_set_smbus_alert() Used to force master communication by an I2C
slave device

MSS_I2C_enable_smbus_irq() Enables interrupt related to SMBus which can
be either SMBSUS or SMBALERT interrupt

MSS_I2C_disable_smbus_irq() Disables interrupt related to SMBus which can
be either SMBSUS or SMBALERT interrupt

7. For more information on I2C usage, the sample projects are available and can be generated, as shown in the
following figure.
Figure 14-9. I2C Sample Project

Important: The MSS I2C does not support full behavioral simulation models. For more information, see
SmartFusion2 MSS BFM Simulation User Guide.

14.3.2 I2C Use Models
The following sections describe I2C use models.

14.3.2.1 Use Model 1: Interfacing External EEPROM
The following figure shows the interfacing of the external EEPROM to I2C_0 of the SmartFusion 2 MSS.

Inter-Integrated Circuit Peripherals

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 541

Figure 14-10. Interfacing External EEPROM to MSS I2C_0 - Block Diagram

SCL

SDA

External EEPROM

SmartFusion® 2

I2C
_

0

I2C_0_SCL

I2C_0_SDA

MSS

FABRIC

See the 14.3.1. Design Flow to configure I2C_0 in the application. EEPROM is the target slave device in this
example.

14.3.2.1.1 Software Design Flow
I2C Master Mode

The I2C instance I2C_0 can be initialized by using MSS_I2C_init API. See the SmartFusion2_MSS_I2C_Driver_UG
to use the I2C initialization API.

Write Operation

Write data to the target slave device using MSS_I2C_write API. This API ensures the presence of I2C_0 in Master
mode for write transactions. The following parameters are required to use the I2C write API:

• Target slave device address (Ex.EEPROM)
• Data which is to be written to the target device
• Data size in bytes

Read Operation

Read data from the target slave device using MSS_I2C_read API. This API ensures the presence of I2C_0 in Master
mode for read transactions. The following parameters are required to use the I2C read API:

• Target slave device address (Ex.EEPROM)
• Data buffer to collect the data from the target device
• Data size in bytes

For any I2C read or write transaction to complete, MSS_I2C_wait_complete API should be called. This API waits for
the current I2C transaction to complete.

14.3.2.2 Use Model 2: Configuring I2C as a Slave
The I2C peripheral can be configured to Slave mode. In Slave mode, the I2C_0 responds to the commands received
by the I2C master device.

See the 14.3.1. Design Flow to configure I2C_0 in the application.

14.3.2.2.1 Software Design Flow
I2C Slave Mode

The I2C instance I2C_0 can be initialized by using the MSS_I2C_init API. The slave device address should be
specified while initializing.

Write Operation

Following are the steps to complete the write transaction:

• Set the slave receive buffer
The data receive buffer is used to store the data received when the I2C slave is the target of an I2C write
transaction. Use the MSS_I2C_set_slave_rx_buffer API.

Inter-Integrated Circuit Peripherals

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 542

• Register the write handler
The handler function must be called on completion of the I2C write transaction. MSS_I2C_register_write_handler
API can be used to register the write handler function.

• Enable the slave
The MSS_I2C_enable_slave API can be used to enable the slave.

Read Operation

Following are the steps to complete the read transaction:

• Set the slave transmit buffer
The data buffer is transmitted when the I2C slave is the target of an I2C read transaction. Here, use the
MSS_I2C_set_slave_tx_buffer API.

• Enable the slave
MSS_I2C_enable_slave API can be used to enable the slave.

14.3.2.3 Use Model 3: I2C Loopback Mode
I2C_0 and I2C_1 are internally connected in Loopback mode, as shown in the following figure. The
MSS_I2CLOOPBACK bit of the LOOPBACK_CR System register is used to enable the Loopback mode.

Following are the steps to configure I2C_0 and I2C_1 in Loopback mode to verify the data transfer between I2C
peripherals.

• Enable the I2C_0 and I2C_1 in the MSS configurator of the Libero SoC design project.
• Initialize I2C_0 and I2C_1 in the SoftConsole application.
• Set the MSS_I2CLOOPBACK bit of the LOOPBACK_CR System register in the SoftConsole application. For

further details, see 14. Inter-Integrated Circuit Peripherals.
• Use I2C read and write APIs from the MSS I2C driver to send and receive the data. While using APIs from the

MSS I2C driver, ensure that either I2C_0 or I2C_1 is in Master mode.
• The data traffic from I2C_0 is looped back to I2C_1, and vice versa.

Figure 14-11. I2C Loopback Block Diagram

I2C_0

I2C_1

SCL 0

SCL 1

SDA 0
SDA 1

SCL 0

SCL 1

SDA 0
SDA 1

SCL OUT

SCL IN

SDA OUT

SDA IN

SCL OUT

SCL IN

SDA OUT

SDA IN

MSS_I2CLOOPBACK bit

MSS_I2CLOOPBACK bit

MSS_I2CLOOPBACK bit

MSS_I2CLOOPBACK bit

14.4 I2C Register Map
The internal register address map and reset values of each APB accessible register for I2C peripherals are listed
in the following table. The I2C_0 base address resides at 0x40002000 and extends to address 0x40002FFF in
the Cortex-M3 processor memory map. The I2C_1 base address resides at 0x40012000 and extends to address
0x40012FFF in the Cortex-M3 processor memory map.

Table 14-4. I2C Register Map

Register
Name

Addres
s Offset

R/W Reset Value Description

CTRL 0x00 R/W 0x00 Control register: Used to configure the I2C peripheral.

Inter-Integrated Circuit Peripherals

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 543

...........continued
Register
Name

Addres
s Offset

R/W Reset Value Description

STATUS 0x04 R 0xF8 Status register: Read-only value which indicates the current state of
the I2C peripheral.

DATA 0x08 R/W 0x00 Data register: Read/write data to/from the serial interface.

SLAVE0
ADR

0x0C R/W 0x00 Slave0 address register: Contains the primary programmable
address of the I2C peripheral.

SMBUS 0x10 R/W 0b01X1X000 SMBus register: Configuration register for SMBus timeout reset
condition and for the optional SMBus signals SMBALERT_N and
SMSBUS_N.

FREQ 0x14 R/W 0x08 Frequency register: Necessary for configuring real-time timeout logic.
Can be set to the PCLK frequency for 25 ms SMBus timeouts, or the
timeout value maybe increased/decreased.

GLITCHREG 0x18 R/W 0x03 Glitch Reg length register: Used to adjust the input glitch filter length.
If GLITCHREG_FIXED = 0, then the register can be set from 3 to 21.

SLAVE1
ADR

0x1C R/W 0x00 Slave1 address register: Contains the secondary programmable
address of the I2C peripheral.

14.4.1 Control Register
The following table describes the Control register used for configuring the I2C peripherals.

Table 14-5. Control Register (CTRL)

Bit
Number

Nam
e

R/W Reset
Value

Description

7 CR2 R/W 0 Clock rate bit 2; refer to bit 0.

6 ENS
1

R/W 0 Enable bit. When ENS1 = 0, the SDA and SCL outputs are in a high-impedance
and SDA and SCL input signals are ignored. When ENS1 = 1, the I2C is enabled.

5 STA R/W 0 The Start flag. When STA = 1, the I2C peripheral checks the status of the serial
bus and generates a START condition, if the bus is free. STA bit is automatically
cleared after START condition has been generated.

4 STO R/W 0 The Stop flag. When STO = 1 and the I2C is in Master mode, a STOP condition
is transmitted to the serial bus. STO bit is automatically cleared after STOP
condition has been generated.

3 SI R/W 0 The SI flag. The SI flag is set by the I2C whenever there is a serviceable change
in the Status register. Once the register is updated, the SI bit must be cleared by
software.
The SI bit is directly readable through the APB INTERRUPT signal.

Inter-Integrated Circuit Peripherals

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 544

...........continued
Bit
Number

Nam
e

R/W Reset
Value

Description

2 AA R/W 0 The assert acknowledge flag.
When AA = 1, an acknowledge is returned when:

• The own slave address is received
• The general call address is received when the GC bit in the address register

is set
• A data byte is received when the core is in the Master-receiver mode
• A data byte is received when the core is in the Slave-receiver mode.

When AA = 0, a not acknowledge is returned when:

• A data byte is received while the core is in Master-receiver mode
• A data byte is received when I2C peripheral is in Slave-receiver mode

1 CR1 R/W 0 Serial clock rate bit 1; refer to bit 0

0 CR0 R/W 0 Serial clock rate bit 0. Clock rate is defined in Table 14-6.
BCLK is synchronized to PCLK and hence must be PCLKFREQ/2 or less.

Table 14-6. Clock Rate (CR)

CR2 CR1 CR0 SCL Frequency

0 0 0 PCLK frequency/256

0 0 1 PCLK frequency/224

0 1 0 PCLK frequency/192

0 1 1 PCLK frequency/160

1 0 0 PCLK frequency/960

1 0 1 PCLK frequency/120

1 1 0 PCLK frequency/60

1 1 1 BCLK frequency/8

14.4.2 Status Register
The following table describes the Status register of the I2C peripherals.

Table 14-7. Status Register (STATUS)

Bit
Numbe
r

Name R/W Reset
Value

Description

7:0 Status register R 0XF8 The Status register is read-only. The status values depend on the
mode of operation. They are listed in Table 14-8 through Table 14-12.
Whenever there is a change of state, interrupt is requested. After
updating any registers, the APB interface control must clear the interrupt
by clearing the SI bit of the Table 14-5 register.

Inter-Integrated Circuit Peripherals

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 545

14.4.2.1 Status Register: Master-Transmitter Mode
Table 14-8. Status Register – Master-Transmitter Mode

Status
Code

Status Data Register
Action

Control Register Bits Next Action Taken by Core

STA STO SI AA

0x08 A START condition is
transmitted.

Load SLA+W 0 0 SLA+W is transmitted; ACK is
received.

0x10 A repeated START
condition is
transmitted.

Load SLA+W 0 0 SLA+W is transmitted; ACK is
received.

Load SLA+R 0 0 SLA+R is transmitted; Core is
switched to MST/REC mode.

0x18 SLA+W is
transmitted; ACK is
received.

Load data byte 0 0 0 Data byte is transmitted; ACK is
received.

No action 1 0 0 Repeated START is transmitted.

0 1 0 STOP condition is transmitted; STO
flag is reset.

1 1 0 STOP condition followed by a START
condition is transmitted; STO flag is
reset.

0x20 SLA+W is
transmitted; not ACK
(NACK) is received.

Load data byte 0 0 0 Data byte is transmitted; ACK is
received.

No action 1 0 0 Repeated START is transmitted.

0 1 0 STOP condition is transmitted; STO
flag is reset.

1 1 0 STOP condition followed by a START
condition is transmitted; STO flag is
reset.

0x28 Data byte in
Data Register is
transmitted; ACK is
received.

Load data byte 0 0 0 Data byte is transmitted; ACK bit is
received.

No action 1 0 0 Repeated START is transmitted.

0 1 0 STOP condition is transmitted; STO
flag is reset.

1 1 0 STOP condition followed by a START
condition is transmitted; STO flag is
reset.

0x30 Data byte in
Data Register is
transmitted; not ACK
(NACK) is received.

Data byte 0 0 0 Data byte is transmitted; ACK is
received.

No action 1 0 0 Repeated START is transmitted.

0 1 0 STOP condition is transmitted; STO
flag is reset.

1 1 0 STOP condition followed by a START
condition is transmitted; STO flag is
reset.

Inter-Integrated Circuit Peripherals

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 546

...........continued
Status
Code

Status Data Register
Action

Control Register Bits Next Action Taken by Core

STA STO SI AA

0x38 Arbitration lost in
SLA+R/W or data
bytes.

No action 0 0 0 The bus is released; not-addressed
Slave mode is entered.

1 0 0 A START condition is transmitted
when the bus gets free.

0xD0 SMBus master reset
is activated.

No action Wait 35 ms for interrupt to be set,
clear interrupt and proceed to F8H
state.

Important: 
• SLA = Slave address
• SLV = Slave
• REC = Receiver
• TRX = Transmitter
• SLA+W = Master sends slave address then writes data to slave
• SLA+R = Master sends slave address then reads data from slave

14.4.2.2 Status Register: Master-Receiver Mode
Table 14-9. STATUS Register – Master-Receiver Mode

Statu
s
Code

Status Data Register
Action

Control Register Bits Next Action Taken by Core

STA STO SI AA

0x08 A START condition
is transmitted.

Load SLA+R — 0 0 — SLA+R is transmitted; ACK is received

0x10 A repeated START
condition is
transmitted.

Load SLA+R — 0 0 — SLA+R is transmitted; ACK is received

Load SLA+W — 0 0 — SLA+W is transmitted; I2C is switched to
MST/TRX mode.

0x38 Arbitration lost in not
ACK (NACK) bit.

No action 0 0 0 — The bus is released; I2C enters the
Slave mode.

1 0 0 — A start condition is transmitted when the
bus gets free.

0x40 SLA+R has been
transmitted; ACK is
received.

No action 0 0 0 0 Data byte is received; not ACK (NACK)
is returned.

0 0 0 1 Data byte is received; ACK is returned

0x48 SLA+R is
transmitted; not ACK
(NACK) is received.

No action 1 0 0 — Repeated START condition is
transmitted

0 1 0 — STOP condition is transmitted; STO flag
is reset.

1 1 0 — STOP condition followed by a START
condition is transmitted; STO flag is
reset.

Inter-Integrated Circuit Peripherals

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 547

...........continued
Statu
s
Code

Status Data Register
Action

Control Register Bits Next Action Taken by Core

STA STO SI AA

0x50 Data byte has been
received; ACK is
returned.

Read data byte 0 0 0 0 Data byte is received; not ACK(NACK) is
returned.

Read data byte 0 0 0 1 Data byte is received; ACK is returned

0x58 Data byte is
received; not ACK
(NACK) is returned.

Read data byte 1 0 0 — Repeated START condition is
transmitted

Read data byte 0 1 0 — STOP condition is transmitted; STO flag
is reset.

Read data byte 1 1 0 — STOP condition followed by a START
condition is transmitted; STO flag is
reset.

0xD0 SMBus master reset
is activated.

No action 0 — Wait 35 ms for interrupt to set, clear
interrupt and proceed to F8H state.

Notes:

• SLA = Slave address
• SLV = Slave
• REC = Receiver
• TRX = Transmitter
• SLA+W = Master sends slave address then writes data to slave
• SLA+R = Master sends slave address then reads data from slave

14.4.2.3 Status Register: Slave-Receiver Mode
Table 14-10. STATUS Register – Slave-Receiver Mode

Statu
s
Code

Status Data Register
Action

Control Register Bits Next Action Taken by Core

STA STO SI AA

0x60 Own SLA+W is received;
ACK is returned.

No action 0 0 0 Data byte is received and not ACK
(NACK) is returned.

0 0 1 Data byte is received and ACK is
returned.

0x68 Arbitration lost in
SLA+R/W as master; own
SLA+W is received, ACK
returned.

No action 0 0 0 Data byte is received and not ACK
(NACK) is returned.

0 0 1 Data byte is received and ACK is
returned.

0x70 General call address
(00H) is received; ACK is
returned.

No action 0 0 0 Data byte is received and not ACK
(NACK) is returned.

0 0 1 Data byte is received and ACK is
returned.

0x78 Arbitration lost in
SLA+R/W as master;
general call address is
received, ACK returned.

No action 0 0 0 Data byte is received and not ACK
(NACK) is returned.

0 0 1 Data byte is received and ACK is
returned.

Inter-Integrated Circuit Peripherals

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 548

...........continued
Statu
s
Code

Status Data Register
Action

Control Register Bits Next Action Taken by Core

STA STO SI AA

0x80 Previously addressed with
own SLV address; DATA is
received; ACK returned.

Read data
byte

0 0 0 Data byte is received and not ACK
(NACK) is returned.

0 0 1 Data byte is received and ACK is
returned.

0x88 Previously addressed with
own SLA; DATA byte is
received; not ACK (NACK)
returned.

Read data
byte

0 0 0 0 Switched to not-addressed SLV
mode; no recognition of own SLA or
general call address.

0 0 0 1 Switched to not-addressed SLV
mode; own SLA or general call
address is recognized.

1 0 0 0 Switched to not-addressed SLV
mode; no recognition of own SLA
or general call address; START
condition is transmitted when the
bus gets free.

1 0 0 1 Switched to not-addressed SLV
mode; own SLA or general call
address is recognized; START
condition is transmitted when the
bus gets free.

0x90 Previously addressed with
general call address;
DATA is received; ACK
returned.

Read data
byte

0 0 0 Data byte is received and not ACK
(NACK) is returned.

0 0 1 Data byte is received and ACK is
returned.

0x98 Previously addressed with
general call address;
DATA is received; not ACK
(NACK) returned.

Read data
byte

0 0 0 0 Switched to not-addressed SLV
mode; no recognition of own SLA or
general call address.

0 0 0 1 Switched to not-addressed SLV
mode; own SLA or general call
address is recognized.

1 0 0 0 Switched to not-addressed SLV
mode; no recognition of own SLA
or general call address; START
condition is transmitted when the
bus gets free.

1 0 0 1 Switched to not-addressed SLV
mode; own SLA or general call
address is recognized; START
condition is transmitted when the
bus gets free.

Inter-Integrated Circuit Peripherals

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 549

...........continued
Statu
s
Code

Status Data Register
Action

Control Register Bits Next Action Taken by Core

STA STO SI AA

0xA0 A STOP condition
or repeated START
condition is received while
addressed as SLV/REC or
SLV/TRX.

No action 0 0 0 0 Switched to not-addressed SLV
mode; no recognition of own SLA or
general call address.

0 0 0 1 Switched to not-addressed SLV
mode; own SLA or general call
address is recognized.

1 0 0 0 Switched to not-addressed SLV
mode; no recognition of own SLA
or general call address; START
condition is transmitted when the
bus gets free.

1 0 0 1 Switched to not-addressed SLV
mode; own SLA or general call
address is recognized; START
condition is transmitted when the
bus gets free.

0xD8 25 ms SCL low time is
reached; device must be
reset.

No action X 0 Slave must proceed to reset
state by clearing the interrupt
within 10ms, according to SMBus
specification v2.0.

Notes:

• SLA = Slave address
• SLV = Slave
• REC = Receiver
• TRX = Transmitter
• SLA+W = Master sends slave address then writes data to slave
• SLA+R = Master sends slave address then reads data from slave

14.4.2.4 Status Register – Slave-Transmitter Mode
Table 14-11. STATUS Register – Slave-Transmitter Mode

Statu
s
Code

Status Data
Register
Action

Control Register Bits Next Action Taken by Core

STA STO SI AA

0xA8 Own SLA+R is
received; ACK is
returned.

Load data
byte

0 0 0 Last data byte is transmitted; ACK is
received

0 0 1 Data byte is transmitted; ACK is received

0xB0 Arbitration lost
in SLA+R/W
as master;
own SLA+R is
received; ACK is
returned.

Load data
byte

0 0 0 Last data byte is transmitted; ACK is
received

0 0 1 Data byte is transmitted; ACK is received

0xB8 Data byte is
transmitted; ACK
is received.

Load data
byte

0 0 0 Last data byte is transmitted; ACK is
received

0 0 1 Data byte is transmitted; ACK is received

Inter-Integrated Circuit Peripherals

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 550

...........continued
Statu
s
Code

Status Data
Register
Action

Control Register Bits Next Action Taken by Core

STA STO SI AA

0xC0 Data byte is
transmitted; not
ACK (NACK) is
received.

No action 0 0 0 0 Switched to not-addressed SLV mode; no
recognition of own SLA or general call
address.

0 0 0 1 Switched to not-addressed SLV mode; own
SLA or general call address is recognized.

1 0 0 0 Switched to not-addressed SLV mode; no
recognition of own SLA or general call
address; START condition is transmitted
when the bus gets free.

1 0 0 1 Switched to not-addressed SLV mode; own
SLA or general call address is recognized;
START condition is transmitted when the
bus gets free.

0xC8 Last data byte is
transmitted; ACK
is received.

No action 0 0 0 0 Switched to not-addressed SLV mode; no
recognition of own SLA or general call
address.

0 0 0 1 Switched to not-addressed SLV mode; own
SLA or general call address is recognized.

1 0 0 0 Switched to not-addressed SLV mode; no
recognition of own SLA or general call
address; START condition is transmitted
when the bus gets free.

1 0 0 1 Switched to not-addressed SLV mode; own
SLA or general call address is recognized;
START condition is transmitted when the
bus gets free.

0xD8 25 ms SCL low
time is reached;
device must be
reset.

No action 0 Slave must proceed to reset state by
clearing the interrupt within 10 ms, according
to SMBus specification v2.0.

Notes:

• SLA = Slave address
• SLV = Slave
• REC = Receiver
• TRX = Transmitter
• SLA+W = Master sends slave address then writes data to slave
• SLA+R = Master sends slave address then reads data from slave

Inter-Integrated Circuit Peripherals

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 551

14.4.2.5 Status Register: Miscellaneous States
Table 14-12. STATUS Register – Miscellaneous States

Statu
s
Code

Status Data
Register
Action

Control Register Bits Next Action Taken by Core

STA STO SI AA

0x38 Arbitration lost No action 0 0 0 Bus is released

1 0 0 A Start condition is transmitted when
the bus gets free.

0xF8 No relevant state
information available;
SI = 0

No Action No Action Idle

0x00 Bus error during MST or
selected Slave modes

No action 0 1 0 Only the internal hardware is affected
in the MST or addressed SLV modes.
In all cases, the bus is released and
the state switched in non-addressed
Slave mode. Stop flag is reset.

14.4.3 Data Register
The Data register contains a byte of serial data to be transmitted or a byte that is received. The Cortex-M3 processor
or any other fabric master can read from and write to this 8-bit, directly addressable register when it is not shifting a
byte (after an interrupt is generated).

The bit descriptions are provided in the following table, in both data and addressing context. Data context is the 8-bit
data format from MSB to LSB. Addressing context is based on a master sending an address call to a slave on the
bus, along with a direction bit (master transmits data or receives data from a slave).

Table 14-13. Data Register (DATA)

Bit
Number

Name R/W Reset
Value

Description

7 SD7 R/W 0 Data context: serial data bit 7(MSB)
Addressing context: serial address bit 6(MSB)

6 SD6 R/W 0 Data context: serial data bit 6
Addressing context: serial address bit 5

5 SD5 R/W 0 Data context: serial data bit 5
Addressing context: serial address bit 4

4 SD4 R/W 0 Data context: serial data bit 4
Addressing context: serial address bit 3

3 SD3 R/W 0 Data context: serial data bit 3
Addressing context: serial address bit 2

2 SD2 R/W 0 Data context: serial data bit 2
Addressing context: serial address bit 1

1 SD1 R/W 0 Data context: serial data bit 1
Addressing context: serial address bit 0 (LSB)

0 SD0 R/W 0 Data context: serial data bit 0 (LSB)
Addressing context: direction bit. 0 = Write; 1 = Read

Inter-Integrated Circuit Peripherals

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 552

14.4.4 Slave0 Address Register
The I2C has dual slave address (Slave0/Slave1) decoding capability. The Slave0 address register is a read/write
directly accessible register. The details of this register are provided in the following table.

Table 14-14. Slave0 Address Register (Slave0 ADR)

Bit
Number

Name R/W Reset
Value

Description

7 ADR6 R/W 0 Own Slave0 address bit 6

6 ADR5 R/W 0 Own Slave0 address bit 5

5 ADR4 R/W 0 Own Slave0 address bit 4

4 ADR3 R/W 0 Own Slave0 address bit 3

3 ADR2 R/W 0 Own Slave0 address bit 2

2 ADR1 R/W 0 Own Slave0 address bit 1

1 ADR0 R/W 0 Own Slave0 address bit 0

0 GC R/W 0 General call (GC) address acknowledge. If the GC bit is set, the
general call address is recognized; otherwise it is ignored.

14.4.5 SMBus Register
The I2C SMBus is an optional bus for serial data transfer between the MSS and the FPGA fabric for Suspend mode.
The Suspend mode is a Low power mode where most devices are stalled or powered down. The SMBus register
contains specific SMBus related functionality and signals. The details of this register are provided in the following
table.

Table 14-15. SMBus Register (SMBUS)

Bit
Numbe
r

Name R/
W

Reset
Value

Description

7 SMBus reset R/
W

0 Writing one to this bit forces the clock line Low until 35 ms
is exceeded, thus resetting the entire bus as per the SMBus
specification v2.0.
Usage: When the I2C is used as a host controller (master),
reset the bus by holding the clock line Low 35 ms. Slaves
must react to this event and reset themselves.

6 SMBSUS_NO control R/
W

0b1 SMBSUS_NO control. SMBUS_NO is a Suspend mode
signal from MSS to fabric.
It is used in Master/Host mode to force other devices into
Power down/Suspend mode. It is active low signal.

SMBSUS_NO and SMBSUS_NI are separate signals
(not wired-AND). If the I2C is part of a host-controller,
SMBSUS_NO can be used as an output; if I2C is a slave to
a host-controller that is implemented SMBSUS_N, then only
SMBSUS_NI's status is relevant.

Inter-Integrated Circuit Peripherals

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 553

...........continued
Bit
Numbe
r

Name R/
W

Reset
Value

Description

5 SMBSUS_NI status R 0bX Status of SMBSUS_NI signal. SMBUS_NI is a Suspend mode
signal from fabric to MSS. It is used if the core is slave/
device.
Upon resuming, the SMBSUS_NI returns High. The system
then returns all devices to their operational state.

SMBSUS_NO and SMBSUS_NI are separate signals
(not wired-AND). If the I2C is part of a host-controller,
SMBSUS_NO can be used as an output; if I2C is a slave to
a host-controller that is implemented SMBSUS_N, then only
SMBSUS_NI's status is relevant.

4 SMBALERT_NO control R/
W

0b1 SMBALERT_NO control; SMBALERT_NO is a wired-and-
interrupt signal from the MSS to fabric.
It is used in Slave/Device mode if the core wants to force
communication with a host.

3 SMBALERT_NI status R 0bX Status of SMBALERT_NI signal. SMBALERT_NI is a wired-
and-interrupt signal from the MSS to fabric.
It is used in Master/Host mode, if the slave/devices want to
force communication with a host.

2 SMBus enable R/
W

0 0: SMBus timeouts and status logic disabled (standard I2C
bus operation)
1: SMBus timeouts and status logic enabled

1 SMBSUS interrupt enable R/
W

0 0: SMBSUS interrupt signal (SMBS) disabled
1: SMBSUS interrupt signal (SMBS) enabled

0 SMBALERT interrupt
enable

R/
W

0 0: SMBALERT interrupt signal (SMBA) disabled
1: SMBALERT interrupt signal (SMBA) enabled

14.4.6 Frequency Register
The Frequency register is required to calculate the real-time timeout logic. The following table describes the
Frequency register.

Inter-Integrated Circuit Peripherals

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 554

Table 14-16. Frequency Register (FREQ)

Bit
Numbe
r

Name R/W Reset
Value

Description

7:0 Frequency R/W 0x08 PCLKx frequency in MHz from 1 to 255.
If the PCLKx frequency is used, and SMBus is enabled, the SMBus
timeouts are configured per the SMBus specification. If another
timeout value is desired, scale the frequency value as per the
following formula:

Timeout scale = Fscale/Factual

If the actual PCLKx frequency is 100 MHz, and a scale down is
desired that results in a 3 ms timeout rather than 25 ms timeout, then:

Fscale = 3/25 x Factual = 0.12 x 100 = 12 MHz

Writing 12 into the Frequency register has the effect of reducing
maximum timeout count value and reducing the real-time timeout from
25 ms to 3 ms.

14.4.7 Glitch Register
The Glitch register (GLITCHREG) gives the size of the glitch (in terms of APB interface clock cycles) to filter the
glitches on data and clock lines.

Table 14-17. Glitch Register (GLITCHREG)

Bit
Numbe
r

Name R/W Reset
Value

Description

7:0 GlitchReg_Num R/W 0x03 This read/write register is used to adjust the input glitch filter length.
Depending on the application, the glitch filter is used to suppress
spikes between 3 and 21 APB interface clock cycles. Number or length
of shift register filter is set to value from 3 to 21.

14.4.8 Slave1 Address Register
The I2C has dual slave address (Slave0/Slave1) decoding capability. The Slave0 address register is a read/write
directly accessible register. The details of this register are provided in the following table.

Table 14-18. Slave1 Address Register (SLAVE1 ADR)

Bit Number Name R/W Reset
Value

Description

7 ADR6 R/W 0 Own Slave1 address bit 6

6 ADR5 R/W 0 Own Slave1 address bit 5

5 ADR4 R/W 0 Own Slave1 address bit 4

4 ADR3 R/W 0 Own Slave1 address bit 3

3 ADR2 R/W 0 Own Slave1 address bit 2

2 ADR1 R/W 0 Own Slave1 address bit 1

1 ADR0 R/W 0 Own Slave1 address bit 0

0 ENADR R/W 0 1: Enable the Slave1 address comparisons
0: Disable Slave1 address comparisons

MSS GPIO

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 555

15. MSS GPIO
The Microcontroller Subsystem (MSS) general purpose input/output (GPIO) block is an advanced peripheral bus
(APB) slave that provides access to 32 GPIOs. As shown in the following figure, MSS masters and fabric masters
can access the MSS GPIO block through the Advanced High-Performance Bus (AHB) matrix.

15.1 Features
Following are the features of the MSS GPIO block:

• 32 individually configurable GPIOs
• Each GPIO is dynamically programmable as an input, output, or bi-directional I/O
• Each GPIO can be configured as an interrupt source to the Arm® Cortex® -M3 processor in Input mode
• The reset state of the GPIOs is configurable
• The GPIOs can be selectively reset by either the hard reset (Power-on Reset, user reset from the fabric) or the

soft reset from the SYSREG block

The MSS GPIO block features mentioned can be configured using Libero SoC software.

Figure 15-1. GPIO Connected on APB Slave in MSS

AHB Bus Matrix
(10 x 7)

AHB To AHB Bridge with Address Decoder

AHB Bus

Cortex-M3
Processor

MSS DDR Bridge
IDC
DS

Cache
Controller System

Controller

eNVM_0
AHB

Controller

eSRAM_0
AHB

Controller

eSRAM_1
AHB

Controller

eNVM_1
AHB

Controller

HPDMA

MS6 MS0 MS1MS2MM0

MM3

MM1MM2

MM7

MM6MM4 MM5

I2C_1

SPI_1

MMUART_1

I2C_0

SPI_0

MMUART_0

SysRegEthernet

FIC32_1FIC32_0

GPIO

APB_2 USB

MM9

MM8MS4

MS3

MS5

PDMA

 Microcontroller Subsystem (MSS)

GIC

ID

D

S

S

15.2 MSS GPIO Functional Description
The following figure shows the internal architecture of the MSS GPIO block. GPIOs and MSS peripherals, such as
MMUART, SPI, and I2C, can be routed to MSIO pads or to the Field Programmable Gate Array (FPGA) fabric through
I/O mutliplexers (MUXes), as shown in the following figure.

MSS GPIO

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 556

Figure 15-2. GPIO, IOMUX, and MSIO

MSS GPIO

Cortex-M3
Interrupts

Interrupts

MSS Peripherals
(MMUART, USB etc)

GPIO_I_IN

In
IOMUX

i/p

Oe
O/p

In
GPIO_I_OUT

Out

O
ut

GPIO_I_OE

OE MSIO

Fabric Interface

O
E

The MSS GPIO block contains the following:

• 32-bit input register (GPIO_IN), which holds the input values
• 32-bit output register (GPIO_OUT), which holds the output values
• 32-bit interrupt register (GPIO_IRQ), which holds the interrupt state
• 32 configuration registers (GPIO_X_CFG), one register for each GPIO

When a GPIO is configured in Input mode, the GPIO input is passed through a 2 flip-flop synchronizer and latched
into the GPIO_IN register. The GPIO_IN register value is read through the APB bus and is accessible to the
Cortex-M3 processor or fabric master. The input to the GPIO can be from the fabric or MSIO pad.

The GPIO_IN register output can also be used as an interrupt to the Cortex-M3 processor. This can be configured
as an edge-triggered (on rising edge, falling edge, or both edges) or as a level sensitive (active-low or active-high)
interrupt. The interrupt is latched in the GPIO_IRQ register and is accessible through the APB bus, as shown in Table
15-2.

In Edge-Sensitive mode, GPIO_IRQ register is cleared either by disabling the interrupt or writing a logic 1 through
the APB interface. If an edge and GPIO_IRQ clearing through the APB occurs simultaneously, the edge has higher
priority.

Table 15-2 maps the GPIO input to the Nested Vectored Interrupt Controller (NVIC) interrupt number in the Cortex-
M3 processor. The interrupt input to the GPIO can be from the fabric or MSIO pad.

When the GPIO is configured in an Output mode, the output value can be configured using the APB bus and is
accessible to the Cortex-M3 processor or fabric master. The GPIO output can be available to the MSIO pad, fabric, or
the FPGA and MSIO pads.

For configuring GPIO in Input, Output, and Bi-directional modes, see the bit definitions in Table 15-1.

MSS GPIO

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 557

Figure 15-3. MSS GPIO Block Diagram

MSS GPIO
To
Cortex-M3
Microcontroller

INT[i]

INT[i]

GPIO_i_IN

GPIO_i_OUT

GPIO_i_OE

GPIO_OUT Reg

Interrupt
Reg

(GPIO_IRQ[i])

Interrupt
Generate

Logic

I/O
MUX

(Input Enable)
EN_IN_i

E
N

_I
N

T_
i

EN_OUT_i

TYPES_INT_i

C
O

N
F

IG
_

X
C

o
n

fig
u

ra
tio

n
 re

g
iste

r-3
2

b
it

(Interrupt Types)

(Output Enable)

(I
n

te
rr

u
p

t
E

n
a

b
le

)

A
P

B
 IN

T
E

R
F

A
C

E

SyncGPIO_IN Reg
0

DQ

MSIO

DQ DQ

0
3

1
:8

1
2

3
4

5
6

7

0

D Q

15.2.1 MSS GPIO Configuration Registers (GPIO_X_CFG)
In the MSS GPIO block, each GPIO has a 32-bit configuration register. The configuration register allows selection
of the GPIO in Input, Output, or Bi-directional mode. A GPIO can also be used as an interrupt when it is configured
in Bi-directional mode. The offset address of MSS GPIO block configuration registers is given in Table 15-4. The
following figure shows the detailed configuration register bit definitions.

MSS GPIO

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 558

Figure 15-4. GPIO Configuration Register (GPIO_X_CFG)

Not Used

31:8 7 6 5 4 3 2 1 0

Not Used
Output Reg Enable

Input Reg Enable
Output Buffer Enable
Interrupt Enable

Edge Both

Interrupt
Type

000
0 0 1

010
0 1 1

001
Edge Negative
Edge Positive
Level Low
Level High

Bit
Definitions

CONFIG_X (X = 0 to 31)

The following table provides bit definitions for the GPIO configuration registers.

Table 15-1. GPIO_X_CFG

Bit Number Name Type Reset Value Description

GPIO_X_CFG[31:8] Reserved R/W 0h000000 Reserved

GPIO_X_CFG[7:5] TYPES_INT_I R/W 0b000 Input interrupt type configuration
See Figure 15-4 for Bit definitions.

GPIO_X_CFG[4] Reserved R/W 0b0 Reserved

GPIO_X_CFG[3] EN_INT_i R/W 0b0 0: Interrupt disabled
1: Interrupt enabled

GPIO_X_CFG[2] GPIO_i_OE R/W 0b0 0: Disable output buffer
1: Enable output buffer

GPIO_X_CFG[1] EN_IN_i R/W 0b0 0: Input register disabled
1: Input register enabled

GPIO_X_CFG[0] EN_OUT_i R/W 0b0 0: Output register disabled
1: Output register enabled

Table 15-2. MSS GPIO Interrupts

Cortex-M3 Processor
Interrupt

Signal Source Description

INTISR[50] GPIO_INT[0] GPIO_0 Interrupt from GPIO_0

INTISR[51] GPIO_INT[1] GPIO_1 Interrupt from GPIO_1

INTISR[52] GPIO_INT[2] GPIO_2 Interrupt from GPIO_2

INTISR[53] GPIO_INT[3] GPIO_3 Interrupt from GPIO_3

INTISR[54] GPIO_INT[4] GPIO_4 Interrupt from GPIO_4

MSS GPIO

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 559

...........continued
Cortex-M3 Processor
Interrupt

Signal Source Description

INTISR[55] GPIO_INT[5] GPIO_5 Interrupt from GPIO_5

INTISR[56] GPIO_INT[6] GPIO_6 Interrupt from GPIO_6

INTISR[57] GPIO_INT[7] GPIO_7 Interrupt from GPIO_7

INTISR[58] GPIO_INT[8] GPIO_8 Interrupt from GPIO_8

INTISR[59] GPIO_INT[9] GPIO_9 Interrupt from GPIO_9

INTISR[60] GPIO_INT[10] GPIO_10 Interrupt from GPIO_10

INTISR[61] GPIO_INT[11] GPIO_11 Interrupt from GPIO_11

INTISR[62] GPIO_INT[12] GPIO_12 Interrupt from GPIO_12

INTISR[63] GPIO_INT[13] GPIO_13 Interrupt from GPIO_13

INTISR[64] GPIO_INT[14] GPIO_14 Interrupt from GPIO_14

INTISR[65] GPIO_INT[15] GPIO_15 Interrupt from GPIO_15

INTISR[66] GPIO_INT[16] GPIO_16 Interrupt from GPIO_16

INTISR[67] GPIO_INT[17] GPIO_17 Interrupt from GPIO_17

INTISR[68] GPIO_INT[18] GPIO_18 Interrupt from GPIO_18

INTISR[69] GPIO_INT[19] GPIO_19 Interrupt from GPIO_19

INTISR[70] GPIO_INT[20] GPIO_20 Interrupt from GPIO_20

INTISR[71] GPIO_INT[21] GPIO_21 Interrupt from GPIO_21

INTISR[72] GPIO_INT[22] GPIO_22 Interrupt from GPIO_22

INTISR[73] GPIO_INT[23] GPIO_23 Interrupt from GPIO_23

INTISR[74] GPIO_INT[24] GPIO_24 Interrupt from GPIO_24

INTISR[75] GPIO_INT[25] GPIO_25 Interrupt from GPIO_25

INTISR[76] GPIO_INT[26] GPIO_26 Interrupt from GPIO_26

INTISR[77] GPIO_INT[27] GPIO_27 Interrupt from GPIO_27

INTISR[78] GPIO_INT[28] GPIO_28 Interrupt from GPIO_28

INTISR[79] GPIO_INT[29] GPIO_29 Interrupt from GPIO_29

INTISR[80] GPIO_INT[30] GPIO_30 Interrupt from GPIO_30

INTISR[81] GPIO_INT[31] GPIO_31 Interrupt from GPIO_31

15.2.2 MSS GPIO Reset Functionality
The MSS GPIO outputs can be reset to a predefined state (logic 1 or logic 0) either by the soft resets coming from
the SYSREG block, the Power-on Reset, or the user reset signal (MSS_GPIO_RESET_N) from the FPGA fabric. The
selection of the reset can be done through the MSS Configurator in Libero SoC or by writing to reset select registers
of the SYSREG block. See Table 15-10 for reset select signals.

Following are the two reset resources of the MSS GPIO block:

• Hard reset:
– The MSS_GPIO_RESET_N is a reset signal generated from the FPGA fabric
– Power-on reset is a device reset signal

MSS GPIO

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 560

• Soft reset from the SYSREG block: There are two soft reset signals generated from the SYSREG block: one for
the output registers and another for the input and interrupt registers.

– The MSS_GPIO_SOFTRESET is a soft reset signal from the SYSREG block for the MSS GPIO block input
registers (GPIO_IN) and interrupt registers (GPIO_IRQ)

– There are four byte-wise soft reset signals from the SYSREG block to reset all the 32 GPIO output
registers. Each soft reset signal resets the GPIO output byte (8-GPIO_OUT registers). Table 15-6 shows
the soft reset signals from the SYSREG block

Each GPIO output byte reset is enabled by the control signals from the SYSREG block. The reset enable feature for
each GPIO output byte is used to hold the GPIO_OUT register values from not getting affected by the reset source.

The GPIO output byte reset configuration in Libero SoC is explained in the 15.3.1.2. Initializing the MSS GPIO.

Important: If the byte reset enable signal (MSS_GPIO_X_Y_DEF) is enabled, the GPIO output byte
(GPIO_OUT[X:Y]) can be reset by the soft reset signal or hard reset signal, depending upon the Reset
select signal (MSS_GPIO_X_Y_SYSRESET_SEL).

15.3 MSS GPIO Usage

15.3.1 Configuring MSS GPIO Using Libero SoC
This sub-section describes MSS GPIO configuration in Libero SoC and shows different options available for
configuring GPIO. MSS GPIO is disabled by default in MSS configurator when the Libero SoC project is created.

Following steps describe how to steps to be used to configure in Libero SoC.

Step 1

Enable MSS GPIO in the Libero SoC project using MSS configurator, as shown in the following figure.

MSS GPIO

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 561

Figure 15-5. Enable GPIO in MSS Configurator

Step 2

Double click GPIO or right click, GPIO and select the configure option to program the GPIOs.

15.3.1.1 GPIO Configurator Options
The following fields are shown in the GPIO configurator (see the following figure):

• Set/Reset definition: Used to initialize the GPIOs
• GPIO assignment: 3 programming fields associated with each GPIO
• Direction: Selects Input, Output, Bidirectional, or Tristate mode
• Package pin: Shows the MSIO pin associated with the GPIO
• Connectivity: Selects IO_A/ IO_B MSIO or FABRIC_A/ FABRIC_B
• Advanced options: When enabled, shows the possibility of connecting the GPIO input or GPIO output to the

fabric

MSS GPIO

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 562

Figure 15-6. MSS GPIO Configurator

15.3.1.2 Initializing the MSS GPIO
The highlighted section in the following figure shows the byte-wise initialization of GPIOs in Libero SoC.

MSS GPIO

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 563

Figure 15-7. Configuring GPIO Byte-Wise Reset

15.3.1.3 Configuring MSS GPIOs as Input, Output, Tristate, and Bi-directional
There are four modes of MSS GPIO, which can be configured using Libero SoC:

• Input
• Output
• Bi-directional
• Tristate

To configure a GPIO as an interrupt, configure GPIO as an input in Libero SoC. Enable the interrupt in SoftConsole
using MSS GPIO Application Program Interfaces (APIs). See 15.3.2.1. Use Model 1: Configuring GPIOs to Act as
Interrupt to Cortex-M3 Processor.

To configure a GPIO to simultaneously connect with fabric, select the Advanced Options and Fabric check boxes in
Libero SoC, as shown in the following figure.

MSS GPIO

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 564

Figure 15-8. Configuring GPIOs as Input, Output, Tristate, or Bi-directional

Connectivity Preview

GPIOs have access to IO_A or IO_B MSIOs. If an MSIO is used by any shared peripheral, GPIOs cannot access
those particular MSIOs. GPIOs can be connected directly to the fabric by selecting FABRIC_A or FABRIC_B.

GPIOs connecting to MSIOs can also be shared with fabric using the Advanced Options of the MSS GPIO
configurator.

The following figure shows a graphical view of the current connections for the highlighted GPIO signal.

MSS GPIO

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 565

Figure 15-9. Connectivity Preview

Step 3

The configured GPIO signals are shown in the following figure.

Figure 15-10. GPIO Signals

Step 4

To generate a component, click the Generate Component shortcut in MSS configurator or select SmartDesign >
Generate Component . The firmware driver folder and SoftConsole workspace are included in the design project.

Step 5

Click Generate Bitstream under Program Design to complete the *.fdb file generation.

Step 6

MSS GPIO

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 566

Double click Export Firmware under Handoff Design for Firmware Development in the Libero SoC design flow
window to generate the SoftConsole Firmware Project. The SoftConsole folder contains the mss_gpio firmware
driver. The firmware driver mss_gpio (mss_gpio.h and mss_gpio.c), which provides a set of functions for
controlling the MSS GPIOs, can be downloaded from the Microchip Firmware Catalog.

Table 15-3. MSS GPIO APIs

Category API Description and Usage

Initialization MSS_GPIO_Init Used for initializing the GPIO byte-wide reset state

Configuration MSS_GPIO_config Used to configure GPIO as input, output, tristate, or
bidirectional

Reading and setting MSS_GPIO_get_inputoutputs Sets the GPIO input state

MSS_GPIO_get_outputs Gets the GPIO input state

MSS_GPIO_set_outputs Sets the GPIO output state

MSS_GPIO_set_outputs Gets the GPIO output state

Interrupt control MSS_GPIO_disable_irq Disables the GPIO interrupt feature

MSS_GPIO_enable_irq Enables the GPIO interrupt feature

MSS_GPIO_clear_irq Clears the interrupt on GPIO

Important: The MSS GPIO supports full behavioral simulation models. See SmartFusion2 MSS BFM
Simulation User Guide for more information.

15.3.2 MSS GPIO Use Models
This section explains the use models and gives directions for using MSS GPIOs in an application.

15.3.2.1 Use Model 1: Configuring GPIOs to Act as Interrupt to Cortex-M3 Processor
1. Enable GPIOs using MSS configurator in Libero SoC.
2. Initialize GPIOs to a predefined state using the MSS_GPIO_init API in SoftConsole or Libero SoC.
3. Configure GPIOs as inputs by using the MSS_GPIO_config API in SoftConsole or Libero SoC.
4. Use the interrupt API MSS_GPIO_enable_irq to dynamically configure the input from the MSIO to interrupt the

Cortex-M3 processor. Use API MSS_GPIO_disable_irq to disable the interrupt to the Cortex-M3 processor.
5. Each GPIO input can also be read using the MSS_GPIO_get_inputs API.

15.3.2.2 Use Model 2: GPIO Loopback Mode
GPIO Loopback mode (shown in the following figure) loops back all the 32 GPIOs by controlling the
MSS_LOOPBACK bit of Table 15-8 System register.

1. Enable GPIOs using MSS configurator in Libero SoC.
2. Initialize all 32 GPIOs to a predefined state using the MSS_GPIO_init API in SoftConsole or Libero SoC.
3. Set the MSS_GPIOLOOPBACK1 bit of the Table 15-8 System register in the SoftConsole application.
4. Configure GPIOs as output and input by using the MSS_GPIO_config API.
5. Use the MSS_GPIO_set_output API to set the value of the GPIO_OUT register.
6. Use the interrupt API MSS_GPIO_enable_irq to configure all 32 GPIO outputs as an interrupts to the Cortex-

M3 processor.
(or)

Use the API MSS_GPIO_get_inputs to read the looped back values and use them the application.

MSS GPIO

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 567

Figure 15-11. GPIO Loopback Diagram

GPIO_0_OUT

GPIO_31_OUT

GPIO_0_IN

MSS_GPIOLOOPBACK
(bit3 of LOOPBACK_CR system register)

GPIO_31_IN

GPIO IOMUX

15.4 GPIO Register Map
The base address of the MSS GPIO block is 0x40013000.The address offset of each MSS GPIO register is provided
in the following table. The table also includes configuration, input, and output registers.

Table 15-4. MSS GPIO Register Map

Register Name Address
Offset

Register
Type

Reset
Value

Description

GPIO_0_CFG 0x00 R/W 0x0 Configuration register for GPIO 0

GPIO_1_CFG 0x04 R/W 0x0 Configuration register for GPIO 1

GPIO_2_CFG 0x08 R/W 0x0 Configuration register for GPIO 2

GPIO_3_CFG 0x0C R/W 0x0 Configuration register for GPIO 3

GPIO_4_CFG 0x10 R/W 0x0 Configuration register for GPIO 4

GPIO_5_CFG 0x14 R/W 0x0 Configuration register for GPIO 5

GPIO_6_CFG 0x18 R/W 0x0 Configuration register for GPIO 6

GPIO_7_CFG 0x1C R/W 0x0 Configuration register for GPIO 7

GPIO_8_CFG 0x20 R/W 0x0 Configuration register for GPIO 8

GPIO_9_CFG 0x24 R/W 0x0 Configuration register for GPIO 9

GPIO_10_CFG 0x28 R/W 0x0 Configuration register for GPIO 10

GPIO_11_CFG 0x2C R/W 0x0 Configuration register for GPIO 11

GPIO_12_CFG 0x30 R/W 0x0 Configuration register for GPIO 12

GPIO_13_CFG 0x34 R/W 0x0 Configuration register for GPIO 13

GPIO_14_CFG 0x38 R/W 0x0 Configuration register for GPIO 14

GPIO_15_CFG 0x3C R/W 0x0 Configuration register for GPIO 15

GPIO_16_CFG 0x40 R/W 0x0 Configuration register for GPIO 16

GPIO_17_CFG 0x44 R/W 0x0 Configuration register for GPIO 17

GPIO_18_CFG 0x48 R/W 0x0 Configuration register for GPIO 18

GPIO_19_CFG 0x4C R/W 0x0 Configuration register for GPIO 19

GPIO_20_CFG 0x50 R/W 0x0 Configuration register for GPIO 20

MSS GPIO

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 568

...........continued
Register Name Address

Offset
Register
Type

Reset
Value

Description

GPIO_21_CFG 0x54 R/W 0x0 Configuration register for GPIO 21

GPIO_22_CFG 0x58 R/W 0x0 Configuration register for GPIO 22

GPIO_23_CFG 0x5C R/W 0x0 Configuration register for GPIO 23

GPIO_24_CFG 0x60 R/W 0x0 Configuration register for GPIO 24

GPIO_25_CFG 0x64 R/W 0x0 Configuration register for GPIO 25

GPIO_26_CFG 0x68 R/W 0x0 Configuration register for GPIO 26

GPIO_27_CFG 0x6C R/W 0x0 Configuration register for GPIO 27

GPIO_28_CFG 0x70 R/W 0x0 Configuration register for GPIO 28

GPIO_29_CFG 0x74 R/W 0x0 Configuration register for GPIO 29

GPIO_30_CFG 0x78 R/W 0x0 Configuration register for GPIO 30

GPIO_31_CFG 0x7c R/W 0x0 Configuration register for GPIO 31

GPIO_IRQ 0x80 R/W 0x0 Read Modify Write per interrupt bit.

GPIO_IN 0x84 R 0x0 GPIO input register: Read-only for input
configured Ports.

GPIO_OUT 0x88 R/W 0x0 GPIO output register: Writeable/Readable for
output configured ports. No action required for
input configured ports.

15.4.1 SYSREG Block Registers

15.4.1.1 Register Map
The following table lists all the GPIO registers in the SYSREG block. The SYSREG block is located at address
0x40038000 in the Cortex-M3 processor address space.

Table 15-5. GPIO SYREG Registers

Register Name Address
Offset

Register
Type

Flash
Write
Protect

Reset Source Description

Table 15-7 0x18C RO-P SYSRESET_N MSS GPIO definition register

Table 15-6 0x48 RW-P Bit SYSRESET_N Generates software control
interrupts to the MSS
peripherals

Table 15-8 0x54 RW-P Register SYSRESET_N Loopback control for MSS
peripherals

Table 15-10 0x58 RW-P Register PORESET_N Configures GPIO system reset.

Table 15-9 0x5C RW-P Register PORESET_N Used to generate a GPIO input
signal

MSS GPIO

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 569

15.4.2 Software Reset Control Register
Table 15-6. SOFT_RESET_CR

Bit
Number

Name Reset
Value

Description

24 MSS_GPOUT_31_24_SOFTRESE
T

0x1 0: Releases GPIO_OUT[31:24] from reset
1: Keeps GPIO_OUT[31:24] in reset

23 MSS_GPOUT_23_16_SOFTRESE
T

0x1 0: Releases GPIO_OUT[23:16] from reset
1: Keeps GPIO_OUT[23:16] in reset

22 MSS_GPOUT_15_8_SOFTRESET 0x1 0: Releases GPIO_OUT[15:8] from reset
1: Keeps GPIO_OUT[15:8] in reset

21 MSS_GPOUT_7_0_SOFTRESET 0x1 0: Releases GPIO_OUT[7:0] from reset
1: Keeps GPIO_OUT[7:0] in reset

20 MSS_GPIO_SOFTRESET 0x1 0: Releases the GPIO from reset, if not being held in
reset by some other means
1: Keeps the GPIO held in reset

Asserting this soft reset bit will hold the APB register,
GPIO input, and interrupt generation logic in reset.
GPIO OUT logic is not affected by this reset.

15.4.3 MSS GPIO Definitions
Table 15-7. MSS_GPIO_DEF

Bit
Number

Name Reset
Value

Description

[31:4] Reserved 0 Reserved

3 MSS_GPIO_31_24_DEF 0x1 Used to initialize GPIO bank [31:24] to 0 or 1 after reset

2 MSS_GPIO_23_16_DEF 0x1 Used to initialize GPIO bank [23:16] to 0 or 1 after reset

1 MSS_GPIO_15_8_DEF 0x1 Used to initialize GPIO bank [15:8] to 0 or 1 after reset

0 MSS_GPIO_7_0_DEF 0x1 Used to initialize GPIO bank [7:0] to 0 or 1 after reset

15.4.4 Loopback Control Register
Table 15-8. LOOPBACK_CR

Bit
Number

Name Reset
Value

Description

[31:4] Reserved 0 Reserved

3 MSS_GPIOLOOPBACK 0 Controls whether internal loopback on the MSS GPIO is
enabled. Allowed values:
0: No internal loopback for MSS GPIO

1: MSS GPIO outputs are looped back to MSS GPIO inputs

MSS GPIO

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 570

15.4.5 GPIO Input Source Select Control Register
Table 15-9. GPIN_SRC_SEL_CR

Bit
Number

Name Reset
Value

Description

[31:0] MSS_GPINSOURCE 0 This 32-bit signal is used as select signal to generate a GPIO
input signal by selecting two output signals from different
IOMUXCELL or signals from I/O pads.

Note: The Libero automatically takes care of GPIO source input selection between current IOMUXCELL and
alternate IOMUXCELL.

15.4.6 GPIO System Reset Control Register
Table 15-10. GPIO_SYSRESET_SEL_CR

Bit
Number

Name Reset
Value

Description

[31:4] Reserved 0 Reserved

3 MSS_GPIO_31_24_SYSRESET_SEL 0 0: The GPIO[31:24] is reset by either power-on reset
or the MSS_GPIO_RESET_N signal from the FPGA
fabric.
1: The GPIO[31:24] is reset by the soft reset signal
MSS_GPIO_31_24_SOFT_RESET.

2 MSS_GPIO_23_16_SYSRESET_SEL 0 0: The GPIO[23:16] is reset by either power-on reset
or the MSS_GPIO_RESET_N signal from the FPGA
fabric.
1: The GPIO[23:16] is reset by the soft reset signal
MSS_GPIO_23_16_SOFT_RESET.

1 MSS_GPIO_15_8_SYSRESET_SEL 0 0: The GPIO[15:8] is reset by either power-on reset
or the MSS_GPIO_RESET_N signal from the FPGA
fabric.
1: The GPIO[15:8] is reset by the soft reset signal
MSS_GPIO_15_8_SOFT_RESET.

0 MSS_GPIO_7_0_SYSRESET_SEL 0 0: The GPIO[7:0] is reset by either power-on reset
or the MSS_GPIO_RESET_N signal from the FPGA
fabric.
1: The GPIO[7:0] is reset by the soft reset signal
MSS_GPIO_7_0_SOFT_RESET.

15.4.7 I/O MUX Associated With GPIOs
The following table shows the associated IOMUXes for GPIOs.

Table 15-11. Associated IOMUXes for GPIOs

Peripheral Associated IOMUXes

GPIOA[0] to GPIOA[10] 11 to 21

GPIOA[11] to GPIOA[18] 26 to 33

GPIOA[19] to GPIOA[22] 22 to 25

GPIOA[23] to GPIOA[24] 34 to 35

GPIOB[11] to GPIOB[16] 36 to 41

MSS GPIO

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 571

...........continued
Peripheral Associated IOMUXes

GPIOB[17] to GPIOB[22] 45 to 50

GPIOB[23] 56

GPIOB[24] to GPIOB[26] 42 to 44

GPIOB[27] to GPIOB[31] 51 to 55

The following tables (Table 15-12 through Table 15-57) describe the IOMUXes in which GPIOs are shared with the
peripheral and the fabric.

15.4.7.1 IOMUX CELL 11
I/O pad name: I2C1_SDA_USBA_DATA3_MGPIO0A

Table 15-12. IOMUX CELL 11

I/O Pad Ports IOMUXCELL Interface

I2C_1 USB Controller GPIO[0] FPGA Fabric

IN SDA_1_IN USBA_DATAI[3] GPIOA_IN[0] IN_A F2H_GPIN[11]

OUT GND DATAO[3] GPIO_OUT[0] IN_B F2H_SCP[11]

OE ~SDA_1_OUT ~NDATAOE GPIO_OE[0] OUT_A H2F_A[11]

OUT_B H2F_B[11]

15.4.7.2 IOMUX CELL 12
I/O pad name: I2C1_SCL_USBA_DATA4_MGPIO1A

Table 15-13. IOMUX CELL 12

I/O Pad Ports IOMUXCELL Interface

I2C_1 USB Controller GPIO[1] FPGA Fabric

IN SCL_1_IN USBA_DATAI[4] GPIOA_IN[1] IN_A F2H_GPIN[12]

OUT GND DATAO[4] GPIO_OUT[1] IN_B F2H_SCP[12]

OE ~SCL_1_OUT ~NDATAOE GPIO_OE[1] OUT_A H2F_A[12]

— — — — OUT_B H2F_B[11]

15.4.7.3 IOMUX CELL 13
I/O pad name: CAN_TXBUS_USBA_DATA0_MGPIO2A

Table 15-14. IOMUX CELL 13

I/O Pad Ports IOMUXCELL Interface

CAN USB Controller GPIO[2] FPGA Fabric

IN NC USBA_DATAI[0] GPIOA_IN[2] IN_A F2H_GPIN[13]

OUT CAN_TX_BUS DATAO[0] GPIO_OUT[2] IN_B F2H_SCP[13]

OE VDD ~NDATAOE GPIO_OE[2] OUT_A H2F_A[13]

— — — — OUT_B H2F_B[13]

15.4.7.4 IOMUX CELL 14
I/O pad name: CAN_RXBUS_USBA_DATA1_MGPIO3A

MSS GPIO

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 572

Table 15-15. IOMUX CELL 14

I/O Pad Ports IOMUXCELL Interface

CAN USB Controller GPIO[3] FPGA Fabric

IN CAN_RX_BUS USBA_DATAI[1] GPIOA_IN[3] IN_A F2H_GPIN[14]

OUT GND DATAO[1] GPIO_OUT[3] IN_B F2H_SCP[14]

OE GND ~NDATAOE GPIO_OE[3] OUT_A H2F_A[14]

— — — — OUT_B H2F_B[14]

15.4.7.5 IOMUX CELL 15
I/O pad name: CAN_ TX_EBL_USBA_DATA2_MGPIO4A

Table 15-16. IOMUX CELL 15

I/O Pad Ports IOMUXCELL Interface

CAN USB Controller GPIO[4] FPGA Fabric

IN NC USBA_DATAI[2] GPIOA_IN[4] IN_A F2H_GPIN[15]

OUT CAN_TB_EBL_n DATAO[2] GPIO_OUT[4] IN_B F2H_SCP[15]

OE VDD ~NDATAOE GPIO_OE[4] OUT_A H2F_A[15]

— — — — OUT_B H2F_B[15]

15.4.7.6 IOMUX CELL 16
I/O pad name: SPI0_SDI_USBA_DIR_MGPIO5A

Table 15-17. IOMUX CELL 16

I/O Pad Ports IOMUXCELL Interface

SPI_0 USB Controller GPIO[5] FPGA Fabric

IN SPISDI_0_IN USBA_DIR GPIOA_IN[5] IN_A F2H_GPIN[16]

OUT GND GND GPIO_OUT[5] IN_B F2H_SCP[16]

OE GND GND GPIO_OE[5] OUT_A H2F_A[16]

— — — — OUT_B H2F_B[16]

15.4.7.7 IOMUX CELL 17
I/O pad name: SPI0_SDO_USBA_STP_MGPIO6A

Table 15-18. IOMUX CELL 17

I/O Pad Ports IOMUXCELL Interface

SPI_0 USB Controller GPIO[6] FPGA Fabric

IN NC NC GPIOA_IN[6] IN_A F2H_GPIN[17]

OUT SPISDO_0_OUT STP GPIO_OUT[6] IN_B F2H_SCP[17]

OE SPIOEN_0 VDD GPIO_OE[6] OUT_A H2F_A[17]

— — — — OUT_B H2F_B[17]

15.4.7.8 IOMUX CELL 18
I/O pad name: SPI0_SS0_USBA_NXT_MGPIO7A

MSS GPIO

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 573

Table 15-19. IOMUX CELL 18

I/O Pad Ports IOMUXCELL Interface

SPI_0 USB Controller GPIO[7] FPGA Fabric

IN SPISSI_0_IN USBA_NXT GPIOA_IN[7] IN_A F2H_GPIN[18]

OUT SPISS_0_OUT[0] GND GPIO_OUT[7] IN_B F2H_SCP[18]

OE SPI_0_MASTER GND GPIO_OE[7] OUT_A H2F_A[18]

— — — — OUT_B H2F_B[18]

15.4.7.9 IOMUX CELL 19
I/O pad name: SPI0_SS1_USBA_DATA5_MGPIO8A

Table 15-20. IOMUX CELL 19

I/O Pad Ports IOMUXCELL Interface

SPI_0 USB Controller GPIO[8] FPGA Fabric

IN NC USBA_DATAI[5] GPIOA_IN[8] IN_A F2H_GPIN[19]

OUT SPISS_0_OUT[1] DATAO[5] GPIO_OUT[8] IN_B F2H_SCP[19]

OE SPI_0_MASTER ~NDATAOE GPIO_OE[8] OUT_A H2F_A[19]

— — — — OUT_B H2F_B[19]

15.4.7.10 IOMUX CELL 20
I/O pad name: SPI0_SS2_USBA_DATA6_MGPIO9A

Table 15-21. IOMUX CELL 20

I/O Pad Ports IOMUXCELL Interface

SPI_0 USB Controller GPIO[9] FPGA Fabric

IN NC USBA_DATAI[6] GPIOA_IN[9] IN_A F2H_GPIN[20]

OUT SPISS_0_OUT[2] DATAO[6] GPIO_OUT[9] IN_B F2H_SCP[20]

OE SPI_0_MASTER ~NDATAOE GPIO_OE[9] OUT_A H2F_A[20]

— — — — OUT_B H2F_B[20]

15.4.7.11 IOMUX CELL 21
I/O pad name: SPI0_SS3_USBA_DATA7_MGPIO10A

Table 15-22. IOMUX CELL 21

I/O Pad Ports IOMUXCELL Interface

SPI_0 USB Controller GPIO[10] FPGA Fabric

IN NC USBA_DATAI[7] GPIOA_IN[10] IN_A F2H_GPIN[21]

OUT SPISS_0_OUT[3] DATAO[7] GPIO_OUT[10] IN_B F2H_SCP[21]

OE SPI_0_MASTER ~NDATAOE GPIO_OE[10] OUT_A H2F_A[21]

— — — — OUT_B H2F_B[21]

15.4.7.12 IOMUX CELL 22
I/O pad name: SPI0_SS4_MGPIO19A

MSS GPIO

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 574

Table 15-23. IOMUX CELL 22

I/O Pad Ports IOMUXCELL Interface

SPI_0 USB Controller GPIO[19] FPGA Fabric

IN NC NC GPIOA_IN[19] IN_A GND

OUT SPISS_0_OUT[4] GND GPIO_OUT[19] IN_B GND

OE SPI_0_MASTER GND GPIO_OE[19] OUT_A H2F_A[22]

— — — — OUT_B NC

15.4.7.13 IOMUX CELL 23
I/O pad name: SPI0_SS5_MGPIO20A

Table 15-24. IOMUX CELL 23

I/O Pad Ports IOMUXCELL Interface

SPI_0 USB Controller GPIO[20] FPGA Fabric

IN NC NC GPIOA_IN[20] IN_A GND

OUT SPISS_0_OUT[5] GND GPIO_OUT[20] IN_B GND

OE SPI_0_MASTER GND GPIO_OE[20] OUT_A H2F_A[23]

— — — — OUT_B NC

15.4.7.14 IO MUX CELL 24
I/O pad name: SPI0_SS6_MGPIO21A

Table 15-25. IOMUX CELL 24

I/O Pad Ports IOMUXCELL Interface

SPI_0 USB Controller GPIO[21] FPGA Fabric

IN NC NC GPIOA_IN[21] IN_A GND

OUT SPISS_0_OUT[6] GND GPIO_OUT[21] IN_B GND

OE SPI_0_MASTER GND GPIO_OE[21] OUT_A H2F_A[24]

— — — — OUT_B NC

15.4.7.15 IOMUX CELL 25
I/O pad name: SPI0_SS7_MGPIO22A

Table 15-26. IOMUX CELL 25

I/O Pad Ports IOMUXCELL Interface

SPI_0 USB Controller GPIO[22] FPGA Fabric

IN NC NC GPIOA_IN[22] IN_A GND

OUT SPISS_0_OUT[7] GND GPIO_OUT[22] IN_B GND

OE SPI_0_MASTER GND GPIO_OE[22] OUT_A H2F_A[25]

— — — — OUT_B NC

15.4.7.16 IOMUX CELL 26
I/O pad name: SPI1_SDI_MGPIO11A

MSS GPIO

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 575

Table 15-27. IOMUX CELL 26

I/O Pad Ports IOMUXCELL Interface

SPI_0 USB Controller GPIO[11] FPGA Fabric

IN SPISDI_1_IN NC GPIOA_IN[11] IN_A F2H_GPIN[26]

OUT GND GND GPIO_OUT[11] IN_B F2H_SCP[26]

OE GND GND GPIO_OE[11] OUT_A H2F_A[26]

— — — — OUT_B H2F_B[26]

15.4.7.17 IOMUX CELL 27
I/O pad name: SPI1_SDO_MGPIO12A

Table 15-28. IOMUX CELL 27

I/O Pad Ports IOMUXCELL Interface

SPI_0 USB Controller GPIO[12] FPGA Fabric

IN NC NC GPIOA_IN[12] IN_A F2H_GPIN[27]

OUT SPISDO_1_OUT GND GPIO_OUT[12] IN_B F2H_SCP[27]

OE SPIOEN_0 GND GPIO_OE[12] OUT_A H2F_A[27]

— — — — OUT_B H2F_B[27]

15.4.7.18 IOMUX CELL 28
I/O pad name: SPI1_SS0_MGPIO13A

Table 15-29. IOMUX CELL 28

I/O Pad Ports IOMUXCELL Interface

SPI_0 USB Controller GPIO[13] FPGA Fabric

IN SPISSI_1_IN NC GPIOA_IN[13] IN_A F2H_GPIN[28]

OUT SPISS_1_OUT[0] GND GPIO_OUT[13] IN_B F2H_SCP[28]

OE SPI_1_MASTER GND GPIO_OE[13] OUT_A H2F_A[28]

— — — — OUT_B H2F_B[28]

15.4.7.19 IOMUX CELL 29
I/O pad name: SPI1_SS1_MGPIO14A

Table 15-30. IOMUX CELL 29

I/O Pad Ports IOMUXCELL Interface

SPI_0 USB Controller GPIO[14] FPGA Fabric

IN NC NC GPIOA_IN[14] IN_A F2H_GPIN[29]

OUT SPISS_1_OUT[1] GND GPIO_OUT[14] IN_B F2H_SCP[29]

OE SPI_1_MASTER GND GPIO_OE[14] OUT_A H2F_A[29]

— — — — OUT_B H2F_B[29]

15.4.7.20 IOMUX CELL 30
I/O pad name: SPI1_SS2_MGPIO15A

MSS GPIO

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 576

Table 15-31. IOMUX CELL 30

I/O Pad Ports IOMUXCELL Interface

SPI_0 USB Controller GPIO[15] FPGA Fabric

IN NC NC GPIOA_IN[15] IN_A F2H_GPIN[30]

OUT SPISS_1_OUT[2] GND GPIO_OUT[15] IN_B F2H_SCP[30]

OE SPI_1_MASTER GND GPIO_OE[15] OUT_A H2F_A[30]

— — — — OUT_B H2F_B[30]

15.4.7.21 IOMUX CELL 31
I/O pad name: SPI1_SS3_MGPIO16A

Table 15-32. IOMUX CELL 31

I/O Pad Ports IOMUXCELL Interface

SPI_1 USB Controller GPIO[16] FPGA Fabric

IN NC NC GPIOA_IN[16] IN_A F2H_GPIN[31]

OUT SPISS_1_OUT[3] GND GPIO_OUT[16] IN_B F2H_SCP[31]

OE SPI_1_MASTER GND GPIO_OE[16] OUT_A H2F_A[31]

— — — — OUT_B H2F_B[31]

15.4.7.22 IOMUX CELL 32
I/O pad name: SPI1_SS4_MGPIO17A

Table 15-33. IOMUX CELL 32

I/O Pad Ports IOMUXCELL Interface

SPI_1 USB Controller GPIO[17] FPGA Fabric

IN NC NC GPIOA_IN[17] IN_A GND

OUT SPISS_1_OUT[4] GND GPIO_OUT[17] IN_B GND

OE SPI_1_MASTER GND GPIO_OE[17] OUT_A H2F_A[32]

— — — — OUT_B NC

15.4.7.23 IOMUX CELL 33
I/O pad name: SPI1_SS5_MGPIO18A

Table 15-34. IOMUX CELL 33

I/O Pad Ports IOMUXCELL Interface

SPI_1 USB Controller GPIO[18] FPGA Fabric

IN NC NC GPIOA_IN[18] IN_A GND

OUT SPISS_1_OUT[5] GND GPIO_OUT[18] IN_B GND

OE SPI_1_MASTER GND GPIO_OE[18] OUT_A H2F_A[33]

— — — — OUT_B NC

15.4.7.24 IOMUX CELL 34
I/O pad name: SPI1_SS6_MGPIO23A

MSS GPIO

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 577

Table 15-35. IOMUX CELL 34

I/O Pad Ports IOMUXCELL Interface

SPI_1 USB Controller GPIO[23] FPGA Fabric

IN NC NC GPIOA_IN[23] IN_A GND

OUT SPISS_1_OUT[6] GND GPIO_OUT[23] IN_B GND

OE SPI_1_MASTER GND GPIO_OE[23] OUT_A H2F_A[34]

— — — — OUT_B NC

15.4.7.25 IOMUX CELL 35
I/O pad name: SPI1_SS7_MGPIO24A

Table 15-36. IOMUX CELL 35

I/O Pad Ports IOMUXCELL Interface

SPI_1 USB Controller GPIO[24] FPGA Fabric

IN NC NC GPIOA_IN[24] IN_A GND

OUT SPISS_1_OUT[7] GND GPIO_OUT[24] IN_B GND

OE SPI_1_MASTER GND GPIO_OE[24] OUT_A H2F_A[35]

— — — — OUT_B NC

15.4.7.26 IOMUX CELL 36
I/O pad name: MMUART1_RTS_MGPIO11B

Table 15-37. IOMUX CELL 36

I/O Pad Ports IOMUXCELL Interface

MMUART_1 USB Controller GPIO[11] FPGA Fabric

IN NC NC GPIOB_IN[11] IN_A F2H_GPIN[36]

OUT RTS_1_OUT GND GPIO_OUT[11] IN_B F2H_SCP[36]

OE VDD GND GPIO_OE[11] OUT_A H2F_A[36]

— — — — OUT_B H2F_B[36]

15.4.7.27 IOMUX CELL 37
I/O pad name: MMUART1_DTR_MGPIO12B

Table 15-38. IOMUX CELL 37

I/O Pad Ports IOMUXCELL Interface

MMUART_1 USB Controller GPIO[12] FPGA Fabric

IN NC NC GPIOB_IN[12] IN_A GND

OUT DTR_1_OUT GND GPIO_OUT[12] IN_B GND

OE VDD GND GPIO_OE[12] OUT_A H2F_A[37]

— — — — OUT_B NC

15.4.7.28 IOMUX CELL 38
I/O pad name: MMUART1_CTS_MGPIO13B

MSS GPIO

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 578

Table 15-39. IOMUX CELL 38

I/O Pad Ports IOMUXCELL Interface

MMUART_1 USB Controller GPIO[13] FPGA Fabric

IN CTS_1_IN NC GPIOB_IN[13] IN_A GND

OUT GND GND GPIO_OUT[13] IN_B GND

OE VDD GND GPIO_OE[13] OUT_A H2F_A[38]

— — — — OUT_B NC

15.4.7.29 IOMUX CELL 39
I/O pad name: MMUART1_DSR_MGPIO14B

Table 15-40. IOMUX CELL 39

I/O Pad Ports IOMUXCELL Interface

MMUART_1 USB Controller GPIO[14] FPGA Fabric

IN DSR_1_IN NC GPIOB_IN[14] IN_A GND

OUT GND GND GPIO_OUT[14] IN_B GND

OE VDD GND GPIO_OE[14] OUT_A H2F_A[39]

— — — — OUT_B NC

15.4.7.30 IOMUX CELL 40
I/O pad name: MMUART1_RI_MGPIO15B

Table 15-41. IOMUX CELL 40

I/O Pad Ports IOMUXCELL Interface

MMUART_1 USB Controller GPIO[15] FPGA Fabric

IN RI_1_IN NC GPIOB_IN[15] IN_A GND

OUT GND GND GPIO_OUT[15] IN_B F2H_SCP[40]

OE VDD GND GPIO_OE[15] OUT_A NC

— — — — OUT_B NC

15.4.7.31 IOMUX CELL 41
I/O pad name: MMUART1_DCD_MGPIO16B

Table 15-42. IOMUX CELL 41

I/O Pad Ports IOMUXCELL Interface

MMUART_1 USB Controller GPIO[16] FPGA Fabric

IN DCD_1_IN NC GPIOB_IN[16] IN_A GND

OUT GND GND GPIO_OUT[16] IN_B F2H_SCP[41]

OE VDD GND GPIO_OE[16] OUT_A NC

— — — — OUT_B NC

15.4.7.32 IOMUX CELL 42
I/O pad name: MMUART1_TXD_USBC_DATA2__MGPIO24B

MSS GPIO

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 579

Table 15-43. IOMUX CELL 42

I/O Pad Ports IOMUXCELL Interface

MMUART_1 USB Controller GPIO[24] FPGA Fabric

IN TXD_1_IN USBC_DATAI[2] GPIOB_IN[24] IN_A F2H_GPIN[42]

OUT TXD_1_OUT DATAO[2] GPIO_OUT[24] IN_B F2H_SCP[42]

OE MMUART1_TE ~NDATAOE GPIO_OE[24] OUT_A H2F_A[42]

— — — — OUT_B H2F_B[42]

15.4.7.33 IOMUX CELL 43
I/O pad name: MMUART1_SCK_USBC_DATA4__MGPIO25B

Table 15-44. IOMUX CELL 43

I/O Pad Ports IOMUXCELL Interface

MMUART_1 USB Controller GPIO[25] FPGA Fabric

IN MMUART1_SCK_IN USBC_DATAI[4] GPIOB_IN[25] IN_A F2H_GPIN[43]

OUT MMUART1_BAUDOUTN DATAO[4] GPIO_OUT[25] IN_B F2H_SCP[43]

OE MMUART1_E_MST_SCK ~NDATAOE GPIO_OE[25] OUT_A H2F_A[43]

— — — — OUT_B H2F_B[43]

15.4.7.34 IOMUX CELL 44
I/O pad name: MMUART1_RXD_USBC_DATA3__MGPIO26B

Table 15-45. IOMUX CELL 44

I/O Pad Ports IOMUXCELL Interface

MMUART_1 USB Controller GPIO[26] FPGA Fabric

IN RXD_1 _IN USBC_DATAI[3] GPIOB_IN[26] IN_A F2H_GPIN[44]

OUT GND DATAO[3] GPIO_OUT[26] IN_B F2H_SCP[44]

OE GND ~NDATAOE GPIO_OE[26] OUT_A H2F_A[44]

— — — — OUT_B H2F_B[44]

15.4.7.35 IOMUX CELL 45
I/O pad name: MMUART0_RTS_USBC_DATA5__MGPIO17B

Table 15-46. IOMUX CELL 45

I/O Pad Ports IOMUXCELL Interface

MMUART_0 USB Controller GPIO[17] FPGA Fabric

IN NC USBC_DATAI[5] GPIOB_IN[17] IN_A F2H_GPIN[45]

OUT RTS_0OUT DTAO[5] GPIO_OUT[17] IN_B F2H_SCP[45]

OE VDD ~NDATAOE GPIO_OE[17] OUT_A H2F_A[45]

— — — — OUT_B H2F_B[45]

15.4.7.36 IOMUX CELL 46
I/O pad name: MMUART0_DTR_USBC_DATA6__MGPIO18B

MSS GPIO

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 580

Table 15-47. IOMUX CELL 46

I/O Pad Ports IOMUXCELL Interface

MMUART_0 USB Controller GPIO[18] FPGA Fabric

IN NC USBC_DATAI[6] GPIOB_IN[18] IN_A F2H_GPIN[46]

OUT DTR_0_OUT DATAO[6] GPIO_OUT[18] IN_B F2H_SCP[46]

OE VDD ~NDATAOE GPIO_OE[18] OUT_A H2F_A[46]

— — — — OUT_B H2F_B[46]

15.4.7.37 IOMUX CELL 47
I/O pad name: MMUART0_CTS_USBC_DATA7__MGPIO19B

Table 15-48. IOMUX CELL 47

I/O Pad Ports IOMUXCELL Interface

MMUART_0 USB Controller GPIO[19] FPGA Fabric

IN CTS_0_IN USBC_DATAI[7] GPIOB_IN[19] IN_A F2H_GPIN[47]

OUT GND DATAO[7] GPIO_OUT[19] IN_B F2H_SCP[47]

OE GND ~NDATAOE GPIO_OE[19] OUT_A H2F_A[47]

— — — — OUT_B H2F_B[47]

15.4.7.38 IOMUX CELL 48
I/O pad name: MMUART0_DSR_ MGPIO20B

Table 15-49. IOMUX CELL 48

I/O Pad Ports IOMUXCELL Interface

MMUART_0 USB Controller GPIO[20] FPGA Fabric

IN DSR_0_IN NC GPIOB_IN[20] IN_A F2H_GPIN[48]

OUT GND GND GPIO_OUT[20] IN_B F2H_SCP[48]

OE GND GND GPIO_OE[20] OUT_A H2F_A[48]

— — — — OUT_B H2F_B[48]

15.4.7.39 IOMUX CELL 49
I/O pad name: MMUART0_RI_ MGPIO21B

Table 15-50. IOMUX CELL 49

I/O Pad Ports IOMUXCELL Interface

MMUART_0 USB Controller GPIO[21] FPGA Fabric

IN RI_0_IN NC GPIOB_IN[21] IN_A F2H_GPIN[49]

OUT GND GND GPIO_OUT[21] IN_B F2H_SCP[49]

OE GND GND GPIO_OE[21] OUT_A H2F_A[49]

— — — — OUT_B H2F_B[49]

15.4.7.40 IOMUX CELL 50
I/O pad name: MMUART0_DCD_ MGPIO22B

MSS GPIO

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 581

Table 15-51. IOMUX CELL 50

I/O Pad Ports IOMUXCELL Interface

MMUART_0 USB Controller GPIO[22] FPGA Fabric

IN DCD_0_IN NC GPIOB_IN[22] IN_A F2H_GPIN[50]

OUT GND GND GPIO_OUT[22] IN_B F2H_SCP[50]

OE GND GND GPIO_OE[22] OUT_A H2F_A[50]

— — — — OUT_B H2F_B[50]

15.4.7.41 IOMUX CELL 51
I/O pad name: MMUART0_TXD_ USBC_DIR_MGPIO27B

Table 15-52. IOMUX CELL 51

I/O Pad Ports IOMUXCELL Interface

MMUART_0 USB Controller GPIO[27] FPGA Fabric

IN TXD_0_IN USBC_DIR GPIOB_IN[27] IN_A F2H_GPIN[51]

OUT TXD_0_OUT GND GPIO_OUT[27] IN_B F2H_SCP[51]

OE MMUART0_TE GND GPIO_OE[27] OUT_A H2F_A[51]

— — — — OUT_B H2F_B[51]

15.4.7.42 IOMUX CELL 52
I/O pad name: MMUART0_RXD_ USBC_STP_MGPIO28B

Table 15-53. IOMUX CELL 52

I/O Pad Ports IOMUXCELL Interface

MMUART_0 USB Controller GPIO[28] FPGA Fabric

IN RXD_0_IN NC GPIOB_IN[28] IN_A F2H_GPIN[52]

OUT GND STP GPIO_OUT[28] IN_B F2H_SCP[52]

OE GND VDD GPIO_OE[28] OUT_A H2F_A[52]

— — — — OUT_B H2F_B[52]

15.4.7.43 IOMUX CELL 53
I/O pad name: MMUART0_SCK_ USBC_NXT_MGPIO29B

Table 15-54. IOMUX CELL 53

I/O Pad Ports IOMUXCELL Interface

MMUART_0 USB Controller GPIO[29] FPGA Fabric

IN MMUART0_SCK_IN USBC_NXT GPIOB_IN[29] IN_A F2H_GPIN[53]

OUT MMUART0_BAUDOUTN GND GPIO_OUT[29] IN_B F2H_SCP[53]

OE MMUART0_E_MST_SCK GND GPIO_OE[29] OUT_A H2F_A[53]

— — — — OUT_B H2F_B[53]

15.4.7.44 IOMUX CELL 54
I/O pad name: I2C0_SDA_ USBC_DATA0_MGPIO30B

MSS GPIO

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 582

Table 15-55. IOMUX CELL 54

I/O Pad Ports IOMUXCELL Interface

I2C_0 USB Controller GPIO[30] FPGA Fabric

IN SDA_0_IN USBC_DATAI[0] GPIOB_IN[30] IN_A F2H_GPIN[54]

OUT GND DATAO[0] GPIO_OUT[30] IN_B F2H_SCP[54]

OE ~SDA_0_OUT ~NDATAOE GPIO_OE[30] OUT_A H2F_A[54]

— — — — OUT_B H2F_B[54]

15.4.7.45 IOMUX CELL 55
I/O pad name: I2C0_SCL_ USBC_DATA1_MGPIO31B

Table 15-56. IOMUX CELL 55

I/O Pad Ports IOMUXCELL Interface

I2C_0 USB Controller GPIO[31] FPGA Fabric

IN SCL_0_IN USBC_DATAI[1] GPIOB_IN[31] IN_A F2H_GPIN[55]

OUT GND DATAO[1] GPIO_OUT[31] IN_B F2H_SCP[55]

OE ~SCL_0_OUT ~NDATAOE GPIO_OE[31] OUT_A H2F_A[55]

— — — — OUT_B H2F_B[55]

15.4.7.46 IOMUX CELL 56
I/O pad name: USBD_DATA7_MGPIO23B

Table 15-57. IOMUX CELL 56

I/O Pad
Signals

IOMUXCELL Interface

I2C_0 USB Controller GPIO[23] FPGA Fabric

IN NC USBD_DATAI[7] GPIOB_IN[23] IN_A GND

OUT GND DATAO[7] GPIO_OUT[23] IN_B GND

OE GND ~NDATAOE GPIO_OE[23] OUT_A NC

— — — — OUT_B NC

Communication Block

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 583

16. Communication Block
The communication block (COMM_BLK) provides a bi-directional message passing facility between the Cortex-M3
processor and the system controller, similar to a mailbox communication channel.

16.1 Features
The COMM_BLK peripheral includes the following features:

• Bi-directional byte-wide message path
• Supports serial data rate up to 50 Mbytes/sec
• Asynchronous clock support

– Data clock (50 MHz RC oscillator) is different from advanced peripheral bus (APB) clock
• 8 byte transmit FIFO
• 8 byte receive FIFO
• Flow control

– RX to TX channels between Microcontroller Subsystem (MSS) COMM_BLK and system controller
COMM_BLK

– MSS COMM_BLK to Peripheral Direct Memory Access (PDMA) channel
• Frame and/or command marker

– 9th bit used as frame start or command marker
– Allows command and data sequences to be distinguished
– Allows incomplete sequences to be detected
– Separate command interrupt received with programmable match logic

• Allows WORD transfers into FIFO in a single APB cycle
• Interrupts

– RX FIFO non-empty
– TX FIFO non-full
– TX overflow
– RX Underflow

The following figure depicts the connectivity of COMM_BLK to the Advanced High-Performance Bus (AHB) matrix.

Communication Block

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 584

Figure 16-1. Interfacing of COMM_BLK with AHB Bus Matrix

AHB Bus Matrix

MS5 MM8

eSRAM_0 eSRAM_1eNVM_0 eNVM_1 System
Controller

Cache
Controller

S D IC

Arm® Cortex®-M3
Processor

S D I

MSS DDR
Bridge

PDMA

MS0 MS1MS3MS2MM9MM0MM1MM2MS6

MM3 MM7

USB OTGAHB To AHB Bridge with Address Decoder

APB_0 APB_1FIC_2 (Peripheral
Initialization)SYSREGTriple Speed

Ethernet MACFIC_1

MM4 MS4 MM5 MM6

IDC

D/S

MMUART_0

SPI_0

I2C_0

PDMA
Configuration

WATCHDOG

FIIC

TIMERx2

MMUART_1

SPI_1

I2C_1

CAN

GPIO

RTC

COMM_BLK

HPDMA

FIC_0

MDDR

M
S

5_
F

IC

MS5_MAC MS5_SR MS5_APB0 MS5_FIC2 MS5_APB1 M
S

5_
U

S
B

Microcontroller Subsystem (MSS)

16.2 Functional Description
This section provides details of the COMM_BLK subsystem.

16.2.1 Architecture Overview
The COMM_BLK consists of an APB interface, 8 byte transmit FIFO, and 8 byte receive FIFO. There is one
COMM_BLK instantiated in the MSS and one in the system controller; each can communicate with the other.
Whenever the Cortex-M3 processor writes a character into the COMM_BLK, it is transmitted to the receiving side of
the COMM_BLK and an interrupt is asserted to the system controller.

In the other direction, the interrupt (COMM_BLK_INT) goes to both the Cortex-M3 processor and the FPGA fabric
through the Fabric Interface Interrupt Controller (FIIC). This communication link is used as a message passing
mailbox by firmware running on the Cortex-M3 processor and system controller. The following figure shows how

Communication Block

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 585

COMM_BLKs are connected to create a communication channel between the Cortex-M3 processor and the system
controller.

Figure 16-2. Interfacing of COMM_BLK with System Controller

AHB Bus Matrix

Cache
Controller

S D IC

Arm® Cortex® - M3

S D I

APB_1

PDMA

RxRDY
&TxRDY

APB_0

COMMS_INT

TX FIFO

RX FIFO

SII Interface

Control &
Status

APB
Interface

COMM _BLK

AHB
SII Master

SII Bus

MSS

FABRIC

FIC

DATA_IN [8:0]*

DATA_OUT [8:0]*

9 9

* 9th bit is used as a start of
frame (command) marker

TX FIFO RX FIFO

COMM_BLK

System Controller

Processor

PD
M

A
IN

TE
RR

UP
T

The COMM_BLK supports PDMA operation. The peripheral ready signals, RxRDY and TxRDY are directly connected
to the PDMA, and are used for flow control between the MSS COMM_BLK and PDMA channel. Data from the
COMM_BLK receive FIFO going to any MSS memory-mapped locations, and the data from any MSS memory-
mapped locations going to the COMM_BLK transmit FIFO can be transferred without using the Cortex-M3 processor
or the system controller. The PDMA supports DMA transfers from embedded Nonvolatile Memory (eNVM) to the
COMM_BLK to facilitate the initialization of fabric SRAMs—Micro SRAM (uSRAM) and Large SRAM (LSRAM).

16.2.2 Frame/Command Marker
The COMM_BLK allows the data that is being transferred to be marked as a command or data byte. It is expected
that a software protocol transfers packets of data between the COMM_BLK blocks. To allow the receiver to correctly
identify the start of a packet, the COMM_BLK block uses a 9th bit (Bit 8 of DATA_IN and DATA_OUT as shown in
Figure 16-2).

When Table 16-8/Table 16-9 register is written, the 9th bit is set. When Table 16-6/Table 16-7 register is written, the
9th bit is not set.

The Table 16-4 register bit 7 gives indication to the receiver whether the next byte that will be read out of the FIFO
has the 9th bit set, and therefore indicating that it is the start of a packet.

This mechanism allows the receiver to verify that no bytes have been lost and stops it from accidentally interpreting
data overruns as command. The RCVOKAY and TXTOKAY status bits must be checked in the Table 16-4 register
before reading and writing data or command.

16.2.3 Clocks
APB Interface, Control and Status block, and SII Interface are clocked by PCLK1 from the APB1 bus. RX FIFO and
TX FIFO are clocked by data clock (50 MHz RC oscillator). PCLK is derived from the fabric aligned clock controller
(FACC) output. See UG0449: SmartFusion2 and IGLOO2 Clocking Resources User Guide.

Communication Block

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 586

16.2.4 Resets
The COMM_BLK resets to zero on power-up and is held in reset until it is enabled. There is an option to reset the
COMM_BLK by writing to the system register.

Specifically, this system register is 21.5.19. Software Reset Control Register in the 21. System Register Block. The
COMBLK_SOFTRESET control bit is encoded in bit location 15 as follows:

• 0: COMM_BLK reset released
• 1: COMM_BLK held in reset (reset value)

At Power-Up, the Reset signal is asserted to 1. This keeps the COMM_BLK peripheral in a reset state. If this bit is set
to 0, the COMM_BLK peripheral is allowed to become active.

16.2.5 Interrupts
There is one interrupt signal from the COMM_BLK peripheral. The COMBLK_INTR/COMMS_INT signal is mapped
to INTISR[19] in the Cortex-M3 processor Nested Vectored Interrupt Controller (NVIC) and also goes to the FPGA
fabric through the FIIC. The interrupt in the COMM_BLK peripheral must be enabled by setting the appropriate bits
in the interrupt enable register. Clear the appropriate bit in the 16.5.3. Interrupt Enable Register when servicing the
COMMS_INT to prevent a reassertion of the interrupt.

16.2.6 COMM_BLK Initialization
The COMM_BLK peripheral can be initialized by configuring the COMM_BLK 16.5.1. Control Register and Table
21-25 system register. The initialization sequence is as follows:

1. Release the COMM_BLK from reset by using Table 21-25 system registry (see 16.2.4. Resets for further
details).

2. Enable COMM_BLK by writing 1 to the ENABLE bit of 16.5.1. Control Register.
3. Disable the loopback by writing '0' to the LOOPBACK bit in the Control Register.

16.2.7 CoreSysServices Soft IP
COMM_BLK is used to call the following system services:

• Device and Design Information Services
• Flash*Freeze Service
• Cryptographic Services
• DPA-Resistant Key-Tree Services
• Non-Deterministic Random Bit Generator (NRBG) Services
• Zeroization Service
• Programming Service
• NVM Data Integrity Check Service

Microchip provides CoreSysServices soft IP to access the system services implemented by the System Controller
from FPGA fabric. The CoreSysServices soft IP provides a user interface for each of the system services and an
Advanced High-Performance Bus (AHB)-Lite master interface on the Fabric Interface Controller (FIC) side. The core
communicates with the COMM_BLK through one of the Fabric Interface Controllers (FICs).

The CoreSysServices soft IP decodes the command received from the user logic and translates the user logic
transactions to the AHB-Lite master transactions. For more information on CoreSysServices soft IP, see the
CoreSysServices Handbook available in the Libero SoC IP catalog.

16.3 How to Use the Communication Block
The following sections describe how to use the Communication block.

16.3.1 COMM_BLK Configuration
The COMM_BLK peripheral can be initialized and configured in the user application software by using Application
Programming Interfaces (APIs) available in COMM_BLK firmware driver. The COMM_BLK firmware driver is part

Communication Block

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 587

of system services driver. The system services driver is enabled by default in firmware core configurator when the
Libero SoC project is created. The following figure shows the system services driver in firmware core configurator.

Figure 16-3. System Services Driver in Firmware Core Configurator

Once the top-level component is generated (Generate the component by clicking Generate Component or by
selecting SmartDesign > Generate Component from the menu), the firmware and SoftConsole workspace are
created in the project folder. The following figure shows the system services driver folder hierarchy.

Figure 16-4. System Services Driver Folder Hierarchy

16.3.1.1 APIs
The following table lists the APIs for the COMM_BLK.

Table 16-1. APIs for the COMM_BLK

Category API Description and Usage

Initializatio
n

MSS_COMBLK_init Initializes COMM_BLK

Write MSS_COMBLK_send_cmd Sends command opcode and command parameters

MSS_COMBLK_send_cmd_with_pt
r

Sends command opcode and command parameters pointer

MSS_COMBLK_send_paged_cmd Sends command opcode and a page of data

Important: Microchip recommends using system services driver provided in firmware core configurator for
system service application development.

16.3.2 Use Model
The COMM_BLK is used to call the following system services:

Communication Block

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 588

• Device and design information services
• Flash*Freeze services
• Cryptographic services
• DPA-resistant key tree services
• Deterministic random bit generator services
• Zeroization service
• Programming services

See the “System Services” chapter in the UG0450: SmartFusion2 SoC and IGLOO2 FPGA System Controller User
Guide to know how to implement the system services.

Table 16-2 lists the COMM_BLK configuration registers.

16.4 COMM_BLK Configuration Registers
The COMM_BLK base address resides at 0x40016000 and extends to address 0x40016FFF in the Cortex-M3
processor memory map. The following table summarizes the control and status registers for the COMM_BLK.

Table 16-2. COMM_BLK Register Map

Register Name Address Offset R/W Reset Value Description

Table 16-3 0x00 R/W 0x00 Control Register

Table 16-4 0x04 R/W 0x00 Status Register

Table 16-5 0x08 R/W 0x00 Interrupt Enable

Table 16-6 0x10 R/W 0x00 Byte Data Register

Table 16-7 0x14 R/W 0x00000000 Word Data Register

Table 16-8 0x18 R/W 0x00 Frame/Command Byte Register

Table 16-9 0x1c R/W 0x00000000 Frame/Command Word Register

16.5 COMM_BLK Register Interface Details
This section describes the COMM_BLK registers in detail.

16.5.1 Control Register
Table 16-3. CONTROL

Bit
Number

Name R/W Reset
Value

Description

[7:6] RESERVED R 00 Reserved

5 LOOPBACK R/W 1 After system reset, the COMM_BLK is in Loopback mode. Set
LOOPBACK bit to ‘0’ to disable the loopback (Normal operation). It is
used for factory test.

4 ENABLE R/W 0 Configure the COMM_BLK interface.
0: Disables COMM_BLK

1: Enables COMM_BLK

Enable COMM_BLK before writing to the FIFO and leave it enabled if it is
being used.

Communication Block

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 589

...........continued
Bit
Number

Name R/W Reset
Value

Description

3 SIZERX R/W 0 Sets the number of bytes that each APB transfer reads from the RX
FIFO.
0: 1 Byte

1: 4 Bytes (32-bits)

This setting affects the behavior of the RxRDY signal and RCVOKAY
flags. When set to 0, the flags indicate that a byte can be read and when
set to 1, it indicates that a word can be read.

2 SIZETX R/W 0 Sets the number of bytes that each APB transfer writes into the TX FIFO.
0: 1 Byte

1: 4 Bytes (32-bits)

This setting affects the behavior of TxRDY signal and TXTOKAY. When
set to 0, the flags indicate that a byte can be written and when set to 1, it
indicates that a word can be read and be written.

1 FLUSHIN R 0 Indicates FIFO flush status. 1 indicates flush process is in progress.
0 indicates that flush process is completed.

0 FLUSHOUT R/W 0 Flush all FIFO’s. Writing 1 to this bit starts the flush process. When the
flush process is complete this bit returns to 0 automatically. The flush
process takes several clock cycles to complete, depending on the various
clock rates. Writing 0 has no effect.

16.5.2 Status Register
This register provides status information. R/W bits are cleared by writing 1. FIFO empty full flags automatically clears
as FIFO is full and empty.

Table 16-4. STATUS

Bit
Number

Name R/W Rese
t
Value

Description

7 COMMAND R 0 First byte queued in receive FIFO has the command marker set

6 SIIERROR R/W 0 When an SII transfer (MSS to SII) is in progress, the start of frame marker
is set on one or more of the bytes.
Write 1 to clear

5 FLUSHRCVD R/W 0 Indicates that a FLUSH has been received.
Write 1 to clear

4 SIIDONE R/W 0 Indicated that the transfer to SII Bus is complete.
Write 1 to clear

3 UNDERFLO
W

R/W 0 Receive Overflow. Indicates that the receive FIFO was read when empty.
Write 1 to clear

2 OVERFLOW R/W 0 Transmit Overflow. Indicates that the Transmit FIFO was written when full.
Write 1 to clear

1 RCVOKAY R 0 RCV FIFO non empty. Indicates that 1 or 4 bytes may be read based on
SIZERX.

Communication Block

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 590

...........continued
Bit
Number

Name R/W Rese
t
Value

Description

0 TXTOKAY R 1 TXT FIFO non full. Indicates that 1 or 4 bytes may be written depending
on SIZETX.

Important: The System IP Interface (SII) master connects the System Controller with all the internal
elements. It is used to transfer data to and from the MSS memory space by the System Controller for
System Services. It is also used for factory test but not available for customer.

16.5.3 Interrupt Enable Register
This register enables the COMMS_INT to be set whenever the corresponding bit is set in the Table 16-4 register.

Table 16-5. INT_ENABLE

Bit Number Name R/W Reset
Value

Description

[7:0] ENABLE R/W 0x00 Matches corresponding bit in status register
0: Disables Interrupt

1: Enables Interrupt

16.5.4 Byte Data Register
This register writes a byte to the Transmit FIFO or reads a byte from the Receive FIFO. If the Transmit FIFO is full at
the time of a write, an OVERFLOW will be set in the STATUS register. Similarly, if Receive FIFO is empty at the time
of a read, an UNDERFLOW will be generated.

Table 16-6. DATA8

Bit
Number

Name R/W Reset
Value

Description

[7:0] DATA8 R/W 0x00 Write: Writes a byte to the MSS COMM_BLK Transmit FIFO
Read: Reads a byte from the MSS COMM_BLK Receive FIFO

When the Table 16-6 register is written, the command bit (Bit 8 on DATA) is set to 0, indicating that it is data. Writes to
this register automatically set the SIZETX to 0 (1 byte), and reads set the SIZERX to 0 (1 byte).

16.5.5 Word Data Register
This register writes a word (32 bits) to the Transmit FIFO or reads a word from the Receive FIFO. If the Transmit
FIFO has less than 4 spaces available at the time of a write, an OVERFLOW will be set in the Table 16-4 register.
Similarly, if Receive FIFO has less than 4 bytes available at the time of a read, an UNDERFLOW will be generated.

Table 16-7. DATA32

Bit
Number

Name R/W Reset Value Description

[31:0] DATA32 R/W 0x00000000 Write: Writes a word to the MSS COMM_BLK Transmit FIFO
Read: Read a word from the MSS COMM_BLK Receive FIFO

The LSB is transferred on the DATA bus first. When the Table 16-7 register is written, the command bit
(Bit 8 on DATA) is set to 0, indicating that it is data. Writes to this register automatically set the SIZETX to 1 (4 bytes)
and reads set the SIZERX to 1 (4 bytes).

Communication Block

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 591

16.5.6 Frame/Command Byte Register
This register writes a byte to the Transmit FIFO or reads a byte from the Receive FIFO. If the Transmit FIFO is full
at the time of a write, an OVERFLOW will be set in the Table 16-4 register. Similarly, if Receive FIFO is empty at the
time of a read, an UNDERFLOW will be generated.

Table 16-8. FRAME_START8

Bit
Numbe
r

Name R/W Reset Value Description

[7:0] FRAME_START8 R/W 0x00 Write: Writes byte to the MSS COMM_BLK transmit FIFO
Read: Read a byte from the MSS COMM_BLK receive FIFO

When the FRAME_START8 register is written, the command bit (Bit 8 on DATA) is set to 1, indicating the start of a
frame, that is, the command byte. Writes to this register automatically set the SIZETX to 0 (1 byte), and reads set the
SIZERX to 0 (1 byte). The Table 16-4 register bit 7 indicates that this byte is a command.

16.5.7 Frame/Command Word Register
This register writes a word (32-bits) to the Transmit FIFO or reads a word from the Receive FIFO. If the Transmit
FIFO has less than four spaces available at the time of a write, an OVERFLOW will be set in Table 16-4 register.
Similarly, if Receive FIFO has less than four bytes available at the time of a read, an UNDERFLOW will be
generated.

Table 16-9. FRAME_START32

Bit
Numbe
r

Name R/W Reset Value Description

[31:0] FRAME_START32 R/W 0x00000000 Write: Writes a word to the MSS COMM_BLK transmit FIFO
Read: Reads a word from the MSS COMM_BLK receive FIFO

The Least Significant Bit (LSB) is transferred on the DATA bus first. When the Table 16-9 register is written, the
command bit is set to 1, indicating the start of a frame, that is, command byte. The command bit (Bit 8 on DATA) will
be set on the first byte for writes.

Writes to this register automatically sets the SIZETX to 1 (4 bytes) and reads set the SIZERX to 1
(4 bytes). The Table 16-4 register bit 7 indicates that this word is a command.

RTC System

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 592

17. RTC System
The SmartFusion 2 Real-Time Counter (RTC) system keeps track of seconds, minutes, hours, days, weeks, and
years.

17.1 Features
It has two modes of operation:

• Real-time Calendar: Counts seconds, minutes, hours, days, week, months, and years
• Binary Counter: Consecutively counts from 0 to 243

As shown in the following figure, the RTC is connected to the AHB bus matrix through the APB_1 interface.

Figure 17-1. Microcontroller Subsystem Showing RTC

AHB Bus Matrix

eSRAM_0System
Controller

Cache
Controller

S D IC

Arm® Cortex®-M3
Processor

S D I

MSS DDR
Bridge

PDMA

MS6

MM3

AHB To AHB Bridge with Address Decoder
USB OTG

HPDMA

MDDR

APB_0SYSREGTriple Speed
Ethernet MAC

FIC_0

MM4 MS4

MS2 MS3 MS0

MS5

MS1

MM5 MM6

MM7

MM8

MM2 MM1 MM0 MM9

IDC
D/S eNVM_0 eNVM_1 eSRAM_1

FIC_2 (Peripheral
Initialization) APB_1

MMUART_0

SPI_0

I2C_0

PDMA
Configuration

WATCHDOG

FIIC

TIMERx2

MMUART_1

SPI_1

I2C_1

GPIO

CAN

RTC

COMM_BLK

FIC_1

M
SS

_F
IC

M
S6

_U
SB

MS5_MAC MS5_SR MS5_APB0 MS5_FIC2 MS5_APB1

17.2 Functional Description
The following sections provide a detailed description of the RTC system.

17.2.1 Architecture Overview
This section describes the RTC architecture and its components which are as follows:

• Prescaler

RTC System

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 593

• RTC Counter
• Alarm Wake-up Comparator

Figure 17-2. RTC Block Diagram

Seconds
Minutes
Hours
Day

Month
Year

Day of Week
Week

RTC Counter

Prescaler

APB
Registers Configuration

Strobe 1 Hz

Enable

RTCCLK

PCLK

Alarm
Wake-up

Comparator

RTC_MATCH

RTC_WAKEUP

17.2.1.1 Prescaler
The prescaler divides the input frequency to create a time-based strobe (typically 1 Hz) for the calendar counter. The
Alarm and Compare Registers, in conjunction with the calendar counter, facilitate
time-matched events.

To properly operate in Calendar mode, (Clock mode: 1), the 26-bit prescaler must be programmed to generate a 1 Hz
strobe to the RTC. In Binary mode, (Clock mode: 0), the prescaler can be programmed as required in the application.

17.2.1.2 RTC Counter
The RTC counter keeps track of seconds, minutes, hours, days, weeks, and years when in Calendar mode, and for
this purpose it requires a 43-bit counter. When counting in Binary mode, the 43-bit register is treated as a linear up
counter.

The following table shows the details for Calendar mode and Binary mode.

Table 17-1. Calendar Counter Description

Function Number
of Bits

Range Reset Value

Calendar
Mode

Binary
Mode

Calendar Mode Binary Mode

Second 6 0-59 0-63 0 0

Minute 6 0-59 0-63 0 0

Hour 5 0-23 0-31 0 0

Day 5 1-31 (auto adjust by month and year) 0-31 1 0

Month 4 1-12 0-15 1 0

Year 8 0-255
Year 2000 to 2255

0-255 0 (year 2000) 0

Weekday 3 1-7 0-7 1 0

Week 6 1-52 0-63 1 0

RTC System

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 594

17.2.1.3 Alarm Wake-up Comparator
The RTC has two modes of operation, selectable through the clock_mode bit (Table 17-5).

In Calendar mode, the RTC counts seconds, minutes, hours, days, month, years, weekdays, and weeks. In Binary
mode, the RTC consecutively counts from 0 all the way to 243. In both the modes, the alarm event generation logic
simply compares the content of the Alarm register with that of the RTC; when they are equal, the RTC_MATCH
output is asserted.

17.2.2 Port List
The following table lists the ports of the RTC and provides a short description for each.

Table 17-2. RTC Interface Signals

Port MS
B

LS
B

Dir Description

PCLK in APB interface clock.

PRESETN in Processor reset

PADDR 6 0 in APB address. Registers are word aligned so A1:0 is not used.

PSEL in APB select signal

PENABLE in APB enable

PWRITE in APB write signal

PWDATA 31 0 in APB write data bus

PREADY out APB ready signal; is always asserted

PRDATA 31 0 out APB read data bus

RTC_MATCH out RTC match output (active-high) Synchronous to clk 32 k

RTC_WAKEUP out RTC wake up interrupt (active-high). Asserted Synchronous to clk 32 k, but
deasserted on positive edge of PCLK

CLKRTC in Clock input for RTC counters

PORST_B in Power-on reset. It clears/preset all flip-flops including the calendar/prescaler
counters (active-low)

17.2.2.1 Reset
The RTC is reset with the Power-on Reset (poreset_n) signal. Subsequent soft resets of the MSS do not reset the
RTC. For further details, see 20. Reset Controller.

17.2.2.2 Clocking
The RTC has two clock inputs:

• RTCCLK: This is used to clock the RTC.
• PCLK: This is used for the CPU interface.

The configuration bits in the mode registers should not be changed while the RTC is operational. The Alarm and
Compare registers can be written by disabling the alarm (bit 2), as explained in the 17.4.3. Control Register.

17.2.2.2.1 Clock Source to RTCCLK
The MSS clock controller supplies three clock sources to RTCCLK:

• Crystal oscillator 32.767 KHz
• 1 MHz oscillator
• 50 MHz oscillator

The prescaler should be programmed to derive a 1 Hz signal. Therefore, for the 32.767 KHz clock, the prescaler
should be programmed to 32768 (actual value is N−1, that is, 32767). Microchip recommends that the lowest clock

RTC System

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 595

frequency source available is used because this reduces the power consumption; the MSS SYSREG provides the
clock selection logic.

17.2.3 Details of Operation
The following sections describe the details of operation of the RTC:

• Day of the Week and Week Counter
• RTC_MATCH Status Bit and Output
• RTC_WAKEUP Status Bit
• RTC_WAKEUP Output

17.2.3.1 Day of the Week and Week Counter
The Calendar counter also keeps track of the days within the weeks, and the weeks in a year. These needs are to be
set correctly before starting the RTC to match the day of the week and week for the current date and time. The day of
the week counter increments from 1 to 7 and the week counter is incremented as the day of week goes from 7 to 1.

17.2.3.2 RTC_MATCH Status Bit and Output
The RTC_MATCH status bit and output is asserted whenever the Alarm system is enabled and a match occurs. In
Calendar mode, it is asserted for a 1 second period while the alarm condition is valid. The output is synchronous to
the rising edge of RTCCLK. The RTC_MATCH output signal can also be driven to the fabric.

17.2.3.3 RTC_WAKEUP Status Bit
The RTC_WAKEUP status bit is asserted whenever the Alarm system (see alarm_enable in Table 17-7) is enabled
and a match occurs. The bit stays set until cleared by writing to the control register clear wake-up bit.

17.2.3.4 RTC_WAKEUP Output
The RTC_WAKEUP output is asserted whenever the Alarm system is enabled (alarm_enable), the mode
wake_enable (Table 17-8) is set and a match occurs by the RTCCLK rising edge. The bit stays set until cleared
by writing to the control register clear wakeup bit. The output de assertion is immediate and synchronous to the
PCLK.

The RTC_WAKEUP output can be routed to the fabric through the Fabric Interface Interrupt Controller (FIIC) block in
MSS and can be used by a soft microcontroller or a state machine implemented in the fabric. It can also be routed
to the Cortex-M3 processor Nested Vectored Interrupt Controller (NVIC) or it can be routed to the system controller.
The RTC_WAKEUP_CR in the SYSREG block provides masking for the RTC_WAKEUP interrupt to the fabric, the
Cortex-M3 processor, and the system controller.

17.3 How to Use RTC
This section describes how to use RTC in an application.

17.3.1 Design Flow
The following steps are used to enable RTC in the application:

1. Enable RTC by using the MSS configurator in the application, as shown in the following figure.

RTC System

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 596

Figure 17-3. Enabling RTC in the Libero SOC Design MSS Configurator

2. Clicking RTC displays the RTC configuration window, as shown in the following figure.

RTC System

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 597

Figure 17-4. RTC Configuration Window

– Select the Clock Source that drives the RTC system (RTCCLK) as either External 32 KHz RTC crystal
oscillator, or On-chip 1 MHz RC oscillator, or On-chip 25/50 MHz RC oscillator (50 MHz in 1.2V part).
Irrespective of external main oscillator or RTC crystal oscillator selection, the auxiliary external oscillator
is used as RTC clock source.

– Select the Wake-Up Interrupt. The RTC_WAKEUP_CR in the SYSREG block provides masking for the
RTC_WAKEUP interrupt to the FPGA fabric, the Cortex-M3 processor, and the system controller. The
interrupt to be enabled can be selected using this configurator.

– Select the RTC_MATCH. The RTC_MATCH status bit and output is asserted whenever the Alarm system
is enabled and a match occurs. In Calendar mode, it is asserted for a 1 second period while the alarm
condition is valid. The output is synchronous to the rising edge of the RTCCLK. The RTC_MATCH output
signal can be exposed to drive the FPGA fabric. The RTC_MATCH signal is then available to be used in
the design.

3. The RTC signals in top-level instance are shown in the following figure.
Figure 17-5. RTC Signals

4. Generate the component by clicking Generate Component or by selecting SmartDesign > Generate
Component. For more information on generation of the component, see the latest SmartDesign user guide on
Libero SoC Documentation. The firmware driver folder and SoftConsole workspace is included in the project.
Click the highlighted Configure firmware button as shown in the following figure to find the RTC drivers.

RTC System

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 598

Figure 17-6. RTC Driver User Guide

5. Click Generate Bitstream under Program Design to complete *.fdb file generation.
6. Double-click Export Firmware under Handoff Design for Firmware Development in the Libero SoC design

flow window to generate the SoftConsole Firmware Project. The SoftConsole folder contains the mss_rtc
firmware driver. The firmware driver, mss_rtc (mss_rtc.c and mss_rtc.h) which provides a set of functions
for controlling the RTC, can also be downloaded from the Microchip firmware catalog. The following table lists
the APIs for RTC.
For more information on the APIs, see the SmartFusion2_MSS_RTC_Driver_UG (shown in the preceding
figure).

Table 17-3. RTC APIs

Category API Description and Usage

Initialization MSS_RTC_init() Initializes RTC

Setting and reading
the RTC counter
current value

MSS_RTC_set_calendar_count() Sets new calendar values to RTC counter

MSS_RTC_set_binary_count() Sets new binary values to RTC counter

MSS_RTC_get_calendar_count() Returns calendar count

MSS_RTC_get_binary_count() Returns binary counter value

Setting the RTC match
and mask values

MSS_RTC_set_calendar_count_alarm(
)

Sets the RTC to generate an alarm when the time
and date passed as parameter

MSS_RTC_set_binary_count_alarm() Sets the RTC to generate an alarm when the
counter value passed as parameter

RTC counter
increment detection

MSS_RTC_get_update_flag Indicates if the RTC counter incremented since
the last call to MSS_RTC_clear_update_flag()

MSS_RTC_clear_update_flag Clears the hardware flag set when the RTC
counter increments

Control of RTC MSS_RTC_start() Starts the RTC incrementing

MSS_RTC_stop() Stops the RTC from incrementing

MSS_RTC_reset_counter() Resets the calendar counters

RTC System

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 599

...........continued
Category API Description and Usage

Interrupt control MSS_RTC_enable_irq() Enables the RTC wakeup interrupt

MSS_RTC_disable_irq() Disables the RTC wake up interrupt

MSS_RTC_clear_irq() Clears pending RTC wakeup interrupt

7. For more information on RTC usage, sample projects that are available can be generated, as shown in the
following figure.
Figure 17-7. RTC Examples

17.3.2 RTC Use Model
Use the following steps to use RTC:

1. Configure the RTC from Libero SoC using the RTC configuration window.
2. Initialize the RTC driver using the MSS_RTC_init() function.
3. Use the MSS_RTC_configure() function to configure the RTC.
4. Set the match value of the RTC using the MSS_RTC_set_rtc_match() function.
5. Use the MSS_RTC_enable_irq() function to enable the RTC match interrupt.
6. Call the MSS_RTC_start() function to increment RTC.
7. On reaching the match value, RTC generates the interrupt. Clear the interrupt.
8. Stop RTC increment using the MSS_RTC_stop() function.

Important: The MSS RTC does not support full behavioral simulation models. See SmartFusion2 MSS
BFM Simulation User Guide for more information.

17.4 RTC Register Map
The Register Map for the RTC is shown in Table 17-6.

Note:  In this peripheral, all the register writes should be a WORD operation. A byte operation corrupts the other bits
in the register.

RTC System

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 600

17.4.1 Counter Bit Positions
The RTC counters support the following two counting modes:

• Binary Mode: In Binary mode, a 43-bit counter is provided.
• Calendar Mode: The 43 bits are allocated as following:

Table 17-4. Allocation of Bits in Calendar Mode

Counter Counts Size Bits Bits in Counter Reset Value

Seconds 0-59 6 [5:0] 0

Minutes 0-59 6 [11:6] 0

Hours 0-23 5 [16:12] 0

Day 1-31 5 [21:17] 1

Month 1-12 5 [25:22] 1

Year 0-255 8 [33:26] 0

Weekday 1-7 3 [36:34] 7

Week 1-52 6 [42:37] 1

• Weekday, 1: Sunday, 2: Monday …. 7:Saturday
• Reset date is Saturday 1 January 2000.
• The leap year calculations assume the year value where 0-255 is mapped to 2000 to 2255.

17.4.2 Register Bit Allocation
Depending on the CLOCK_MODE setting, the bit mapping is given in the following table.

Table 17-5. Register Bit Allocation

Clock Mode Date Time Alarm Compare Register Bits Description

0 Lower [31:0] Binary Count[31:0]

Upper [10:0] Binary Count[42:32]

1 Lower [7:0] Seconds

[15:8] Minutes

[23:16] Hours

[31:24] Day

Upper [7:0] Month

[15:8] Year

[23:16] Weekday

[29:24] Week

The following table shows the Register Map for RTC.

Table 17-6. Register Map for RTC

Register Name Address
Offset

R/W Reset
Value

Description

Table 17-7 0x00 R/W 0 The control register is an 11-bit register that defines the
operations of the RTC.

RTC System

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 601

...........continued
Register Name Address

Offset
R/W Reset

Value
Description

Table 17-8 0x04 R/W 0 This register should only be written when the RTC is
stopped—when the control register bit 0 reads as a '0'.

Table 17-9 0x08 R/W 0 The value of the prescaler can be written here. This
register should only be written when the RTC is stopped—
when the control register bit 0 reads as a '0'.

Table 17-10 0x0C-0x18 R/W 0 Sets and reads the alarm time.

Table 17-11 0x20
-0x6C

R/W 0 Allows the individual bytes of the date and timer to be
read; and registers can be written when the RTC is
running.

17.4.3 Control Register
Table 17-7. Control

Bit Number Name R/W Reset
Value

Description

10 Updated R/W 0 This bit goes High every time the RTC updates the RTC
value. It is cleared by writing '1' to the bit. It allows the CPU
to know that the RTC value is stable and will not change for
the next second.

9 Wakeup_set W 0 Writing a '1' to this bit asserts the RTC_WAKEUP output
and sets the Wakeup status bit.

8 Wakeup R 0 This bit is set every time a match occurs. It is cleared by
writing a '1'. Once cleared, it will not be set again until the
next wakeup occurs.
When WAKE_CONTINUE = 0, writing a '1' to this bit
restarts the RTC counting after a wake-up occurs.

Wakeup_clear W

7 Match R 0 The RTC value matches the wakeup value. It indicates the
value of the RTC_MATCH output. This is normally active
for 1 second while the current time matches the alarm
setting.

6 Download W 0 Writing a '1' causes the current RTC value to be
downloaded to the date/time upload registers initializing the
upload value to the current time. This does not require any
synchronization and takes place immediately.

5 Upload R/W 0 When '1' is written, the date/time value loaded into the
date/time registers is uploaded to the RTC and stays
asserted until the internal synchronizers complete the
upload.

4 Reset W 0 When '1' is written, the date/time value is reset and
uploaded to the RTC. This causes the upload bit to be set
while the time is reset.

3 Alarm_off W 0 When '1' is written, the Alarm is disabled.
When it is read, it indicates that the Alarm is enabled.

It reads back '1' until the internal synchronization
completes and the Alarm is fully disabled.

Alarm_enabled R 0

RTC System

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 602

...........continued
Bit Number Name R/W Reset

Value
Description

2 Alarm_on W 0 When '1' is written, the Alarm is enabled.
When it is read, it indicates that the Alarm is enabled.

It reads back '1' as soon as the bit is written.
Alarm_enabled R 0

1 Stop W 0 When '1' is written, the RTC counter stops.
When it is read, it indicates that the RTC is running.

It reads back as '1' until the internal synchronization
completes and the RTC is fully stopped.

Running R 0

0 Start W 0 When '1' is written, the RTC starts.
When it is read, it indicates that the RTC is running.

It reads back '1' as soon as the start bit is written.
Running R 0

17.4.4 Mode Register
This register should only be written when the RTC is stopped— when the control register bit 0 reads as a '0’.

Table 17-8. Mode

Bit Number Name R/W Reset
Value

Description

4 Wake_reset_ps R/W 0 When a wakeup occurs, resets the Prescaler.

3 Wake_continue R/W 0 When a wakeup occurs, continues counting; otherwise the
counters, including the Prescaler, stop until wake-up is
cleared.

2 Wake_reset R/W 0 When a wake-up occurs, resets the RTC.

1 Wake_enable R/W 0 Enables the wakeup (interrupt) output.

0 Clock_mode R/W 0 0: Binary counter
1: Calendar mode

17.4.5 Prescaler
This register should only be written when the RTC is stopped— when the control register bit 0 reads as a '0'.

Table 17-9. Prescaler

Bit Number Name R/W Reset
Value

Description

[25:0] Prescaler R/W 0 The value by which the incoming clock is divided is set in
the Prescaler. It should be set so as to achieve 1 Hz from
the incoming RTC clock.
Value: Clock Frequency – 1

Value must be greater than 1.

17.4.6 Alarm and Compare Registers
These registers may be written when the RTC is running, but the Alarm must be disabled; the control register bit 2
reads as a '0'.

RTC System

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 603

Table 17-10. Alarm and Compare

Addres
s Offset

Register
Name

Bit
Numbers

Name R/W Reset
Value

Description

0x0C Alarm [31:0] Alarm
Lower

R/W 0 Sets the alarm (wake-up) time on write and returns
the alarm time on read.

0x10 [31:0] Alarm
Upper

R/W 0 Sets the alarm (wake-up) time on write and returns
the alarm time on read.

0x14 Compare [31:0] Compar
e Lower

R/W 0 Sets the compare bits on the alarm time on write and
returns the compare value on read.
0: Bit is ignored

1: Bit is compared

0x18 [31:0] Compar
e Upper

R/W 0 Sets the compare bits on the alarm time on write and
returns the compare value on read.
0: Bit is ignored

1: Bit is compared

See Table 17-5 for register bit allocation.

The Alarm setting must be set such that the ALARM*PRESCALER is greater than the 8 RTC clock cycles, assuming
that the CPU writes to the control register to clear a wakeup condition within two RTC clock periods. As the prescaler
value should be set to achieve a 1 Hz pulse and the slowest RTCCLK source is 32 KHz, this requirement is always
true.

17.4.7 Date and Time Registers
These registers may be written when the RTC is running. After writing these registers, the control register upload bit
is used to upload the value coherently into the RTC counter.

Table 17-11. Date and Time

Addres
s Offset

Register
Name

Bit
Numbers

Name R/W Reset
Value

Description

0x20 Date Time [31:0] Datetime
Lower

R/W 0 Writes the data to be uploaded to the counter and
returns the current time upon reading.

0x24 [31:0] Datetime
Upper

R/W 0 Writes the data to be uploaded to the counter and
returns the upper time bits that are in alignment with
the last read lower bits; that is, the value of the
upper time bits as the lower ones are read.

0x30 Date/Time
Synchronize
d Byte Mode

[5:0] Seconds R/W 0 Synchronized mode returns the date/time values at
the point the second's register is read. Allows the
individual byte of the date and timer to be read.The
complete RTC data is read and stored internally
when the second value is read, reads of minutes
etc returns the value when seconds was read.
For writes, all fields (0 × 30 - × 4C) must be written.
The control register upload bit uploads data to the
RTC.

These registers are for use when clock_mode = 1.

0x34 [5:0] Minutes R/W 0

0x38 [4:0] Hours R/W 0

0x3C [4:0] Day R/W 0

0x40 [4:0] Month R/W 0

0x44 [7:0] Year R/W 0

0x48 [2:0] Weekday R/W 0

0x4C [5:0] Week R/W 0

RTC System

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 604

...........continued
Addres
s Offset

Register
Name

Bit
Numbers

Name R/W Reset
Value

Description

0x50 Date/Time
Direct Byte
Mode

[5:0] Seconds R/W 0 Direct mode returns the date/time at the point
that each of the the reads take place. Allows the
individual byte of the date and timer to be read.
Each read returns the current date/time value. It is
possible that the date/time may increment between
reads.
For writing all fields (0 × 50 - × 6C) must be written.
The control register upload bit uploads data to the
RTC.

These registers are for use when clock_mode = 1.

0x54 [5:0] Minutes R/W 0

0x58 [4:0] Hours R/W 0

0x5C [4:0] Day R/W 0

0x60 [4:0] Month R/W 0

0x64 [7:0] Year R/W 0

0x68 [2:0] Weekday R/W 0

0x6C [5:0] Week R/W 0

See Table 17-5 for register bit allocation.

17.5 SYSREG Control Registers
The RTC_WAKEUP_CR in the SYSREG block provides masking for the RTC_WAKEUP interrupt to the fabric, the
Cortex-M3 processor, and the system controller. Refer to the 17. RTC System for bit details.

Table 17-12. The RTC_WAKEUP_CR in the SYSREG Block

Register Name Register
Type

Flash
Write
Protect

Reset
Source

Description

RTC_WAKEUP_CR RW-P Register sysreset_n Provides masking for the RTC_WAKEUP interrupt to
the fabric, the Cortex-M3 processor, and the system
controller.

System Timer

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 605

18. System Timer
The SmartFusion 2 system timer (hereinafter referred as timer) consists of two programmable 32-bit decrementing
counters that generate interrupts to the Cortex-M3 processor and FPGA fabric. The two 32-bit timers are identical. X
is used as a placeholder for 1, 2, or 64 in register descriptions. It indicates Timer 1, Timer 2, or Timer 64.

18.1 Features
The timer has the following features:

• Three count modes: One-shot and Periodic
• Decrementing 32-bit counters
• Two 32-bit timers can be concatenated to create a 64-bit timer.
• Option to enable or disable the interrupt requests when timer reaches zero.
• Controls to start, stop, and reset the timer

The following figure shows details of the MSS. Timer peripherals are connected to the AHB bus matrix through the
APB_0 interface.

System Timer

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 606

Figure 18-1. MSS Showing Timer Peripherals

AHB Bus Matrix

eSRAM_0System
Controller

Cache
Controller

S D IC

ARM® Cortex®-M3
Processor

S D I

MSS DDR
Bridge

PDMA

MS6

MM3

AHB To AHB Bridge with Address Decoder
USB OTG

HPDMA

MDDR

APB_0SYSREGTriple Speed
Ethernet MAC

FIC_0

MM4 MS4

MS2 MS3 MS0

MS5

MS1

MM5 MM6

MM7

MM8

MM2 MM1 MM0 MM9

IDC
D/S eNVM_0 eNVM_1 eSRAM_1

FIC_2 (Peripheral
Initialization) APB_1

MMUART_0

SPI_0

I2C_0

PDMA
Configuration

WATCHDOG

FIIC

TIMERx2

MMUART_1

SPI_1

I2C_1

GPIO

CAN

RTC

COMM_BLK

FIC_1

M
SS

_F
IC

M
S6

_U
SB

MS5_MAC MS5_SR MS5_APB0 MS5_FIC2 MS5_APB1

18.2 Functional Description
This section provides detailed description of the timer.

18.2.1 Architecture Overview
The timer is an APB_0 slave that provides two programmable, interrupt generating, 32-bit decrementing counters, as
shown in the following figure.

System Timer

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 607

Figure 18-2. Timer Block Diagram

PCLK

PRESETn

PSEL

PWRITE

PENABLE

PWDATA[31:0]

PRDATA[31:0]

TIMER1INT

TIMER2INT

Timer

APB Interface

Counter 1

Counter 2

Registers

PADDR[7:0]

The Timer has an APB interface through which the Cortex-M3 processor can access various control and status
registers to control and monitor the operation of the Timer. The Timer consists of two 32-bit decrementing counters.
Counters generate the interrupts TIMER1INTand TIMER2INT on reaching zero. Refer to the 18.4. Timer Register
Map for more information on Timer registers.

18.2.2 Port List
The following table lists the Timer ports.

Table 18-1. Timer Interface Signals

Name Type Width Description

TIMER1INT Output 1 Active high interrupt from counter 1.
If enabled, this interrupt is asserted when counter 1 reaches zero.

In 64-bit mode, this interrupt line is asserted when the
64-bit counter reaches zero.

TIMER2INT Output 1 Active-high interrupt from counter 2.
If enabled, this interrupt is asserted when counter 2 reaches zero.

18.2.2.1 Clocks
Timer is clocked by PCLK0 on the APB0 bus. PCLK is derived from the fabric alignment clock controller (FACC)
output. See UG0449: SmartFusion2 and IGLOO2 Clocking Resources User Guide for more information.

18.2.2.2 Resets
Timer resets to zero on power-up and is held in reset until enabled. Libero SoC software can reset the Timer by
writing to bit 6 of 21.5.19. Software Reset Control Register in the SYSREG block. Soft reset bit definitions are
provided in the following table.

System Timer

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 608

Table 18-2. Soft Reset Bit Definitions for System Peripheral

Bit Number Name R/W Reset Value Description

6 TIMER_SOFTRESET R/W 0x1 0: Releases the Timer from reset.
1: Keeps the Timer in reset.

18.2.2.3 Interrupts
There are two interrupt signals from the system timer block—TIMER1INT and TIMER2INT. The TIMER1INT
signal is mapped to INTISR[14] and the TIMER2INT signal is mapped to INTISR[15] in the Cortex-M3 processor
Nested Vectored Interrupt Controller (NVIC) controller. Both interrupt enable bits within the NVIC (INTISR[14]
and INTISR[15]) correspond to bit locations 14 and 15. These interrupts are enabled by setting the appropriate
TIMxINTEN bits in TIM1_CTRL, TIM2_CTRL, or TIM64_CTRL registers.

In 32-bit mode, the TIMxRIS bit in the respective interrupt service routine must be cleared to prevent a reassertion
of the interrupt. Similarly, in 64-bit mode, TIM64RIS bit in the respective interrupt service routine must be cleared to
prevent a reassertion of the interrupt.

18.2.3 Details of Operation

18.2.3.1 Timer Operating Modes
The Timers can be configured to operate in the following modes:

• Periodic Mode
• One-Shot Mode
• 64-Bit and 32-Bit Modes

The following sections explain the modes of operation.

18.2.3.1.1 Periodic Mode
In this mode, the counter generates the interrupts at constant intervals. On reaching zero, the counter is reloaded
with a value held in a register and counting restarts.

Periodic mode is selected by setting the TIMxMODE bit in the Table 18-8 register to 0. In this mode, the counter
continually counts down to zero when it is enabled. On reaching zero, an interrupt is generated and the counter is
reloaded with the value stored in the Table 18-6 register. The counter then continues to count down towards zero,
without waiting for the interrupt to be cleared. The interrupt remains asserted until cleared by the processor. If the
counter reaches zero without clearing the previous interrupt, the counter behaves as if it has just timed out (reached
zero). In effect, an interrupt is lost. It can continue indefinitely as long as the counter is enabled in Periodic mode and
interrupts are not cleared.

Writing to the TIMxLOADVAL register at any time causes the counter to be loaded immediately with the value written,
and, if enabled, it will continue counting down from the new value. If the Table 18-7 (background load value) register
is written, the value written overwrites the TIMxLOADVAL register. The counter is not updated immediately with the
new value. However, when the counter reaches zero, it is loaded with the new value contained in the TIMxLOADVAL
register. By making use of the TIMxBGLOADVAL register, it is possible to continually generate interrupts with varying
or alternating time intervals between interrupts without having any arbitrary variation in the lengths of the intervals
due to (possibly) different cycle counts for servicing successive interrupts. For example, this approach is used to
allow a processor to generate a waveform with a non-equal mark-space ratio on a general purpose output pin.

18.2.3.1.2 One-Shot Mode
The counter generates a single interrupt in this mode. On reaching zero, the counter halts until reprogrammed.

One-shot mode is selected by setting the TIMxMODE bit in the Table 18-8 register to 1. In this mode, the counter
stops on reaching zero and a single interrupt is generated. When the counter is stopped in One-shot mode, it can be
restarted by writing a non-zero value to the TIMx_LOADVAL register. Alternatively, the counter can be restarted by
clearing the TIMxMODE bit. This causes the counter to be loaded with the value held in the Table 18-6 register and to
begin operating in Periodic mode.

While the counter is counting down, it is possible to change the value of the TIMxMODE bit at any time without
affecting the operation. For example, if the counter is decrementing in One-shot mode and the TIMxMODE bit is
cleared before the counter reaches zero, the counter begins to operate in Periodic mode on reaching zero.

System Timer

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 609

Writing to the TIMxBGLOADVAL register in One-shot mode has no real effect unless you intend to switch to Periodic
mode when (or before) the next interrupt occurs. When in One-shot mode, the value written to TIMxBGLOADVAL is
loaded into the TIMxLOADVAL register as normal but when the counter reaches zero, it generates a single interrupt
and stops. Only a subsequent write to the TIMxLOADVAL register initiates another One-shot countdown sequence.
However, if the counter is restarted by changing the Operating mode to Periodic (by clearing the TIMxMODE
bit), the value written to the TIMxBGLOADVAL register is relevant because this is the start value (taken from the
TIMxLOADVAL register) used to initialize the counter in Periodic mode.

18.2.3.1.3 64-Bit and 32-Bit Modes
Timers 1 and 2 can be concatenated into a single 64-bit Timer that operates either in Periodic mode or in One-shot
mode. Figure 18-3 and Figure 18-4 show block diagrams for 32-bit mode and 64 -bit mode. Writing 1 to the Table
18-20 register bit 0 sets the Timers in 64-bit mode. Whenever the TIM64_MODE bit changes state, the Timers are
re-initialized to their default reset values. In 64-bit mode, writing to the 32-bit registers has no effect. Similarly, in
32-bit mode, writing to the 64-bit mode registers has no effect. Reading the 32-bit registers in 64-bit mode returns the
default initialization values. Similarly, reading the 64-bit mode registers in 32-bit mode returns the default initialization
values.

Timer 1 contains the lower 32-bit count of the 64-bit count value. Consequently, when updating or initializing the state
of the counter, the upper 32 bits of the 64-bit counter must be written to first, followed by the lower 32 bits. It occurs
as a two step process, first the upper 32 bits are written and then this value is stored in temporary register. When you
write the lower 32 bits, the upper 32 bits are simultaneously written to the destination register. If a read is done on the
target register before the write to the lower
32 bits is done, the functional value of the target register is returned (not the value of the temporary register).

While updating the background load value registers, ensure that TIM64_BGLOAD_VAL_U is followed by a write to
TIM64_BGLOADVAL_L. When updating the load value registers, ensure TIM64_LOADVAL_U is followed by a write
to TIM64_LOADVAL_L. When the lower 32-bit write occurs, the 64-bit counter is updated as one 64-bit value. There
are temporary holding registers in the Timer block that are used to facilitate proper loading of the Timer in 64-bit
mode. These registers are not readable.

In 64-bit mode, it is necessary to read 64-bit values as two 32-bit words. While reading TIM64_VAL_U and
TIM64VAL_L, TIM64_VAL_L should be read first and then TIM64_VAL_U. When the TIM64_VAL_L (lower 32 bits of
the 64-bit word) is read, the upper 32 bits are simultaneously read and put in a temporary register, which is returned
while reading TIM64_VAL_U. This assures that the (changing) Timer values of the upper and lower words presented
are sampled at the same time. The registers TIM64_BGLOADVAL_U, TIM64_BGLOADVAL_L, TIM64_LOADVAL_U,
and TIM64_LOADVAL_L can be read in any order. Switching modes from 32-bit to 64-bit and vice versa requires
changing the value in the mode register. Whenever this value is changed, the register values are restarted as the
Timer is just reset.

Each 32-bit counter in the Timer is clocked with the PCLK input. With a PCLK frequency of 100 MHz, the maximum
timeout period is approximately 42.9 seconds in 32-bit mode and 1.8 × 1011 seconds in 64-bit mode.

System Timer

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 610

Figure 18-3. Block Diagram 32-Bit Mode

APB Bus

TIMxBGLOADVAL

TIMxLOADVAL

TIMERxINTTIMERx
TIMxMODE

TIMxENABLE
PCLK

TIMxVALUE

APB Bus

Figure 18-4. Block Diagram 64-Bit Mode

APB Bus

APB Bus

TIM64BGLOADVAL TIM64BGLOADVAL

TIM64LOADVALTIM64LOADVAL

TIMER1INTTIMER1INT TIMER1TIMER1

TIM64MODE

TIM64ENABLE
PCLK

TIM64MODE

TIM64ENABLE
PCLK

18.3 How to Use Timer
This section describes how to use the Timer in an application.

System Timer

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 611

18.3.1 Design Flow
Follow the steps described below to use Timer in an application.

1. By default, the Timer module is enabled in the Libero project.
2. Generate the component by clicking Generate Component or by selecting SmartDesign > Generate

Component. For more information on generation of the component, see the latest SmartDesign user guide
on Libero SoC User Documentation. The firmware driver folder and SoftConsole workspace is included in the
project. Click the highlighted Configure firmware as shown in the following figure to find the Timer drivers.
Figure 18-5. Timer Driver User Guide

3. Click Generate Bitstream under Program Design to complete *.fdb file generation. Double click Export
Firmware under Handoff Design for Firmware Development in the Libero SoC design flow window to
generate the SoftConsole Firmware Project. The SoftConsole folder contains the mss_timer firmware driver.
The firmware driver, mss_timer (mss_timer.h) which provides a set of functions for controlling the Timer, can
also be downloaded from the Microchip firmware catalog. The following table lists the APIs for Timer.

4. For more information on the APIs, see the SmartFusion2_MSS_Timer_Driver_UG (shown in the preceding
figure).

Table 18-3. MSS Timer APIs

Category API Description and Usage

Initialization functions MSS_TIM1_init() Initializes Timer1

MSS_TIM2_init() Initializes Timer2

MSS_TIM64_init() Initializes 64-bit Timer

System Timer

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 612

...........continued
Category API Description and Usage

Control functions MSS_TIM1_load_immediate() Loads the value passed by the load_value
parameter into the Timer1 down-counter.

MSS_TIM1_load_background() Specify the value that will be reloaded into the
Timer1 down-counter the next time the counter
reaches zero.

MSS_TIM1_get_current_value() Returns the current value of the Timer1 down-
counter.

MSS_TIM1_start() The MSS_TIM1_start() function enables Timer1

MSS_TIM1_stop() The MSS_TIM1_stop() function disables Timer1

MSS_TIM2_load_immediate() Loads the value passed by the load_value
parameter into the Timer2 down-counter

MSS_TIM2_load_background() Specify the value that will be reloaded into the
Timer2 down-counter the next time the counter
reaches zero.

MSS_TIM2_get_current_value() Returns the current value of the Timer 2
down-counter.

MSS_TIM2_start() Enables Timer 2

MSS_TIM2_stop() Disables Timer 2

MSS_TIM64_load_immediate() Loads the values passed by the load_value_u and
load_value_l parameters into the 64-bit timer down-
counter

MSS_TIM64_load_background() Specify the 64-bit value that will be reloaded into the
64-bit timer down-counter the next time the counter
reaches zero

MSS_TIM64_get_current_value() Read the current value of the 64-bit timer
down-counter.

MSS_TIM64_start() Enables the 64-bit timer

MSS_TIM64_stop() Disables the 64-bit timer

Interrupt control
functions

MSS_TIM1_enable_irq() Enable interrupt generation for Timer 1

MSS_TIM1_disable_irq() Disable interrupt generation for Timer 1

MSS_TIM1_clear_irq() Clear a pending interrupt from Timer 1

MSS_TIM2_enable_irq() Enable interrupt generation for Timer 2

MSS_TIM2_disable_irq() Disable interrupt generation for Timer 2

MSS_TIM2_clear_irq() Clear a pending interrupt from Timer 2

MSS_TIM64_enable_irq() Enable interrupt generation for the 64-bit timer

MSS_TIM64_disable_irq() Disable interrupt generation for the 64-bit timer

MSS_TIM64_clear_irq() Clear a pending interrupt from the 64-bit timer.

5. For more information on Timer usage, the sample projects are available and can be generated, as shown in
the following figure.

System Timer

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 613

Figure 18-6. Generating Sample Project

18.3.2 Timer Use Models

18.3.2.1 Use Model 1: 32-Bit Mode
To generate a 1 ms delay with a 100 MHz clock using 32-bit Timer 1 in Periodic mode:

1. Initialize Timer for Periodic mode using MSS_TIM1_init(MSS_TIMER_PERIODIC_MODE).
2. Use MSS_TIM1_load_immediate(load_value) or MSS_TIM1_load_background(load_value) to load required

time period. For a 1 ms delay load value calculation:
– For 100 MHz, clock period is 0.01 µs
– Number of counts for a 1 ms delay is 1 ms / 0.01 µs equal to 100,000 (186A0 in hexadecimal)
– MSS_TIM1_load_immediate(0x186A0)

3. Enable Timer 1 interrupt using MSS_TIM1_enable_irq().
4. Start the Timer using MSS_TIM1_start().
5. Whenever the counter reaches zero, it generates an interrupt.
6. Clear the interrupt using MSS_TIM1_clear_irq and stop the Timer using MSS_TIM1_stop().

Important: 
• MSS_TIM1_clear_irq () function must be called as a part of implementation of the

Timer1_IRQHandler () Timer 1 interrupt service routine (ISR) in order to prevent the same interrupt
event from retriggering a call to the ISR.

• The MSS_TIM1_load_background() function is used to specify the value that will be reloaded into the
Timer 1 down-counter the next time the counter reaches zero. This function is typically used when
Timer 1 is configured for Periodic mode operation to select or change the delay period between the
interrupts generated by Timer 1.

• To calculate the load_value for different clock frequencies use formula load_value = Hexadecimal
value of (Timer Frequency × Required delay).

18.3.2.2 Use Model 2: 64-Bit Mode
To generate a 30 second delay with a 100 MHz clock using a 64-bit Timer in One-shot mode:

1. Initialize the Timer for One-shot mode using MSS_TIM64_init(MSS_TIMER_ONE_SHOT_MODE).
2. Use MSS_TIM64_load_immediate(load_value) to load required time period.

For 30 seconds delay load value calculation:
• For 100 MHz, clock period is 0.01 µs
• Number of counts for 30 second delay is 30/0.01 µs equal to 3000 x 106 (B2D05E00 in hexadecimal).
• MSS_TIM1_load_immediate(0x B2D05E00)

3. Enable 64-bit Timer interrupt using MSS_TIM64_enable_irq().

System Timer

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 614

4. Start the Timer using MSS_TIM64_start().
5. Whenever counter reaches zero, it generates an interrupt.
6. Clear the interrupt using MSS_TIM64_clear_irq() and stop the Timer MSS_TIM64_stop().

18.4 Timer Register Map
The following table summarizes each of the Timer registers described in this document. The Timer base address
resides at 0x40004000 and extends to address 0x40004FFF in the Cortex-M3 processor memory map.

Table 18-4. Timer Register Map

Register Name Address
Offset

R/W Reset
Value

Description

TIM1_VAL (Table 18-5) 0x00 R 0 Current value of Timer1

TIM1_LOADVAL (Table 18-6) 0x04 R/W 0 Load value for Timer1

TIM1_BGLOADVAL (Table 18-7) 0x08 R/W 0 Background load value for Timer1

TIM1_CTRL (Table 18-8) 0x0C R/W 0 Control register for Timer1

TIM1_RIS (Table 18-9) 0x10 R/W 0 Timer 1 raw interrupt status

TIM1_MIS (Table 18-10) 0x14 R 0 Timer 1 masked interrupt status

TIM2_VAL (Table 18-5) 0x18 R 0 Current value of Timer2

TIM2_LOADVAL (Table 18-6) 0x1C R/W 0 Load value for Timer2

TIM2BGLOADVAL (Table 18-7) 0x20 R/W 0 Background load value for Timer2

TIM2_CTRL (Table 18-8) 0x24 R/W 0 Control register for Timer2

TIM2_RIS (Table 18-9) 0x28 R/W 0 Timer2 raw interrupt status

TIM2MIS (Table 18-10) 0x2C R 0 Timer2 masked interrupt status

Table 18-11 0x30 R 0 Upper 32-bit word for 64-bit mode

Table 18-12 0x34 R 0 Lower 32-bit word for 64-bit mode

TIM64_LOADVAL_U (Table 18-11) 0x38 R/W 0 Upper 32-bit word for 64-bit mode
immediate load

Table 18-14 0x3C R/W 0 Lower 32-bit word for 64-bit mode
immediate load

Table 18-15 0x40 R/W 0 Upper 32-bit word for background value for
64-bit mode

Table 18-16 0x44 R/W 0 Lower 32-bit word for background value for
64-bit mode

Table 18-17 0x48 R/W 0 Control register for 64-bit mode

Table 18-18 0x4C R/W 0 Raw interrupt status for 64-bit mode

Table 18-19 0x50 R 0 Masked interrupt status for 64-bit mode

Table 18-20 0x54 R/W 0 Timer dual 32-bit or 64-bit

System Timer

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 615

18.4.1 Timer x Value Register
Table 18-5. TIMx_VAL

Bit
Number

Name R/W Reset
Value

Description

31:0 TIMx_VAL R 0 This register holds the current value of the counter for Timer x.
Reading this register when the timer is set to 64-bit mode returns the
reset value. This is a read only register and writing in this register has
no effect.

18.4.2 Timer x Load Value Register
Table 18-6. TIMx_LOADVAL

Bit
Numbe
r

Name R/W Reset
Value

Description

31:0 TIMx_LOADVAL R/W 0 This register holds the value to load into the counter for Timer x.
When this register is written, the value written is loaded immediately
into the counter, regardless of the mode Timer x is in (Periodic or
One-shot). If Timer x is enabled, the counter starts decrementing
from this value. When operating in Periodic mode, the value in this
register is used to reload the counter when the counter decrements
to zero. This register is overwritten, if the TIMx_BGLOADVAL
register is written but the counter will not be updated with the new
value in this case. In Periodic mode, TIMx_LOADVAL always stores
the value, which is loaded into the counter. Writing or reading this
register when the Timer is set to 64-bit mode has no effect. Reading
this register in 64-bit mode returns reset value.

18.4.3 Timer x Background Load Value Register
Table 18-7. TIMx_BGLOADVAL

Bit
Numbe
r

Name R/W Reset
Value

Description

31:0 TIMx_BGLOADVA
L

R/W 0 When this register is written, the value written is loaded into the
TIMx_LOADVAL register without updating the counter. This allows
a new value to be loaded into the respective counter without
interrupting the current count cycle. The counter is updated with the
new value in TIMx_LOADVAL, when the counter decrements to 0.
Writing this register when the Timer is set to 64-bit mode has no
effect. Reading this register in 64-bit mode returns the reset value.

18.4.4 Timer x Control Register
Table 18-8. TIMx_CTRL

Bit
Numbe
r

Name R/W Reset
Value

Description

31:3 Reserved R/W 0 Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should
be preserved across a read-modify-write operation.

System Timer

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 616

...........continued
Bit
Numbe
r

Name R/W Reset
Value

Description

2 TIMxINTEN R/W 0 Timer x interrupt enable. When the counter reaches zero, an interrupt
is signaled to the Cortex-M3 processor NVIC, IRQ 14 for Timer 1,
and IRQ 15 for Timer 2.
0: Timer x interrupt disabled

1: Timer x interrupt enabled

Writing this register when the Timer is set to 64-bit mode has no
effect. Reading this register when the Timer is set to 64-bit mode
returns the reset value.

1 TIMxMODE R/W 0 Timer x mode.
0: Timer x is in Periodic mode. If TIMxENABLE = 1 when the
counter reaches zero, the counter is reloaded from the value in the
TIMx_LOADVAL register and begins counting down immediately.

1: Timer x is in One-shot mode. If TIMxENABLE = 1, when the
counter reaches zero, the counter stops counting. To start the
counter again, you must load TIMx_LOADVAL with a non-zero value
or set the Timer to Periodic mode by clearing TIMxMODE to 0.

Writing this register when the Timer is set to 64-bit mode has no
effect. Reading this register when the Timer is set to 64-bit mode
returns the reset value.

0 TIMxENABLE R/W 0 Timer x enable.
0: Timer x disabled

1: Timer x enabled

Writing this register when the Timer is set to 64-bit mode has no
effect. Reading this register when the Timer is set to 64-bit mode
returns the reset value.

18.4.5 Timer x Raw Interrupt Status Register
Table 18-9. TIMx_RIS

Bit
Numbe
r

Name R/W Reset
Value

Description

31:1 Reserved R/W 0 Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should
be preserved across a read-modify-write operation.

0 TIMx_RIS R/W 0 Timer x raw interrupt status (RIS)
0: Timer x has not reached zero

1: Timer x has reached zero at least once since this bit was last
cleared (by a reset or by writing 1 to this bit).

Writing a 1 to this bit clears the bit and the interrupt, writing a zero
has no effect.

Writing this register when the Timer is set to 64-bit mode has no
effect. Reading this register when the Timer is set to 64-bit mode
returns the reset value.

System Timer

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 617

18.4.6 Timer x Masked Interrupt Status Register
Table 18-10. TIMx_MIS

Bit
Numbe
r

Name R/W Reset
Value

Description

31:1 Reserved R 0 Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0 TIMx_MIS R 0 Timer x masked interrupt status (MIS)
This read only bit is a logical AND of the TIMxRIS and TIMxINTEN bits.
The TIMERxINT output from the Timer has the same value as this bit.
Writing to this bit has no effect. Reading this register when the Timer is
set to 64-bit mode returns the reset value.

18.4.7 Timer 64 Value Upper Register
Table 18-11. TIM64_VAL_U

Bit
Numbe
r

Name R/W Reset
Value

Description

31:0 TIM64_VAL_U R 0 This register holds the current value of the upper 32 bits of the 64-bit
count value for the Timer.
TIM64_VAL_L must be read before TIM64_VAL_U.

This register is read only; writes have no effect. Reading this register
when the Timer is set to 32-bit mode returns the reset value.

18.4.8 Timer 64 Value Lower Register
Table 18-12. TIM64_VAL_L

Bit
Numbe
r

Name R/W Reset
Value

Description

31:0 TIM64_VAL_L R 0 This register holds the current value of the lower 32 bits of the 64-bit
count value for the Timer. This register is read only; writes have no
effect. When reading from this register, the upper 32 bits of the 64-bit
counter is stored into TIM64_VAL_U. To properly read the 64-bit counter
value, you must read from this register first, then the TIM64_VAL_U.
Reading this register when the Timer is set to 32-bit mode returns the
reset value.

System Timer

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 618

18.4.9 Timer 64 Load Value Upper Register
Table 18-13. TIM64_LOADVAL_U

Bit
Numbe
r

Name R/W Reset
Value

Description

31:0 TIM64_LOADVAL_
U

R/W 0 This register holds the upper 32-bit value to load into the Timer
when in 64-bit mode. When this register is written, the value written
is loaded immediately into a temporary register. The value in the
temporary register is only written to the Timer when the lower 32-bit
word TIM64_LOADVAL_L is written. Writing this register when the
Timer is set to 32-bit mode has no effect. Reading this register
when the Timer is set to 32-bit mode returns the reset value.

18.4.10 Timer 64 Load Value Lower Register
Table 18-14. TIM64_LOADVAL_L

Bit
Numbe
r

Name R/W Reset
Value

Description

31:0 TIM64_LOADVAL_L R/W 0 When this register is written, the value written is loaded
immediately into the lower 32 bits of the 64-bit counter along
with the value written in register TIM64_LOADVAL_U. This
applies to both Periodic and One-shot mode. The value stored
in this register is also used to reload the counter, when the
count reaches zero and the counter is operating in the Periodic
mode. This register is overwritten, if the TIM64BGLOADVAL
register is written, but the counter will not be updated with
the new value. The TIM64BGLOADVAL register is an internal
register to the Timer, used to concatenate the two 32-bit values
from TIM64_BGLOAD_VAL_U and TIM64_BGLOAD_VAL_L. If
Periodic mode is selected, the values in the TIM64_LOADVAL_L
and TIM64_LOADVAL_U are loaded into the counter when the
counter decrements to zero. Writing this register when the Timer
is set to 32-bit mode has no effect. Reading this register when
the Timer is set to 32-bit mode returns the reset value.

System Timer

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 619

18.4.11 Timer 64 Background Load Value Upper Register
Table 18-15. TIM64_BGLOADVAL_U

Bit
Numbe
r

Name R/W Rese
t
Valu
e

Description

31:0 TIM64_BGLOADVAL_
U

R/W 0 This register holds the upper 32-bit background value to load into
the Timer when in 64-bit mode. When this register is written,
the value written is loaded into a temporary register without
updating the background load value TIM64_BGLOADVAL_U.
TIM64_BGLOADVAL_U is only updated when the lower 32-bit
word is written.
Reading this register returns the upper 32 bits of the current
background register, which is to be loaded into the counter
when the counter reaches zero. This value reflects the last write
to TIM64_BGLOADVAL_U when the lower 32 bits are written.
Writing this register when the Timer is set to 32-bit mode has no
effect. Reading this register when the Timer is set to 32-bit mode
returns the reset value.

18.4.12 Timer 64 Background Load Value Lower Register
Table 18-16. TIM64_BGLOADVAL_L

Bit
Numbe
r

Name R/W Reset
Value

Description

31:0 TIM64_BGLOADVAL_
L

R/W 0 Background load value for the lower 32 bits of 64-bit Timer. When
this register is written, both the upper and lower words are written
into an internal 64-bit TIM64LOADVAL register without updating
the counter. The TIM64LOADVAL register is an internal register
to the Timer used in 64-bit mode for concatenating the two 32-bit
registers, TIM64_LOADVAL_U and TIM64_LOADVAL_L. The new
64-bit load value is loaded into the counter when the counter
reaches zero. Writing this register when the Timer is set to 32-bit
mode has no effect. Reading this register when the Timer is set to
32-bit mode returns the reset value.

18.4.13 Timer 64 Control Register
Table 18-17. TIM64_CTRL

Bit
Numbe
r

Name R/W Reset
Value

Description

31:3 Reserved R/W 0 Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

2 TIM64INTEN R/W 0 Timer 64 interrupt enable. When the counter reaches zero, an interrupt
is signaled to the Cortex-M3 processor NVIC.
0: Timer 64 interrupt disabled

1: Timer 64 interrupt enabled

System Timer

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 620

...........continued
Bit
Numbe
r

Name R/W Reset
Value

Description

1 TIM64MODE R/W 0 Timer 64 mode.
0: Timer 64 in Periodic mode

If TIM64ENABLE = 1 when the counter reaches zero, the
counter is reloaded from the value in the TIM64_LOADVAL_U and
TIM64_LOADVAL_L registers and starts the counting down.

1: Timer 64 in One-shot mode

If TIM64ENABLE = 1 when the counter reaches zero, the counter
stops counting. To restart the counter, load TIM64_LOADVAL_U and
TIM64_LOADVAL_L with a non-zero value or set the Timer to Periodic
mode by clearing TIM64MODE to 0.

0 TIM64ENABLE R/W 0 Timer 64 enable.
0: Timer 64 disabled

1: Timer 64 enabled

Writing this register when the Timer is set to 32-bit mode has no effect.
Reading this register when the Timer is set to 32-bit mode returns the
reset value.

18.4.14 Timer 64 Raw Interrupt Status Register
Table 18-18. TIM64_RIS

Bit
Numbe
r

Name R/W Reset
Value

Description

31:1 Reserved R/W 0 Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0 TIM64_RIS R/W 0 Raw interrupt status (RIS) for 64-bit Timer mode.
0: Timer 64 has not reached zero

1: Timer 64 has reached zero at least once since this bit was last
cleared (by a reset or by writing 1 to this bit).

Writing 1 to this bit clears the bit and the interrupt; writing a zero has no
effect.

18.4.15 Timer 64 Masked Interrupt Status Register
Table 18-19. TIM64_MIS

Bit
Numbe
r

Name R/W Reset
Value

Description

31:1 Reserved R 0 Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

System Timer

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 621

...........continued
Bit
Numbe
r

Name R/W Reset
Value

Description

0 TIM64_MIS R 0 Timer 64 masked interrupt status.
This read only bit is a logical AND of the TIM64RIS and TIM64INTEN
bits. The TIMER64INT output from the Timer has the same value as this
bit. Writing to this bit has no effect.

18.4.16 Timer 64 Mode Register
Table 18-20. TIM64_MODE

Bit
Numbe
r

Name R/W Reset
Value

Description

31:1 Reserved R/W 0 Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.

0 TIM64_MOD
E

R/W 0 Timer 64 mode.
0: Timer 64 disabled; two separate 32-bit Timers.

1: Timer 64 enabled; one 64-bit Timer.

Changing the state of this bit has the effect of reinitializing the Timer
register map to its default power-up state.

Watchdog Timer

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 622

19. Watchdog Timer
The watchdog timer is an Advanced Peripheral Bus (APB) slave that guards against the system crashes by requiring
regular service by the Cortex-M3 processor or by a bus master in the Field Programmable Gate Array (FPGA) fabric.

19.1 Features
The watchdog timer has following features:

• A 32-bit timer counts down from a preset value to zero, then performs one of the following user-configurable
operations: If the counter is not refreshed, it will time out and either cause a system reset or generate an
interrupt to the processor.

• The watchdog timer counter is halted when the Cortex-M3 processor enters the debug state.
• The watchdog timer can be configured to generate a wake up interrupt when the Cortex-M3 is in sleep mode.

As shown in the following figure, the watchdog timer is connected to the AHB bus matrix through the APB_0
interface.

Figure 19-1. Microcontroller Subsystem Showing Watchdog Timer

AHB Bus Matrix

eSRAM_0System
Controller

Cache
Controller

S D IC

Arm® Cortex®-M3
Processor

S D I

MSS DDR
Bridge

PDMA

MS6

MM3

AHB To AHB Bridge with Address Decoder
USB OTG

HPDMA

MDDR

APB_0SYSREGTriple Speed
Ethernet MAC

FIC_0

MM4 MS4

MS2 MS3 MS0

MS5

MS1

MM5 MM6

MM7

MM8

MM2 MM1 MM0 MM9

IDC
D/S eNVM_0 eNVM_1 eSRAM_1

FIC_2 (Peripheral
Initialization) APB_1

MMUART_0

SPI_0

I2C_0

PDMA
Configuration

WATCHDOG

FIIC

TIMERx2

MMUART_1

SPI_1

I2C_1

GPIO

CAN

RTC

COMM_BLK

FIC_1

M
SS

_F
IC

M
S6

_U
SB

MS5_MAC MS5_SR MS5_APB0 MS5_FIC2 MS5_APB1

Watchdog Timer

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 623

19.2 Functional Description
This following sub-sections provide a detailed description of the Watchdog timer.

19.2.1 Architecture Overview
The watchdog timer consists of following components (as shown in the following figure):

• APB Interface
• 32-Bit Counter
• Timeout Detection

Figure 19-2. Block Diagram for the Watchdog Timer

PRDATA[31:0]

WDOGTIMEOUT

WDOGTIMEOUTINT

WDOGWAKEUPINT

APB Interface

Watchdog

32-Bit Counter

Timeout Detection

PCLK
PRESETn
PSEL
PWRITE
PENABLE
PADDR[7:0]
PWDATA[31:0]
PORESETN
RCOSCCLK
RCOSCRESETN
WDOGMODE
WDOGMVRP[31:0]
WDOGLOAD[25:0]
WDOGENABLE
SLEEPING
HALTED
PROGRAMMING

19.2.1.1 APB Interface
The watchdog timer has an APB interface through which the Cortex-M3 processor can access various control and
status registers to control and monitor its operation. The APB interface is clocked by the PCLK0 clock signal. Any
signals/values that cross between the RCOSCCLK and the PCLK clock domains are synchronized with the watchdog
timer.

19.2.1.2 32-Bit Counter
The operation of the watchdog timer is based on a 32-bit down counter that must be refreshed at regular intervals by
the Cortex-M3 processor. If not refreshed, the counter will time out. This either causes a system reset or generates
an interrupt to the processor, depending on the value of the WDOGMODE bit as defined in the WDOG_CR Register.

The WDOG_CR register is one of the system registers that helps to configure the watchdog timer. In normal
operation, the generation of a reset or timeout interrupt by the watchdog timer does not occur because the watchdog
timer counter is refreshed on a regular basis.

When the device is powered up, the watchdog timer is enabled with the timeout period set to approximately 10.47
seconds (if Vdd = 1.2 V). The WDOGENABLE bit in the WDOG_CR register controls enabling/disabling of the
watchdog timer.

The memory map address for the watchdog timer is 0x40005000-0x40005FFF. The 32-bit counter in the watchdog
timer is clocked with the clock signal from the RC Oscillator (RCOSCCLK) which has a frequency of 50 MHz (if Vdd =
1.2 V) with a 5% tolerance.

Watchdog Timer

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 624

19.2.1.3 Timeout Detection
A control bit in the WDOGCONTROL register is used to determine whether the watchdog timer generates a reset or
an interrupt if a counter timeout occurs. The default setting is reset generation on timeout. When interrupt generation
is selected, the WDOGTIMEOUTINT output is asserted on timeout and remains asserted until the interrupt is cleared.
When reset generation is selected, the watchdog timer does not directly generate the system reset signal. Instead,
when the counter reaches zero, the watchdog timer generates a pulse on the WDOGTIMEOUT output and this is
routed to the reset controller to cause it to assert the necessary reset signals. The pulse on the WDOGTIMEOUT
output is generated in the RCOSCCLK domain and has duration of one clock cycle.

19.2.2 Port List
The following table lists the ports of the Watchdog Timer module.

Table 19-1. Watchdog Timer Interface Signals

Name Type Width Description

WDOGTIMEOUTINT Output 1 This interrupt is asserted, if the counter reaches zero and interrupt rather
than reset generation has been selected on counter timeout.

19.2.3 Details of Operation
This section provides the details of operation of Watchdog timer.

19.2.3.1 Loading and Refreshing the Watchdog Timer
The WDOGLOAD register is used to store the value that is loaded into the counter each time the watchdog timer is
refreshed. The six least significant bits of the WDOGLOAD register are always set to 0x3F, irrespective of what value
is written to it. This effectively means that there is a lower limit on the value that can be written to the counter. After
refreshing, at least 64 RCOSCCLK clock ticks (0.00128ms for Vdd=1.2 V) are required before the counter times out.
The purpose of this feature is to prevent a watchdog timer reset/interrupt from occurring immediately after, or during
refresh in the case where a very low value has been written to the WDOGLOAD register.

The watchdog timer counter is refreshed by writing the value 0xAC15DE42 to the WDOGREFRESH register. This
causes the counter to be loaded with the value in the WDOGLOAD register as defined in the system register block
shown in Table 19-12.

An appropriate value must be written to the WDOGLOAD System register before writing to the WDOGREFRESH
register. Forbidden and permitted windows in time regulate when refreshing can occur. The size of these windows is
controlled by the value in the WDOGMVRP System register.

When the counter value is greater than the value in the WDOGMVRP, refreshing the watchdog timer is forbidden. If a
refresh is executed in these circumstances, the refresh is successful, but a reset or interrupt (depending on Operation
mode selected) is also generated. This is shown in the following figure.

When the counter value falls below the level programmed in the WDOGMVRP, refreshing of the watchdog timer
is permitted. It is possible to avoid having forbidden and permitted windows by ensuring that the value in the
WDOGMVRP is greater than the value in the WDOGLOAD.

The following figure shows how the value of the watchdog timer counter might vary with time.

Watchdog Timer

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 625

Figure 19-3. Watchdog Timer Counter

Refresh of counter not

Calendar Counter Description Calendar Counter Description Calendar Counter Description Calendar Counter Description Calendar Counter Description

allowed while counter
value is in this region

Refresh of counter
permitted while counter
value is in this region

WDOGLOAD

WDOGMVRP

counter
value

timeReset interrupt
generated due to
counter timeout

Reset interrupt
generated due to
counter refresh in
forbidden window

Counter refresh

When the TIMEOUT occurs, the watchdog timer counter is reloaded with the WDOGLOAD value. Hence the
WDOGLOAD from the system registers block should be programmed such that it should not be lesser than the
default value of 0x1800000. This is because if the WDOGLOAD is programmed to a smaller value, each time
the WDOGTIMEOUT occurs, the watchdog timer counter is assigned to a lesser value that results in the counter
reaching the timeout value within a short period of time and generating the TIMEOUT repeatedly. To avoid such
instances, the firmware programs the WDOGLOAD value in the system register to be higher or equal to the default
value, which is 0x1800000.

19.2.3.2 Watchdog Timer Behavior During Microcontroller Modes, Device Programming, and Flash*Freeze
This section describes the behavior of the watchdog timer in the Cortex-M3 processor modes and when the device is
being programmed.

19.2.3.2.1 Cortex-M3 Processor in Debug State
The halted output from the Cortex-M3 is asserted when the processor is in debug mode and this signal is fed to the
Watchdog. When the halted signal is asserted, the watchdog timer counter is halted. This ensures that the watchdog
timer timeout-related resets or interrupts do not occur when a system debug session is in progress.

19.2.3.2.2 Cortex-M3 Processor in Sleep Mode
The Cortex-M3 processor can be put into a low-power state by entering sleep mode. The processor exits sleep
mode when an interrupt occurs. The watchdog timer can be configured to generate an interrupt if its counter value
moves from the permitted to the forbidden window (at the WDOGMVRP level) when the Cortex-M3 processor is in
sleep mode. The processor wakes up and refreshes the watchdog timer and then goes back into sleep mode. The
WDOGWAKEUPINT output from the watchdog timer is used for this interrupt. The WAKEUPINTEN control bit in the
Table 19-9 is used to enable/disable generation of the WDOGWAKEUPINT interrupt, with the default setting being
disabled.

19.2.3.2.3 Programming FPGA Fabric/eNVM
The watchdog timer has an input port called PROGRAMMING, which is connected to the watchdog_freeze signal
in the microcontroller subsystem (MSS). The watchdog_freeze is asserted by the system controller under certain
conditions, such as when programming the eNVM. When the PROGRAMMING port is asserted, the watchdog timer

Watchdog Timer

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 626

counting is paused. When the PROGRAMMING is de-asserted, the watchdog timer behaves as if it has just come out
of reset.

19.2.3.2.4 Flash*Freeze
During Flash*Freeze, the watchdog timer continues to operate unless the Cortex-M3 processor enters Sleep mode.
In Sleep mode, the watchdog timer stops counting and holds the current value.

19.2.3.3 Watchdog Timer Interrupts
There are two interrupt outputs in the watchdog timer: WDOGTIMEOUTINT and WDOGWAKUPINT.

19.2.3.3.1 WDOGTIMEOUTINT
This interrupt is asserted when a counter timeout occurs and an interrupt instead of reset generation is selected. This
interrupt is connected to the non-maskable interrupt (NMI) input of the Cortex-M3 processor and can also be exposed
to the FPGA fabric as the NMI interrupt.

19.2.3.3.2 WDOGWAKEUPINT
This is asserted (if enabled) on crossing the WDOGMVRP level when the SLEEPING input is asserted. This interrupt
is mapped to the interrupt request 0 (INTISR [0]) in the Cortex-M3 processor interrupt controller.

19.3 How to Use the Watchdog Timer
This section describes how to use the watchdog timer in an application.

19.3.1 Design Flow
The following steps are used to enable the WatchDog Timer in the application:

1. Enable the watchdog timer by using the MSS configurator in the application, as shown in the following figure.

Watchdog Timer

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 627

Figure 19-4. Enabling Watchdog Timer in the Libero SOC Design MSS Configurator

2. Clicking Watchdog Timer displays the watchdog timer configuration window, as shown in the following figure.

Watchdog Timer

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 628

Figure 19-5. Watchdog Timer Configuration Window

– Timeout behavior: The watchdog timer default setting is reset generation on timeout. When interrupt
generation is selected, the WDOGTIMEOUTINT output is asserted on timeout and remains asserted until
the interrupt is cleared

– Interrupt Port: This feature has been de-featured. The user can expose the interrupt by exposing the NMI
via the interrupt Manager block.

– Refresh Count: Use the Refresh Count option to set the WDOGLOAD register value (Flash Bits) at POR
or when the device is reset (DEVRST_N is asserted/de-asserted). Refresh Count value should be higher
or equal to the default value, which is 0x1800000.

– Counter Threshold: Use the Counter Threshold option to set the value for WDOGMVRP System register.
It is possible to avoid having forbidden and permitted windows by ensuring that the value in the
WDOGMVRP is greater than the value in the WDOGLOAD. See 19.2.3.1. Loading and Refreshing
the Watchdog Timer for a detailed description of forbidden and permitted windows.

3. The watchdog timer signals in top level instance are shown in the following figure.
Figure 19-6. Watchdog Timer Signals

4. Generate the component by clicking Generate Component or by selecting SmartDesign > Generate
Component. For more information on generation of the component, see the latest SmartDesign user guide on
Libero SoC Documentation. The firmware driver folder and SoftConsole workspace is included in the project.
Click the highlighted Configure firmware button as shown in the following figure to find the watchdog timer
drivers.

Watchdog Timer

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 629

Figure 19-7. RTC Driver User Guide

5. Click Generate Bitstream under Program Design to complete *.fdb file generation.
6. Double-click Export Firmware under Handoff Design for Firmware Development in the Libero SoC

design flow window to generate the SoftConsole Firmware Project. The SoftConsole folder contains the
mss_watchdog firmware driver. The firmware driver, mss_watchdog (mss_watchdog.h), which provides a set
of functions for controlling the watchdog timer can also be downloaded from the Microchip firmware catalog.
The following table lists the APIs for Watchdog Timer.
For more information on the APIs, see the SmartFusion2_MSS_Watchdog_Driver_UG.

Table 19-2. Watchdog Timer APIs

Category API Description and Usage

Initialization MSS_WD_init() Initializes Watchdog Timer

Reading the watchdog
timer current value and
status

MSS_WD_current_value() Returns the current value of the watchdog's down
counter

MSS_WD_status() Returns the status of the watchdog

Refreshing the watchdog
timer value

MSS_WD_reload() Causes the watchdog to reload its down counter
timer with the load value

MSS_WD_timeout_occured() Reports the occurrence of a timeout event

MSS_WD_clear_timeout_event() Clears the hardware's report of a time out event

Time-out and wake-up
interrupts control

MSS_WD_enable_timeout_irq() Enables the watchdog’s time out interrupt

MSS_WD_disable_timeout_irq() Disables the generation of the NMI interrupt

MSS_WD_enable_wakeup_irq() Enables the SmartFusion 2 wakeup interrupt

MSS_WD_clear_wakeup_irq() Clears the wakeup interrupt

MSS_WD_disable_wakeup_irq() Disables the SmartFusion 2 wakeup interrupt

MSS_WD_clear_timeout_irq() Clears the watchdog’s time out interrupt

7. For more information on Watchdog usage, the sample projects are available and can be generated, as shown
in the following figure.

Watchdog Timer

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 630

Figure 19-8. Watchdog Timer Examples

19.3.2 Watchdog Timer Use Models

19.3.2.1 Use Model 1
The following steps are used to generate a reset by the watchdog timer on timeout.

1. Enable the watchdog timer in MSS configurator of your Libero project.
2. Select timeout behavior as reset in watchdog timer configuration window.
3. Initialize the watchdog timer in the SoftConsole application using MSS_WD_init() function.
4. Use MSS_WD_reload() function to reload its down counter timer with the load value configured through the

call to WD_init().This function must be called regularly to avoid a system reset.
5. Use MSS_WD_timeout_occured() to report the occurrence of a timeout event. It can be used to detect if the

reset is resetting as part of a watchdog timeout.
6. Call MSS_WD_clear_timeout_event() function after a call to MSS_WD_timeout_occured() function to clear the

hardware's report of a time out event.

19.3.2.2 Use Model 2
The following steps are used to generate a watchdog timer interrupt on timeout.

1. Enable the watchdog timer in MSS configurator of your Libero project.
2. Select timeout behavior as interrupt in the watchdog timer configuration window.
3. Initialize the watchdog timer in SoftConsole application using MSS_WD_init() function.
4. Enable the watchdog timer timeout interrupt using MSS_WD_enable_timeout_irq() function.
5. Use MSS_WD_reload() function to reload its down counter timer with the load value configured through the

call to WD_init().
6. Use MSS_WD_clear_timeout_irq() function in interrupt handler to clear the watchdog timeout interrupt.

Watchdog Timer

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 631

Important: 
• The watchdog timer cannot be disabled through software. Only the interrupts can be disabled.
• The MSS Watchdog timer does not support full behavioral simulation models. See SmartFusion2

MSS BFM Simulation User Guide for more information.

19.4 Watchdog Timer Register Map
The following table summarizes the watchdog timer register interface. Detailed description of the registers is given in
19.4.1. Watchdog Timer Configuration Register Bit Definitions. The base address for the register details resides at
0x40005000 and extends to the address 0x40005FFF in the Cortex-M3 processor memory map.

Table 19-3. Watchdog Timer Register Interface Summary

Register Name Address
Offset

R/W Reset Source Description

Table 19-4 0x00 R WDOGLOAD Current value of the counter
This register is reset with the value in the
WDOGLOAD system register.

Table 19-5 0x04 R WDOGLOAD Load value for the counter
This register is reset with the value in the
WDOGLOAD system register.

Table 19-6 0x08 R WDOGMVRP Maximum value for which refreshing is
permitted.
This register is reset with the value in the
WDOGMVRP system register.

Table 19-7 0x0C W N/A Writing the value 0xAC15DE42 to this register
causes the counter to be updated with the value
in the WDOGLOAD register.

Table 19-8 0x10 R WDOGENABLE Watchdog timer enables register
This register is reset with the value in the
WDOGENABLE bit in the WDOG_CR system
register.

Table 19-9 0x14 R/W [31:3] and [1:0]=0X0 Control register
Bit 2 of this register is reset with the value of
the WDOGMODE bit in the WDOG_CR system
register.

Bit 2=WDOGMODE

Table 19-10 0x18 R 0X0 Status register

Table 19-11 0x1C R/W 0X0 Raw interrupt status

19.4.1 Watchdog Timer Configuration Register Bit Definitions
The watchdog timer registers are described in detail in the following tables. 

Table 19-4. WDOGVALUE

Bit
Number

Name Reset Value Description

[31:0] WDOGVALUE WDOGLOAD This register contains the current value of the counter in the
watchdog timer. This register is reset with the value in the
WDOGLOAD system register.

Watchdog Timer

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 632

 

Table 19-5. WDOGLOAD

Bit
Number

Name Reset Value Description

[31:0] WDOGLOAD[31:6
]

WDOGLOAD This register contains the upper 26 bits load value for the
counter in the watchdog timer. This will be updated by the
WDOGLOAD[25:0] bits of the system registers. The least
significant bits of the register always have the value of 0x3F.

Table 19-6. WDOGMVRP

Bit
Number

Name Reset Value Description

[31:0] WDOGMVRP WDOGMVRP This register contains the maximum value for which refreshing
is permitted.
If the watchdog timer is refreshed (by writing to the
WDOGREFRESH register) while the counter value is greater
than the value in the WDOGMVRP, then a reset/interrupt is
generated. This read only register is loaded with the user flash
bit value written in the WDOGMVRP[31:0] system register.

Table 19-7. WDOGREFRESH

Bit
Number

Name Reset Value Description

[31:0] WDOGREFRESH N/A This is a write only register which reads as zero. Writing the
value 0xAC15DE42 to this register causes the counter to be
refreshed with the value in the Table 19-5 register.
If this register is written to, while the current value of the counter
is greater than the value in the Table 19-6 register, the counter
is refreshed and a reset or timeout interrupt is generated
(depending on the MODE bit of the WDOGCONTROL). While
the counter value is greater than the Table 19-6, there is
effectively a time window in which it is forbidden to refresh the
watchdog timer.

When the counter is in between the Table 19-6 level and 0, the
watchdog timer is in a time window where it is permitted for it to
be refreshed.

It is possible to avoid having the forbidden and permitted time
windows for refreshing the watchdog timer by setting the value
of the Table 19-6 to a value greater than that stored in the Table
19-5.

Table 19-8. WDOGENABLE

Bit
Number

Name Reset Value Description

[31:1] Reserved 0x0 Reserved

0 ENABLE WDOGENABL
E

Enable bit for watchdog timer.
This bit holds the value of the USER FLASH bit written in the
WDOGENABLE bit of the WDOG_CR system register.

Watchdog Timer

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 633

Table 19-9. WDOGCONTROL

Bit Number Name Reset Value Description

[31:3] Reserved 0 To provide compatibility to the future products, the value of a
reserved bit should be preserved across a read-modify-write
operation.

2 MODE WDOGMODE Operation mode for the watchdog timer.
0: reset is generated if counter reaches zero.

1: interrupt is generated if counter reaches zero.

This read only register holds the value of user flash bit written in
the WDOGMODE bit of the WDOG_CR system register.

1 WAKEUPINTEN 0 0: The WDOGWAKEUPINT interrupt generation is disabled.
1: The WDOGWAKEUPINT interrupt generation is enabled.

0 TIMEOUTINTEN 0 0: The WDOGTIMEOUTINT interrupt generation is disabled.
1: The WDOGTIMEOUTINT interrupt generation is enabled.

Table 19-10. WDOGSTATUS

Bit
Number

Name Reset Value Description

[31:1] Reserved 0 To provide the compatibility to the future products, the value of
a reserved bit should be preserved across a read-modify-write
operation

0 REFRESHSTATU
S

0 Refresh status
0: The counter is in forbidden window, refresh should not be
initiated.

1: The counter in is permitted window, refresh is allowed.

 

 

Table 19-11. WDOGRIS

Bit
Number

Name Reset Value Description

[31:2] Reserved 0 To provide compatibility with future products, the value of a
reserved bit should be preserved across a read-modify-write
operation.

1 WAKEUPRS 0 Raw status of wakeup interrupt.
Writing '1' to this bit clears the bit. Writing '0' has no effect.

0 TIMEOUTRS 0 Raw status of counter timeout interrupts.
Writing '1' to this bit clears the bit. Writing '0' has no effect.

19.5 SYSREG Control Registers
In addition to the specific watchdog timer registers mentioned in Table 19-3, the registers mentioned in the following
table also control the behavior of the watchdog timer. These registers are located in the System Register Block and
are listed here for clarity. Refer to the SYSREG section of 19. Watchdog Timer for a detailed description of each
register and bit.

Watchdog Timer

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 634

Table 19-12. Watchdog Timer SYSREG

Register
Name

Register
Type

Flash
Write
Protect

Reset
Source

Description

WDOG_CR RW-P Register Poreset_n Bit 0 of this register is WDOGENABLE.This goes as the
Enable bit for the watchdog timer module. The status of this
bit can be monitored in the WDOGENABLE register.
Bit 1of this register is WDOGMODE. This bit is Reset/Interrupt
mode selection bit from the system register. This value can be
read from the WDOGCONTROL register within the watchdog
timer module.

WDOGLOAD RO-P Poreset_n Bits [25:0] of this register contain the upper 26-bits of the
WDOGLOAD value register.

WDOGMVRP RO-P Poreset_n This register contains the WDOGMVRP value.

Note: Register Types RW-P, RO-P are explained in 19. Watchdog Timer.

Reset Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 635

20. Reset Controller
The Reset Controller manages the asynchronous reset requests coming from various sources and generates a
synchronous reset for the entire MSS or individual resets to the MSS sub-blocks and user logic in the FPGA fabric.

The Reset Controller drives resets to various modules of the SmartFusion 2 devices, such as the
Cortex-M3 processor, MDDR subsystem, Watchdog Timer, FPGA fabric, MSS GPIO, clock controller, SYSREG, and
peripherals. The following figure shows the Reset Controller with various reset inputs/outputs from/to various MSS
blocks.

Figure 20-1. Reset Signals Distribution in SmartFusion 2 Devices

Reset Controller

Watchdog
WD_TIMEOUT

Peripherals
XXX_RESET_N

SC_MSS_RESET_N

MDDR

MDDR_DDR_CORE_RESET_N

MDDR_APB_S_RESET_NFPGA
fabric

MSS_RESET_N_F2M

GPIO_RESET_N

M3_RESET_N

MSS_RESET_N_M2F

WDOG_RESET_N

PORESET_RCOSC_N

USBNRSTA

SysReg

SYSRESET_N

PORESET_N

WDOG_ENABLE

MSS_GPIO_XX_XX_SYSRESET_SEL

SOFT_RESET_CR bits

PO_RESET_N

MSS GPIO

MSS_GPIO_XX_XX_SYS_RESET_N

MSS_GPIO_RESET_N

Cortex-M3

SYS_RESET_REQ

LOCKUP

M3_PORESET_M3_CLK_N

M3_SYS_RESET_N

M3_TRST_N

M3_PORESET_TCK_N

T_RESET_N

CC_RESET_NFACC

FIC_2_APB_M_PRESET_N

System
Controller

DEVRST_N

MDDR_APB_RESET_N

MDDR_AXI_RESET_N

Microchip recommends to use the CoreResetP IP for initializing the user design in SmartFusion 2 devices. The
CoreResetP handles the sequencing of reset signals in SmartFusion 2 devices. It is available in the Libero System-
on-Chip (SoC) IP catalog. The System Builder is a powerful design tool within the Libero SoC Design Environment
that helps you capture your system-level requirements and produce a design implementing those requirements. A
very important function of the System Builder is the automatic creation of the “initialization” sub-system (all required
cores are instantiated, and connections are made automatically).

20.1 Functional Description

20.1.1 Power-On Reset Generation Sequence
The following figure shows the conceptual block diagram of Power-on Reset generation. The POR generator block in
System Controller generates a Power-on Reset signal, PO_RESET_N.

Reset Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 636

Figure 20-2. Conceptual Block Diagram of Power-On Reset Generation

MSS

SC
Reset Controller

PO_RESET_N

System Controller

1 MHz
RC Oscillator

SmartFusion® 2 SoC FPGA

Reset Controller

VDD and VPP
Monitor

Programmable
Delay Counter

POR
Generator

PO_RESET_N

FPGA Fabric

DEVRST_N

POWER_ON_RESET_N

MSS_RESET_N_M2F

Figure 20-5 shows the power-up to functional time sequence diagram. On power-up, the VDD and VPP monitor
blocks in the POR generator block assert a Power-on Reset signal, PO_RESET_N. If the VDD and VPP supplies
reach their threshold point (VDD ~ 0.9V and VPP ~ 0.9V), the 1 MHz RC Oscillator is turned-on, which provides the
clock to the programmable delay counter. The delay can be configured to 50 µs, 1 ms, 10 ms, or 100 ms in the New
Project window (Device Settings) while creating the Libero SoC project, as shown in the following figure. You can also
access and change this setting after the project has been created from the Project Settings window (Project > Project
Settings…). The delay setting (Power on Reset Delay) gets implemented in the design while generating bitstream.

Reset Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 637

Figure 20-3. Power on Reset Delay Configuration

The delay counter is used to generate the power supply rise time. All power supplies must be stable within the
configured Power on Reset Delay. When the counter reaches its maximum value, the PO_RESET_N signal is
de-asserted. Upon de-assertion of the PO_RESET_N signal, the 1 MHz RC oscillator is gated off and the 50 MHz RC
oscillator is enabled, and the System Controller starts operating at 50 MHz clock. Then the System Controller starts
the initialization sequence of I/O banks, MSS, and FPGA Fabric Subsystem.

The POWER_ON_RESET_N signal is generated from the PO_RESET_N signal and can be used in the user
design as a reset for the FPGA fabric logic. It is an active-low output signal. It is made available by instantiating
the SYSRESET macro from the Libero SoC IP catalog in SmartDesign or by instantiating the SYSRESET macro
directly in the HDL file. The following figure shows a block symbol of the SYSRESET macro that exposes the
POWER_ON_RESET_N signal.

Figure 20-4. SYSRESET Macro

POWER_ON_RESET_N asserts on the following events:

• Power-up event
• Assertion of DEVRST_N
• Completion of programming
• Completion of zeroization

Reset Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 638

A dedicated input-only reset pad (DEVRST_N) is present on all the SmartFusion 2 devices, which causes assertion
to the PO_RESET_N signal. If an external reset circuit is connected to the DEVRST_N pin, it increases the power-up
to functional time due to the delays that the external reset device does add.

DEVRST_N is an asynchronous RESET pin and must be asserted only when the device is unresponsive due
to some unforeseen circumstances. It is not recommended to assert the DEVRST_N pin during programming
operation, which might cause severe consequences, including corrupting the device configuration. For more details
on DEVRST_N timing information, refer to the IGLOO2 and SmartFusion 2 Datasheet.

Asserting DEVRST_N does not enable the delay counter (Power on Reset Delay) in the POR circuitry.

The delay counter is operational only at power-up. When DEVRST_N is low, all user I/Os are fully tri-stated. Although
the JTAG I/Os are still enabled, they cannot be used as the TAP controller is in reset. The SYSRESET macro is not
required to be instantiated to enable the DEVRST_N pin in the user design. DEVRST_N is a dedicated input-only
reset pad available on all the SmartFusion 2 devices.

20.1.2 Power-Up to Functional Time Sequence
The following figure shows the power-up to functional time sequence diagram.

Reset Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 639

Figure 20-5. Power up to Functional Time Sequence Diagram

Supply Ramp
(VDD, VPP, VDDI,

VDDAPLL)

1 MHz RC Oscillator Turns
On

Die Ramp
Power on Reset Delay

Configuration
(Libero SoC)

Power-On Reset
(PO_RESET_N) Released

1 MHz RC Oscillator Gated
Off
and

50 MHz RC Oscillator
Turns On

Input buffer enable

Fabric PLL Lock Asserted
(Fabric CCC)

MSS reset
(SC_MSS_RESET_N)

Released

MPLL Lock Asserted
(MSS CCC)

MSS to Fabric Reset
(MSS_Reset_N_M2F)

Released

DEVRST_N

Libero Setting

FPGA Fabric (LSRAM,
uSRAM, and MATH), FDDR

and SERDES
Turn On

All mandatory I/O bank
supplies are
powered-up?

Yes

No

Output buffer enable

POWER_ON_RESET_N
Signal Released

Reset Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 640

The following are the power-up to functional sequence:

• Supply Ramp (VDD, VPP, VDDI, and VDDAPLL): There is no specific power-up or power-down sequencing
requirement for SmartFusion 2 devices. The I/O banks can be brought up in any order, before or after the core
voltage. However, the device is only functional if all I/O bank supplies are powered up. All mandatory I/O bank
supplies must be powered up. For all the devices, some of the bank supplies (VDDIx) must always be powered,
even if associated bank I/Os are in unused condition. For the list of mandatory I/O bank supplies, refer to Table
2 and Table 3 in the SmartFusion2 and IGLOO2 Board Design Guidelines Application Note.

• On power-up, the POR generator block asserts the PO_RESET_N signal, which is not accessible for users.
• The 1 MHz RC oscillator is turned on, which provides the clock to the programmable delay counter. When the

counter reaches its maximum value, the PO_RESET_N signal is de-asserted.
• The 1 MHz RC oscillator is gated off, and the 50 MHz RC oscillator is enabled and the System Controller starts

operating at 50 MHz clock.
• FPGA fabric (LSRAM, uSRAM, and MATH), FDDR, and SerDes are turned on.
• Input buffer is enabled.
• POWER_ON_RESET_N signal (generated from the PO_RESET_N signal) is released. This signal can be used

in the design as a reset for the FPGA fabric logic.
• Fabric PLL (Fabric CCC) Lock is asserted.
• MSS reset (SC_MSS_RESET_N) is released.
• MPLL (MSS CCC) Lock is asserted.
• MSS to Fabric Reset (MSS_RESET_N_M2F) is released.
• Output buffer is enabled.

The Reset Controller Configurator in the MSS Configurator enables the user to expose the MSS_RESET_N_M2F
signal to the fabric. Refer to 20.4. How to Use the Reset Controller for more information. In order to simplify the task
of initializing a user design in SmartFusion 2 devices, Microchip provides a CoreResetP soft Reset Controller IP. The
CoreResetP handles the sequencing of reset signals in SmartFusion 2 devices. The CoreResetP generates a fabric
reset signal whenever POWER_ON_RESET_N or MSS_RESET_N_M2F is asserted. It is available in the Libero SoC
IP catalog. For more information, see 20.3. CoreResetP Soft Reset Controller.

Important: Microchip recommends using the System Builder, which automatically creates the
“initialization” sub-system (all required cores are instantiated, and connections are made automatically).

20.2 Power-Up to Functional Time Data
This section describes the power-up to functional time sequence and provides timing numbers based on the
DEVRST_N assertion and VDD ramp up.

20.2.1 Parameters Used for Obtaining Power-Up to Functional Time Data
This section describes the parameters used for obtaining power-up to functional time data. Following are the test
conditions:

• Power on reset delay setting: 1 ms
• Supply ramp rate: 5 µs
• Measurement temperature: 25° C

The Power-On Reset delay setting indicates how long VDD takes to ramp up. The programmable delay counter starts
counting based on the Power-on Reset delay setting, oscillator frequency, and period variability to ensure that the
supplies have reached their minimum operating levels.

The supply ramp rate indicates the ramp up rate of on-board VDD core voltage, VPP charge pump voltage, and
VDDA Phase-Locked Loop (PLL) analog voltage supplies.

Reset Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 641

Important: In all the test cases, I/Os are configured as LVCMOS25, which is the default I/O standard in
Libero along with the other default I/O attribute settings.

20.2.2 VDD Power-Up to Functional Time
The core supply voltage VDD is connected to the appropriate source, and VDD is monitored by the Power-on Reset
circuitry to check if it reaches the minimum threshold value and initiates the system controller to release the device
from reset. This scenario provides power-up to functional time data when only the FPGA fabric and the FPGA I/O are
used with all supplies ramped up except VDD, which is ramped up at the end. The required Power-on Reset delay is
set using the Libero SoC tool.

The design uses a fabric counter that starts to operate when POWER_ON_RESET_N is deasserted. The LSB of the
counter output is connected to a latch and given to an output buffer, which is then connected to an input buffer of
the fabric using an external loopback. This input is used to stop the counter from incrementing. The counter stops as
soon as the counter's LSB bit transitions to logic HIGH. The power-up to functional time is measured from the VDD
supply ramp to the transition of the fabric buffer output.

The following figure shows the characterization test design setup used for obtaining the VDD power-up to functional
timing values.

Important: In this test design setup, PLL is not used and instead clock for the fabric is directly fed from
the RC oscillator. If PLL is used in the design, then the power-up to functional time will get impacted
because of the PLL lock assertion time.

Figure 20-6. VDD Power-Up to Functional Time Design Setup

Counter Logic

SYSRESET Macro Counter

OSC_50MHz_CLK

Latch

SmartFusion® 2

Power_on_reset_n
LSB CNT_UP

Stop

RC Oscillator
50 MHz

External Feedback

The following figure shows the behavior of different signals when VDD is ramped with a Power-on Reset delay of 1
ms from 0V to its minimum threshold level and MSS is used with VDD = 1.2V, VDDI = 2.5V,
Tj = 25 °C, and Power-on Reset delay setting = 1 ms.

Reset Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 642

Figure 20-7. VDD Power-up to functional timing diagram

DEVRST_N

VPP/VDDIx

VDD

INBUF

INBUF WEAK PULL
(MSIO/MSIOD/DDRIO)

POWER_ON_RESET_N

MSS_RESET_N_M2F

OUTBUF

2.487 ms

2.487 ms

2.972 ms

2.975 ms

497 µs

500 µs

3.6 µs

RCOSC_50MHz

M2S010

Case 1

Case 2

Case 3

Case 4

Case 5

Case 6

High-Z

High-Z

Tri-state

Tri-state

Case 7

The following table lists power-up to functional time data of M2S005, M2S010, M2S025, M2S050, M2S060, M2S090,
and M2S150 devices with MSS clock ranging from 3 MHz to 166 MHz.

Important: The timing numbers shown in the below table is for worst-case condition.

Table 20-1. VDD Power-Up to Functional Time

Test
Case

Start Point End Point Description Power-Up to Functional Time (µs)

005 010 025 050 060 090 150

Case1 POWER_ON_
R ESET_N

Output available
at I/O

Fabric to output 647 500 531 483 474 524 647

Case 2 POWER_ON_
R ESET_N

MSS_RESET_N
_ M2F

Fabric to MSS 644 497 528 480 468 518 641

Case 3 MSS_RESET_
N_M2F

Output available
at I/O

MSS to output 3.6 3.6 3.6 3.4 4.9 4.8 4.8

Case 4 VDD Output available
at I/O

VDD at its
minimum
threshold level to
output

3096 2975 3012 2959 2869 2992 3225

Case 5 VDD POWER_ON_
RESET_N

VDD at its
minimum
threshold level to
fabric

2476 2487 2496 2486 2406 2563 2602

Reset Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 643

...........continued
Test
Case

Start Point End Point Description Power-Up to Functional Time (µs)

005 010 025 050 060 090 150

Case 6 VDD MSS_RESET_N
_ M2F

VDD at its
minimum
threshold level to
MSS

3093 2972 3008 2956 2864 2987 3220

Case 7 VDD DDRIO input
buffer weak pull

VDD at its
minimum
threshold level to
input buffer weak
pull

2500 2487 2509 2475 2507 2519 2617

VDD MSIO input
buffer weak pull

VDD at its
minimum
threshold level to
input buffer weak
pull

2504 2491 2510 2478 2517 2525 2620

VDD MSIOD input
buffer weak pull

VDD at its
minimum
threshold level to
input buffer weak
pull

2479 2468 2493 2458 2486 2499 2595

Important: Time taken for different Power-on Reset delay settings can be calculated using the following
equation:
(Test case – 2000 µs) + 2 × Power on Reset Delay setting.

The following figure shows stages that contribute to VDD power-up to functional time for SmartFusion 2.

Reset Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 644

Figure 20-8. VDD Power-Up to Functional Time Flow

Supply Ramp
(VDD, VPP)

Power-on Reset
(PO_RESET_N)

released

1 MHz RC Oscillator gated off
and 50 MHz RC oscillator

turns On

No

Yes

POWER_ON_RESET_N Signal
Released

FPGA Fabric (LSRAM, µSRAM,
MATH) turns On

MSS Reset
(SC_MSS_RESET_N)

Released

All mandatory I/O bank
supplies are powered

1 MHz RC oscillator
turns On

Power on reset delay
configuration (1 ms)

MSS to Fabric Reset
(MSS_RESET_N_M2F)

Released

Output Buffer Enable
(Output available at

I/O)

Input Buffer Enable

Important: Power-up to functional time depends on Power-on Reset delay setting, 1 MHz oscillator
frequency, and period variability. At times, it is approximately equal to twice the Power-on Reset delay
setting.

Reset Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 645

20.2.3 DEVRST_N Power-Up to Functional Time
This scenario provides power-up to functional time data with respect to DEVRST_N when the FPGA fabric, the FPGA
I/O, and an external oscillator are used. The design setup is same as the VDD power-up to functional time, as shown
in the following figure.

Important: It is not recommended to assert the DEVRST_N pin during programming (including eNVM), as
it corrupts the device configuration. For more information on proper usage of the DEVRST_N pin,
see the Board Design Guidelines for SmartFusion2 SoC and IGLOO2 FPGAs Application Note.

The following figure shows the behavior of different signals when DEVRST_N is asserted and MSS is used with VDD
= 1.2V, VDDI = 2.5V, and Tj = 25 °C.

Figure 20-9. DEVRST_N Power-Up to Functional Timing

VDD/VPP/VDDIx

RCOSC_50MHz

DEVRST_N

INBUF

INBUF WEAK PULL
(MSIO/MSIOD/DDRIO)

POWER_ON_RESET_N

MSS_RESET_N_M2F

OUTBUF

202 µs

289 µs

765 µs

768 µs

497 µs

501 µs

3.5 µs

Case 1

Case 2

Case 3

Case 4

Case 5

Case 6

M2S010

High-Z
Tri-state

High-Z
Tri-state

Case 7

The following table lists power-up to functional time of M2S005, M2S010, M2S025, M2S050, M2S060, M2S090, and
M2S150 devices with MSS clock ranging from 3 MHz to 166 MHz.

Important: The timing numbers shown in the following table are for the worst-case condition.

Table 20-2. DEVRST_N Power-Up to Functional Time

Test
Case

Start Point End Point Description Power-Up to Functional Time (µs)

005 010 025 050 060 090 150

Case1 POWER_ON_
RESET_N

Output available
at I/O

Fabric to output 518 501 527 521 422 419 694

Case 2 POWER_ON_
RESET_N

MSS_RESET_N
_ M2F

Fabric to MSS 515 497 524 518 417 414 689

Case 3 MSS_RESET_
N_M2F

Output available
at I/O

MSS to output 3.5 3.5 3.5 3.3 4.8 4.8 4.8

Case 4 DEVRST_N Output available
at I/O

DEVRST_N to
output

706 768 715 691 641 635 871

Reset Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 646

...........continued
Test
Case

Start Point End Point Description Power-Up to Functional Time (µs)

005 010 025 050 060 090 150

Case 5 DEVRST_N POWER_ON_
RESET_N

DEVRST_N to
fabric

234 289 216 213 237 234 219

Case 6 DEVRST_N MSS_RESET_N
_ M2F

DEVRST_N to
MSS

702 765 712 688 636 630 866

Case 7 DEVRST_N DDRIO input
buffer weak pull

DEVRST_N to
input buffer weak
pull

208 202 197 193 216 215 215

DEVRST_N MSIO input
buffer weak pull

DEVRST_N to
input buffer weak
pull

208 202 197 193 216 215 215

DEVRST_N MSIOD input
buffer weak pull

DEVRST_N to
input buffer weak
pull

208 202 197 193 216 215 215

The following figure shows the stages that contribute to DEVRST_N power-up to functional time for SmartFusion 2.

Reset Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 647

Figure 20-10. DEVRST_N Power-up to Functional Time Flow

DEVRST_N

Power-on Reset
(PO_RESET_N)

released

1 MHz RC Oscillator
gated off and 50 MHz
RC oscillator turns On

No

Yes

Input Buffer Enable

FPGA Fabric (LSRAM,
µSRAM, MATH) turns

On

MSS reset
(SC_MSS_RESET_N)

Released

MSS to Fabric Reset
(MSS_RESET_N_M2F)

Released

Output Buffer Enable
(Output available at

I/O)

All mandatory I/O bank
supplies are powered

POWER_ON_RESET_N
Signal Released

Important: All timing numbers in Table 20-1 and Table 20-2 are for worst-case conditions.

Reset Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 648

20.2.4 Power-On Reset
The Reset Controller receives a power-on reset signal, PO_RESET_N, from the System Controller, which is a cold
reset signal. Its assertion initializes the SmartFusion 2 device to its default reset state.

PO_RESET_N signal is fed to the system register block (SYSREG). The PO_RESET_DETECT bit of the
RESET_SOURCE_CR register (defined in Table 20-4) in the SYSREG block is set or reset depending on the
PORESET_N signal.

The PORESET_N signal is a synchronized version of the PO_RESET_N signal on M3_CLK.

The Reset Controller generates different synchronized resets to the MSS and the FPGA fabric on the assertion of
PO_RESET_N, as shown in the following figure.

Figure 20-11. Functional Block Diagram of Reset Controller During Power-On Reset

Reset Controller

Watchdog
Timer Peripherals

MDDR

PORESET_RCOSC_N

SYSREG
PORESET_N

MSS GPIO
MSS_GPIO_RESET_N

Cortex -M3

M3_PORESET_M3_CLK_N

M3_PORESET_TCK_N

T_RESET_N

CC_RESET_N
FACC

MDDR_APB_RESET_N

MDDR_AXI_RESET_N

Block resets /

System
Controller

PO_RESET_N

Processor
DEVRST_N

The CC_RESET_N is generated on the assertion of PO_RESET_N. This is a power-on reset signal to the fabric
alignment clock controller (FACC).

20.2.5 System Reset
The system reset (SYSRESET_N) is generated if any of the following conditions are true:

• SYS_RESET_REQ is asserted from Cortex-M3 processor. SYS_RESET_REQ from the
Cortex-M3 processor is controlled by the SYSRESETREQ bit in the Application Interrupt and the Reset Control
register located at 0XE000ED0C. For more information, see 2. Cortex-M3 Processor (Reference Material).

• LOCKUP_N is asserted from Cortex-M3 processor in the LOCKUP state. The processor enters into LOCKUP
state, if a Fault occurs when executing the NMI or HardFault handlers.

• Watchdog timeout event from the Watchdog Timer.
• SC_MSS_RESET_N is asserted from the System Controller during the start-up sequence after power-up.
• MSS_RESET_N_F2M is asserted from the FPGA fabric interface.

The following figure shows the generation of SYSRESET_N.

Reset Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 649

Figure 20-12. SYSRESET_N Generation

FFs

MSS_RESET_N_F2M

SC_MSS_RESET_N

WD_TIMEOUT_N

SYS_RESET_REQ_N

LOCKUP_N

M3_CLK

1 SYSRESET_N

R

The inputs SYS_RESET_REQ_N, LOCKUP_N, WD_TIMEOUT_N, SC_MSS_RESET_N, and MSS_RESET_N_F2M
are first synchronized on M3_CLK and then combined. The MSS_RESET_N_F2M signal can be used to reset the
MSS, independently of any resets coming from the MSS itself. For example, it may be asserted as a result of an
external reset event from an off-chip Reset Controller, using an I/O pad to bring the reset input into the fabric.

The following figure shows the various reset signals to the MSS blocks which are generated from Reset Controller on
the assertion of SYSRESET_N. It also shows the reset inputs to the Reset Controller, which cause the generation of
SYSRESET_N.

Figure 20-13. Functional Block Diagram of Reset Controller During SYSRESET_N

Reset Controller

Watchdog
Timer WD_TIMEOUT

Peripherals

SC_MSS_RESET_N

FPGA
Fabric

MSS_RESET_N_F2M
MSS_RESET_N_M2F

WDOG_RESET_N

SYSREG
SYSRESET_N

Cortex-M3
Processor

SYS_RESET_REQ
LOCKUP

M3_SYS_RESET_N

M3_TRST_N

FIC_2_APB_M_PRESET_N

System
Controller

MDDR

MDDR_AXI_RESET_N

MDDR_APB_RESET_N

Block Resets

SYSRESET_N resets all blocks in the MSS. When SYSRESET_N asserts low, the entire Cortex-M3 processor is
reset, except for the debug logic that exists in the following blocks:

• Nested vectored interrupt controller (NVIC)
• Flash patch and breakpoint (FPB)
• Data watchpoint and trace (DWT)
• Instrumentation trace macrocell (ITM)
• AHB-AP

Reset Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 650

20.2.6 Block Resets
The Reset Controller generates block level resets for all modules except the AHB bus matrix, cache controller,
fabric interface interrupt controller (FIIC), RTC, and SYSREG. These blocks get reset at Power-on Reset or system
reset. The Reset Controller receives block enable bits and soft reset requests (SOFT_RESET_CR bits) for various
blocks within the MSS from SYSREG to control the block level reset generation. The Reset Controller also generates
four GPIO resets, which reset each bank of GPIO signals, as described in the 20.2.6.5. MSS GPIO Bank Resets
Generator.

The following figure shows the block level resets from the Reset Controller along with the source of the resets.

Figure 20-14. Reset Controller With Only Block Level Resets

Reset Controller

Peripherals
Block resets

MDDR
MDDR_DDR_CORE_RESET_N

MDDR_APB_S_RESET_N
FPGA
fabric

GPIO_RESET_N

M3_RESET_N

SYSREG
WDOG_ENABLE

MSS_GPIO_SYSRESET_SEL

SOFT_RESET_CR bits

Cortex-M3
ProcessorM3_SYS_RESET_N

M3_TRST_N

MDDR_APB_RESET_N

MDDR_AXI_RESET_N

Watchdog
Timer

WDOG_RESET_N

MSS GPIO
MSS_GPIO_RESET_N

MSS_GPIO BANK RESETS

/

/

/

20.2.6.1 Cortex-M3 Processor Resets
The Reset Controller drives various reset signals to the Cortex-M3 processor as follows:

1. M3_PORESET_M3_CLK_N
2. M3_PORESET_TCK_N
3. T_RESET_N
4. M3_SYS_RESET_N
5. M3_TRST_N

The source of the Cortex-M3 processor reset captured in the Table 21-52 register (defined in Table 20-4). The
register captures the status of the resets so that once the Cortex-M3 processor comes out of reset, it can read this
register and take further necessary action.

Cortex-M3 processor reset signal generation is explained in the following sections.

20.2.6.1.1 M3_PORESET_M3_CLK_N
This signal resets all logic within the Cortex-M3 processor except the debug logic. M3_PORESET_M3_CLK_N
is a synchronized signal of PO_RESET_N on M3_CLK. It asserts asynchronously and negates synchronously to
M3_CLK.

20.2.6.1.2 M3_PORESET_TCK_N
This is a reset signal to the Cortex-M3 processor. M3_PORESET_TCK_N is a synchronized signal of PO_RESET_N
on TCK (JTAG clock from the clock controller). It asserts asynchronously and negates synchronously to TCK.

20.2.6.1.3 T_RESET_N
This is also a reset signal to the Cortex-M3 processor. The T_RESET_N is a synchronized signal of PO_RESET_N
on TRACECLK (Trace clock input from the clock controller). It asserts asynchronously and negates synchronously to
TRACECLK.

20.2.6.1.4 M3_SYS_RESET_N
M3_SYS_RESET_N resets the Cortex-M3 processor core and its components, excluding the debug logic.

Reset Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 651

This reset is generated based on M3_RESET_ M3_CLK_N and SYSRESET_N. M3_RESET_M3_CLK_N is a
synchronized signal of M3_RESET_N from the FPGA fabric on M3_CLK. The following figure shows the generation
of M3_SYS_RESET_N.

Figure 20-15. M3_SYS_RESET_N Generation

M3_SYS_RESET_N
M3_RESET_M3_CLK_N

SYSRESET_N

In the five Cortex-M3 processor resets, M3_SYS_RESET_N is the only reset signal that can be controlled.

M3_RESET_N is an active-low reset input from the FPGA fabric and resets the Cortex-M3 processors if set to 0. It is
only usable in order to extend the duration of the system reset to the Cortex-M3 processor after the rest of the MSS
has been released from reset. This allows to perform a secure hardware based code shadowing function, thereby
minimizing boot time.

20.2.6.1.5 M3_TRST_N
This signal originates from the System Controller and drives the NTRST (debug reset) input of the Cortex-M3
processor and is used to reset the SWJ-DP sub-block within the Cortex-M3 processor.

20.2.6.2 MDDR Resets

20.2.6.2.1 MDDR_AXI_RESET_N
MDDR_AXI_RESET_N is generated from FPGA fabric reset input (MDDR_DDR_CORE_RESET_N), SYSRESET_N,
and the MDDR soft reset (MDDR_CTLR_SOFTRESET) from SYSREG.

The following figure shows the generation of MDDR_AXI_RESET_N.

Figure 20-16. MDDR_AXI_RESET_N Generation

MDDR_AXI_RESET_NMDDR_DDR_CORE_RESET_N

SYSRESET_N

MDDR_CTRL_SOFTRESET

The Reset Controller drives a synchronized reset to AXI logic in the MDDR.

20.2.6.2.2 MDDR_APB_RESET_N
MDDR_APB_RESET_N is generated from FPGA fabric PRESET input (MDDR_APB_S_RESET_N) or
SYSRESET_N, based on the selection of MDDR_CONFIG_LOCAL in SYSREG. The MDDR_CONFIG_LOCAL bit is
in the MDDR configuration register (MDDR_CR as defined in Table 20-4) of SYSREG.

The following figure shows the generation of MDDR_APB_RESET_N.

Figure 20-17. MDDR_APB_RESET_N Generation

1

0

MDDR_APB_S_RESET_N

SYSRESET_N

MDDR_CONFIG_LOCAL

MDDR_APB_RESET_N

The Reset Controller drives a synchronized reset to the APB logic of the MDDR subsystem.

20.2.6.3 Watchdog Resets

20.2.6.3.1 WDOG_RESET_N
The WDOG_BLOCK_RESET_N signal is synchronized on M3_CLK and CLK_RCOSC, then gated with
WDOG_ENABLE. The gating ensures that if WDOG_ENABLE is not asserted, WDOG_RESET_N is asserted. This

Reset Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 652

reset is used to hold the watchdog logic clocked by M3_CLK in reset. The WDOG_ENABLE bit is in the watchdog
configuration register (WDOG_CR as defined in Table 20-4) of the SYSREG.

The following figure shows the generation of WDOG_RESET_N.

Figure 20-18. WDOG_RESET_N Generation

8FFs
4FFs

WDOG_ENABLE

WDOG_RESET_N
CLK_RCOSC

1
1

M3_CLK

SYSRESET_N

SC_MSS_RESET_M3_CLK_N

MSS_RESET_F2M_M3_CLK_N

SYS_RESETREQ_N
LOCKUP_N

The Reset Controller drives the reset input of the Watchdog Timer.

20.2.6.3.2 PO_RESET_RCOSC_N
The PO_RESET_RCOSC_N is a synchronized version of the PO_RESET_N signal on CLK_RCOSC. It asserts
asynchronously and negates synchronously to CLK_RCOSC.

This is a power-on reset signal to the Watchdog Timer.

Important: The watchdog timer counter is reset by POR only and is not effected by WDOG_RESET_N.

20.2.6.4 Clock Controller Reset

20.2.6.4.1 CC_RESET_N
The CC_RESET_N is generated on the assertion of PO_RESET_N. This is a power-on reset signal to the fabric
alignment clock controller (FACC).

20.2.6.4.2 FIC_2_APB_M_PRESET_N
This is an APB reset signal to the FPGA fabric interface.

SYSRESET_N is synchronized on FIC_2_APB_M_PCLK generated in the MSS CCC, which is driven to the FPGA
fabric and then the synchronized reset is again flopped on the negative edge of M3_CLK.

The following figure shows the generation of FIC_2_APB_M_PRESET_N.

Figure 20-19. FIC_2_APB_M_PRESET_N Generation

4FFs M3_CLK

SYSRESET_N

1

FIC_2_APB_M_PCLK

DFF

20.2.6.5 MSS GPIO Bank Resets Generator
The MSS GPIOs bank can be selectively reset through SYSREG or from Flash bits. The GPOUT register is split into
four banks of one byte each and each bank has a reset signal.

Reset Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 653

The Reset Controller receives two SYSREG bits: Soft reset and Select. The Select bit determines the reset source
for the associated MSS GPOUT byte. The source can be either of the following:

• Soft reset from system register
• Hard reset derived from either Power-on Reset or the GPIO_RESET_N signal from the FPGA fabric.

The GPIO_SYSRESET_SEL_CR register (defined in Table 20-4) can be configured to select one of the reset inputs.
The entire GPIO bank can be kept in reset by asserting the MSS_GPIO_SOFTRESET bit in SOFT_RESET_CR
(defined in Table 20-4) of SYSREG. A particular GPIO byte can be reset by asserting the corresponding
MSS_GPIO_xx_xx_SOFTRESET bit in SOFT_RESET_CR (defined in Table 20-4) of SYSREG.

The generation of GPOUT bank resets for Flash bit control is shown in the following figure. Only one GPOUT byte
bank reset is shown; the resets for other banks are generated in a similar way.

The Flash bits to the MSS GPIO are used to initialize the GPOUT byte on assertion of reset. When a reset is
deasserted, the GPOUT byte follows the Switch Input (D). When one of the Flash bits is
deasserted, the associated GPIO_OUT pins are initialized to "0". The following table explains the generation of
GPIO_OUT. MSS_GPIO_xx_xx_DEF bits are in the MSS_GPIO_DEF register of SYSREG.

Table 20-3. GPIO_OUT Bank Reset Generation

MSS_GPIO_xx_xx_DEF Reset Controller o/p GPIO_OUT o/p

0 0 0

0 1 D

1 0 1

1 1 D

Figure 20-20. MSS GPIO_OUT Reset Generation

Flash Configuration
Bits

SYSREG

FPGA Fabric

MSS_GPIO_31_24_DEF

MSS_GPIO_23_16_DEF
MSS_GPIO_15_8_DEF

MSS_GPIO_7_0_DEF

MSS_GPIO_SOFTRESET

MSS_GPIO_31_24_SOFTRESET

MSS_GPIO_7_0_SOFT_RESET

MSS_GPIO_7_0_SYSRESET_SEL

GPIO_RESET_N

MSS_GPIO_31_24_SYSRESET_SEL

MSS_GPIO_23_16_SOFTRESET

MSS_GPIO_23_16_SYSRESET_SEL

MSS_GPIO_15_8_SOFTRESET

MSS_GPIO_15_8_SYSRESET_SEL

0

1 R

QD S

M3_CLK

MSS_GPIO[31:0]
IOMUX

PORESET_N

APB Interface

Reset
Control

D1

MSS GPIO

R

20.2.6.6 Reset Generation to MSS Peripherals
The Reset Controller generates block level resets for the peripherals present within the MSS. The following figure
shows the block level reset generation.

Reset Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 654

Figure 20-21. Block Level Reset Generation

BLOCK_RESET_N

SYSRESET_N

BLOCK_SOFTRESET

The reset signal is asserted if any of the following conditions are true:

• SYSRESET_N asserted
• Block level soft reset (SOFT_RESET_CR) request asserted from the SYSREG module.

The Reset Controller can generate the reset to ENVM_0, ENVM_1(if present), ESRAM_0, ESRAM_1, Ethernet
MAC, PDMA, MMUART_0, MMUART_1, SPI_0, SPI_1, I2C_0, I2C_1, TIMER, CAN (if present), HPDMA, USB
OTG, COMM_BLK, FIC_0, FIC_1 (if present), MSS_GPIO (MSS_GPIO_RESET_N reset), and the FPGA fabric
(MSS_RESET_N_M2F reset).

20.3 CoreResetP Soft Reset Controller
The following Reset sub-systems in SmartFusion 2 devices that must be sequenced properly for the overall system to
function correctly:

• Chip Boot (System Controller)
• Fabric
• MSS, Cortex-M3 processor
• FIC sub-systems (MSS to Fabric and Fabric to MSS)
• Peripherals: MDDR, FDDR, and SERDESIF

CoreResetP Soft Reset Controller gathers various reset signals from the system controller, MSS, and FPGA fabric
and, generates new synchronized reset signals to handle the sequencing of reset signals of various subsystems in
SmartFusion 2 devices. CoreResetP helps manage the following:

• The FIC sub-systems resets: Both MSS and FPGA fabric should be out of reset to establish the communication
between them. CoreResetP generates the MSS_READY signal, which indicates that both MSS and FPGA fabric
are out of reset and ready for communication.

• The Peripherals Initialization: It generates resets signals to initialize MDDR, FDDR, and SERDESIF peripheral
blocks.

• The Peripherals Reconfiguration: Individual reset controls via CoreConfigP Soft core.
• The PCIe L2/P2 (in-band) and PRST# (out-band) low power modes for all devices, except M2S090.

20.3.1 Reset Topology
This section describes the following reset topology which needs to be applied to the user design:

• MSS_READY Generation
• Peripheral Initialization
• SERDES L2/P2, PRST#

20.3.1.1 MSS_READY Generation
Any design which consists of MSS and a fabric subsystem must be synchronized to establish the communication
between them. When MSS is doing any transaction, the fabric should be ready. Similarly, when fabric is doing
any transaction, the MSS should be ready. The following figure shows the typical FIC subsystem with CoreResetP
connectivity. CoreResetP generates the MSS_READY signal, which indicates that MSS is ready for communication.
The MSS_READY signal is generated whenever a cold reset (power-up event or assertion of DEVRST_N) occurs
or due to MSS reset (for example, a watchdog timeout event, the assertion of MSS_RESET_N_F2M, and so
on). CoreResetP is relying on MSS_RESET_N_M2F and FIC_2_APB_M_PRESET_N signals to generate the
MSS_READY signal.

Reset Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 655

If the user logic consists of any of the two DDR controllers (FDDR or MDDR) or Serial High speed controller
(SERDESIF), the INIT_DONE signal should be used to reset the fabric subsystem. If none of MDDR/FDDR/SERDES
is used, the MSS_READY signal should be used to reset the fabric subsystem. If the System Builder is used to
generate the Libero project, all required cores are instantiated, and connections are made automatically.

Figure 20-22. MSS_READY Signal Generation

MSS_RESET_N_F2M
MSS_RESET_N_M2F

MSS

FIC_2_APB_M_PRESET_N INIT_DONE

POWER_ON_RESET_N

RCOSC_25_50MHZ

CoreResetP

EXT_RESET_IN_N

USER_FAB_RESET_N

USER_FAB_RESET_IN_N

RESET_N_F2M

RESET_N_M2F

FIC_2_APB_M_PRESET_N

SYSRESET

RCOSC_50MHZ

VCC

User Reset
MSS_READY

20.3.1.2 Peripheral Initialization
CoreResetP generates reset signals to initialize MDDR, FDDR, and SERDES_IF peripheral blocks. The following
figure shows the CoreResetP connectivity with peripheral resets. For each SERDES_IF block, the CoreResetP
generates SDIFx_PHY_RESET_N and SDIFx_CORE_RESET_N signals, which need to be connected to
SERDES_IF macro on PHY_RESET_N and CORE_RESET_N respectively. For FDDR and MDDR, the CoreResetP
generates CORE reset signals (FDDR_CORE_RESET_N and MDDR_DDR_AXI_S_CORE_RESET_N).

Figure 20-23. CoreResetP Connectivity with Peripheral Resets

MDDR_DDR_AXI_S_CORE_RESET_N

CoreResetP

SDIFx_CORE_RESET_N

SDIFx_PHY_RESET_N

FDDR_CORE_RESET_N

MSS

MDDR_DDR_CORE_RESET_N

CORE_RESET_N

FDDR

SERDES_IF_x
CORE_RESET_N

PHY_RESET_N

20.3.1.3 SERDES L2/P2, PRST#
L2 and P2 are low power states for the Link and PHY interface in a PCI Express (PCIe) system. A power
management component in a PCIe system will control exit from the L2/P2 state. Part of the sequence when emerging
from the low power state involves assertion and release of the PCI Express Reset (PERST# or SDIFx_PERST_N
in our implementation). CoreResetP monitors SDIFx_PERST signals and L2/P2 state and generates CORE reset

Reset Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 656

and PHY reset to fulfill the low power mode reset requirement. The following figure shows the CoreResetP
connectivity with SERDES_IF block. If the System Builder is used to generate the Libero project, all required cores
are Instantiated, and connections are made automatically.

Figure 20-24. CoreResetP Connectivity with SERDES_IF Block

SERDES_IF_x

CORE_RESET_N
PHY_RESET_N

APB_PRESET_N

APB_PCLK

APB_SLAVECoreResetP
SDIFx_CORE_RESET_N

SDIFx_PHY_RESET_N
SDIFx_PERST_NSDIFx_PERST_N

CoreConfigP

INIT_DONE

CONFIG_DONE

INIT_DONE

CONFIG_DONE

SDIFx_PRDATA[31:0]

SDIFx_APB_SLAVE

20.3.2 Implementation
If the System Builder tool is used within the Libero SoC software to construct a design targeted at a SmartFusion
2 device, CoreResetP is automatically instantiated and connected within the design if required. You can manually
instantiate and configure CoreResetP within a SmartDesign design if required. For connecting and configuring
CoreResetP in SmartDesign, see the CoreResetP Handbook.

Important: CoreConfigP soft IP facilitates configuration of peripheral blocks (MDDR, FDDR, and
SERDESIF blocks) in a SmartFusion 2 device. CoreConfigP is available in the Libero SoC IP Catalog.
Refer to the CoreConfigP Handbook for port lists and their descriptions, design flows, memory maps, and
Control and Status register details.

20.3.3 Timing Diagrams
The following figures show the timing of reset signals for reset sequences initiated by the assertion of
POWER_ON_RESET_N, FIC_2_APB_M_PRESET_N, EXT_RESET_IN_N, and USER_FAB_RESET_IN_N signals.

Reset Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 657

Figure 20-25. Timing for Reset Signals Initiated by the Assertion of POWER_N_RESET_N

POWER_ON_RESET_N

FAB_RESET_N

USER_FAB_RESET_N

RESET_N_F2M

M3_RESET_N

EXT_RESET_OUT

MDDR_DDR_AXI_S_CORE_RESET_N

FDDR_CORE_RESET_N

FPLL_LOCK

SDIFx_SPLL_LOCK

SDIFx_PHY_RESET_N

SDIFx_CORE_RESET_N

INIT_DONE

CONFIG_DONE

130 us

DDR
settling time

Figure 20-26. Timing for Reset Signals Initiated by the Assertion of FIC_2_APB_M_PRESET_N

FIC_2_APB_M_PRESET_N

FAB_RESET_N

USER_FAB_RESET_N

RESET_N_F2M

M3_RESET_N

EXT_RESET_OUT

MDDR_DDR_AXI_S_CORE_RESET_N

FDDR_CORE_RESET_N

FPLL_LOCK

SDIFx_SPLL_LOCK

SDIFx_PHY_RESET_N

SDIFx_CORE_RESET_N

INIT_DONE

CONFIG_DONE

130 us

DDR
settling time

Reset Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 658

Figure 20-27. Timing for Reset Signals Initiated by the Assertion of EXT_RESET_IN_N

EXT_RESET_IN_N

FAB_RESET_N

USER_FAB_RESET_N

RESET_N_F2M

M3_RESET_N

EXT_RESET_OUT

MDDR_DDR_AXI_S_CORE_RESET_N

FDDR_CORE_RESET_N

FPLL_LOCK

SDIFx_SPLL_LOCK

SDIFx_PHY_RESET_N

SDIFx_CORE_RESET_N

INIT_DONE

CONFIG_DONE

130 us

DDR
settling time

Figure 20-28. Timing for Reset Signals Initiated by the Assertion of USER_FAB_RESET_IN_N

USER_FAB_RESET_IN_N

FAB_RESET_N

USER_FAB_RESET_N

RESET_N_F2M

M3_RESET_N

EXT_RESET_OUT

MDDR_DDR_AXI_S_CORE_RESET_N

FDDR_CORE_RESET_N

FPLL_LOCK

SDIFx_SPLL_LOCK

SDIFx_PHY_RESET_N

SDIFx_CORE_RESET_N

INIT_DONE

CONFIG_DONE

130 us

DDR
settling time

Reset Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 659

20.4 How to Use the Reset Controller

20.4.1 Ramp Delay Configuration
The delay can be configured to 50 µs, 1 ms, 10 ms, or 100 ms in the New Project window while creating the Libero
SoC project as shown in the following figure. Users can also access and change this setting after the project has
been created from the Project Settings window.

Figure 20-29. Ramp Delay Configuration

20.4.2 Reset Controller Configurator
The resets MSS_RESET_N_F2M, M3_RESET_N, and MSS_RESET_N_M2F can be enabled using the Reset
Controller configurator in Libero SoC, as shown in the following figure.
Figure 20-30. Configuring Reset

Reset Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 660

20.4.2.1 Use Model 1: Resetting Cortex- M3 Processor from Fabric
M3_RESET_N is used to hold the Cortex-M3 processor in a reset state after MSS reset.

Use the following steps for holding the Cortex-M3 reset from the fabric:

1. Instantiate the SmartFusion 2 MSS component in the SmartDesign canvas.
2. Configure the SmartFusion 2 MSS peripheral components as needed using the MSS configurator.
3. Configure the Reset Controller, as shown the following figure.

Figure 20-31. Configuring Reset

4. Instantiate the fabric logic in the SmartDesign canvas. Connect the fabric logic to M3_RESET_N.
5. Instantiate the fabric CCC and SYSRESET_N for driving the clock and reset to fabric logic.
6. Connect the fabric logic to M3_RESET_N and make the other connections, as shown in the following figure.

MSS_RESET_N_F2M is promoted to the top level for resetting the MSS from an external switch.

Figure 20-32. Connecting Fabric Logic

20.4.2.2 Use Model 2: Creating Initialization Sub-system for MDDR
Use the following steps for creating Initialization Sub-system using the System Builder. CoreResetP, CoreConfigP,
SYSRESET, and Oscillator are Instantiated and connections are made automatically:

1. Select Use System Builder while creating a new project from the Design Templates and Creators panel in
Libero SoC.

2. Check MSS External Memory in the System Builder - Device Features GUI.
3. Follow the rest of the steps with default settings and generate the design.

The following figure shows the generated design when opened in SmartDesign.

Reset Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 661

4. The actual SmartDesign created by System Builder is typically not visible unless you open the generated
output as a SmartDesign. For more information, see System Builder User Guide.

Figure 20-33. Initialization Sub-System with CoreResetP Soft IP

20.4.2.3 Use Model 3: Creating Initialization Sub-System for FIC Sub-Systems
Use the following steps for creating an initialization sub-system using the System Builder. CoreResetP, SYSRESET,
and Oscillator are instantiated and connections are made automatically:

1. Select Use System Builder while creating a new project from the Design Templates and Creators panel in
Libero SoC.

2. System builder - Device Features GUI is pop up. Click Next.
3. Drag Fabric AMBA Slave core from Fabric Slave Cores panel into MSS FIC_0 – MSS Master Subsystem.
4. Follow the rest of the steps with default settings and generate the design.

The following figure shows the generated design when opened in SmartDesign.

The actual SmartDesign created by System Builder is typically not visible unless you open the generated output as a
SmartDesign. Refer to the System Builder User Guide for more details.

Reset Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 662

Figure 20-34. Initialization Sub-system for FIC Sub-systems

20.5 SYSREG Control Registers
The description of registers are located in the SYSREG section of the user's guide and are listed in the following
table. Refer to the 21. System Register Block for a detailed description of each register and bit.

Table 20-4. Switch Register Map

Register Name Register
Type

Flash Write
Protect

Reset Source Description

21.5.23. GPIO System Reset
Control Register

RW-P Register PORESET_N Configures the GPIO system reset

21.5.19. Software Reset
Control Register

RW-P Bit SYSRESET_N Generates the software control
resets to the MSS peripherals

21.5.44. Reset Source Control
Register

RW — — Reset source control register. The
source of Cortex-M3 processor reset
is captured in this register. The reset
values are mentioned in the bit
definitions.

Reset Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 663

...........continued
Register Name Register

Type
Flash Write
Protect

Reset Source Description

21.5.25. MDDR Configuration
Register

RW-P Register PORESET_N MDDR configuration register

21.5.28. Watchdog
Configuration Register

RW-P Register PORESET_N It configures Watchdog timer

21.5.38. MSS DDR Fabric
Alignment Clock Controller
(FACC) Configuration Register
1

RW-P Field CC_RESET_N MSS DDR Bridge fabric alignment
clock controller 1 configuration
register

System Register Block

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 664

21. System Register Block
The System Register (SYSREG) block is an array of system-level registers that contain user configuration
information used to configure the microcontroller subsystem (MSS). The contents of these registers are initially set
based on the information entered using the MSS configurator in the Libero software. The power-up initialized state of
these registers, as well as write protection bits are controlled by flash configuration bits. The configuration bits are set
during device programming.

The SYSREG block is connected to the AHB bus matrix and can be accessed by all bus masters. Write access
to these registers provides the capability to modify the initialized SYSREG block register contents by the user
application. There are seven types of System Registers as described in Table 21-1 which provide different levels of
read/write access by bus masters.

21.1 SYSREG Block Register Write Protection
Each SYSREG block register has dedicated write protect bits to control write access from bus masters. Write protect
bits are flash configuration bits that are set based on user inputs to the MSS configurator. These bits are defined
during the device design phase and can only be modified by reprogramming the device. Users have the ability to set
protection levels for the entire register, independent fields within each register, or individual bits within each register.

21.1.1 Register Write Protect
One Register Write Protect bit is used to write-protect entire register contents as shown in the following figure. On
power-up, the register contents are initialized based on the Flash configuration bits set from the MSS configurator.
If the Register Write Protect bit is set in the MSS configurator, the initialized value of the entire register cannot be
modified by the user application. If the Register Write Protect bit is not set, the contents of the register can be
modified by any bus master. Register Write Protect bits can only be modified by reprogramming the FPGA and is
therefore protected by the standard FPGA programming security features.

Figure 21-1. Register Write Protect

32 Flash Bits for Initialization

32-Bit Control RegisterWrite
Protect BIt

On Power-Up, Initialize
DFFs with Flash Bits

The write protect bit keeps bus masters from changing the contents of
the Control register.

21.1.2 Field Write Protect
Many System Registers contain fields of multiple bits. A Field Write Protect bit provides write protection for an entire
field within a single register as shown in the following figure. Field Write Protect bits follow the same rules as Register
Write Protect bits described in 21.1.1. Register Write Protect, but are instead applied to each individual field within
the register. There is a Field Write Protect bit allocated for each field within the register.

System Register Block

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 665

Figure 21-2. Field Write Protect

32 Flash Bits for Initialization

Write
Protect Bit

Write
Protect Bit

Write
Protect Bit

On Power-Up, Initialize
DFFs with Flash Bits

The write protect bit keeps bus masters from changing the contents
of the Control register.

FLD 1 FLD 2 FLD N

One Write Protect Bit for Each Field

32-Bit Control Register
with Fields

21.1.3 Bit Write Protect
A Bit Write Protect bit provides write protection for each individual bit within a single register as shown in the following
figure. Bit Write Protect bits follow the same rules as Register Write Protect bits described in 21.1.1. Register Write
Protect, but are instead applied to each individual bit within the register. There is a Bit Write Protect bit allocated for
each bit within the register.

Figure 21-3. Bit Write Protect

32 Flash Bits for Initialization

32 Write Protect Bits

On Power-Up, Initialize
DFFs with Flash Bits

The write protect bit keeps bus masters from changing the contents of
the Control register.

One Write Protect Bit for Each Bit

32-Bit Control Register

Refer to the 21.3. Register Lock Bits Configuration for locking and unlocking registers.

21.2 Register Types
The following table lists the several register types in the SYSREG block.

Table 21-1. Register Types

Type Function

RW-P Supports read and write accesses via AHB bus matrix. See Figure 21-5. Register contents are
initialized from Flash configuration bits at power-up and the assertion of SYS_RESET_N. Typically
used for MSS Control Registers.

RW Supports read and write accesses via AHB bus matrix. See Figure 21-5.
Register contents are not initialized from Flash configuration bits at power-up. The reset state is
determined by the user HW design following assertion of SYS_RESET_N. Typically used for MSS
Control Registers.

System Register Block

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 666

...........continued
Type Function

RO Supports read-only accesses via AHB bus matrix. See Figure 21-6. Register contents are not
initialized from Flash configuration bits at power-up or the assertion of SYS_RESET_N. Typically used
for MSS Control Registers.

RO-U Does not support read or write access via AHB bus matrix. See Figure 21-8.
Register contents are initialized from Flash configuration bits at power-up and the assertion of
SYS_RESET_N. Typically used for MSS Control Registers.

RO-P Supports read-only accesses via AHB bus matrix. See Figure 21-7.
Register contents are initialized from Flash configuration bits at power-up and the assertion of
SYS_RESET_N. Typically used to return MSS status information.

W1P Write '1' to clear the register. This register is Write-Only.

SW1C Individual register bits are set ('1') when related input is asserted. Bits are individually cleared when
corresponding register bit is written high.

The following figures show schematically a few of the register types of the SYSREG registers.

Figure 21-4. RW-P Type

R

QD S

SY
S_

R
ES

ET
_N

REG_BIT

1 0

W
D

AT
A[

n]
R

D
AT

A[
n]

AHB Bus Matrix

W
R

IT
E

Reset
Controller

LOADENABLE FLOP

DYN_REG (per register)

MSS_P[] (per bit)

Fl
as

h
C

on
fig

ur
at

io
n

BI
t

M
SS

System Register Block

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 667

Figure 21-5. RW Type

R

QD S

SY
SR

ES
EN

T_
N

REG_BIT

Reset
Controller

M
SS

Hardware Default (per-bit)

R
D

AT
A[

n]

1 0

W
D

AT
A[

n]

AHB Bus Matrix

W
R

IT
E

LOADENABLEFLOP

Figure 21-6. RO Type

M
SS

R
D

AT
A[

n]

AHB Bus Matrix

System Register Block

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 668

Figure 21-7. RO-P Type

R

QD S

Fl
as

h
C

on
fig

ur
at

io
n

Bi
t

SYSRESET_N

REG_BIT

MSS_P[] (per-bit)

1 0

W
D

AT
A[

n]

R
D

AT
A[

n]

AHB Bus Matrix

LOADENABLEFLOP

Reset
Controller

M
SS

Figure 21-8. RO-U Type

R

QD S

Fl
as

h
C

on
fig

ur
at

io
n

B
It

S
Y

S
R

E
S

E
T

_N

REG_BIT

Reset
Controller

M
SS

MSS_P[] (per-bit)-

LOADENABLEFLOP

21.3 Register Lock Bits Configuration
The Register Lock Bits Configuration tool is used to lock the MSS, SERDES, and FDDR configuration registers
of SmartFusion 2 devices in order to prevent them from being overwritten by masters that have access to these
registers. Register lock bits are set in a text (*.txt) file, which is then imported into the SmartFusion 2 project. From
the Design Flow window, click Configure Register Lock Bits to open the configurator. Then, click Browse... to
navigate to the text file (*.txt) that contains the Register Lock Bit settings. The following figure shows register lock
bit settings.

System Register Block

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 669

Figure 21-9. Register Lock Bit Settings

21.3.1 Lock Bit File
An initial, default lock bit file can be generated by clicking Generate FPGA Array Data in the Design Flow window.

The default file located at <proj_location>/designer/<root>/<root>_init_config_lock_bits.txt can
be used to make the required changes.

Important: Save the file using a different name if you modify the text file to set the lock bits.

21.3.2 Lock Bit File Syntax
A valid entry in the lock bit configuration file is defined as a <lock_parameters> < lock bit value> pair format.

The lock parameters are structured as follows:

• Lock bits syntax for a register: <Physical block name>_<register name>_LOCK
• Lock bits syntax for a specific field: <Physical block name>_<register name>_<field name>_LOCK
• The following are the physical block names (varies with device family and die):
• MSS
• FDDR
• SERDES_IF_x (where x is 0, 1, 2, 3 to indicate the physical SerDes location) for SmartFusion 2

M2S010/025/050/150 devices
• SERDES_IF2 for SmartFusion 2 M2S060/090 devices (only one SerDes block per device)

Set the lock bit value to 1 to indicate that the register can be written to (unlocked) and to 0 to indicate that the register
cannot be written to (locked).

Lines starting with # or ; are comments. Empty lines are allowed in the lock bit configuration file.

The following figure shows the lock bit configuration file.

System Register Block

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 670

Figure 21-10. Lock Bit Configuration File

21.3.3 Locking and Unlocking a Register
A register can be locked or unlocked by setting the appropriate lock bit value in the lock bit configuration .txt file.

1. Browse to locate the lock bit configuration .txt file.
2. Do one or both of the following:

– Set the lock bit value to 0 for the registers you want to lock.
– Set the lock bit value to 1 for the registers you want to unlock.

3. Save the file, and import the file into the project (Design Flow window > Configure Register Lock Bits), see
Figure 21-9.

4. Regenerate the bitstream.

21.4 Register Map
The following table lists all the registers in the SYSREG block. The SYSREG block is located at address 0x40038000
in Cortex-M3 processor address space.

Table 21-2. SYSREG

Register Name Addr.
Offset

Register
Type

Flash
Write
Protect

Reset
Source

Description

Table 21-4 0x0 RW-P Register SYSRESET_
N

Controls address mapping of
the eSRAMs

Table 21-5 0x4 RW-P Register SYSRESET_
N

eSRAM0 and eSRAM1
maximum latency

System Register Block

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 671

...........continued
Register Name Addr.

Offset
Register
Type

Flash
Write
Protect

Reset
Source

Description

Table 21-7 0x8 RW-P Register SYSRESET_
N

DDR Configuration Register

Table 21-8 0XC RW-P Register SYSRESET_
N

eNVM Configuration Register

Table 21-10 0x10 RW-P Register SYSRESET_
N

eNVM Remap Base Address
Control Register

Table 21-11 0x14 RW-P Register SYSRESET_
N

eNVM Remap Base Address
Control Register

Table 21-12 0x18 RW-P Register SYSRESET_
N

Used to configure cache

Table 21-13 0x1C RW-P Register SYSRESET_
N

Cache Region Control Register

Table 21-14 0x24 RW-P Register SYSRESET_
N

Cache Flush Index Control
Register

Table 21-15 0x28 RW-P Register SYSRESET_
N

DDR write buffer timeout

Table 21-16 0x2C RW-P Register SYSRESET_
N

DDR non-bufferable address
region base address

Table 21-17 0x30 RW-P Register SYSRESET_
N

Size of non- bufferable address
region

Table 21-19 0x34 RW-P Register SYSRESET_
N

MSS DDR bridge Configuration
Register

Table 21-20 0x38 RW-P Register SYSRESET_
N

EDAC Configuration Register
for eSRAM0, eSRAM1, USB,
MAC, and CAN

Table 21-21 0x3C RW-P Register SYSRESET_
N

Master Weight Configuration
Register 0

Table 21-22 0x40 RW-P Register SYSRESET_
N

Master Weight Configuration
Register 1

Table 21-24 0x44 RW-P Register SYSRESET_
N

Enables software interrupt

Table 21-25 0x48 RW-P Bit SYSRESET_
N

Software Reset Control
Register

Table 21-26 0x4C RW-P Register SYSRESET_
N

Cortex M3 Configuration
Register

Table 21-27 0x50 RW-P Register SYSRESET_
N

Controls fabric interface

Table 21-28 0x54 RW-P Register SYSRESET_
N

Controls MSS peripherals

Table 21-29 0x58 RW-P Register PORESET_N Configures GPIO system reset

System Register Block

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 672

...........continued
Register Name Addr.

Offset
Register
Type

Flash
Write
Protect

Reset
Source

Description

Table 21-30 0x5C RW-P Register PORESET_N GPIO Input Source Select
Control Register

Table 21-31 0x60 RW-P Register PORESET_N MDDR Configuration Register

Table 21-32 0x64 RW-P Register PORESET_N Configures USB data interfaces
from IOMUXCELLs and I/O
pads

Table 21-33 0x68 RW-P Register PORESET_N Peripheral Clock MUX Select
Control Register

Table 21-34 0x6C RW-P Register PORESET_N Configures Watchdog timer

Table 21-35 0x70 RW-P Register PORESET_N MDDR I/O Calibration Control
Register

Reserved 0x74

Table 21-36 0x78 RW-P Register SYSRESET_
N

Enables/disables 1-bit error, 2-
bit error status for eSRAM0,
eSRAM1, USB, CAN, and MAC

Table 21-37 0x7C RW-P Register SYSRESET_
N

Configures USB interface

Table 21-38 0x80 RW-P Register SYSRESET_
N

Controls the pipeline present
in the memory read path of
eSRAM memory

Table 21-39 0x84 RW-P Register SYSRESET_
N

MSS Interrupt Enable Control
Register

Table 21-40 0x88 RW-P Register SYSRESET_
N

Configures RTC timer
WAKEUP signal

Table 21-41 0x8C RW-P Register SYSRESET_
N

MAC Configuration Register

Table 21-42 0x90 RW-P Register CC_RESET_
N

Controls the configuration input
of MPLL register

Table 21-44 0x94 RW-P Register CC_RESET_
N

Controls the configuration input
of MPLL register

Table 21-45 0x98 RW-P Field CC_RESET_
N

MSS DDR bridge FACC1
Configuration Register

Table 21-47 0x9C RW-P Field CC_RESET_
N

MSS DDR bridge FACC2
Configuration Register

Table 21-48 0xA0 RW-P Register CC_RESET_
N

PPL Lock Enable Control
Register

Table 21-49 0xA4 RW-P Register SYSRESET_
N

Starts FPGA fabric calibration
test circuit

Table 21-50 0xA8 RW-P Register SYSRESET_
N

PLL Delay Line Select Control
Register

System Register Block

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 673

...........continued
Register Name Addr.

Offset
Register
Type

Flash
Write
Protect

Reset
Source

Description

Table 21-51 0xAC RW-P Register SYSRESET_
N

MAC status clear on read

Table 21-52 0xB0 RW Reset Source Control Register

Table 21-53 0xB4 RO SYSRESET_
N

Dcode Bus Error Address
Status Register

Table 21-54 0xB8 RO SYSRESET_
N

Icode Bus Error Address Status
Register

Table 21-55 0xBC RO SYSRESET_
N

System Bus Error Address
Status Register

Reserved 0xC0 SYSRESET_
N

Table 21-56 0xC4 RO SYSRESET_
N

ICode Miss Control Status
Register

Table 21-57 0xC8 RO SYSRESET_
N

ICode Hit Control Status
Register

Table 21-58 0xCC RO SYSRESET_
N

DCode Miss Control Status
Register

Table 21-59 0xD0 RO SYSRESET_
N

DCode Hit Control Status
Register

Table 21-60 0xD4 RO SYSRESET_
N

ICode Transaction Count
Control Status Register

Table 21-61 0xD8 RO SYSRESET_
N

DCode Transaction count
Control Status Register

Table 21-62 0xDC RO SYSRESET_
N

MSS DDR Bridge DS Master
Error Address Status Register

Table 21-63 0xE0 RO SYSRESET_
N

MSS DDR Bridge High
Performance DMA Master
Error Address Status Register

Table 21-64 0xE4 RO SYSRESET_
N

MSS DDR Bridge AHB Bus
Error Address Status Register

Table 21-65 0xE8 RO SYSRESET_
N

MSS DDR Bridge Buffer Empty
Status Register

Table 21-66 0xEC RO SYSRESET_
N

MSS DDR Bridge Disable
Buffer Status Register

Table 21-67 0xF0 RO SYSRESET_
N

1-bit error and 2-bit error count
of eSRAM0

Table 21-68 0xF4 RO SYSRESET_
N

1-bit error and 2-bit error count
of eSRAM1

Reserved 0xF8 SYSRESET_
N

System Register Block

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 674

...........continued
Register Name Addr.

Offset
Register
Type

Flash
Write
Protect

Reset
Source

Description

Table 21-69 0xFC RO SYSRESET_
N

1-bit error and 2-bit error count
of MAC transmitter

Table 21-70 0x100 RO SYSRESET_
N

1-bit error and 2-bit error count
of MAC receiver

Table 21-71 0x104 RO SYSRESET_
N

1-bit error and 2-bit error count
of USB

Table 21-72 0x108 RO SYSRESET_
N

1-bit error and 2-bit error count
of CAN

Table 21-73 0x10C RO SYSRESET_
N

Address from eSRAM0 on
which 1-bit and 2-bit SECDED
error has occurred

Table 21-74 0x110 RO SYSRESET_
N

Address from eSRAM1 on
which 1-bit and 2-bit SECDED
error has occurred

Table 21-75 0x114 RO SYSRESET_
N

Address from MAC receiver on
which 1-bit and 2-bit SECDED
error has occurred

Table 21-76 0x118 RO SYSRESET_
N

Address from MAC transmitter
on which 1-bit and 2 bit
SECDED error has occurred.

Table 21-77 0x11C RO SYSRESET_
N

Address from CAN on which 1-
bit and 2-bit SECDED error has
occurred

Table 21-78 0x120 RO SYSRESET_
N

Address from USB on which 1-
bit and 2-bit SECDED error has
occurred

Table 21-79 0x124 RO-U SYSRESET_
N

Read and write security for
masters 0, 1, and 2 to
eSRAM0, eSRAM1, eNVM1,
eNVM0, and MSS DDR bridge

Table 21-80 0x128 RO-U SYSRESET_
N

Read and write security for
masters 4, 5, and DDR_FIC
to eSRAM0, eSRAM1, eNVM1,
eNVM0, and MSS DDR bridge

Table 21-81 0x12C RO-U SYSRESET_
N

Read and write security for
masters 3, 6, 7, and 8 to
eSRAM0, eSRAM1, eNVM1,
eNVM0, and MSS DDR bridge

Table 21-82 0x130 RO-U SYSRESET_
N

Read and write security
for master 9 to eSRAM0,
eSRAM1, eNVM1, eNVM0, and
MSS DDR bridge

Table 21-83 0x134 RO SYSRESET_
N

Cortex-M3 processor Status
Register

System Register Block

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 675

...........continued
Register Name Addr.

Offset
Register
Type

Flash
Write
Protect

Reset
Source

Description

Table 21-84 0x138 RO SYSRESET_
N

ETM count for lower bits [31:0]

Table 21-85 0x13C RO SYSRESET_
N

ETM count for higher bits
[47:32]

Table 21-86 0x140 RO SYSRESET_
N

Device Status Register

Table 21-87 0x144 RO-U SYSRESET_
N

Configuration for accessibility
of protect regions of eNVM0
and eNVM1

Table 21-88 0x148 RO-U PORESET_N Code shadow Status Register

Table 21-89 0x14C RO Configures device version

Table 21-90 0x150 RO MSS DDR PLL Status Register

Table 21-91 0x154 RO SYSRESET_
N

USB Status Register

Table 21-92 0x158 RO SYSRESET_
N

Busy status eNVM0 and
eNVM1

Reserved 0x15C

Table 21-93 0x160 RO SYSRESET_
N

MSS DDR bridges status

Table 21-94 0x164 RO PORESET_N DDR I/O Calibration Status
Register

Table 21-95 0x168 RO SYSRESET_
N

MSS DDR Clock Calibration
Status Register

Table 21-96 0x16C RO-P PORESET_N Configures Watchdog load
value

Table 21-97 0x170 RO-P PORESET_N Configures Watchdog MVRP
value

Table 21-98 0x174 RO-P SYSRESET_
N

User Configuration Register 0

Table 21-99 0x178 RO-P SYSRESET_
N

User Configuration Register 1

Table 21-100 0x17C RO-P SYSRESET_
N

User Configuration Register 2

Table 21-101 0x180 RO-P SYSRESET_
N

User Configuration Register 3

Table 21-102 0x184 RO-P SYSRESET_
N

Size of memory protected from
fabric master

Table 21-104 0x188 RO-P SYSRESET_
N

Base address which is
protected from fabric master

Table 21-105 0x18C RO-P SYSRESET_
N

MSS GPIO Definition Register

System Register Block

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 676

...........continued
Register Name Addr.

Offset
Register
Type

Flash
Write
Protect

Reset
Source

Description

Table 21-106 0x190 SW1C SYSRESET_
N

Status of 1-bit SECDED error
detection and correction, 2-
bit SECDED error detection
for eSRAM0, eSRAM1, MAC,
USB, and CAN

Table 21-107 0x194 SW1C SYSRESET_
N

MSS Internal Status Register

Table 21-108 0x198 SW1C SYSRESET_
N

MSS External Status Register

Table 21-109 0x19C SW1C PORESET_N Watchdog Time out event
register

Table 21-110 0x1A0 W1P SYSRESET_
N

Clear MSS counters

Table 21-111 0x1A4 W1P SYSRESET_
N

Clears 16-bit counter value
in eSRAM0, eSRAM1, MAC,
USB, and CAN corresponding
to count value of EDAC 1-bit
and 2-bit errors

Table 21-112 0x1A8 W1P SYSRESET_
N

Flush Control Register

Table 21-113 0x1AC W1P SYSRESET_
N

MAC Statistics Clear Control
Register

Table 21-114
n is 0 to 56

0x1B0 to
0x290

RW-P Register PORESET_N I/O MUXCELL Configuration
Register

21.5 Register Details

21.5.1 System Registers Behavior for M2S005/010 Devices
Application traffic across the FIC_0 interface can cause certain bits in the SYSREG block to change state, if these
bits are dynamically modified from their default values during runtime. This impacts all SmartFusion 2 005 and 010
devices.

The following table lists the subset of system registers and specific bit definitions that are affected. The registers/bits
listed in the following table should be configured once on power-up. Dynamically altering the contents of these
registers can result in their values to be reset to the power on reset state.

Table 21-3. Subset of System Registers

System Register Fields

SOFT_RESET_CR All bits

M3_CR STCALIB

FAB_IF_CR FAB0_AHB_BYPASS, FAB1_AHB_BYPASS, FAB0_AHB_MODE,
FAB1_AHB_MODE, and SW_FIC_REG_SEL

LOOPBACK_CR MSS_MMUARTLOOPBACK, MSS_SPILOOPBACK, MSS_I2CLOOPBACK,
and MSS_GPIOLOOPBACK

System Register Block

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 677

...........continued
System Register Fields

GPIO_SYSRESET_SEL_CR MSS_GPIO_7_0_SYSRESET_SEL, MSS_GPIO_15_8_SYSRESET_SEL,
MSS_GPIO_23_16_SYSRESET_SEL, and
MSS_GPIO_31_24_SYSRESET_SEL

GPIN_SRC_SEL_CR MSS_GPINSOURCE

MDDR_CR MDDR_CONFIG_LOCAL, SDR_MODE, F_AXI_AHB_MODE, and
PHY_SELF_REF_EN

USB_IO_INPUT_SEL_CR USB_IO_INPUT_SEL

PERIPH_CLK_MUX_SEL_CR SPI0_SCK_FAB_SEL, SPI1_SCK_FAB_SEL, and TRACECLK_DIV2_SEL

WDOG_CR WDOGENABLE and WDOGMODE

EDAC_IRQ_ENABLE_CR All bits

MSS_IRQ_ENABLE_CR DDRB_INTERRUPT_EN, SW_INTERRUPT_EN, and CC_INTERRUPT_EN

RTC_WAKEUP_CR RTC_WAKEUP_M3_EN, RTC_WAKEUP_FAB_EN, and
RTC_WAKEUP_C_EN

MSSDDR_PLL_STATUS_LOW_CR FACC_PLL_DIVR, FACC_PLL_DIVF, FACC_PLL_DIVQ,
FACC_PLL_RANGE, FACC_PLL_LOCKWIN, and FACC_PLL_LOCKCNT

MSSDDR_PLL_STATUS_HIGH_CR FACC_PLL_BYPASS, FACC_PLL_MODE_1V2, FACC_PLL_MODE_3V3,
FACC_PLL_FSE, FACC_PLL_PD, FACC_PLL_SSE, FACC_PLL_SSMD,
and FACC_PLL_SSMF

MSSDDR_FACC1_CR DIVISOR_A, APB0_DIVISOR, APB1_DIVISOR, DDR_CLK_EN,
M3_CLK_DIVISOR, FACC_GLMUX_SEL, FIC_0_DIVISOR, and
FIC_1_DIVISOR

IOMUXCELL_CONFIG[n] MSS_IOMUXSEL0[N], MSS_IOMUXSEL1[N], MSS_IOMUXSEL2[N],
MSS_IOMUXSEL3[N], MSS_IOMUXSEL4[N][2:0],
MSS_IOMUXSEL5MID[N], and MSS_IOMUXSEL5LOWER[N]

21.5.2 eSRAM Configuration Register
Table 21-4. ESRAM_CR

Bit
Number

Name Reset
Value

Description

[31:2] Reserved 0

1 SW_CC_ESRAM1FWREMAP 0 Defines the locations of eSRAM_0 and eSRAM_1 if eSRAM
remap is enabled (if SW_CC_ESRAMFWREMAP is asserted).
If SW_CC_ESRAMFWREMAP is 0, this bit has no meaning.
If SW_CC_ESRAMFWREMAP is 1, this bit has the following
definition:
0: eSRAM_0 is located at address 0x00000000 in the ICODE/
DCODE space of Cortex-M3 processor and eSRAM_1 is
located just above eSRAM_0 (adjacent to it).

1: eSRAM_1 is located at address 0x00000000 in ICODE/
DCODE space of Cortex-M3 processor and eSRAM_0 is
located just above eSRAM_1 (adjacent to it).

System Register Block

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 678

...........continued
Bit
Number

Name Reset
Value

Description

0 SW_CC_ESRAMFWREMAP 0 Indicates that eSRAM_0 and eSRAM_1 are remapped to
lCODE/DCODE space of the Cortex-M3 processor. If this bit is
1 and SW_CC_ESRAM1FWREMAP is 0, then eSRAM_0 is at
location 0x00000000 and eSRAM_1 is always remapped to be
just above eSRAM_0 (the two eSRAMs are adjacent in ICODE/
DCODE space). Both eSRAMs also remain visible in SYSTEM
space of the Cortex-M3 processor and remain visible at this
location to all other (non-Cortex-M3 processor) masters. The bit
definitions:
0: No eSRAM remap is enabled. This means that eNVM (or
MDDR) is present at location 0x00000000.

1: eSRAM_0 and eSRAM_1 are remapped to location
0x00000000 of Cortex-M3 processor ICODE/DCODE space.

21.5.3 eSRAM Latency Configuration Register
Table 21-5. ESRAM_MAX_LAT

Bit
Number

Name Reset
Value

Description

[31:6] Reserved 0

[5:3] SW_MAX_LAT_ESRAM1 0x1 Defines the maximum number of cycles the processor bus waits
for eSRAM1 when it is being accessed by a master with a WRR
priority scheme. The latency values are as given in Table 21-6.

[2:0] SW_MAX_LAT_ESRAM0 0x1 Defines the maximum number of cycles the processor bus waits
for eSRAM0 when it is being accessed by a master with a WRR
priority scheme. It is configurable from 1 to 8 (8 by default). The
latency values are as given in Table 21-6.

The following table lists eSRAM maximum latency values, where x is either 0 or 1.

Table 21-6. eSRAM Maximum Latency Values

SW_MAX_LAT_ESRAM<X> Latency

0 8 (default)

1 1

2 2

3 3

4 4

5 5

6 6

7 7

System Register Block

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 679

21.5.4 DDR Configuration Register
Table 21-7. DDR_CR

Bit
Number

Name Reset
Value

Description

[31:1] Reserved 0

0 SW_CC_DDRFWREMAP 0 Indicates that DDR_Space0 and DDR_Space1 are remapped
to the lCODE/DCODE space of the Cortex-M3 processor. Both
DDR spaces also remain visible in the SYSTEM space of the
Cortex-M3 processor and remain visible at this location to all
other non-Cortex-M3 processor masters. The bit definitions:
0: No DDR space remap is enabled. This means that eNVM is
present at location 0x00000000.

1: DDR_Space0 and DDR_Space1 are remapped to location
0x00000000 of Cortex-M3 processor ICODE/DCODE space.

21.5.5 eNVM Configuration Register
Table 21-8. ENVM_CR

Bit
Number

Name Reset
Value

Description

[31:17] Reserved 0

16 ENVM_SENSE_ON 0 Turns on or off the sense amps for both NVM0 and NVM1

15 ENVM_PERSIST 0 Reset control for NVM0 and NVM1
0: Reset on SYSRESET_N and PORESET_N

1: Reset on PORESET_N

14 NV_DPD1 0 Deep power-down control for the NVM1
0: Normal operation

1: NVM deep power-down

13 NV_DPD0 0 Deep power-down control for the NVM0
0: Normal operation

1: NVM deep power-down

System Register Block

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 680

...........continued
Bit
Number

Name Reset
Value

Description

[12:5] NV_FREQRNG 0x7 Setting of NV_FREQRNG[8:5] or NV_FREQRNG[12:9] determines
the behavior of eNVM BUSY_B with respect to the AHB Bus
interface clock. It can be used to accommodate various frequencies
of the external interface clock, M3_CLK, or it can be used to
advance or delay the data capture due to variation of read access
time of the NVM core. It sets the number of wait states to match
with the Cortex-M3 or Fabric master operating frequency for read
operations. The small counter in the NVM Controller uses this
value to advance or delay the data capture before sampling data.
0000: NOT SUPPORTED

0001: NOT SUPPORTED

0010: Page Read = 3, All other modes (Page program and Page
verify) = 2

0011: Page Read = 4, All other modes (Page program and Page
verify) = 2

0100: Page Read = 5, All other modes (Page program and Page
verify) = 2

0101: Page Read = 6, All other modes (Page program and Page
verify) = 3

0110: Page Read = 7, All other modes (Page program and Page
verify) = 3

0111: Page Read = 8, All other modes (Page program and Page
verify) = 4

1000: Page Read = 9, All other modes (Page program and Page
verify) = 4

1001: Page Read = 10, All other modes (Page program and Page
verify) = 4

1010: Page Read = 11, All other modes (Page program and Page
verify) = 5

1011: Page Read = 12, All other modes (Page program and Page
verify) = 5

1100: Page Read = 13, All other modes (Page program and Page
verify) = 6

1101: Page Read = 14, All other modes (Page program and Page
verify) = 6

1110: Page Read = 15, All other modes (Page program and Page
verify) = 6

1111: Page Read = 16, All other modes (Page program and Page
verify) = 7

NV_FREQRNG[8:5] is used for NVM0 and NV_FREQRNG[12:9] is
used for NVM1.

4:0 SW_ENVMREMAPSIZE 0x11 Size of the segment in eNVM which is to be remapped to location
0x00000000. This logically splits eNVM into a number of segments,
each of which may be used to store a different firmware image, for
example. The region sizes are shown in Table 21-9.

System Register Block

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 681

21.5.5.1 SW_ENVMREMAPSIZE Bit Combinations
Table 21-9. SW_ENVMREMAPSIZE

Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Remap Size

0 0 0 0 0 Reserved

0 0 0 0 1 Reserved

0 0 0 1 0 Reserved

0 0 0 1 1 Reserved

0 0 1 0 0 Reserved

0 0 1 0 1 Reserved

0 0 1 1 0 Reserved

0 0 1 1 1 Reserved

0 1 0 0 0 Reserved

0 1 0 0 1 Reserved

0 1 0 1 0 Reserved

0 1 0 1 1 Reserved

0 1 1 0 0 Reserved

0 1 1 0 1 16 KB

0 1 1 1 0 32 KB

0 1 1 1 1 64 KB

1 0 0 0 0 128 KB

1 0 0 0 1 256 KB

1 0 0 1 0 512 KB, reset value

21.5.6 eNVM Remap Base Address Control Register
Table 21-10. ENVM_REMAP_BASE_CR

Bit
Number

Name Reset
Value

Description

[31:19] Reserved 0

[18:1] SW_ENVMREMAPBASE 0 Offset within eNVM address space of the base address of
the segment in eNVM, which is to be remapped to location
0x00000000. If an eNVM protected region is defined to be
read-accessible by the Cortex-M3, then it is read-accessible
by Cortex-M3 at both physical and re-mapped addresses.
However, if a protected region is defined as writeable by
Cortex-M3, then it is writeable via the physical address, but
not via the re-mapped address. Bit 0 of this register is defined
as SW_ENVMREMAPENABLE. Bit 0 must be set to get the
remapping done with new addresses filled in this register.

0 SW_ENVMREMAPENABLE 0 0: eNVM remap not enabled. Bottom of eNVM is mapped to
address 0x00000000.
1: eNVM remap enabled. eNVM visible at 0x00000000 is a
remapped segment of the eNVM.

System Register Block

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 682

Bits [18:N] of this bus indicate the base address of the remapped segment. The value of N depends on the eNVM
remap section size, so that the base address is aligned according to an even multiple of the segment size. The power
of 2 size specified by SW_ENVMREMAPSIZE[4:0] (Table 21-9) defines how many bits of the base address are used.
For example, if the SW_ENVMREMAPSIZE[4:0] is 01111, this corresponds to a segment size of 64 KB. 64 KB is 2
to the power of 16. Therefore the value of N in this case, is 16. So the base address of the region, in this case, is
specified by SW_ENVMREMAPSIZE[18:16].

This register should only be written by Cortex-M3 processor firmware using 32-bit accesses. The behavior of the
system is undefined if other size accesses are used.

21.5.7 eNVM FPGA Fabric Remap Base Address Register
Table 21-11. ENVM_REMAP_FAB_CR

Bit
Number

Name Reset
Value

Description

[31:19] Reserved 0

[18:1] SW_ENVMFABREMAPBASE 0 Offset within eNVM address space of the base address
of the segment in eNVM, which is to be remapped to
location 0x00000000 for use by a soft processor in the
FPGA fabric.

0 SW_ENVMFABREMAPENABLE 0 0: eNVM fabric remap not enabled for accesses by fabric
master. The portion of eNVM visible in the eNVM window
at location 0x00000000 of a soft processor’s memory
space corresponds to the memory locations at the bottom
of eNVM.
1: eNVM fabric remap enabled. The portion of eNVM
visible at location 0x00000000 of a soft processor’s
memory space of is a remapped segment of eNVM.

Bits [18:N] of this bus indicate the base address of the remapped segment. The value of N depends on the eNVM
remap section size, so that the base address is aligned according to an even multiple of segment size. The power of
2 size specified by SW_ENVMREMAPSIZE[4:0] (Table 21-9) defines how many bits of base address are used. For
example, if the SW_ENVMREMAPSIZE[4:0] is 01111, this corresponds to a segment size of 64KB. 64KB is 2 to the
power of 16. Therefore the value of N in this case, is 16. So the base address of the region, in this case, is specified
by SW_ENVMREMAPSIZE[18:16].

This register should only be written by Cortex-M3 processor firmware using 32-bit accesses. The behavior of the
system is undefined if other size accesses are used.

21.5.8 Cache Configuration Register
Table 21-12. CC_CR

Bit
Number

Name Reset
Value

Description

[31:3] Reserved 0

2 CC_CACHE_LOCK 0 Allows the cache lock to be enabled. The allowed values:
0: Disabled
1: Enabled

1 CC_SBUS_WR_MODE 0 Allows debug mode SBUS writes to cache memory to be enabled.
The allowed values:
0: Disabled
1: Enabled

System Register Block

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 683

...........continued
Bit
Number

Name Reset
Value

Description

0 CC_CACHE_ENB 0 Allows the cache to be disabled. The allowed values:
0: Disabled
1: Enabled

21.5.9 Cache Region Control Register
Table 21-13. CC_REGION_CR

Bit
Number

Name Reset
Value

Description

[31:4] Reserved 0

3:0 CC_CACHE_REGION 0 Defines the cache region size. The bits have the following
definitions:
Bit 0: First (lower) slot of 128 MB (0–128 MB)

Bit 1: Second slot of 128 MB (128–256 MB)

Bit 2: Third slot of 128 MB (25–384 MB)

Bit 3: Fourth (upper) slot of 128 MB (384–512 MB)

For 128 MB configuration, only one bit out of four will be set to select one of the blocks as cacheable.

For 256 MB configuration, bits [1:0] are set to select the lower 256 MB as cacheable, bits [3:2] are set to select the
lower 256 MB as cacheable.

For 512 MB configuration all four bits are set to select entire 512 MB as cacheable.

21.5.10 Cache Flush Index Control Register
Table 21-14. CC_FLUSH_INDX_CR

Bit
Number

Name Reset
Value

Description

[31:6] Reserved 0

[5:0] CC_FLUSH_INDEX 0 Cache memory index to be flushed or invalidated is stored
in this register. For 8 KB and four-way associative memory,
INDEX_WIDTH will be 6 bits.

21.5.11 MSS DDR Bridge Buffer Timer Control Register
Table 21-15. DDRB_BUF_TIMER_CR

Bit
Number

Name Reset
Value

Description

[31:10] Reserved 0 —

[9:0] DDRB_TIMER 0x3FF 10-bit timer interface used to configure the timeout register in the
write buffer module. Once timer reaches the timeout value, a flush
request is generated by the flush controller and if response has
been received for previous write request from write arbiter, this
request is posted to the write arbiter. This register is common
for all buffers. The value in this register is in terms of number of
M3_CLK clocks.

System Register Block

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 684

21.5.12 MSS DDR Bridge Non-Bufferable Address Control Register
Table 21-16. DDRB_NB_ADDR_CR

Bit
Number

Name Reset
Value

Description

[31:16] Reserved 0

[15:0] DDRB_NB_ADDR 0xA000 Base address of a non-bufferable address region.
Bits [15:(N – 1)] of this signal are compared with AHB address
[31:(N + 15)] to check whether address is in non-bufferable region.
The value of N depends on the non-bufferable region size, so the
base address is defined according to DDRB_NB_SZ.

21.5.13 MSS DDR Bridge Non-Bufferable Size Control Register
Table 21-17. DDRB_NB_SIZE_CR

Bit
Number

Name Reset
Value

Description

[31:4] Reserved 0

[3:0] DDRB_NB_SZ 0x1 Size of non-bufferable address region [(2N – 1x64) KB]. The
region sizes are as shown in Table 21-18.

The following table lists the size of the non-bufferable region, given by the formula [(2N – 1x64)] KB.

Table 21-18. Non-Bufferable Region

Bit 0 Bit 1 Bit 2 Bit 3 N Non-Bufferable Region

0 0 0 0 0 No non-bufferable region

0 0 0 1 1 64 KB = (21 – 1 x 64) KB

0 0 1 0 2 128 KB = (22 – 1 x 64) KB

0 0 1 1 3 256 KB = (23 – 1 x 64) KB

0 1 0 0 4 512 KB = (24 – 1 x 64) KB

0 1 0 1 5 1 MB = (25 – 1 x 64) KB

0 1 1 0 6 2 MB = (26 – 1 x 64) KB

0 1 1 1 7 4 MB = (27 – 1 x 64) KB

1 0 0 0 8 8 MB= (28 – 1 x 64) KB

1 0 0 1 9 16 MB = (29 – 1 x 64) KB

1 0 1 0 10 32 MB = (210 – 1 x 64) KB

1 0 1 1 11 64 MB = (211 – 1 x 64) KB

1 1 0 0 12 128 MB = (212 – 1 x 64) KB

1 1 0 1 13 256 MB = (213 – 1 x 64) KB

1 1 1 0 14 512 MB = (214 – 1 x 64) KB

1 1 1 1 15 1 GB = (215 – 1 x 64) KB: Entire region is non-bufferable

System Register Block

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 685

21.5.14 MSS DDR Bridge Configuration Register
Table 21-19. DDRB_CR

Bit
Number

Name Reset
Value

Description

[31:24] Reserved 0

[23:20] DDR_IDC_MAP 0 Sets the DSG interface to DDR address space mapping mode 0–15.

[19:16] DDR_SW_MAP 0 Sets the AHB bus master to DDR address space mapping mode 0–15.

[15:12] DDR_HPD_MAP 0 Sets the HPDA master to DDR address space mapping mode 0–15.

[11:8] DDR_DS_MAP 0 Sets the DSG master to DDR address space mapping mode 0–15.

7 DDRB_BUF_SZ 0x1 Configures the write buffer and read buffer size as per DDR burst size.
This port is common for all buffers. IDC read buffer has fixed size of 32
bytes. Other buffers can be configured to 16-byte or 32-byte size.
0: Buffer size is configured to 16 bytes
1: Buffer size is configured to 32 bytes

6 DDRB_IDC_EN 0x1 Allows the read buffer for IDC interface in MSS DDR bridge to be disabled.
Allowed values:
0: Disabled
1: Enabled

5 DDRB_SW_REN 0x1 Allows the read buffer for AHB BUS master in MSS DDR bridge to be
disabled. Allowed values:
0: Disabled
1: Enabled

4 DDRB_SW_WEN 0x1 Allows the write combining buffer for AHB bus master in MSS DDR bridge
to be disabled. Allowed values:
0: Disabled
1: Enabled

3 DDRB_HPD_REN 0x1 Allows the read buffer for high performance DMA master in MSS DDR
bridge to be disabled. Allowed values:
0: Disabled
1: Enabled

2 DDRB_HPD_WEN 0x1 Allows the write combining buffer for high performance DMA master in
MSS DDR bridge to be disabled. Allowed values:
0: Disabled
1: Enabled

1 DDRB_DS_REN 0x1 Allows the read buffer for DSG master in MSS DDR bridge to be disabled.
Allowed values:
0: Disabled
1: Enabled

0 DDRB_DS_WEN 0x1 Allows write combining buffer for DSG master in MSS DDR bridge to be
disabled. Allowed values:
0: Disabled
1: Enabled

System Register Block

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 686

21.5.15 EDAC Configuration Register
Table 21-20. EDAC_CR

Bit
Number

Name Reset
Value

Description

[31:7] Reserved 0

6 CAN_EDAC_EN 0 Allows the EDAC for CAN to be disabled. Allowed values:
0: Disabled

1: Enabled

5 USB_EDAC_EN 0 Allows the EDAC for USB to be disabled. Allowed values:
0: Disabled

1: Enabled

4 MAC_EDAC_RX_EN 0 Allows the EDAC for Ethernet Rx RAM to be disabled. Allowed
values:
0: Disabled

1: Enabled

3 MAC_EDAC_TX_EN 0 Allows the EDAC for Ethernet Tx RAM to be disabled. Allowed
values:
0: Disabled

1: Enabled

2 Reserved 0

1 ESRAM1_EDAC_EN 0 Allows the EDAC for eSRAM1 to be disabled. Allowed values:
0: Disabled

1: Enabled

0 ESRAM0_EDAC_EN 0 Allows the EDAC for eSRAM0 to be disabled. Allowed values:
0: Disabled

1: Enabled

21.5.16 Master Weight Configuration Register 0
Table 21-21. MASTER_WEIGHT0_CR

Bit
Number

Name Reset
Value

Description

[31:30] Reserved 0

[29:25] SW_WEIGHT_PDMA 0 Configures the round robin weight for peripheral DMA master. It is
configurable from 1 to 32 (32 by default).

[24:20] SW_WEIGHT_FAB_1 0 Configures the round robin weight for fabric (FIC_1) master. It is
configurable from 1 to 32 (32 by default).

[19:15] SW_WEIGHT_FAB_0 0 Configures the round robin weight for fabric (FIC_0) master. It is
configurable from 1 to 32 (32 by default).

[14:10] SW_WEIGHT_GIGE 0 Configures the round robin weight for Ethernet master. It is
configurable from 1 to 32 (32 by default).

[9:5] SW_WEIGHT_S 0 Configures the round robin weight for S master. It is configurable
from 1 to 32 (32 by default).

System Register Block

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 687

...........continued
Bit
Number

Name Reset
Value

Description

[4:0] SW_WEIGHT_IC 0 Configures the round robin weight for IC master. It is configurable
from 1 to 32 (32 by default).

Note: The weight values are as given in Table 21-23.

21.5.17 Master Weight Configuration Register 1
Table 21-22. MASTER_WEIGHT1_CR

Bit
Number

Name Reset
Value

Description

[31:15] Reserved 0

[14:10] SW_WEIGHT_G 0 Configures the round robin weight for G master. It is configurable
from 1 to 32 (32 by default).

[9:5] SW_WEIGHT_USB 0 Configures the round robin weight for USB master. It is configurable
from 1 to 32 (32 by default).

[4:0] SW_WEIGHT_HPDMA 0 Configures the round robin weight for HPDMA master. It is
configurable from 1 to 32 (32 by default).

Important: The weight values are as given in Table 21-23.

The following table provides weight values, where <master> is IC, S, GIGE, FIC_0, FIC_1, PDMA, HPDMA, USB, or
G.

Table 21-23. Programmable Weight Values

SW_WEIGHT_<master> Weight

0 32

1 1

2 2

3 3

. .

. .

. .

28 28

29 29

30 30

31 31

System Register Block

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 688

21.5.18 Software Interrupt Register
Table 21-24. SOFT_IRQ_CR

Bit Number Name Reset Value Description

[31:1] Reserved 0

0 SOFTINTERRUPT 0 1: FIIC SOFTINTERRUPT is asserted
0: SOFTINTERRUPT signal is cleared

21.5.19 Software Reset Control Register
Table 21-25. SOFT_RESET_CR

Bit
Number

Name Reset
Value

Description

[31:27] Reserved 0

26 MDDR_DDRFIC_SOFTRESET 0x1 0: Releases DDR_FIC controller from reset
1: Keeps DDR_FIC controller in reset

25 MDDR_CTLR_SOFTRESET 0x1 0: Releases MDDR controller from reset
1: Keeps MMDR controller in reset

24 MSS_GPOUT_31_24_SOFTRESE
T

0x1 0: Releases GPIO_OUT[31:24] from reset
1: Keeps GPIO_OUT[31:24] in reset

23 MSS_GPOUT_23_16_SOFTRESE
T

0x1 0: Releases GPIO_OUT[23:16] from reset
1: Keeps GPIO_OUT[23:16] in reset

22 MSS_GPOUT_15_8_SOFTRESET 0x1 0: Releases GPIO_OUT[15:8] from reset
1: Keeps GPIO_OUT[15:8] in reset

21 MSS_GPOUT_7_0_SOFTRESET 0x1 0: Releases GPIO_OUT[7:0] from reset
1: Keeps GPIO_OUT[7:0] in reset

20 MSS_GPIO_SOFTRESET 0x1 0: Releases the GPIO from reset, as long as it isn’t
being held in reset by some other means
1: Keeps the GPIO to be held in reset

Asserting this soft reset bit holds APB register, GPIO
input, and interrupt generation logic. This reset does
not affect the GPIO OUT logic

19 FIC_1_SOFTRESET 0x1 0: Releases FIC _1 from reset
1: Keeps FIC_1 in reset

18 FIC_0_SOFTRESET 0x1 0: Releases FIC _0from reset
1: Keeps FIC_0 in reset

17 HPDMA_SOFTRESET 0x1 0: Releases HPDMA from reset
1: Keeps HPDMA n reset

16 FPGA_SOFTRESET 0x1 0: Releases FPGA from reset. This bit controls the
MSS_RESET_N_M2F signal to release the FPGA
from reset.
1: Keeps FPGA in reset

15 COMBLK_SOFTRESET 0 0: Releases COMM_BLK from reset
1: Keeps COMMUNICATION BLOCK (COMM_BLK) in
reset

14 USB_SOFTRESET 0x1 0: Releases USB from reset
1: Keeps USB in reset

System Register Block

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 689

...........continued
Bit
Number

Name Reset
Value

Description

13 CAN_SOFTRESET 0x1 0: Releases CAN from reset
1: Keeps CAN in reset

12 I2C1_SOFTRESET 0x1 0: Releases I2C_1 from reset
1: Keeps I2C_1 in reset

11 I2C0_SOFTRESET 0x1 0: Releases I2C_0 from reset
1: Keeps I2C_0 in reset

10 SPI1_SOFTRESET 0x1 0: Releases SPI1 from reset
1: Keeps SPI1 in reset

9 SPI0_SOFTRESET 0x1 0: Releases SPI0 from reset
1: Keeps SPI0in reset

8 MMUART1_SOFTRESET 0x1 0: Releases MMUART_1 from reset
1: Keeps MMUART_1 in reset

7 MMUART0_SOFTRESET 0x1 0: Releases MMUART_0 from reset
1: Keeps MMUART_0 in reset

6 TIMER_SOFTRESET 0x1 0: Releases the system timer from reset
1: Keeps the system timer in reset

5 PDMA_SOFTRESET 0x1 0: Releases the PDMA from reset
1: Keeps the PDMA in reset

4 MAC_SOFTRESET 0x1 0: Releases the Ethernet MAC from reset
1: Keeps the Ethernet MAC in reset

3 ESRAM1_SOFTRESET 0 0: Releases the eSRAM_1 memory controller from
reset
1: Keeps the eSRAM_1 memory controller in reset

2 ESRAM0_SOFTRESET 0 0: Releases the eSRAM_0 memory controller from
reset
1: Keeps the eSRAM_0 memory controller in reset

1 ENVM1_SOFTRESET 0 0: Releases the eNVM_1memory controller from reset
1: Keeps the eNVM_1 memory controller in reset

0 ENVM0_SOFTRESET 0 0: Releases the eNVM_0 memory controller from
reset
1: Keeps the eNVM_0 memory controller in reset

Reset values in the preceding table are the default values of the bits when peripherals are not configured using the
software. If the peripheral is enabled using the software then the default reset value for that bit is 0x0.

Important: Do not change these register fields dynamically for 005 and 010 devices, see 21.5.1. System
Registers Behavior for M2S005/010 Devices.

System Register Block

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 690

21.5.20 M3 Configuration Register
Table 21-26. M3_CR

Bit
Number

Name Reset
Value

Description

[31:29] Reserved 0

28 M3_MPU_DISABLE 0 When set, disables the memory protection unit (MPU) within the
Cortex-M3 processor.

[27:26] STCLK_DIVISOR 0x3 Configures the amount of division to be performed on M3_CLK, in
order to generate the STCLK input for the Cortex-M3 processor.
This is used to control the frequency of STCLK.
00: M3_CLK/4
01: M3_CLK/8
10: M3_CLK/16
11: M3_CLK/32

[25:0] STCALIB[25:0] 0x2000000 Used as the STCALIB input for the Cortex-M3 processor. It
determines the rollover value for the internal SysTick timer of
the Cortex-M3 processor. The bit definitions for this field are as
follows:
STCALIB[25] – NOREF bit of SysTick Calibration Value Register;
1 indicates STCLK is not provided.

STCALIB[24] – SKEW bit of SysTick Calibration Value Register; 1
indicates calibration value is not exactly 10 ms.

STCALIB[23:0] – TENMS field of SysTick Calibration Value
Register; reload value to use for 10 ms timing.

Note: Do not change these register fields dynamically for 005 and 010 devices, see 21.5.1. System Registers
Behavior for M2S005/010 Devices.

21.5.21 Fabric Interface Control (FIC) Register
Table 21-27. FAB_IF_CR

Bit
Number

Name Reset
Value

Description

[31:10] Reserved 0

[9:4] SW_FIC_REG_SEL 0x38 Indicates whether a specific fabric region is accessible by FIC_0
or FIC_1. This register should not be changed during operation.
0: Fabric region associated with FIC_0

1: Fabric region associated with FIC_1

By default, fabric region 0, 1, 2 are accessible through FIC_0 and
regions 3, 4, 5 are accessible through FIC_1.

These bits are driven into the AHB bus in order to allocate a
specific memory region to either FIC_0 or FIC_1.

3 FAB1_AHB_MODE 0 Controls whether the FIC_1 fabric interface supports AHB mode
or APB mode. Allowed values:
0: Supports APB mode

1: Supports AHB mode

System Register Block

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 691

...........continued
Bit
Number

Name Reset
Value

Description

2 FAB0_AHB_MODE 0 Controls whether FIC_0 fabric interface supports AHB mode or
APB mode. Allowed values:
0: Supports APB mode

1: Supports AHB mode

1 FAB1_AHB_BYPASS 0 0: FIC_1 is configured for synchronous bridging
1: FIC_1 is configured in bypass mode, if clock ratio is 1:1 and if in
AHB mode

0 FAB0_AHB_BYPASS 0 0: FIC_0 is configured for synchronous bridging
1: FIC_0 is configured in bypass mode, if clock ratio is 1:1 and if in
AHB mode

Note: Do not change these register fields dynamically for 005 and 010 devices, see 21.5.1. System Registers
Behavior for M2S005/010 Devices.

21.5.22 Loopback Control Register
Table 21-28. LOOPBACK_CR

Bit
Number

Name Reset
Value

Description

[31:4] Reserved 0

3 MSS_GPIOLOOPBACK 0 Controls whether internal loopback on the MSS GPIO is
enabled. Allowed values:
0: No internal loopback

1: MSS GPIO outputs are looped back to MSS GPIO inputs

2 MSS_I2CLOOPBACK 0 Controls whether internal loopback between I2C_0 and I2C_1
is enabled. Allowed values:
0: No internal loopback

1: Traffic from I2C_0 is looped back to I2C_ and vice versa

1 MSS_SPILOOPBACK 0 Controls whether internal loopback between SPI_0 and SPI_1
is enabled. Allowed values:
0: No loopback

1: SPI_0 Tx is looped back to SPI_1 Rx. SPI_1 Tx is looped
back to SPI_0 Rx

0 MSS_MMUARTLOOPBACK 0 0: No loopback between MMUART_0 and MMUART_1
1: MMUART_0 Tx is looped back to MMUART_1 Rx
MMUART_1 Tx is looped back to MMUART_0 Rx

Note: Do not change these register fields dynamically for 005 and 010 devices, see 21.5.1. System Registers
Behavior for M2S005/010 Devices.

System Register Block

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 692

21.5.23 GPIO System Reset Control Register
Table 21-29. GPIO_SYSRESET_SEL_CR

Bit
Number

Name Reset
Value

Description

[31:4] Reserved 0

3 MSS_GPIO_31_24_SYSRESET_SEL 0 0: Selects the combination of either
power-on reset or the MSS_GPIO_RESET_N signal
from the FPGA fabric to reset the GPIO
1: Causes GPIO[31:24] to be held in reset by the soft
reset signal MSS_GPIO_31_24_SOFT_RESET

2 MSS_GPIO_23_16_SYSRESET_SEL 0 0: Selects the combination of either
power-on reset or the MSS_GPIO_RESET_N signal
from the FPGA fabric to reset the GPIO
1: Causes GPIO[23:16] to be held in reset by the soft
reset signal MSS_GPIO_23_16_SOFT_RESET

1 MSS_GPIO_15_8_SYSRESET_SEL 0 0: Selects the combination of either power-on reset
or the MSS_GPIO_RESET_N signal from the FPGA
fabric to reset the GPIO
1: Causes GPIO[15:8] to be held in reset by the soft
reset signal MSS_GPIO_15_8_SOFT_RESET

0 MSS_GPIO_7_0_SYSRESET_SEL 0 0: Selects the combination of either power-on reset
or the MSS_GPIO_RESET_N signal from the FPGA
fabric to reset the GPIO
1: Causes GPIO[7:0] to be held in reset by the soft
reset signal MSS_GPIO_7_0_SOFT_RESET

Note: Do not change these register fields dynamically for 005 and 010 devices, see 21.5.1. System Registers
Behavior for M2S005/010 Devices.

21.5.24 GPIO Input Source Select Control Register
Table 21-30. GPIN_SRC_SEL_CR

Bit
Number

Name Reset
Value

Description

[31:0] MSS_GPINSOURCE 0 Used as select signal to generate a GPIO input
signal by selecting two output signals from different
IOMUXCELL or signals from I/O pads.

Note: Do not change these register fields dynamically for 005 and 010 devices, see 21.5.1. System Registers
Behavior for M2S005/010 Devices.

21.5.25 MDDR Configuration Register
Table 21-31. MDDR_CR

Bit
Number

Name Reset
Value

Description

[31:4] Reserved 0

3 PHY_SELF_REF_EN 0 Indicates that the DRAM has been put into self-refresh. This is
used for automatic locking of the codes during intermediate runs
for DDRC. Not used in non-DDRIO modes.

System Register Block

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 693

...........continued
Bit
Number

Name Reset
Value

Description

2 F_AXI_AHB_MODE 0 Used by the SMC_FIC, DDR_FIC, and DDR CTL to select the
AXI/AHB interface in the fabric. Allowed values:
0: AHB interface is selected

1: AXI interface is selected

1 SDR_MODE 0 Used to select whether the MSS AXI interface accesses DDR
memory or SDR memory (or other memory types) inside the
fabric. Allowed values:
0: DDR memory is selected

1: SDR memory or other memory type is selected

0 MDDR_CONFIG_LOCAL 0x1 Configures whether the MSS AHBTOAPB2 bridge can directly
access the APB slave within the MDDR subsystem or whether
the APB slave is connected to the fabric. Allowed values:
0: AHBTOAPB2 bridge cannot access MDDR APB slave

1: AHBTOAPB2 bridge can access MDDR APB slave

Reset signal for this bit is CC_RESET_N.

Note: Do not change these register fields dynamically for 005 and 010 devices, see 21.5.1. System Registers
Behavior for M2S005/010 Devices.

21.5.26 USB I/O Input Select Control Register
Table 21-32. USB_IO_INPUT_SEL_CR

Bit
Number

Name Reset
Value

Description

[31:2] Reserved 0

[1:0] USB_IO_INPUT_SEL 0 Selects one of the four USB data interfaces from IOMUXCELLs
and I/O pads. Depending on the device and package, not all
interfaces may be available. Allowed values:
00: USBA interface can be connected to USB

01: USBB interface can be connected to USB

10: USBC interface can be connected to USB

11: USBD interface can be connected to USB

Note: Do not change these register fields dynamically for 005 and 010 devices, see 21.5.1. System Registers
Behavior for M2S005/010 Devices.

21.5.27 Peripheral Clock MUX Select Control Register
Table 21-33. PERIPH_CLK_MUX_SEL_CR

Bit
Number

Name Reset
Value

Description

[31:3] Reserved 0

System Register Block

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 694

...........continued
Bit
Number

Name Reset
Value

Description

2 TRACECLK_DIV2_SEL 0 Selects whether the Cortex-M3 processor trace clock source is
M3_CLK or M3_CLK/2. Allowed values:
0: M3_CLK selected as source of TRACECLKIN_I

1: M3_CLK/2 selected as source of TRACECLKIN_I

1 SPI1_SCK_FAB_SEL 0 Selects the SPI1_SCK from the fabric or I/O pads. Allowed
values:
0: SPI1_SCK clock from I/O pads is selected and fed to SPI1

1: SPI1_SCK clock from the fabric is selected and fed to SPI1

0 SPI0_SCK_FAB_SEL 0 Selects the SPI0_SCK from the fabric or I/O pads. Allowed
values:
0: SPI0_SCK clock from I/O pads is selected and fed to SPI0

1: SPI0_SCK clock from fabric is selected and fed to SPI0

Note: Do not change these register fields dynamically for 005 and 010 devices, see 21.5.1. System Registers
Behavior for M2S005/010 Devices.

21.5.28 Watchdog Configuration Register
Table 21-34. WDOG_CR

Bit
Number

Name Reset
Value

Description

[31:2] Reserved 0

1 WDOGMODE 0 Resets/interrupts the mode selection bit from System Register.
This value can be read from the WDOGCONTROL register
within the WatchDog module.

0 WDOGENABLE 0 Enables the bit for Watchdog module. The status of this bit
can be monitored in the WDOGENABLE register within the
WatchDog module.

Note: Do not change these register fields dynamically for 005 and 010 devices, see 21.5.1. System Registers
Behavior for M2S005/010 Devices.

Information about other WatchDog system registers is given in Table 21-96 and Table 21-97.

21.5.29 MDDR I/O Calibration Control Register
Table 21-35. MDDR_IO_CALIB_CR

Bit
Number

Name Reset
Value

Description

[31:15] Reserved 0

14 CALIB_LOCK 0 Used in the DDRIO calibration block as an override to lock the
codes during intermediate runs. When the firmware receives
CALIB_INTRPT, it may choose to assert this signal by prior
knowledge of the traffic without going through the process of
putting the DDR into self refresh. This bit is only read/write.

13 CALIB_START 0 Used in the DDRIO calibration block and indicates that rerun of
the calibration state machine is required.

System Register Block

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 695

...........continued
Bit
Number

Name Reset
Value

Description

12 CALIB_TRIM Used in the DDRIO calibration block and indicates the override
of the calibration value from the PC code/programmed code
values.

[11:6] NCODE 0 Used in the DDRIO calibration block and indicates DPC override
NCODE from flash. This can also be overwritten from the
firmware.

[5:0] PCODE 0 Used in the DDRIO calibration block and indicates PC override
PODE from flash. This can also be overwritten from the
firmware.

21.5.30 EDAC Interrupt Enable Control Register
Table 21-36. EDAC_IRQ_ENABLE_CR

Bit
Number

Name Reset
Value

Description

[31:15] Reserved 0

14 MDDR_ECC_INT_EN 0 Allows the error EDAC for MDDR status update to be disabled.
Allowed values:
0: Disabled

1: Enabled

13 CAN_EDAC_2E_EN 0 Allows the 2-bit error EDAC for CAN status update to be
disabled. Allowed values:
0: Disabled

1: Enabled

12 CAN_EDAC_1E_EN 0 Allows the 1-bit error EDAC for CAN status update to be
disabled. Allowed values:
0: Disabled

1: Enabled

11 USB_EDAC_2E_EN 0 Allows the 2-bit error EDAC for USB status update to be
disabled. Allowed values:
0: Disabled

1: Enabled

10 USB_EDAC_1E_EN 0 Allows the 1-bit error EDAC for USB status update to be
disabled. Allowed values:
0: Disabled

1: Enabled

9 MAC_EDAC_RX_2E_EN 0 Allows the 2-bit error EDAC for Ethernet Rx RAM status update
to be disabled. Allowed values:
0: Disabled

1: Enabled

System Register Block

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 696

...........continued
Bit
Number

Name Reset
Value

Description

8 MAC_EDAC_RX_1E_EN 0 Allows the 1-bit error EDAC for Ethernet Rx RAM status update
to be disabled. Allowed values:
0: Disabled

1: Enabled

7 MAC_EDAC_TX_2E_EN 0 Allows the 2-bit error EDAC for Ethernet Tx RAM status update
to be disabled. Allowed values:
0: Disabled

1: Enabled

6 MAC_EDAC_TX_1E_EN 0 Allows the 1-bit error EDAC for Ethernet Tx RAM status update
to be disabled. Allowed values:
0: Disabled

1: Enabled

5 Reserved 0

4 Reserved 0

3 ESRAM1_EDAC_2E_EN 0 Allows the 2-bit error EDAC for eSRAM1 status update to be
disabled. Allowed values:
0: Disabled

1: Enabled

2 ESRAM1_EDAC_1E_EN 0 Allows the 1-bit error EDAC for eSRAM1 status update to be
disabled. Allowed values:
0: Disabled

1: Enabled

1 ESRAM0_EDAC_2E_EN 0 Allows the 2-bit error EDAC for eSRAM0 status update to be
disabled. Allowed values:
0: Disabled

1: Enabled

0 ESRAM0_EDAC_1E_EN 0 Allows the 1-bit error EDAC for eSRAM0 status update to be
disabled. Allowed values:
0: Disabled

1: Enabled

Note: Do not change these register fields dynamically for 005 and 010 devices, see 21.5.1. System Registers
Behavior for M2S005/010 Devices.

21.5.31 USB Configuration Register
Table 21-37. USB_CR

Bit
Number

Name Reset
Value

Description

[31:2] Reserved 0 —

System Register Block

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 697

...........continued
Bit
Number

Name Reset
Value

Description

1 USB_DDR_SELECT 0 Used to configure USB works in Single Data Rate (SDR)
mode or Double Data Rate (DDR) mode. Allowed values:
0: SDR mode is selected

1: DDR mode is selected

0 USB_UTMI_SEL 0 Used to configure the USB interface as ULPI PHY or UTMI
interface. Allowed values:
0: ULPI PHY interface is selected

1: UTMI interface is selected

21.5.32 eSRAM PIPELINE Configuration Register
Table 21-38. ESRAM_PIPELINE_CR

Bit
Number

Name Reset
Value

Description

[31:1] Reserved 0

0 ESRAM_PIPELINE_ENABLE 0x1 Controls the pipeline in the read path of eSRAM memory.
Allowed values:
0: Pipeline is bypassed

1: Pipeline is present in the memory read path

21.5.33 MSS Interrupt Enable Control Register
Table 21-39. MSS_IRQ_ENABLE_CR

Bit
Number

Name Reset
Value

Description

[31:20] Reserved 0

[19:10] DDRB_INTERRUPT_EN 0x3FF Used to mask the MSS DDR bridge interrupt to the Cortex-M3
processor

[9:7] CC_INTERRUPT_EN 0x7 Used to mask the cache interrupt to the Cortex-M3 processor

[6:0] SW_INTERRUPT_EN 0x7F Used to mask the AHB bus interrupt to the Cortex-M3
processor

Note: Do not change these register fields dynamically for 005 and 010 devices, see 21.5.1. System Registers
Behavior for M2S005/010 Devices.

21.5.34 RTC Wake Up Configuration Register
Table 21-40. RTC_WAKEUP_CR

Bit
Number

Name Reset
Value

Description

[31:3] Reserved 0

2 RTC_WAKEUP_C_EN 0 Enables RTC_WAKEUP interrupt to the system controller

1 RTC_WAKEUP_FAB_EN 0 Enables the RTC_WAKEUP interrupt to the fabric

System Register Block

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 698

...........continued
Bit
Number

Name Reset
Value

Description

0 RTC_WAKEUP_M3_EN 0 Enables the RTC_WAKEUP interrupt to the Cortex-M3
processor

Note: Do not change these register fields dynamically for 005 and 010 devices, see 21.5.1. System Registers
Behavior for M2S005/010 Devices.

21.5.35 MAC Configuration Register
Table 21-41. MAC_CR

Bit
Number

Name Reset
Value

Description

[31:9] Reserved 0

[8:5] RGMII_TXC_DELAY_SEL 0 Specifies how many delay taps the RGMII transmit clock
passes through 0 to 15

[3:2] ETH_PHY_MODE 0 Indicates the Ethernet PHY mode. Allowed values:
000: RMII

001: Reserved

010: TBI

011: MII

100: GMII

Other values: Reserved

[1:0] ETH_LINE_SPEED 0 Indicates the Ethernet line speed. Allowed values:
00: 10 Mbps

01: 100 Mbps

10: 1,000 Mbps

11: Reserved

21.5.36 MSS DDR PLL Status Low Configuration Register
This register is to be configured by flash bits only and you should not write to it while the source clock is active.

Table 21-42. MSSDDR_PLL_STATUS_LOW_CR

Bit
Number

Name Reset
Value

Description

[31:30] Reserved 0 —

[29:26] FACC_PLL_LOCKCNT 0 Configures the MPLL LOCK counter value given by (2^ binary
value + 5). For example, if the binary value is 0000, the LOCK
counter value is 32, and if binary value is 1111, then its value is
1,048,576.

System Register Block

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 699

...........continued
Bit
Number

Name Reset
Value

Description

[25:23] FACC_PLL_LOCKWIN 0 Configures the MPLL phase error window for LOCK assertion as a
fraction of the divided reference period. Values are at typical PVT
only and are not PVT compensated.
000: 500 ppm

100: 8000 ppm

001: 1000 ppm

101: 16000 ppm

010: 2000 ppm

110: 32000 ppm

011: 4000 ppm

111: 64000 ppm

[22:19] FACC_PLL_RANGE 0 Configures the MPLL filter range. The bit definitions are in
21.5.36.1. FACC_PLL_RANGE.

[18:16] FACC_PLL_DIVQ 0x2 Configures the MPLL output divider value in order to generate the
DDR clock. Output divider values are given by:
000: Divided by 1

001: Divided by 2

010: Divided by 4

011: Divided by 8

100: Divided by 16

101: Divided by 32

While it is possible to configure the MPLL output divider as ÷1,
this setting must not be used when the DDR is operational. This is
to ensure that the clock to the DDR has an even mark:space ratio.

[15:6] FACC_PLL_DIVF 0x2 Configures the MPLL feedback divider value, which is given by
the binary value +1.
The binary value ranges from 0000000000, which is the divisor
value of 1, to 1111111111, which is the divisor value of 1,024.

[5:0] FACC_PLL_DIVR 0x1 Configures the MPLL reference divider value, which is given by
binary value +1. For example, if the value is 000000, then the
divisor value is 1 (000000 + 1). Both REFCLK and post-divide
REFCLK must be within the range specified in the SmartFusion 2
datasheet.

Note: Do not change these register fields dynamically for 005 and 010 devices, see 21.5.1. System Registers
Behavior for M2S005/010 Devices.

21.5.36.1 FACC_PLL_RANGE
Table 21-43. FACC_PLL_RANGE

Bits[22:19] PLL Range

0000 Bypass

0111 18–29 MHz

System Register Block

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 700

...........continued
Bits[22:19] PLL Range

0001 1–1.6 MHz

1000 29–46 MHz

0010 1.6–2.6 MHz

1001 46–75 MHz

0011 2.6–4.2 MHz

1010 75–120 MHz

0100 4.2–6.8 MHz

1011 120–200 MHz

0101 6.8–11 MHz

0110 11–18 MHz

21.5.37 MSS DDR PLL Status High Configuration Register
Table 21-44. MSSDDR_PLL_STATUS_HIGH_CR

Bit
Number

Name Reset
Value

Description

[31:13] Reserved 0 —

[12:8] FACC_PLL_SSMF 0 Drives the spread spectrum modulation frequency (SSMF)
input of the MPLL. The only allowable value to be
programmed in this field is 0, as spread spectrum mode is
not supported for the MPLL.

[7:6] FACC_PLL_SSMD 0 Drives the spread spectrum modulation depth (SSMD) input
of the MPLL. The only allowable value to be programmed in
this field is 0, as spread spectrum mode is not supported for
the MPLL.

5 FACC_PLL_SSE 0 Drives the SSE input of the MPLL. The only allowable value
to be programmed in this field is 0, as spread spectrum mode
is not supported for the MPLL.

4 FACC_PLL_PD 0 A PD signal is provided for lowest quiescent current. When
PD is asserted, the MPLL powers down, and outputs are
Low. PD has precedence over all other functions.

2 FACC_PLL_MODE_3V3 0x1 Configures MPLL analog operational voltage.
1: 3.3 V

0: 2.5 V

1 FACC_PLL_MODE_1V2 0x1 Configures the PLL core voltage.
1: 1.2 V

Do not write to this field.

0 FACC_PLL_BYPASS 0 Powers down the MPLL core and bypasses it such that
PLLOUT tracks REFCLK.

Note: Do not change these register fields dynamically for 005 and 010 devices, see 21.5.1. System Registers
Behavior for M2S005/010 Devices.

System Register Block

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 701

21.5.38 MSS DDR Fabric Alignment Clock Controller (FACC) Configuration Register 1
Table 21-45. MSSDDR_FACC1_CR

Bit
Number

Name Reset
Value

Description

[31:28] Reserved 0 —

27 FACC_FAB_REF_SEL 0 Selects the source of the reference clock to be supplied to the
MPLL. Allowed values:
0: 50 MHz RC

1: Fabric clock (CLK_BASE)

26 CONTROLLER_PLL_INIT 0x1 Indicates whether the FACC is to be configured for PLL
initialization mode. The user can write to it when it detects
that the MPLL has lost lock and it wants to switch to a known
good clock source until the MPLL comes back into lock. This
causes the 50 MHz clock to be selected through to the MSS. It
also interrupts the System Controller, which then waits for the
MPLL to come into lock before clearing this bit and thereby
selecting the MPLL output as the MSS clock source again.
The allowed values of this bit are:
0: The corresponding FACC multiplexer select lines or
clock gate control line co mes from the normal run-time
configuration signals (from relevant MSS system register bits).

1: The corresponding FACC multiplexer select lines or clock
gate control line are overridden by hardwired PLL initialization
selection, as described below:

– Override the four no-glitch multiplexers related to the
aligned clocks, so that they select CLK_STANDBY as
the source of M3_CLK, APB_0_CLK, APB_0_CLK and
DDR_SMC_FIC_CLK.

– Override the selection of the FACC standby multiplexer, so
that it selects the RCOSC_25_50MHZ clock as the source of
CLK_STANDBY.

– Override the selection of the FACC reference multiplexer,
so that it selects CLK_BASE clock as the source of
MPLL_REF_CLK.

– Override the value of the PLL bypass configuration signal,
so that it forces the MPLL bypass path not to be used.

– Force MDDR_CLK to be gated off.

25 PERSIST_CC 0 Feeds into the MSS Reset Controller. Based on the value
of PERSIST_CC, the Reset Controller asserts a reset
(CC_RESET_N) to the FACC (which inverts it and passes it
on to the PLL as MSSDDR_PLL_RESET), either on every
MSS system reset or just on power-up reset.
This field is to be configured using flash bits. Do not write to
this field. The only allowable value for this bit is 1. The reset
signal for this register is PORESET_N.

[21:19] DDR_FIC_DIVISOR 0 Indicates the ratio between CLK_A and DDR_SMC_FIC_CLK.
The user can write to this field dynamically during run time,
even when the source clock is active. The allowed values are
listed in Table 21-46.

System Register Block

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 702

...........continued
Bit
Number

Name Reset
Value

Description

[18:16] FIC_1_DIVISOR 0 Indicates the ratio between CLK_A and the clock being used
in the fabric, to clock the soft IP block which is interfacing to
FIC_1 of the MSS. The user can write to this field dynamically
during run time, even when the source clock is active. The
allowed ratios for CLK_A:fabric clock (FIC_1) is listed in Table
21-46.

[15:13] FIC_0_DIVISOR 0 Indicates the ratio between CLK_A and the clock being used
in the fabric, to clock the soft IP block which is interfacing to
FIC_0 of the MSS. The user can write to this field dynamically
during run time, even when the source clock is active. The
allowed ratios for CLK_A:fabric clock (FIC_0) are listed in
Table 21-46.

12 FACC_GLMUX_SEL 0 Contains the select line for the four no-glitch multiplexers
within the FACC, which are related to the aligned clocks. All
four of these multiplexers are switched by one signal. Allowed
values:
1: M3_CLK, APB_0_CLK, APB_1_CLK, DDR_SMC_FIC_CLK
all driven from CLK_STANDBY

0: M3_CLK, APB_0_CLK, APB_1_CLK, DDR_SMC_FIC_CLK
all driven from stage B dividers

Configure this field using flash bits. Do not write to this field.

[11:9] M3_CLK_DIVISOR 0 Indicates the ratio between CLK_A and M3_CLK. The user
can write to this field dynamically during run time, even when
the source clock is active.

8 DDR_CLK_EN 0 Determines whether or not the clock to the MDDR block is to
be gated off. Allowed values:
0: MDDR_CLK is gated off

1: MDDR_CLK is allowed to propagate through to MDDR
block

Do not write to this field dynamically while the source clock is
active.

[7:5] APB1_DIVISOR 0 Indicates the ratio between CLK_A and APB_1_CLK. The
user can write to this field dynamically during run time, even
when the source clock is active. The allowed values are
described in Table 21-46.

[4:2] APB0_DIVISOR 0 Indicates the ratio between CLK_A and APB_0_CLK. The
user can write to this field dynamically during run time, even
when the source clock is active. The allowed values are
described in Table 21-46.

System Register Block

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 703

...........continued
Bit
Number

Name Reset
Value

Description

[1:0] DIVISOR_A 0 Indicates the ratio between CLK_SRC and CLK_A. Allowed
values:
00: 1:1

01: 2:1

10: 3:1

11: Reserved

Configure this field statically. Do not write to this field while the
source clock is active.

Note: Do not change these register fields dynamically for 005 and 010 devices, see 21.5.1. System Registers
Behavior for M2S005/010 Devices.

21.5.38.1 Clock Ratio
Table 21-46. Clock Ratio

Bits Clock Ratio

000 1:1

001 2:1

010 4:1

100 8:1

101 16:1

110 32:1

Other values Reserved

21.5.39 MSS DDR Fabric Alignment Clock Controller Configuration Register 2
Table 21-47. MSSDDR_FACC2_CR

Bit
Number

Name Reset
Value

Description

[31:14] Reserved 0 —

13 MSS_XTAL_RTC_EN 0x1 Enable signal for auxiliary crystal oscillator (RTC crystal oscillator)

12 MSS_XTAL_EN 0x1 Enables the signal for the main crystal oscillator. If the main crystal
oscillator is selected as the MSS Flash*Freeze clock source, this bit
must be asserted at all times (even when not in Flash*Freeze mode).
1: Enable

0: Disable

11 MSS_CLK_ENVM_EN 0x1 Enables internal eNVM RC oscillator. Configure this field statically. Do
not write to this field while the source clock is active.

10 MSS_1MHZ_EN 0x1 Enables the signal for the 1 MHz RC oscillator. If the 1 MHz RC
oscillator is selected as the MSS Flash*Freeze clock source, this bit
must be asserted at all times (even when not in Flash*Freeze mode).
1: Enable

0: Disable

System Register Block

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 704

...........continued
Bit
Number

Name Reset
Value

Description

9 MSS_25_50MHZ_EN 0x1 Enables the signal for the 50 MHz RC oscillator. If the 50 MHz RC
oscillator is selected as the MSS Flash*Freeze clock source, this bit
must be asserted at all times (even when not in Flash*Freeze mode).
1: Enable

0: Disable

[8:6] FACC_STANDBY_SEL 0 Contains the select lines for the three 2 to 1 no-glitch multiplexers,
which implement the 4 to 1 no-glitch standby MUX function. This is
used to allow one of four possible clocks to proceed through to the
MSS during FACC PLL Initialization Time. There are two MUXes in
the first rank, and these feed into a third MUX in the second rank.
Bit 6 feeds into one of the first rank 2 to 1 MUXes (Standby MUX 0)
and is defined as follows:

0: MUX 0 output comes from RCOSC_25_50MHZ

1: MUX 0 output comes from XTLOSC_CLK

Bit 7 feeds into one of the first rank 2 to 1 MUXes (Standby MUX 1).
Bit 7 must always be 0 and defined as follows:

0: MUX 1 output comes from RCOSC_1MHZ

Bit 8 feeds into the second rank 2 to 1 MUX (Standby MUX 2) and is
defined as follows:

0: MUX 2 output comes from MUX 0

1: MUX 2 output comes from MUX 1

Do not write to this field while the standby clock is active.

5 FACC_PRE_SRC_SEL 0 Must always be 0, and defined as follows:
0: RCOSC_1MHZ is fed through to the source no-glitch clock
multiplexer.

System Register Block

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 705

...........continued
Bit
Number

Name Reset
Value

Description

[4:2] FACC_SRC_SEL 0 Contains the select lines for the three 2 to 1 no-glitch multiplexers,
which implement a 4 to 1 no-glitch source MUX function. There are
two MUXes in the first rank, and these feed into a third MUX in the
second rank.
Bit 2 feeds into one of the first rank 2 to 1 MUXes (Source MUX 0)
and is defined as follows:

0: MUX 0 output comes from RCOSC_25_50MHZ

1: MUX 0 output comes from XTLOSC_CLK

Bit 3 feeds into one of the first rank 2 to 1 MUXes (Source MUX 1)
and is defined as follows:

0: MUX 1 output comes from RCOSC_1MHZ

1: MUX 1 output comes from MPLL_OUT_CLK

Bit 4 feeds into the second rank 2 to 1 MUX (Source MUX 2) and is
defined as follows:

0: MUX 2 output comes from MUX 0

1: MUX 2 output comes from MUX 1

When switching any of the no-glitch MUXes, both the clock being
switched from and the clock being switched to must be running. Do
not write to this field while the source clock is active.

[1:0] RTC_CLK_SEL 0 Indicates which of the possible clocks are to be configured as the
source of the MSS RTC clock. The allowed values are as follows:
00: RTC_CLK comes from XTLOSC_CLK

01: RTC_CLK comes from RCOSC_1MHZ

10: RTC_CLK comes from RCOSC_25_50MHZ

11: RTC_CLK comes from RTC_XTLOSC_CLK

The reset signal for this bit is SYSRESET_N.

21.5.40 PLL LOCK Enable Control Register
Table 21-48. PLL_LOCK_EN_CR

Bit
Number

Name Reset
Value

Description

[31:4] Reserved 0

3 FAB_PLL_LOCK_LOST_EN 0 Masking signal to enable Fabric PLL LOCK LOST interrupt
to Cortex-M3 processor.

2 FAB_PLL_LOCK_EN 0 Masking signal to enable Fabric PLL LOCK interrupt to
Cortex-M3 processor.

1 MPLL_LOCK_LOST_EN 0 Masking signal to enable MPLL LOCK LOST interrupt to
Cortex-M3 processor.

0 MPLL_LOCK_EN 0 Masking signal to enable MPLL LOCK interrupt to Cortex-
M3 processor.

System Register Block

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 706

21.5.41 MSS DDR Clock Calibration Control Register
Table 21-49. MSSDDR_CLK_CALIB_CR

Bit
Number

Name Reset
Value

Description

[31:1] Reserved 0

0 FAB_CALIB_START 0 Writing to this bit causes a one clock tick pulse to be
generated on FABCALIBSTART. This is used to start an
FPGA fabric calibration test circuit.

21.5.42 PLL Delay Line Select Control Register
Table 21-50. PLL_DELAY_LINE_SEL_CR

Bit
Number

Name Reset
Value

Description

[31:4] Reserved 0

3:2 PLL_FB_DEL_SEL 0 Must be programmed to a specific value by Libero SoC and
never be modified after that.

1:0 PLL_REF_DEL_SEL 0 Must be programmed to a specific value by Libero SoC and
never be modified after that.

21.5.43 MAC Status Clear on Read Control Register
Table 21-51. MAC_STAT_CLRONRD_CR

Bit
Number

Name Reset
Value

Description

[31:1] Reserved 0

0 MAC_STAT_CLRONRD 0x1 MAC statistics counters that have been set are cleared after
they are read.

21.5.44 Reset Source Control Register
Table 21-52. RESET_SOURCE_CR

Bit
Number

Name Reset
Value

Description

[31:8] Reserved 0 —

7 USER_M3_RESET_DETECT 0x1 Indicates that an M3 user reset has occurred. During
the device boot sequence, this register should be
cleared to Arm it to detect the next reset event. Reset
signal: FAB_M3_RESET_M3_CLK_N.

6 USER_RESET_DETECT 0x1 Indicates that a MSS user reset has occurred. During
the device boot sequence, this register should be
cleared to Arm it to detect the next reset event. Reset
signal: MSS_RESET_N_F2M.

5 WDOG_RESET_DETECT 0x1 Indicates that a Watchdog reset has occurred. During
the device boot sequence, this register should be
cleared to Arm it to detect the next reset event. Reset
signal: WDOGTIMEOUT_M3_CLK_N.

System Register Block

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 707

...........continued
Bit
Number

Name Reset
Value

Description

4 LOCKUP_RESET_DETECT 0x1 Indicates that a Cortex-M3 processor lockup reset
has occurred. During the device boot sequence, this
register should be cleared to Arm it to detect the
next reset event. The reset signal for this bit is
LOCKUP_DEL2_N.

3 SOFT_RESET_DETECT 0x1 Indicates that a soft reset has occurred. During the
device boot sequence, this register should be cleared
to Arm it to detect the next reset event. The reset
signal for this bit is SYSRESETREQ_DEL2_N.

2 CONTROLLER_M3_RESET_DETECT 0x1 Indicates that a controller M3 reset has occurred.
During the device boot sequence, this register should
be cleared to Arm it to detect the next reset event. The
reset signal for this bit is M3_RESET_M3_CLK_N.

1 CONTROLLER_RESET_DETECT 0x1 Indicates that an MSS controller reset has occurred.
During the device boot sequence, this register should
be cleared to Arm it to detect the next reset event.
Reset signal: SC_MSS_RESET_M3_CLK_N.

0 PO_RESET_DETECT 0x1 Indicates that a power-up reset has occurred. During
the device boot sequence, this register should be
cleared to Arm it to detect the next reset event. The
reset signal for this bit is PO_RESET_M3_CLK_N.

21.5.45 Dcode Bus Error Address Status Register
Table 21-53. CC_DC_ERR_ADDR_SR

Bit
Number

Name Reset
Value

Description

[31:0] CC_DC_ERR_ADDR 0 Stores the address from the DCode bus on which an
error has occurred.

21.5.46 ICode Bus Error Address Status Register
Table 21-54. CC_IC_ERR_ADDR_SR

Bit
Number

Name Reset
Value

Description

[31:0] CC_IC_ERR_ADDR 0 Stores the address from the ICode bus on which an error has
occurred.

21.5.47 System Bus Error Address Status Register
Table 21-55. CC_SB_ERR_ADDR_SR

Bit
Number

Name Reset
Value

Description

[31:0] CC_SB_ERR_ADDR 0 Stores the address from the system bus on which an error has
occurred.

System Register Block

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 708

21.5.48 ICode Miss Control Status Register
Table 21-56. CC_IC_MISS_CNTR_SR

Bit
Number

Name Reset
Value

Description

[31:0] CC_IC_MISS_CNT 0 Counts the total number of cache misses that occurs on the
cacheable region through the ICode bus. Rolls back after
maximum value. This counter is put to reset value by setting
the CC_IC_MISS_CNTCLR bit.

21.5.49 ICode Hit Control Status Register
Table 21-57. CC_IC_HIT_CNTR_SR

Bit
Number

Name Reset
Value

Description

[31:0] CC_IC_HIT_CNT 0 Keeps count of the total number of cache hits that occurs
on the cacheable region through the ICode bus. Rolls back
after maximum value. This counter is put to the reset value by
setting CC_IC_HIT_CNTCLR.

21.5.50 DCode Miss Control Status Register
Table 21-58. CC_DC_MISS_CNTR_SR

Bit
Number

Name Reset
Value

Description

[31:0] CC_DC_MISS_CNT 0 Counts the total number of cache misses that occurs on the
cacheable region through the DCode bus. Rolls back after
maximum value. This counter is put to the reset value by
setting CC_DC_MISS_CNTCLR.

21.5.51 DCode Hit Control Status Register
Table 21-59. CC_DC_HIT_CNTR_CR

Bit
Number

Name Reset
Value

Description

[31:0] CC_DC_HIT_CNT 0 Counts the total number of cache hits that occurs on the
cacheable region through the DCode bus. Rolls back after
maximum value. This counter is put to reset value by setting
CC_DC_HIT_CNTCLR.

21.5.52 ICode Transaction count Control Status Register
Table 21-60. CC_IC_TRANS_CNTR_SR

Bit
Number

Name Reset
Value

Description

[31:0] CC_IC_TRANS_CNT 0 Keeps count of the total number of transaction counts
processed by the cache engine (cacheable and non-
cacheable reads on ICode bus). This counter is put to the
reset value by setting CC_IC_TRAN_CNTCLR.

System Register Block

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 709

21.5.53 DCode Transaction Count Control Status Register
Table 21-61. CC_DC_TRANS_CNTR_SR

Bit
Number

Name Reset
Value

Description

[31:0] CC_DC_TRANS_CNT 0 Keeps count of the total number of transaction counts
processed by the cache engine (cacheable and non-
cacheable reads on DCode bus). This counter is put to the
reset value by setting CC_DC_TRANS_CNTCLR bit.

21.5.54 MSS DDR Bridge DS master Error Address Status Register
Table 21-62. DDRB_DS_ERR_ADR_SR

Bit
Number

Name Reset
Value

Description

[31:0] DDRB_DS_ERR_ADD 0 If a write transfer initiated at the MSS DDR bridge arbiter
interface to empty data present in the write buffer of the DS
master which receives an error response, the address for
which error response is received is placed in this register.
Address indicates TAG value for which error response is
received. The following values are updated in this register as
per buffer size:
16 bytes: DDRB_DS_ERR_ADR[31:4] = TAG,
DDRB_DS_ERR_ADR [3:0] = 0000

32 bytes: DDRB_DS_ERR_ADR [31:5] = TAG[27:1],
DDRB_DS_ERR_ADR[4:0] = 0000.

21.5.55 MSS DDR Bridge High Performance DMA Master Error Address Status Register
Table 21-63. DDRB_HPD_ERR_ADR_SR

Bit
Number

Name Reset
Value

Description

[31:0] DDRB_HPD_ERR_ADD 0 If a write transfer initiated at the MSS DDR bridge arbiter
interface to empty data present in the write buffer of the HPDMA
master which receives an error response, the address for which
the error response is received is placed in this register. Address
indicates TAG value for which error response is received. The
following values are updated in this register as per buffer size:
16 bytes: DDRB_HPD_ERR_ADR[31:4] = TAG,
DDRB_HPD_ERR_ADR[3:0] = 0000

32 bytes: DDRB_HPD_ERR_ADR[31:5] = TAG[27:1],
DDRB_HPD_ERR_ADR[4:0] = 0000.

System Register Block

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 710

21.5.56 MSS DDR Bridge AHB Bus Error Address Status Register
Table 21-64. DDRB_SW_ERR_ADR_SR

Bit
Number

Name Reset
Value

Description

[31:0] DDRB_SW_ERR_ADD 0 If a write transfer initiated at the MSS DDR bridge arbiter
interface to empty data present in the write buffer allocated for
the AHB bus, which receives an error response, the address for
which the error response is received is placed in this register.
Address indicates TAG value for which the error response is
received. The following values are updated in this register as per
buffer size:
16 bytes: DDRB_SW_ERR_ADR[31:4] = TAG,
DDRB_SW_ERR_ADR [3:0] = 0000

32 bytes: DDRB_SW_ERR_ADR [31:5] = TAG[27:1],
DDRB_SW_ERR_ADR [4:0] = 0000.

21.5.57 MSS DDR Bridge Buffer Empty Status Register
Table 21-65. DDRB_BUF_EMPTY_SR

Bit
Number

Name Reset
Value

Description

[31:7] Reserved 0 —

6 DDRB_IDC_RBEMPTY 0 When set to "1", indicates that the read buffer of the IDC
master does not have valid data.

5 DDRB_HPD_RBEMPTY 0 When set to "1", indicates that the read buffer of the HPDMA
master does not have valid data.

4 DDRB_HPD_WBEMPTY 0 When set to "1", indicates that the write buffer of the HPDMA
master does not have valid data.

3 DDRB_SW_RBEMPTY 0 When set to "1", indicates that the read buffer of the AHB bus
matrix master does not have valid data.

2 DDRB_SW_WBEMPTY 0 When set to "1", indicates that the write buffer of the AHB bus
matrix master does not have valid data.

1 DDRB_DS_RBEMPTY 0 When set to "1", indicates that the read buffer of the DSG
master does not have valid data.

0 DDRB_DS_WBEMPTY 0 When set to "1", indicates that the write buffer of the DSG
master does not have valid data.

21.5.58 MSS DDR Bridge Disable Buffer Status Register
Table 21-66. DDRB_DSBL_DN_SR

Bit
Number

Name Reset
Value

Description

[31:7] Reserved 0

6 DDRB_IDC_DSBL_DN 0 Is set to ‘1’ once the AHB bus matrix read buffer is disabled
after getting a read buffer disable command from processor.

5 DDRB_HPD_RDSBL_DN 0 Is set to ‘1’ once the HPDMA read buffer is disabled after
getting a read buffer disable command from processor.

System Register Block

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 711

...........continued
Bit
Number

Name Reset
Value

Description

4 DDRB_HPD_WDSBL_DN 0 Is set to ‘1’ once the HPDMA write buffer is disabled after
getting a write buffer disable command from processor.

3 DDRB_SW_RDSBL_DN 0 Is set to ‘1’ once the AHB bus matrix read buffer is disabled
after getting a read buffer disable command from processor.

2 DDRB_SW_WDSBL_DN 0 Is set to ‘1’ once the AHB bus matrix write buffer is disabled
after getting a write buffer disable command from processor.

1 DDRB_DS_RDSBL_DN 0 Is set to ‘1’ once the DS read buffer is disabled after getting a
read buffer disable command from processor.

0 DDRB_DS_WDSBL_DN 0 Is set to ‘1’ once the DS write buffer is disabled after getting a
write buffer disable command from processor.

21.5.59 eSRAM0 EDAC Count
Table 21-67. ESRAM0_EDAC_CNT

Bit
Number

Name Reset
Value

Description

[31:16] ESRAM0_EDAC_CNT_2E 0 16-bit counter value in eSRAM0 incremented by eSRAM0
EDAC 2-bit error. The counter will not roll back and will stay at
its maximum value.

[15:0] ESRAM0_EDAC_CNT_1E 0 I16-bit counter value in eSRAM0 incremented by eSRAM0
EDAC 1-bit error. The counter will not roll back and will stay at
its maximum value.

21.5.60 eSRAM1 EDAC Count
Table 21-68. ESRAM1_EDAC_CNT

Bit
Number

Name Reset
Value

Description

[31:16] ESRAM1_EDAC_CNT_2E 0 16-bit counter value in eSRAM1 incremented by eSRAM1
EDAC 2-bit error. The counter will not roll back and will stay
at its maximum value.

[15:0] ESRAM1_EDAC_CNT_1E 0 16-bit counter value in eSRAM1 incremented by eSRAM1
EDAC 1-bit error. The counter will not roll back and will stay
at its maximum value.

21.5.61 MAC EDAC Transmitter Count
Table 21-69. MAC_EDAC_TX_CNT

Bit
Number

Name Reset
Value

Description

[31:16] MAC_EDAC_TX_CNT_2E 0 16-bit counter that counts the number of 2-bit errors for
Ethernet (MAC TX EDAC). The counter will not roll back and
will stay at its maximum value.

[15:0] MAC_EDAC_TX_CNT_1E 0 16-bit counter that counts the number of 1-bit errors for
Ethernet (MAC TX EDAC). The counter will not roll back and
will stay at its maximum value.

System Register Block

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 712

21.5.62 MAC EDAC Receiver Count
Table 21-70. MAC_EDAC_RX_CNT

Bit
Number

Name Reset
Value

Description

[31:16] MAC_EDAC_RX_CNT_2E 0 16-bit counter that counts the number of 2-bit errors for
Ethernet (MAC RX EDAC). The counter will not roll back
and will stay at its maximum value.

[15:0] MAC_EDAC_RX_CNT_1E 0 16-bit counter that counts the number of 1-bit errors for
Ethernet (MAC RX EDAC). The counter will not roll back
and will stay at its maximum value.

21.5.63 USB EDAC Count
Table 21-71. USB_EDAC_CNT

Bit
Number

Name Reset
Value

Description

[31:16] USB_EDAC_CNT_2E 0 16-bit counter that counts the number of 2-bit errors for
USB. The counter will not roll back and will stay at its
maximum value.

[15:0] USB_EDAC_CNT_1E 0 16-bit counter that counts the number of 1-bit errors for
USB. The counter will not roll back and will stay at its
maximum value.

21.5.64 CAN EDAC Count
Table 21-72. CAN_EDAC_CNT

Bit
Number

Name Reset
Value

Description

[31:16] CAN_EDAC_CNT_2E 0 16-bit counter that counts the number of 2-bit errors for
CAN. The counter will not roll back and will stay at its
maximum value.

[15:0] CAN_EDAC_CNT_1E 0 16-bit counter that counts the number of 1-bit errors for
CAN. The counter will not roll back and will stay at its
maximum value.

21.5.65 eSRAM0 EDAC Address Register
Table 21-73. ESRAM0_EDAC_ADR

Bit
Number

Name Reset
Value

Description

[31:26] Reserved 0

[25:13] ESRAM0_EDAC_2E_AD 0 Stores the address from eSRAM0 on which a 2-bit SECDED
error has occurred.

[12:0] ESRAM0_EDAC_1E_AD 0 Stores the address from eSRAM0 on which a 1-bit SECDED
error has occurred.

System Register Block

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 713

21.5.66 eSRAM1 EDAC Address Register
Table 21-74. ESRAM1_EDAC_ADR

Bit
Number

Name Reset
Value

Description

[31:26] Reserved 0

[25:13] ESRAM1_EDAC_2E_AD 0 Stores the address from eSRAM1 on which a 2-bit SECDED
error has occurred.

[12:0] ESRAM1_EDAC_1E_AD 0 Stores the address from eSRAM1 on which a 1-bit SECDED
error has occurred.

21.5.67 MAC EDAC Receiver Address Register
Table 21-75. MAC_EDAC_RX_ADR

Bit
Number

Name Reset
Value

Description

[31:26] Reserved 0

[25:13] MAC_EDAC_RX_2E_AD 0 Stores the address from Ethernet RX memory on which a 2-bit
SECDED error has occurred.

[12:0] MAC_EDAC_RX_1E_AD 0 Stores the address from Ethernet RX memory on which a 1-bit
SECDED error has occurred.

21.5.68 MAC EDAC Transmitter Address Register
Table 21-76. MAC_EDAC_TX_ADR

Bit
Number

Name Reset
Value

Description

[31:26] Reserved 0

[25:13] MAC_EDAC_TX_2E_AD 0 Stores the address from Ethernet TX memory on which a 2-bit
SECDED error has occurred.

[12:0] MAC_EDAC_TX_1E_AD 0 Stores the address from Ethernet TX memory on which a 1-bit
SECDED error has occurred.

21.5.69 CAN EDAC Address Register
Table 21-77. CAN_EDAC_ADR

Bit
Number

Name Reset
Value

Description

[31:26] Reserved 0

[25:13] CAN_EDAC_2E_AD 0 Stores the address from CAN memory on which a 2-bit
SECDED error has occurred.

[12:0] CAN_EDAC_1E_AD 0 Stores the address from CAN memory on which a 1-bit
SECDED error has occurred.

System Register Block

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 714

21.5.70 USB EDAC Address Register
Table 21-78. USB_EDAC_ADR

Bit
Number

Name Reset
Value

Description

[31:26] Reserved 0

[25:13] USB_EDAC_2E_AD 0 Stores the address from USB memory on which a 2-bit
SECDED error has occurred.

[12:0] USB_EDAC_1E_AD 0 Stores the address from USB memory on which a1-bit
SECDED error has occurred.

21.5.71 Security Configuration Register for Masters 0, 1, and 2
Table 21-79. MM0_1_2_SECURITY

Bit
Number

Name Reset
Value

Description

[31:10] Reserved 0

9 MM0_1_2_MS6_ALLOWED_W 1 Write security bits for masters 0, 1, and 2 to slave 6 (MSS
DDR bridge). If not set, masters 0, 1, and 2 will not have
write access to slave 6.

8 MM0_1_2_MS6_ALLOWED_R 1 Read security bits for masters 0, 1, and 2 to slave 6 (MSS
DDR bridge). If not set, masters 0, 1, and 2 will not have
read access to slave 6.

7 MM0_1_2_MS3_ALLOWED_W 1 Write security bits for masters 0, 1, and 2 to slave 3
(eNVM1). If not set, masters 0, 1, and 2 will not have write
access to slave 3.

6 MM0_1_2_MS3_ALLOWED_R 1 Read security bits for masters 0, 1 and 2 to slave 3
(eNVM1). If not set, masters 0, 1, and 2 will not have read
access to slave 3.

5 MM0_1_2_MS2_ALLOWED_W 1 Write security bits for masters 0, 1, and 2 to slave 2
(eNVM0]) If not set, masters 0, 1, and 2 will not have write
access to slave 2.

4 MM0_1_2_MS2_ALLOWED_R 1 Read security bits for masters 0, 1, and 2 to slave 2
(eNVM0). If not set, masters 0, 1, and 2 will not have read
access to slave 2.

3 MM0_1_2_MS1_ALLOWED_W 1 Write security bits for masters 0, 1, and 2 to slave 1
(eSRAM1). If not set, masters 0, 1, and 2 will not have write
access to slave 1.

2 MM0_1_2_MS1_ALLOWED_R 1 Read security bits for masters 0, 1, and 2 to slave 1
(eSRAM1). If not set, masters 0, 1, and 2 will not have read
access to slave 1.

1 MM0_1_2_MS0_ALLOWED_W 1 Write security bits for masters 0, 1, and 2 to slave 0
(eSRAM0). If not set, masters 0, 1, and 2 will not have write
access to slave 0.

0 MM0_1_2_MS0_ALLOWED_R 1 Read security bits for masters 0, 1, and 2 to slave 0
(eSRAM0). If not set, masters 0, 1, and 2 will not have read
access to slave 0.

System Register Block

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 715

21.5.72 Security Configuration Register for Masters 4, 5, and DDR_FIC
Table 21-80. MM4_5_DDR_FIC_SECURITY/MM4_5_FIC64_SECURITY

Bit
Number

Name Reset
Value

Description

[31:10] Reserved 0

9 MM4_5_DDR_FIC_MS6_ALLOWED_
W

1 Write security bits for masters 4, 5, and DDR_FIC to
slave 6 (MSS DDR bridge). If not set, masters 4, 5 and
DDR_FIC will not have write access to slave 6.

8 MM4_5_DDR_FIC_MS6_ALLOWED_R 1 Read security bits for masters 4, 5, and DDR_FIC to
slave 6 (MSS DDR bridge). If not set, masters 4, 5,
and DDR_FIC will not have read access to slave 6.

7 MM4_5_DDR_FIC_MS3_ALLOWED_
W

1 Write security bits for masters 4, 5, and DDR_FIC
to slave 3 (eNVM1). If not set, masters 4, 5, and
DDR_FIC will not have write access to slave 3.

6 MM4_5_DDR_FIC_MS3_ALLOWED_R 1 Read security bits for masters 4, 5, and DDR_FIC
to slave 3 (eNVM1). If not set, masters 4, 5, and
DDR_FIC will not have read access to slave 3.

5 MM4_5_DDR_FIC_MS2_ALLOWED_
W

1 Write security bits for masters 4, 5, and DDR_FIC
to slave 2 (eNVM0). If not set, masters 4, 5, and
DDR_FIC will not have write access to slave 2.

4 MM4_5_DDR_FIC_MS2_ALLOWED_R 1 Read security bits for masters 4, 5, and DDR_FIC
to slave 2 (eNVM0). If not set, masters 4, 5, and
DDR_FIC will not have read access to slave 2.

3 MM4_5_DDR_FIC_MS1_ALLOWED_
W

1 Write security bits for masters 4, 5, and DDR_FIC
to slave 1 (eSRAM1). If not set, masters 4, 5, and
DDR_FIC will not have write access to slave 1.

2 MM4_5_DDR_FIC_MS1_ALLOWED_R 1 Read security bits for masters 4, 5, and DDR_FIC
to slave 1 (eSRAM1). If not set, masters 4, 5, and
DDR_FIC will not have read access to slave 1.

1 MM4_5_DDR_FIC_MS0_ALLOWED_
W

1 Write security bits for masters 4, 5, and DDR_FIC
to slave 0 (eSRAM0). If not set, masters 4, 5, and
DDR_FIC will not have write access to slave 0.

0 MM4_5_DDR_FIC_MS0_ALLOWED_R 1 Read security bits for masters 4, 5, and DDR_FIC
to slave 0 (eSRAM0). If not set, masters 4, 5, and
DDR_FIC will not have read access to slave 0.

21.5.73 Security Configuration Register for Masters 3, 6, 7, and 8
Table 21-81. MM3_6_7_8_SECURITY

Bit
Number

Name Reset
Value

Description

[31:10] Reserved 0

9 MM3_6_7_8_MS6_ALLOWED_W 1 Write security bits for masters 3, 6, 7, and 8 to slave 6
(MSS DDR bridge). If not set, masters 3, 6, 7, and 8 will
not have write access to slave 6.

8 MM3_6_7_8_MS6_ALLOWED_R 1 Read security bits for masters 3, 6, 7, and 8 to slave 6
(MSS DDR bridge). If not set, masters 3, 6, 7, and 8 will
not have read access to slave 6.

System Register Block

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 716

...........continued
Bit
Number

Name Reset
Value

Description

7 MM3_6_7_8_MS3_ALLOWED_W 1 Write security bits for masters 3, 6, 7, and 8 to slave 3
(eNVM1). If not set, masters 3, 6, 7, and 8 will not have
write access to slave 3.

6 MM3_6_7_8_MS3_ALLOWED_R 1 Read security bits for masters 3, 6, 7, and 8 to slave 3
(eNVM1). If not set, masters 3, 6, 7, and 8 will not have
read access to slave 3.

5 MM3_6_7_8_MS2_ALLOWED_W 1 Write security bits for masters 3, 6, 7, and 8 to slave 2
(eNVM0). If not set, masters 3, 6, 7, and 8 will not have
write access to slave 2.

4 MM3_6_7_8_MS2_ALLOWED_R 1 Read security bits for masters 3, 6, 7, and 8 to slave 2
(eNVM0). If not set, masters 3, 6, 7, and 8 will not have
read access to slave 2.

3 MM3_6_7_8_MS1_ALLOWED_W 1 Write security bits for masters 3, 6, 7, and 8 to slave 1
(eSRAM1). If not set, masters 3, 6, 7, and 8 will not have
write access to slave 1.

2 MM3_6_7_8_MS1_ALLOWED_R 1 Read security bits for masters 3, 6, 7, and 8 to slave 1
(eSRAM1). If not set, masters 3, 6, 7, and 8 will not have
read access to slave 1.

1 MM3_6_7_8_MS0_ALLOWED_W 1 Write security bits for masters 3, 6, 7, and 8 to slave 0
(eSRAM0). If not set, masters 3, 6, 7, and 8 will not have
write access to slave 0.

0 MM3_6_7_8_MS0_ALLOWED_R 1 Read security bits for masters 3, 6, 7, and 8 to slave 0
(eSRAM0). If not set, masters 3, 6, 7, and 8 will not have
read access to slave 0.

21.5.74 Security Configuration Register for Master 9
Table 21-82. MM9_SECURITY

Bit
Number

Name Reset
Value

Description

[31:10] Reserved 0

9 MM9_MS6_ALLOWED_W 1 Write security bits for master 9 to slave 6 (MSS DDR bridge).
If not set, master 9 will not have write access to slave 6.

8 MM9_MS6_ALLOWED_R 1 Read security bits for master 9 to slave 6 (MSS DDR bridge).
If not set, master 9 will not have read access to slave 6.

7 MM9_MS3_ALLOWED_W 1 Write security bits for master 9 to slave 3 (eNVM1). If not set,
master 9 will not have write access to slave 3.

6 MM9_MS3_ALLOWED_R 1 Read security bits for master 9 to slave 3 (eNVM1). If not set,
master 9 will not have read access to slave 3.

5 MM9_MS2_ALLOWED_W 1 Write security bits for master 9 to slave 2 (eNVM0). If not set,
master 9 will not have write access to slave 2.

4 MM9_MS2_ALLOWED_R 1 Read security bits for master 9 to slave 2 (eNVM0). If not set,
master 9 will not have read access to slave 2.

3 MM9_MS1_ALLOWED_W 1 Write security bits for master 9 to slave 1 (eSRAM1]) If not
set, master 9 will not have write access to slave 1.

System Register Block

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 717

...........continued
Bit
Number

Name Reset
Value

Description

2 MM9_MS1_ALLOWED_R 1 Read security bits for master 9 to slave 1 (eSRAM1). If not
set, master 9 will not have read access to slave 1.

1 MM9_MS0_ALLOWED_W 1 Write security bits for master 9 to slave 0 (eSRAM0). If not
set, master 9 will not have write access to slave 0.

0 MM9_MS0_ALLOWED_R 1 Read security bits for master 9 to slave 0 (eSRAM0). If not
set, master 9 will not have read access to slave 0.

21.5.75 M3 Status Register
Table 21-83. M3_SR

Bit
Number

Name Reset
Value

Description

[31:8] Reserved 0

7:0 CURRPRI 0 Indicates which priority interrupt, or base boost, is being used
now. CURRPRI represents the pre-emption priority, and does
not indicate secondary priority.

21.5.76 ETM Count Low Register
Table 21-84. ETM_COUNT_LOW

Bit
Number

Name Reset
Value

Description

[31:0] ETMCOUNT_31_0 0 Indicates the 32-bit lower bits of timestamp value
(TSVALUEB) from the Cortex-M3 processor.

21.5.77 ETM Count High Register
Table 21-85. ETM_COUNT_HIGH

Bit
Number

Name Reset
Value

Description

[31:28] Reserved 0

[27:25] ETMINTSTAT 0 Indicates the interrupt status. The following bit definitions
mark the interrupt status of the current cycle:
000: No status

001: Interrupt entry

010: Interrupt exit

011: Interrupt return

100: Vector fetch and stack push

ETMINTSTAT entry or return is asserted in the first cycle of
the new interrupt context. Exit occurs without ETMIVALID.

[24:16] ETMINTNUM 0 Marks the interrupt number of current execution context.

[15:0] ETMCOUNT_47_32 0 Indicates the 47 to 32 of timestamp value (TSVALUEB) from
the Cortex-M3 processor.

System Register Block

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 718

21.5.78 Device Status Register
Table 21-86. DEVICE_SR

Bit
Number

Name Reset
Value

Description

[31:7] Reserved 0

6 M3_DEBUG_ENABLE 0x1 Enables the debug access port (DAP) logic within the
Cortex-M3 processor. The reset signal for this bit is
SYSRESET_N. The read type is RO-U for this bit.
This bit has the following meanings:

0: Debug block of Cortex-M3 is disabled and it is not possible
to use a debugger to debug user firmware.

1: Debug block of Cortex-M3 is enabled and it is possible to
use a debugger to debug user firmware.

5 M3_DISABLE 0 Disables/enables the Cortex-M3 processor. When this bit is
1, the Cortex-M3 processor is reset. When this is 0, the
Cortex-M3 processor will be out of reset.

4 FLASH_VALID_SYNC 0 Asserted when FPGA fabric is valid. There is no reset signal
for this bit. This bit has the following meanings:
0: FPGA fabric flash bits are valid and operational

1: FPGA fabric flash bits are not operational

3 WATCHDOG_FREEZE_SYNC 0 Freezes the watchdog counter. There is no reset signal for
this bit. This bit has the following meanings:
0: Watchdog counter is not frozen

1: Watchdog counter is frozen (not counting down)

2 FF_IN_PROGRESS_SYNC 0 Indicates the FF_IN_PROGRESS STATE. There is no reset
signal for this bit.

1 VIRGIN_PART 0x1 Indicates the device as virgin or non-virgin type. There is no
reset signal for this bit. This bit has the following meanings:
0: Device is not a virgin part. It has been through a
programming cycle to at least configure the factory settings

1: Device is a virgin part. It has never been through any
programming cycle in and all internal flash bits are invalid

0 CORE_UP_SYNC 0 Indicates the status of the synchronized CORE_UP input
from the system controller. There is no reset signal for this
bit.

21.5.79 eNVM Protect User Register
Table 21-87. ENVM_PROTECT_USER

Bit
Number

Name Reset
Value

Description

[31:16] Reserved 0

15 NVM1_UPPER_WRITE_ALLOWED 0x1 When set, indicates that the masters who have read
access can have write access to the upper protection
region of eNVM1. This is updated by the user flash row
bit.

System Register Block

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 719

...........continued
Bit
Number

Name Reset
Value

Description

14 NVM1_UPPER_OTHERS_ACCESS 0x1 When set, indicates that the other masters can access the
upper protection region of eNVM1.This is set by the user
flash row bit.

13 NVM1_UPPER_FABRIC_ACCESS 0x1 When set, indicates that the fabric can access the upper
protection region of eNVM1. This is set by the user flash
row bit.

12 NVM1_UPPER_M3ACCESS 0x1 When set, indicates that the Cortex-M3 processor can
access the upper protection region of eNVM1. This is
updated by the user flash row bit.

11 NVM1_LOWER_WRITE_ALLOWED 0x1 When set, indicates that the masters who have read
access can have write access to the lower protection
region of eNVM1. This is set by the user flash row bit.

10 NVM1_LOWER_OTHERS_ACCESS 0x1 When set, indicates that the other masters can access the
lower protection region of eNVM1. This is set by the user
flash row bit.

9 NVM1_LOWER_FABRIC_ACCESS 0x1 When set, indicates that the fabric can access the lower
protection region of eNVM1.This will be set by user flash
row bit.

8 NVM1_LOWER_M3ACCESS 0x1 When set, indicates that the M3 can access the lower
protection region of eNVM1. This will be set by the user
flash row bit.

7 NVM0_UPPER_WRITE_ALLOWED 0x1 When set, indicates that the masters who have read
access can have write access to the upper protection
region of eNVM0. This will be set by the user flash row
bit.

6 NVM0_UPPER_OTHERS_ACCESS 0x1 When set, indicates that the other masters can access the
upper protection region of eNVM0.

5 NVM0_UPPER_FABRIC_ACCESS 0x1 When set, indicates that the fabric can access the upper
protection region of eNVM0. This will be set by the user
flash row bit.

4 NVM0_UPPER_M3ACCESS 0x1 When set, indicates that the M3 can access the upper
protection region of eNVM0. This will be set by the user
flash row bit.

3 NVM0_LOWER_WRITE_ALLOWED 0x1 When set, indicates that the masters who have read
access can have write access to the lower protection
region of eNVM0. This will be set by the user flash row
bit.

2 NVM0_LOWER_OTHERS_ACCESS 0x1 When set, indicates that the other masters can access the
lower protection region of eNVM0. This will be set by the
user flash row bit.

1 NVM0_LOWER_FABRIC_ACCESS 0x1 When set, indicates that the fabric can access the lower
protection region of eNVM0. This will be set by the user
flash row bit.

0 NVM0_LOWER_M3ACCESS 0x1 When set, indicates that the M3 can access the lower
protection region of eNVM0. This will be set by the user
flash row bit.

System Register Block

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 720

21.5.80 SmartFusion 2 eNVM Status Register
Table 21-88. ENVM_STATUS

Bit
Number

Name Reset
Value

Description

[31:1] Reserved 0 Reserved

0 CODE_SHADOW_EN 0 Read by the System Controller during device start-up,
to indicate whether the user has configured the device
such that code shadowing is to be performed by system
controller firmware.

21.5.81 Device Version Register
Table 21-89. DEVICE_VERSION

Bit
Number

Name Reset
Value

Description

[31:20] Reserved 0

[19:16] IDV 0 Internal device version.

[15:0] IDP 0 Internal device product.

21.5.82 MSS DDR PLL Status Register
Table 21-90. MSSDDR_PLL_STATUS

Bit
Number

Name Reset
Value

Description

[31:3] Reserved 0 —

2 RCOSC_DIV2 Input from the System Controller, indicating whether the 50 MHz RC
oscillator is running at 25 MHz or 50 MHz.
0: Running at 25MHz

1: Running at 50MHz

1 MPLL_LOCK 0 MPLL lock status.
A LOCK signal is provided to indicate that the MPLL has locked on to
the incoming signal. LOCK asserts High to indicate that the MPLL has
achieved frequency and phase lock. Allowed values:

0: MPLL is not in lock

1: MPLL is in lock

Microchip recommends that LOCK is only used for test and system
status information, and is not used for critical system functions
without thorough characterization in the host system. The precision
of the LOCK discrimination can be adjusted using the LOCKWIN[2:0]
controls. The integration of the LOCK period can be adjusted using the
LOCKCNT[3:0] controls.

System Register Block

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 721

...........continued
Bit
Number

Name Reset
Value

Description

0 FAB_PLL_LOCK 0 If CLK_BASE is generated from a PLL in the fabric, this signal
must be connected from the LOCK output of that PLL. When the
FACC is going through its PLL initialization stage (either under system
controller control or MSS master control), this signal is ANDed with the
LOCK output of the MPLL. Only when both PLLs are in lock, is the
system considered to be ready for switching to PLL-derived clock. If
CLK_BASE is not derived from a fabric PLL, then the user must ensure
that this signal is tied High at the fabric interface. Allowed values:
0: Fabric PLL is not in lock.
1: Fabric PLL is in lock or CLK_BASE is not derived from a fabric PLL.

21.5.83 USB Status Register
Table 21-91. USB_SR

Bit
Number

Name Reset
Value

Description

[31:2] Reserved 0

1 LPI_CARKIT_EN 0 Asserted when entry is made into CarKit mode and cleared on exit
from CarKit mode.

0 POWERDN 0 Asserted when CLK may be stopped to save power.

21.5.84 eNVM Status Register
Table 21-92. ENVM_SR

Bit
Number

Name Reset
Value

Description

[31:2] Reserved 0

1:0 ENVM_BUSY 0 Active high signals indicate a busy state per eNVM for CLK-driven
operations and for internal operations triggered by the program/
transfer command.
ENVM_BUSY[1] = Busy indication from eNVM1

ENVM_BUSY[0] = Busy indication from eNVM0

System Register Block

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 722

21.5.85 DDRB Status Register
Table 21-93. DDRB_STATUS

Bit
Number

Name Reset
Value

Description

[31:0] DDRB_DEBUG_STATUS 0x1 Status of the internal ports of DDRBRIDGE. The bit definitions
are as follows:
Debug ports of the MSS DDR bridge:

SYR_DDRB_DP[31:30] = DSG write buffer mode status

SYR_DDRB_DP[29:28] = AHB bus write buffer mode status

SYR_DDRB_DP[27:26] = HPDMA write buffer mode status

SYR_DDRB_DP[25:23] = IDC read buffer mode status

SYR_DDRB_DP[22:20] = DSG read buffer mode status

SYR_DDRB_DP[19:17] = AHB bus read buffer mode status

SYR_DDRB_DP[16:14] = HPDMA read buffer mode status

SYR_DDRB_DP[13] = DSG write request to arbiter

SYR_DDRB_DP[12] = AHB bus write request to arbiter

SYR_DDRB_DP[11] = HPDMA write request to arbiter

SYR_DDRB_DP[10] = IDC read req to arbiter

SYR_DDRB_DP[9] = DSG read req to arbiter

SYR_DDRB_DP[8] = AHB bus read req to arbiter

SYR_DDRB_DP[7] = HPDMA read request to arbiter

SYR_DDRB_DP[6] = AXI write address channel acknowledge to
DSG write request

SYR_DDRB_DP[5] = AXI write address channel acknowledge to
AHB bus write request

SYR_DDRB_DP[4] = AXI write address channel acknowledge to
HPDMA write request

SYR_DDRB_DP[3] = AXI write data channel acknowledge to
DSG write request

SYR_DDRB_DP[2] = AXI write data channel acknowledge to
AHB bus write request

SYR_DDRB_DP[1] = AXI write data channel acknowledge to
HPDMA write request

SYR_DDRB_DP[0] = Lock input to arbiter from AHB bus WCB

21.5.86 MDDR IO Calibration Status Register
Table 21-94. MDDR_IO_CALIB_STATUS

Bit
Number

Name Reset
Value

Description

[31:15] Reserved 0 —

14 CALIB_PCOMP 0x1 State of the P analog comparator

13 CALIB_NCOMP 0x1 State of the N analog comparator

System Register Block

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 723

...........continued
Bit
Number

Name Reset
Value

Description

[12:6] CALIB_PCODE 0x3F Current PCODE value set on the MDDR DDR I/O bank

[5:1] CALIB_NCODE 0x3F Current NCODE value set on the MDDR DDR I/O bank

0 CALIB_STATUS 0 1 when the codes are actually locked. For the first run after
reset, this would be asserted 1 cycle after CALIB_INTRPT.
For in-between runs, this would be asserted only when the
DRAM is put into self-refresh or there is an override from the
firmware (CALIB_LOCK).

21.5.87 MSS DDR Clock Calibration Status
Table 21-95. MSSDDR_CLK_CALIB_STATUS

Bit
Number

Name Reset
Value

Description

[31:1] Reserved 0

0 FAB_CALIB_FAIL 0 0: The currently selected CCC delay values for the M3_CLK
and fabric Clock are such that the FPGA fabric clock
calibration circuit is running correctly.
1: The FPGA fabric clock calibration circuit is failing to
operate correctly. This indicates incorrectly configured delay
values for M3_CLK and/or fabric clock in the CCC.

21.5.88 Watch Dog Load Register
Table 21-96. WDOGLOAD

Bit
Number

Name Reset
Value

Description

[31:26] Reserved 0 —

[25:0] WDOGLOAD 0x1800000 Contains the upper 26 bits of the WDOGLOAD value register

21.5.89 Watch Dog MVRP Register
Table 21-97. WDOGMVRP

Bit
Number

Name Reset Value Description

[31:0] WDOGMVRP 0xFFFFFFFF Contains the WDOGMVRP value

21.5.90 User Configuration Register 0
Table 21-98. USERCONFIG0

Bit
Number

Name Reset Value Description

[31:0] CONFIG_REG0 0 Stores the user configuration register 0 to be read by the
Cortex-M3 processor.

System Register Block

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 724

21.5.91 User Configuration Register 1
Table 21-99. USERCONFIG1

Bit
Number

Name Reset Value Description

[31:0] CONFIG_REG1 0 Stores the user configuration register 1 to be read by the
Cortex-M3 processor.

21.5.92 User Configuration Register 2
Table 21-100. USERCONFIG2

Bit
Number

Name Reset Value Description

[31:0] CONFIG_REG2 0 Stores the user configuration register 2 to be read by the
Cortex-M3 processor.

21.5.93 User Configuration Register 3
Table 21-101. USERCONFIG3

Bit
Number

Name Reset
Value

Description

[31:0] CONFIG_REG3 0 Stores the user configuration register 3 to be read by the
Cortex-M3 processor.

21.5.94 Fabric Protected Size Register
Table 21-102. FAB_PROT_SIZE

Bit
Number

Name Reset
Value

Description

[31:6] Reserved 0

[5:0] SW_PROTREGIONSIZE 11110 The size of the memory region inaccessible to the FPGA
fabric master is determined by the value of this bus. The
region sizes are listed in Table 21-103.

21.5.94.1 Region Size
Table 21-103. Region Size

Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Size

0 0 0 0 0 Reserved

0 0 0 0 1 Reserved

0 0 0 1 0 Reserved

0 0 0 1 1 Reserved

0 0 1 0 0 Reserved

0 0 1 0 1 Reserved

0 0 1 1 0 128 Bytes

0 0 1 1 1 Reserved

0 1 0 0 0 Reserved

System Register Block

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 725

...........continued
Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Size

0 1 0 0 1 Reserved

0 1 0 1 0 2 KB

0 1 0 1 1 Reserved

0 1 1 0 0 Reserved

0 1 1 0 1 16 KB

0 1 1 1 0 32 KB

0 1 1 1 1 64 KB

1 0 0 0 0 128 KB

1 0 0 0 1 256 KB

1 0 0 1 0 512 KB

1 0 0 1 1 Reserved

1 0 1 0 0 Reserved

1 0 1 0 1 Reserved

1 0 1 1 0 8 MB

1 0 1 1 1 Reserved

1 1 0 0 0 Reserved

21.5.95 Fabric Protected Base Address Register
Table 21-104. FAB_PROT_BASE

Bit
Number

Name Reset
Value

Description

[31:0] SW_PROTREGIONBASE 0 The base address of the memory region inaccessible to the
FPGA fabric master is determined by the value of this bus. Bit
0 of this bus is defined as SW_PROTREGIONENABLE. This
has the following meaning:
0: Protected region not enabled. This means that a master in
the FPGA fabric may access any location in the memory map,
as long as the fabric master port is enabled.

1: Protected region enabled. Any accesses attempted by a
fabric master to this region of memory return an error in the
bus transaction.

Bits [31:N] of this bus indicate the base address of the
protected region.

The value of N depends on the protected region size, so that the base address is aligned according to an even
multiple of region size. The power of 2 size specified by SW_PROTREGIONSIZE[4:0] defines how many bits of base
address are used. For example, if the SW_PROTREGIONSIZE[4:0] is 01111, this corresponds to a protected region
of 64 KB. 64 KB is 2 to the power of 16. Therefore, the value of N in this case is 16. So the base address of the
region, in this case, is specified by SW_PROTREGIONBASE[31:16].

System Register Block

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 726

21.5.96 MSS GPIO Definitions
Table 21-105. MSS_GPIO_DEF

Bit
Number

Name Reset
Value

Description

[31:4] Reserved 0

3 MSS_GPIO_31_24_DEF 0x1 Used to initialize GPIO Bank [31:24] to 0 or 1 after reset.

2 MSS_GPIO_23_16_DEF 0x1 Used to initialize GPIO Bank [23:16] to 0 or 1 after reset.

1 MSS_GPIO_15_8_DEF 0x1 Used to initialize GPIO Bank [15:8] to 0 or 1 after reset.

0 MSS_GPIO_7_0_DEF 0x1 Used to initialize GPIO Bank [7:0] to 0 or 1 after reset.

21.5.97 EDAC Status Register
Table 21-106. EDAC_SR

Bit
Number

Name Reset
Value

Description

[31:14] Reserved 0

13 CAN_EDAC_2E 0 Updated by CAN when a 2-bit SECDED error has been detected for
RAM memory.

12 CAN_EDAC_1E 0 Updated by CAN when a 1-bit SECDED error has been detected
and is corrected for RAM memory.

11 USB_EDAC_2E 0 Updated by USB when a 2-bit SECDED error has been detected for
RAM memory.

10 USB_EDAC_1E 0 Updated by USB when a 1-bit SECDED error has been detected
and is corrected for RAM memory.

9 MAC_EDAC_RX_2E 0 Updated by Ethernet when a 2-bit SECDED error has been detected
for Rx RAM memory.

8 MAC_EDAC_RX_1E 0 Updated by Ethernet when a 1-bit SECDED error has been detected
and is corrected for Rx RAM memory.

7 MAC_EDAC_TX_2E 0 Updated by Ethernet when a 2-bit SECDED error has been detected
for Tx RAM memory.

6 MAC_EDAC_TX_E 0 Updated by Ethernet when a 1-bit SECDED error has been detected
and is corrected for Tx RAM memory.

5 Reserved 0

4 Reserved 0

3 ESRAM1_EDAC_2E 0 Updated by the eSRAM_1 controller when a 2-bit SECDED error
has been detected for eSRAM1 memory.

2 ESRAM1_EDAC_1E 0 Updated by the eSRAM_1 Controller when a 1-bit SECDED error
has been detected and is corrected for eSRAM1 memory.

1 ESRAM0_EDAC_2E 0 Updated by the eSRAM_0 controller when a 2-bit SECDED error
has been detected for eSRAM0 memory.

0 ESRAM0_EDAC_1E 0 Updated by the eSRAM_0 controller when a 1-bit SECDED error
has been detected and is corrected for eSRAM0 memory.

System Register Block

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 727

21.5.98 MSS Internal Status Register
Table 21-107. MSS_INTERNAL_SR

Bit
Number

Name Reset
Value

Description

[31:7] Reserved 0

6 DDR_FIC_INT 0 Indicates an interrupt from DDR_FIC.

5 MDDR_ECC_INT 0 Indicates when an SECDED interrupt from the MDDR
subsystem is asserted.

4 MDDR_IO_CALIB_INT 0 Interrupt is generated when the MDDR calibration is finished.

3 FAB_PLL_LOCKLOST_IN
T

0 Indicates that a falling edge event occurred on the
FAB_PLL_LOCK signal. This indicates that the fabric PLL lost
lock.

2 FAB_PLL_LOCK_INT 0 Indicates that a rising edge event occurred on the
FAB_PLL_LOCK signal. This indicates that the fabric PLL
came into lock.

1 MPLL_LOCKLOST_INT 0 Indicates that a falling edge event occurred on the
MPLL_LOCK signal. This indicates that the MPLL lost lock.

0 MPLL_LOCK_INT 0 Indicates that a rising edge event occurred on the
MPLL_LOCK signal. This indicates that the MPLL came into
lock.

21.5.99 MSS External Status Register
Table 21-108. MSS_EXTERNAL_SR

Bit
Number

Name Reset
Value

Description

[31:19] Reserved 0

18 CC_HRESP_ERR Indicates whether any accesses to the corresponding master on the
CACHE resulted in HRESP assertion by the slave to the CACHE
(and hence to the master) or HRESP generated by the CACHE itself
to the master (in the case of an invalid address being accessed).
The CACHE does pass the HRESP signal through to the requesting
master, but the event is also registered in this register. The bit
definitions are as follows:
Bit 0: Corresponds to an HRESP assertion being issued to the
DCode bus master.

Bit 1: Corresponds to an HRESP assertion being issued to the
ICode bus master.

Bit 2: Corresponds to an HRESP assertion being issued to the SBus
master.

17 DDRB_LOCK_MID 0 Indicates which master (AHB bus or HPDMA) is responsible for lock
timeout condition.
0: AHB bus master

1: HPDMA

System Register Block

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 728

...........continued
Bit
Number

Name Reset
Value

Description

16 DDRB_LCKOUT 0 Asserted when lock timeout counter reaches its maximum value.
Lock time out counter (20-bit) is maintained in the MSS DDR
bridge, which starts counting when a locked transfer obtains access
to the AXI bus. When the counter reaches maximum value, a
DDRB_LCKOUT interrupt is generated and stays asserted until
cleared by the processor.

15 DDRB_HPD_WR_ERR 0 Asserted when the MSS DDR bridge gets an error response from
the DDR slave for an HPDMA write request. Address of write
transaction for which error response is received is provided by
DDRB_HPD_ERR_ADD.

14 DDRB_SW_WR_ERR 0 Asserted when the MSS DDR bridge gets an error response from
the DDR slave for an AHB bus master write request. Address of
write transaction for which error response is received is provided by
DDRB_SW_ERR_ADD.

13 DDRB_DS_WR_ERR 0 Asserted when the MSS DDR bridge gets an error response from
the DDR slave for a DS master write request. Address of write
transaction for which error response is received is provided by
DDRB_DS_ERR_ADD.

[12:7] DDRB_RDWR_ERR_RE
G

0 Provides the read/write address match error status generated during
the following accesses:
Bit 0 = 1: AHB bus and HPDMA are trying to access same address

Bit 1 = 1: AHB bus and DS are trying to access same address

Bit 2 = 1: HPDMA and DS are trying to access same address

Bit 3 = 1: IDC and HPDMA are trying to access same address

Bit 4 = 1: IDC and AHB Bus are trying to access same address

Bit 5 = 1: IDC and DS are trying to access same address

System Register Block

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 729

...........continued
Bit
Number

Name Reset
Value

Description

[6:0] SW_ERRORSTATUS 0 Indicates whether any accesses by the corresponding master on the
AHB bus resulted in either HRESP assertion by the slave to the
AHB bus, HRESP assertion by the AHB bus to that master (in the
case of blocked fabric master), or was decoded by the AHB bus as
being to “unimplemented” address space. The bit definitions are as
follows:
Bit 0: Corresponds to an HRESP assertion being issued to the
HPDMA interface

Bit 1: Corresponds to an HRESP assertion being issued to FIC_0
interface

Bit 2: Corresponds to an HRESP assertion being issued to FIC_1
System interface S interface

Bit 3: Corresponds to an HRESP assertion being issued to the
Ethernet MAC

Bit 4: Corresponds to an HRESP assertion being issued to the
peripheral DMA engine

Bit 5: Corresponds to an HRESP assertion being issued to the USB

Bit 6: Corresponds to an HRESP assertion being issued to the
System Controller

These signals are not used as interrupts to the Cortex-M3
processor. Instead, they are ORed together in SYSREG to create
a signal called SW_ERRORINTERRUPT, which is used as an
interrupt to the Cortex-M3 processor.

21.5.100 Watchdog Timeout Event
Table 21-109. WDOGTIMEOUTEVENT

Bit
Number

Name Reset
Value

Description

[31:1] Reserved 0

0 WDOGTIMEOUTEVENT 0 WDOGTIMEOUTEVENT is not affected by SYSRESETN. This
allows firmware to determine if a system reset occurred due to a
watchdog timeout event. This signal is not used as an interrupt to
the Cortex-M3 processor. Reset to 0 by PORESETN only.

21.5.101 Clear MSS Counters
Table 21-110. CLR_MSS_COUNTERS

Bit
Number

Name Reset
Value

Description

[31:6] Reserved 0

5 CC_DC_TRANS_CNTCLR 0 When set, the CC_DC_TRANS_CNT counter is reset.

4 CC_IC_TRANS_CNTCLR 0 When set, the CC_IC_TRANS_CNT counter is reset.

3 CC_DC_HIT_CNTCLR 0 When set, the CC_DC_HIT_CNT counter is reset.

2 CC_DC_MISS_CNTCLR 0 When set, the CC_DC_MISS_CNT counter is reset.

System Register Block

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 730

...........continued
Bit
Number

Name Reset
Value

Description

1 CC_IC_HIT_CNTCLR 0 When set, the CC_IC_HIT_CNT counter is reset.

0 CC_IC_MISS_CNTCLR 0 When set, the CC_IC_MISS_CNT counter is reset.

21.5.102 Clear EDAC Counters
Table 21-111. CLR_EDAC_COUNTERS

Bit
Numbe
r

Name Reset
Value

Description

[31:14] Reserved 0 —

13 CAN_EDAC_CNTCLR_2E 0 Pulse generated to clear the 16-bit counter value in CAN
corresponding to the count value of EDAC 2-bit errors. This in
turn clears the upper 16 bits of the CAN_EDAC_CNT register.

12 CAN_EDAC_CNTCLR_1E 0 Pulse generated to clear the 16-bit counter value in CAN
corresponding to the count value of EDAC 1-bit errors. This in
turn clears the lower 16 bits of the CAN_EDAC_CNT register.

11 USB_EDAC_CNTCLR_2E 0 Pulse generated to clear the 16-bit counter value in USB
corresponding to the count value of EDAC 2-bit errors. This in
turn clears the upper 16 bits of the USB_EDAC_CNT register.

10 USB_EDAC_CNTCLR_1E 0 Pulse generated to clear the 16-bit counter value in USB
corresponding to the count value of EDAC 1-bit errors. This in
turn clears the lower 16 bits of the USB_EDAC_CNT register.

9 MAC_EDAC_RX_CNTCLR_2E 0 Pulse generated to clear the 16-bit counter value in Ethernet
MAC Rx RAM corresponding to the count value of EDAC
2-bit errors. This in turn clears the upper 16 bits of the
MAC_EDAC_RX_CNT register.

8 MAC_EDAC_RX_CNTCLR_1E 0 Pulse generated to clear the 16-bit counter value in Ethernet
MAC Rx RAM corresponding to the count value of EDAC
1-bit errors. This in turn clears the lower 16 bits of the
MAC_EDAC_RX_CNT register.

7 MAC_EDAC_TX_CNTCLR_2E 0 Pulse generated to clear the 16-bit counter value in Ethernet
MAC Tx RAM corresponding to the count value of EDAC
2-bit errors. This in turn clears the upper 16 bits of the
MAC_EDAC_TX_CNT register.

6 MAC_EDAC_TX_CNTCLR_1E 0 Pulse generated to clear the 16-bit counter value in Ethernet
MAC Tx RAM corresponding to the count value of EDAC
1-bit errors. This in turn clears the lower 16 bits of the
MAC_EDAC_TX_CNT register.

5 Reserved 0

4 Reserved 0

3 ESRAM1_EDAC_CNTCLR_2E 0 Pulse generated to clear the 16-bit counter value in eSRAM1
corresponding to the count value of EDAC 2-bit errors. This
in turn clears the upper 16 bits of the eSRAM1_EDAC_CNT
register.

System Register Block

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 731

...........continued
Bit
Numbe
r

Name Reset
Value

Description

2 ESRAM1_EDAC_CNTCLR_1E 0 Pulse generated to clear the 16-bit counter value in eSRAM1
corresponding to count value of EDAC 1-bit errors. This in turn
clears the lower 16 bits of the eSRAM1_EDAC_CNT register.

1 ESRAM0_EDAC_CNTCLR_2E 0 Pulse generated to clear the 16-bit counter value in eSRAM0
corresponding to count value of EDAC 2bit Errors. This in turn
clears the upper 16 bits of eSRAM0_EDAC_CNT register.

0 ESRAM0_EDAC_CNTCLR_1E 0 Pulse generated to clear the 16-bit counter value in eSRAM0
corresponding to the count value of EDAC 1-bit errors. This
in turn clears the lower 16 bits of the ESRAM0_EDAC_CNT
register.

21.5.103 Flush Configuration Register
Table 21-112. FLUSH_CR

Bit
Number

Name Reset
Value

Description

[31:9] Reserved 0

8 DDRB_INVALID_IDC 0 Allows the read buffer for the IDC master in the MSS DDR
bridge to be invalidated. The read buffer is emptied once this
pulse is detected.
0: No effect
1: Invalidate IDC read buffer

7 DDRB_INVALID_HPD 0 Allows the read buffer allocated for the AHB bus in the MSS
DDR bridge to be invalidated. The read buffer is emptied once
this pulse is detected.
0: No effect
1: Invalidate HPD read buffer

6 DDRB_INVALID_SW 0 Allows the read buffer for the high performance master in the
MSS DDR bridge to be invalidated. The read buffer is emptied
once this pulse is detected.
0: No effect
1: Invalidate AHB Bus read buffer

5 DDRB_INVALID_DS 0 Allows the read buffer for the DSG Master in the MSS DDR
bridge to be invalidated. The read buffer is emptied once this
pulse is detected.
0: No effect
1: Invalidate DSG read buffer

4 DDRB_FLSHSW 0 Allows the write buffer for the AHB bus in the MSS DDR
bridge to be flushed. Data present in the write buffer is
transferred to the MSS DDR bridgewrite arbiter interface when
this pulse is detected.
0: No effect
1: Flush AHB bus write buffer

System Register Block

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 732

...........continued
Bit
Number

Name Reset
Value

Description

3 DDRB_FLSHHPD 0 Allows the write buffer for the HPD master in the MSS DDR
bridge to be flushed. Data present in the write buffer is
transferred to the MSS DDR bridge write arbiter interface
when this pulse is detected.
0: No effect
1: Flush HPD write buffer

2 DDRB_FLSHDS 0 Allows the write buffer for the DSG master in the MSS DDR
bridge to be flushed. Data in the write buffer is transferred to
the MSS DDR bridge write arbiter when this pulse is detected.
0: No effect
1: Flush DSG write buffer

1 CC_FLUSH_CHLINE 0 Signal (pulse) to flush only one index in the cache memory.
This signal is used to invalidate all tags of four sets at one
index only.
0: No effect
1: Flush index

0 CC_FLUSH_CACHE 0 Signal (pulse) to flush cache memory. This signal is used
to invalidate all tags of four sets at the same time. Allowed
values:
0: No effect
1: Flush cache memory

21.5.104 MAC Status Clear Control Register
Table 21-113. MAC_STAT_CLR_CR

Bit
Number

Name Reset
Value

Description

[31:1] Reserved 0

0 MAC_STAT_CLR 0 Writing a ‘1’ to this bit will clear the MAC statistics registers.

21.5.105 IOMUXCELL_CONFIG[n] Configuration Register
Table 21-114. IOMUXCELL_CONFIG[n]

Bit
Number

Name Reset
Value

Description

[31:10] Reserved 0

9 MSS_IOMUXSEL5LOWER[N] 0 Used to select the source of the output port of the
I/O cell corresponding to this IOMUXCELL. Each bit of
this bus is used together with the corresponding bit of
MSS_IOMUXSEL5UPPER and MSS_IOMUXSEL5MID to
form a 3-bit field. This field definition is in Table 21-115.

8 MSS_IOMUXSEL5MID[N] 0 Used to select the source of the output port of the I/O cell
corresponding to this IOMUXCELL

7 MSS_IOMUXSEL5UPPER[N] 0 Used to select the source of the OE port of the I/O cell
corresponding to this IOMUXCELL

System Register Block

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 733

...........continued
Bit
Number

Name Reset
Value

Description

6:4 MSS_IOMUXSEL4[N][2:0] 0 Used to select the source of the output port of the I/O cell
corresponding to this IOMUXCELL. This field definition is in
Table 21-116.

3 MSS_IOMUXSEL3[N] 0 0: Output enable of interface MSS GPIO of IOMUXCELL
goes to FPGA fabric core input
1: Output of interface serial comms of IOMUXCELL goes to
FPGA fabric core input

2 MSS_IOMUXSEL2[N] 0 0: Output of interface MSS GPIO of IOMUXCELL goes to
FPGA fabric core input
1: Output enable of interface serial comms of IOMUXCELL
goes to FPGA fabric core input

1 MSS_IOMUXSEL1[N] 0 0: Input of interface MSS GPIO of IOMUXCELL comes from
the output of interface FPGA fabric core
1: Input of interface MSS GPIO of IOMUXCELL comes from
the I/O cell input

0 MSS_IOMUXSEL0[N] 0 0: Input of interface serial comms of IOMUXCELL comes
from the output of interface FPGA fabric core
1: Input of interface serial comms of IOMUXCELL comes
from the I/O cell input

Notes:

• Bit 0, Bit 1, and Bit 2 in the following table refer to IOMUXSEL5LOWER, IOMUXCELL5MID,
IOMUXCELL5UPPER respectively.

• Do not change these register fields dynamically for 005 and 010 devices, see 21.5.1. System Registers
Behavior for M2S005/010 Devices.

21.5.105.1 MSS_IOMUXSEL5[N][2:0]
Table 21-115. MSS_IOMUXSEL5 [N][2:0]

Bit 0 Bit 1 Bit 2 Function

0 0 0 Output of I/O cell comes from output of interface Serial Comms of
IOMUXCELL

0 0 1 Output of I/O cell comes from output of interface MSS GPIO of IOMUXCELL

0 1 0 Output of I/O cell comes from output of interface USB Controller of
IOMUXCELL

0 1 1 Output of I/O cell is connected to '0'

1 0 0 Output of I/O cell is connected to '1'

1 0 1 Reserved

1 1 0 Reserved

1 1 1 Reserved

System Register Block

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 734

21.5.105.2 MSS_IO_MUXSEL4[N][2:0]
Table 21-116. MSS_IOMUXSEL4[N][2:0]

Bit 0 Bit 1 Bit2 Function

0 0 0 Output of I/O cell comes from output of interface Serial Comms of IOMUXCELL

0 0 1 Output of I/O cell comes from output of interface MSS GPIO of IOMUXCELL

0 1 0 Output of I/O cell comes from output of interface USB Controller of IOMUXCELL

0 1 1 Output of I/O cell is connected to '0'

1 0 0 Output of I/O cell is connected to '1'

1 0 1 Reserved

1 1 0 Reserved

1 1 1 Reserved

Fabric Interface Interrupt Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 735

22. Fabric Interface Interrupt Controller
The fabric interface interrupt controller (FIIC) gathers interrupt signals from within the microcontroller subsystem
(MSS) and makes them available to the FPGA fabric. There are a number of peripherals and other blocks within the
MSS that generate interrupt signals. These interrupt signals are connected to the nested vectored interrupt controller
(NVIC) of the Cortex-M3 processor, and can be used as potential interrupt sources to a user logic within the FPGA
fabric.

22.1 Features
FIIC supports the following features:

• FIIC receives 43 interrupts from the MSS as inputs
• 16 individually configurable MSS to fabric interrupt ports
• 16 individually configurable fabric to MSS interrupt ports

The following figure shows the connectivity of FIIC to the AHB bus matrix.

Figure 22-1. The FIIC Connection to AHB Bus Matrix

AHB Bus Matrix

eSRAM_0System
Controller

Cache
Controller

S D IC

Arm® Cortex®-M3
Processor

S D I

MSS DDR
Bridge

PDMA

MS6

MM3

AHB To AHB Bridge with Address Decoder
USB OTG

HPDMA

MDDR

APB_0SYSREGTriple Speed
Ethernet MAC

FIC_0

MM4 MS4

MS2 MS3 MS0

MS5

MS1

MM5 MM6

MM7

MM8

MM2 MM1 MM0 MM9

IDC
D/S eNVM_0 eNVM_1 eSRAM_1

FIC_2 (Peripheral
Initialization) APB_1

MMUART_0

SPI_0

I2C_0

PDMA
Configuration

WATCHDOG

FIIC

TIMERx2

MMUART_1

SPI_1

I2C_1

GPIO

CAN

RTC

COMM_BLK

FIC_1

M
SS

_F
IC

M
S6

_U
SB

MS5_MAC MS5_SR MS5_APB0 MS5_FIC2 MS5_APB1

Fabric Interface Interrupt Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 736

22.2 Functional Description
This section provides the detailed description of the FIIC subsystem.

22.2.1 Architecture Overview
The following figure shows the interfacing of the FIIC with NVIC, MSS peripheral interrupts, and FPGA fabric. The
FIIC receives 43 level-sensitive active-high interrupts from the MSS as inputs. These MSS peripheral interrupts
are combined, in a predetermined fashion, into 16 M2F interrupts (MSS_INT_M2F [15:0]) routed to the fabric.
There is also a pass-through M3_NMI non-maskable interrupt from the watchdog timer and COMM_BLK interrupt,
COMM_BLK_INT.

Figure 22-2. Block Diagram for Fabric Interface Interrupt Controller

AHB Bus Matrix

Cache
Controller

S D IC

Arm® Cortex® -M3
Processor

S D I

APB_0

IDC

D/S

Nested Vector Interrupt
Controller (NVIC)

Fabric Interface Interrupt
Controller (FIIC)

M
SS

_I
N

T_
M

2F
[1

5:
0]

CO
M

M
_B

LK
_I

NT

M
3_

NM
I

FPGA Fabric

M
SS

_I
N

T_
F2

M
[1

5:
0]

M
SS

_I
N

T_
F2

M
[1

5:
0]

MSS Peripheral Interrupts

43 MSS Peripheral
Interrupts

There are 16 circuits, as shown in the following figure. Each circuit corresponds to a row in the preceding figure. The
dedicated interrupts coming from the MSS peripherals are always connected to the 16 M2F interrupt signals.

Fabric Interface Interrupt Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 737

Figure 22-3. Combinational Circuit for Mapping MSS Interrupts to a MSS_INT_M2F

MSS_INT_M2F

Dedicated

Select Group 1

Select Group 0

SELECT_MODE
Every peripheral interrupt in the MSS except I2C_SMBALERT0, I2C_SMBSUS0, I2C_SMBALERT1, and
I2C_SMBSUS1 has access to the FPGA fabric through the dedicated inputs of the FIIC.

Each fabric MSS_INT_M2F signal can be triggered from one of the two possible scenarios:

• Dedicated interrupts
• Multiplexed group of interrupts

The selection of the MSS interrupt to a specific MSS_INT_M2F signal and making it available to the FPGA Fabric is
done in two stages:

• Select the group of interrupts: It can be done by setting Select_Mode bit of the M2F Interrupt Mode Register.
• Enable the MSS interrupts: It can be done by writing to the appropriate FIIC INTERRUPT_ENABLE0 and

INTERRUPT_ENABLE1 interrupt enable registers.

Table 22-1. Interrupt Line Signal Distribution

M2F Interrupt
Signal

Dedicated Select Group 0 Select Group 1

MSS_INT_M2F[0] SPIINT0 ENVM_INT0 HPD_XFR_ERR_INT

MSS_INT_M2F[1] SPIINT1 ENVM_INT1 MSSDDR_PLL_LOCK_INT

MSS_INT_M2F[2] I2C_INT0 USB_DMA_INT SW_ERRORINTERRUPT

MSS_INT_M2F[3] I2C_INT1 Reserved DDRB_INTR

MSS_INT_M2F[4] MMUART0_INTR I2C_SMBALERT0 ECCINTR

MSS_INT_M2F[5] MMUART1_INTR I2C_SMBSUS0 CACHE_ERRINTR

MSS_INT_M2F[6] MAC_INT I2C_SMBALERT1 SOFTINTERRUPT

MSS_INT_M2F[7] USB_MC_INT I2C_SMBSUS1 COMM_BLK_INTR

MSS_INT_M2F[8] PDMAINTERRUPT HPD_XFR_ERR_INT Reserved

MSS_INT_M2F[9] HPD_XFR_CMP_INT MSSDDR_PLL_LOCK_INT Reserved

MSS_INT_M2F[10] TIMER1_INTR SW_ERRORINTERRUPT Reserved

MSS_INT_M2F[11] TIMER2_INTR DDRB_INTR MDDR_IO_CALIB_INT

MSS_INT_M2F[12] CAN_INTR ECCINTR Reserved

MSS_INT_M2F[13] RTC_WAKEUP_INTR CACHE_ERRINTR FAB_PLL_LOCK_INT

MSS_INT_M2F[14] WDOGWAKEUPINT SOFTINTERRUPT FAB_PLL_LOCKLOST_INT

MSS_INT_M2F[15] MSSDDR_PLL_LOCKLOST_INT COMBLK_INTR FIC64_INT

It is possible to overlay one interrupt signal with two interrupt sources. For example, enable a dedicated interrupt
and a group 0/1 interrupt. User logic in the fabric is responsible for determining the actual source of the interrupt by
reading the appropriate peripheral interrupt Status Registers and determining which interrupt has occurred. Interrupts
In and Out of the FIIC are asynchronous.

Fabric Interface Interrupt Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 738

All interrupts originating from MSS blocks and fed into the FIIC are active-high level sensitive signals. Once asserted,
the interrupt remains asserted until the user logic clears the appropriate MSS peripheral interrupt clear register.
MSS_INT_M2F interrupt signals are serviced by the FPGA fabric. The exceptions to this are the SMBALERT and
SMBSUS interrupts from the I2C peripheral. When these are held asserted, they are cleared by the far end I2C
device, after a firmware-initiated sequence of operations. WDOGTIMEOUTINT is always passed straight through the
block as M3_NMI.

F2M interrupts from the fabric are connected to the Cortex-M3 processor NVIC. MSS_INT_F2M [15:0], the 16 F2M
interrupts from user logic in the fabric, are routed directly to the Cortex-M3 processor NVIC. F2M interrupts are level
sensitive active-high inputs.

Once asserted, user logic in the fabric must keep the interrupt asserted until it is cleared by the
Cortex-M3 processor firmware. The SmartFusion 2 SoC FPGA FIIC does not synchronize fabric sourced peripheral
interrupts to the fabric clock or MSS clock.

22.2.2 FIIC Port List
Table 22-2. FIIC Port List

Port name Direction Polarity Description

MSS_INT_M2F[15:0] Out High MSS to fabric interrupts. The FIIC routes MSS
peripheral interrupts to the fabric.

COMM_BLK_INT Out COMMS block interrupt.

M3_NMI Out Non-maskable interrupt from the watchdog timer.

MSS_INT_F2M[15:0] In High Fabric to MSS interrupts.

22.3 How to Use FIIC
This section describes how to use the FIIC subsystem in the design.

22.3.1 Configuring the FIIC Using the Libero SoC
This section describes the FIIC configuration in the Libero SoC and shows different options available for configuring
the FIIC. The FIIC is not configured by default in the MSS configurator when the Libero SoC project is created. The
following steps are required to configure in the Libero SoC:

1. Instantiate the SmartFusion 2 MSS component into the Libero project and configure (enable/disable) the
peripherals as per the application needs, using the MSS configurator.

2. Double click or right click Interrupt Management and select the configure option, as shown in the following
figure.

Fabric Interface Interrupt Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 739

Figure 22-4. Configure FIIC in the MSS Configurator

The following options are available for configuring the FIIC subsystem:
• Use Fabric to MSS Interrupt
• Use MSS to Fabric Interrupt

The following figure shows the FIIC Configurator.

Figure 22-5. FIIC Configurator

3. Select either or both check boxes per the application need.
Use Fabric to MSS Interrupt: Use this option to expose the MSS_INT_F2M interrupt port. MSS_INT_F2M
signals are then available to be used in the design.

Use MSS to Fabric Interrupt: Use this option to expose MSS_INT_M2F, M3_NMI, and COMM_BLK_INT
interrupts ports. These signals are then available to be used in the design.

Fabric Interface Interrupt Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 740

Important: Timing models for Fabric to MSS interrupts have been updated with additional time delay. This
changes the timing arcs of nets and interface between Fabric to MSS interrupts. To meet timing accuracy,
open all Libero v11.7 SP3 designs and re-run Verify Timing. If you get new timing violations, do the
following:

1. Re-run place-and-route.
2. Re-run place-and-route with high effort.
3. Run place-and-route with multi-pass.
4. Adjust timing constraints or use chip planner to floorplan the affected interfaces.

For more information about the updated timing arcs, see PCN 17005A.

Interrupts from fabric must also be synchronized with the MSS clock. It is recommended to add a registered interrupt
prior to driving the MSS Interrupt.

22.3.2 FIIC Use Models
This section describes the use models and gives directions for using the FIIC in an application.

22.3.2.1 Use Model 1: Fabric to MSS Interrupt
The following figure shows fabric master/slave connectivity with the FIIC. Select Use Fabric to MSS Interrupt in
the Interrupt Management (FIIC) configurator in the Libero SoC. The MSS_INT_F2M signals are then available to be
used in the design. The fabric master/slave can be implemented using FSM with APB/AHB-Lite interface. Any user
logic (for example, timer/counter) in the FPGA fabric can also be used as a source of interrupt.

Figure 22-6. Fabric to the MSS Interrupt

Arm® Cortex®-M3

Cache Controller
eNVMeSRAM

AHB Bus Matrix

FIIC FIC_X

Fabric Master/Slave

MSS

FPGA Fabric

MSS_INT_M2F

D IS

D ICS

22.3.2.1.1 Software Design Flow
The software design flow consists of enabling the interrupts and the implementation of interrupt handlers. The
interrupt handler executes on the occurrence of interrupts. The following is a description of the software application
programming interfaces (APIs).

Enabling the Fabric to the MSS Interrupt

Fabric Interface Interrupt Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 741

This function enables the fabric to the MSS interrupt, MSS_INT_F2M, in the Cortex-M3 NVIC interrupt controller by
calling the following API:

NVIC_EnableIRQ (FabricIrqX_IRQn);

where X can be set from 0 to15.

FabricIrqX_IRQn represents interrupt source numbers, which are connected to the NVIC of the
Cortex-M3 processor in the MSS. The following table gives the interrupt source numbers that correspond to the fabric
to MSS interrupt, MSS_INT_F2M, signals.

Table 22-3. Interrupt Source Numbers

F2M Interrupt Signal Interrupt Number Interrupt Type

MSS_INT_F2M [0] 34 FabricIrq0_IRQn

MSS_INT_F2M [1] 35 FabricIrq1_IRQn

MSS_INT_F2M [2] 36 FabricIrq2_IRQn

MSS_INT_F2M [3] 37 FabricIrq3_IRQn

MSS_INT_F2M [4] 38 FabricIrq4_IRQn

MSS_INT_F2M [5] 39 FabricIrq5_IRQn

MSS_INT_F2M [6] 40 FabricIrq6_IRQn

MSS_INT_F2M [7] 41 FabricIrq7_IRQn

MSS_INT_F2M [8] 42 FabricIrq8_IRQn

MSS_INT_F2M [9] 43 FabricIrq9_IRQn

MSS_INT_F2M [10] 44 FabricIrq10_IRQn

MSS_INT_F2M [11] 45 FabricIrq11_IRQn

MSS_INT_F2M [12] 46 FabricIrq12_IRQn

MSS_INT_F2M [13] 47 FabricIrq13_IRQn

MSS_INT_F2M [14] 48 FabricIrq14_IRQn

MSS_INT_F2M [15] 49 FabricIrq15_IRQn

For more information, see the interrupts section in the 1. Cortex-M3 Processor Overview and Debug Features.

Fabric to the MSS Interrupt Handler

This interrupt handler executes on the occurrence of the fabric to MSS interrupts. This is done by calling the following
API:

void FabricIrqX_IRQHandler (void);

where X can be set from 0 to 15.

Clearing the Pending Interrupt

The NVIC_ClearPendingIRQ() function is used to clear the interrupt in the Cortex-M3 interrupt controller (NVIC). The
following API is used to clear the fabric to the MSS interrupt:

NVIC_ClearPendingIRQ(FabricIrqX_IRQn);

where X can be set from 0 to 15.

Fabric Interface Interrupt Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 742

Important: Once Fabric to MSS Interrupt is asserted, user logic in the fabric must keep the interrupt
asserted until it is cleared by the Cortex-M3 processor firmware.

22.3.2.2 Use Model 2: MSS to the Fabric Interrupt
The following figure shows user logic in the fabric connectivity with the FIIC. You need to select Use MSS to Fabric
Interrupt in the Interrupt Management (FIIC) configurator in the Libero SoC. The MSS_INT_M2F signals are then
available to be used in the design.

The user logic can monitor these signals and process according to the application requirement. The figure lists the
MSS peripheral interrupts that correspond to the MSS_INT_M2F signals.

Figure 22-7. MSS to Fabric Interrupt

Arm® Cortex®-M3

Cache Controller
eNVMeSRAM

AHB Bus Matrix

FIIC FIC_X

User Logic

MSS

FPGA Fabric

MSS_INT_M2F

S D IS

S D ICS

22.3.2.2.1 Software Design Flow
The software design flow consists of enabling the MSS to the fabric interrupts.

Enabling the MSS to the Fabric interrupt

The interrupt enable registers do not affect the Cortex-M3 process or the NVIC; these are per bit enables of the
interrupt routed to the FPGA fabric. It enables the MSS to fabric interrupt, MSS_INT_M2F, by setting the following
INTERRUPT_ENABLE0 or INTERRUPT_ENABLE1 register bit-band.

INTERRUPT_CTRL_BITBAND-> bit-band register bit of INTERRUPT_ENABLE0 or INTERRUPT_ENABLE1 =
<1/0>;

The following table gives the bit-band register bit of INTERRUPT_ENABLE0 and INTERRUPT_ENABLE1 in
INTERRUPT_CTRL structure. See m2sxxx.h contained in the CMSIS folder.

Table 22-4. Bit-Band Register Bit of Interrupt_Enable0 and Interrupt_Enable1

Bit-Band Register Bit

INTERRUPT_ENABLE0 INTERRUPT_ENABLE1

Fabric Interface Interrupt Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 743

...........continued
Bit-Band Register Bit

SPIINT0_ENBL RESERVED1[3]

SPIINT1_ENBL MDDR_IO_CALIB_INT_ENBL

I2C_INT0_ENBL RESERVED2

I2C_INT1_ENBL FAB_PLL_LOCK_INT_ENBL

MMUART0_INTR_ENBL FAB_PLL_LOCKLOST_INT_ENBL

MMUART1_INTR_ENBL FIC64_INT_ENBL

MAC_INT_ENBL RESERVED3[24]

USB_MC_INT_ENBL —

PDMAINTERRUPT_ENBL —

HPD_XFR_CMP_INT_ENBL —

TIMER1_INTR_ENBL —

TIMER2_INTR_ENBL —

CAN_INTR_ENBL —

RTC_WAKEUP_INTR_ENBL —

WDOGWAKEUPINT_ENBL —

MSSDDR_PLL_LOCKLOST_INT_ENBL —

ENVM_INT0_ENBL —

ENVM_INT1_ENBL —

I2C_SMBALERT0_ENBL —

I2C_SMBSUS0_ENBL —

I2C_SMBALERT1_ENBL —

I2C_SMBSUS1_ENBL —

HPD_XFR_ERR_INT_ENBL —

MSSDDR_PLL_LOCK_INT_ENBL —

SW_ERRORINTERRUPT_ENBL —

DDRB_INTR_ENBL —

ECCINTR_ENBL —

CACHE_ERRINTR_ENBL —

SOFTINTERRUPT_ENBL —

COMBLK_INTR_ENBL —

USB_DMA_INT_ENBL —

RESERVED0 —

To enable the MSS to the fabric interrupts, listed in the Select Group 0 or Select Group 1 column of Table 22-1, set
the bit-band register bit of INTERRUPT_MODE register as follows:

INTERRUPT_CTRL_BITBAND-> SELECT_MODE= <1/0>;

Fabric Interface Interrupt Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 744

Monitoring the MSS to the Fabric Interrupt Status

The status of the MSS to the fabric interrupt, MSS_INT_M2F, can be monitored by reading the bit-band register bit of
INTERRUPT_REASON0 and INTERRUPT_REASON1, as follows:

INTERRUPT_CTRL_BITBAND-> bit-band register bit of INTERRUPT_REASON0 or INTERRUPT_REASON1;

The following table gives the bit-band register bit of INTERRUPT_REASON0 and INTERRUPT_REASON1 in the
INTERRUPT_CTRL structure. Refer to m2sxxx.h contained in the CMSIS folder.

Table 22-5. Bit-Band Register Bit of INTERRUPT_REASON0 and INTERRUPT_REASON1 (continued).

Bit-Band Register Bit

INTERRUPT_REASON0 INTERRUPT_REASON1

SPIINT0_STATUS RESERVED5[3]

SPIINT1_STATUS MDDR_IO_CALIB_INT_STATUS

I2C_INT0_STATUS RESERVED6

I2C_INT1_STATUS FAB_PLL_LOCK_INT_STATUS

MMUART0_INTR_STATUS FAB_PLL_LOCKLOST_INT_STATUS

MMUART1_INTR_STATUS FIC64_INT_STATUS

MAC_INT_STATUS RESERVED7[24]

USB_MC_INT_STATUS

PDMAINTERRUPT_STATUS

HPD_XFR_CMP_INT_STATUS

TIMER1_INTR_STATUS

TIMER2_INTR_STATUS

CAN_INTR_STATUS

RTC_WAKEUP_INTR_STATUS

WDOGWAKEUPINT_STATUS

MSSDDR_PLL_LOCKLOST_INT_STATUS

ENVM_INT0_STATUS

ENVM_INT1_STATUS

I2C_SMBALERT0_STATUS

I2C_SMBSUS0_STATUS

I2C_SMBALERT1_STATUS

I2C_SMBSUS1_STATUS

HPD_XFR_ERR_INT_STATUS

MSSDDR_PLL_LOCK_INT_STATUS

SW_ERRORINTERRUPT_STATUS

DDRB_INTR_STATUS

ECCINTR_STATUS

CACHE_ERRINTR_STATUS

Fabric Interface Interrupt Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 745

...........continued
Bit-Band Register Bit

INTERRUPT_REASON0 INTERRUPT_REASON1

SOFTINTERRUPT_STATUS

COMBLK_INTR_STATUS

USB_DMA_INT_STATUS

RESERVED4

Example: The following code illustrates the usage of the MSS to the fabric interrupt in conjunction with the Timer1
interrupt.

int main()
{
 // STEP 1 - Enable Timer1 MSS to Fabric Interrupt (MSS_INT_M2F[10])
 INTERRUPT_CTRL_BITBAND->TIMER1_INTR_ENBL = 1;
 // STEP 2 - Configure Timer1 in PERIODIC MODE
 MSS_TIM1_init(MSS_TIMER_PERIODIC_MODE);
 // STEP 3 - Load count value
 MSS_TIM1_load_immediate(10000000);
 // STEP 4 - Start Timer1
 MSS_TIM1_start();
 // STEP 5 - Enable Timer1 Interrupt and IRQ in NVIC
 MSS_TIM1_enable_irq();
 // Foreground loop
 for(;;)
 {
 ;
 }
 return 0;
}
/*
 * Connect MSS_INT_M2F[10] signal to LED.
 * Toggle LED on TIM1 interrupt.
 */
__attribute__((__interrupt__)) void Timer1_IRQHandler(void)
{
 uint32_t timer1_interrupt;
 // Read Timer1 MSS to Fabric Interrupt status
 timer1_interrupt = INTERRUPT_CTRL_BITBAND->TIMER1_INTR_STATUS;
 // Delay for extending the Timer1 MSS to fabric Interrupt pulse width
 delay(10000);
 /* Clear TIM1 interrupt */
 MSS_TIM1_clear_irq();
}

22.3.2.2.2 Soft Processor in FPGA Fabric
If MSS peripheral interrupt sources to be used as an interrupt sources to a soft processor within the FPGA fabric, the
following steps to be implemented in soft processor:

Step 1 - Enabling the MSS to the Fabric Interrupt

Set M2F interrupt enable register bit of MSS peripheral in <Table 22-7> or <Table 22-8> registers.

For example, to enable Timer1 MSS to fabric interrupt (MSS_INT_M2F [10]), TIMER1_INTR_ENBL bit in Table 22-7
register must be set.

Step 2 - Initialize and Configure Peripheral

Refer to peripheral chapters for initialization, configuration, and use model.

Step 3 - Enable Peripheral Interrupt

Refer to peripheral chapters for interrupt enable registers.

For example, you need to set TIMxINTEN bit in Table 18-8 register for Timer1 interrupt.

Fabric Interface Interrupt Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 746

Important: Once MSS to Fabric Interrupt is asserted, the interrupt remains asserted until the user logic
(soft processor /FSM) clears the appropriate MSS peripheral interrupt clear register.

Steps 4 - Clear Peripheral Interrupt

Refer to peripheral chapters for interrupt clear registers.

For example, you need to set TIMx_RIS bit in Table 18-9 register for clearing Timer1 interrupt.

22.4 FIIC Controller Registers
The register set contains two interrupt enable registers, two interrupt status registers and an interrupt mode register.
The interrupt enable registers do not affect the Cortex-M3 processor NVIC; these are per bit enables of the interrupt
routed to the FPGA fabric.

The following table summarizes each of the registers covered by this chapter. The base address of the FIIC block is
0x40006000.

Table 22-6. SmartFusion 2 SoC FPGA FIIC Register Map

Register Name Address
Offset

Register
Type

Reset
Value

Description

Table 22-7 0x00 R/W 0x0 Enables MSS to fabric interrupts

Table 22-8 0x04 R/W 0x0 Enables MSS to fabric interrupts

Table 22-10 0x08 RO 0x0 Indicates which interrupts are active

Table 22-9 0x0C RO 0x0 Indicates which interrupts are active

Table 22-11 0x10 R/W 0x0 Indicates select group 0 or select group1

22.5 FIIC Controller Register Bit Definitions
The following tables provide the bit definitions for registers in the FIIC. 

Table 22-7. INTERRUPT_ENABLE0

Bit
Number

Name Reset
Value

Description

0 SPIINT0_ENBL 0 SPIINT0 interrupt from the MSS SPI_0 block to fabric.
1: Enable

0: Mask

1 SPIINT1_ENBL 0 SPIINT1 interrupt from the MSS SPI_1 block to fabric.
1: Enable

0: Mask

2 I2C_INT0_ENBL 0 I2C_INT0 interrupt from the MSS I2C_0 block to fabric.
1: Enable

0: Mask

3 I2C_INT1_ENBL 0 I2C_INT1 interrupt from the MSS I2C_1 block to fabric.
1: Enable

0: Mask

Fabric Interface Interrupt Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 747

...........continued
Bit
Number

Name Reset
Value

Description

4 MMUART0_INTR_ENBL 0 MMUART0_INTR interrupt from the MSS MMUART_0
block to fabric.
1: Enable

0: Mask

5 MMUART1_INTR_ENBL 0 MMUART1_INTR interrupt from the MSS MMUART_1
block to fabric.
1: Enable

0: Mask

6 MAC_INT_ENBL 0 MAC_INT interrupt from the MSS Ethernet MAC block
to fabric.
1: Enable

0: Mask

7 USB_MC_INT_ENBL 0 USB_MC_INT interrupt from the MSS USB block to
fabric.
1: Enable

0: Mask

8 PDMAINTERRUPT_ENBL 0 PDMAINTERRUPT interrupt from the MSS peripheral
DMA block to fabric.
1: Enable

0: Mask

9 HPD_XFR_CMP_INT_ENBL 0 HPD_XFR_CMP_INT interrupt from the MSS HPDMA
block to fabric.
1: Enable

0: Mask

10 TIMER1_INTR_ENBL 0 TIMER1_INTR interrupt from the MSS TIMER1 block to
fabric.
1: Enable

0: Mask

11 TIMER2_INTR_ENBL 0 TIMER2_INTR interrupt from the MSS TIMER2 block to
fabric.
1: Enable

0: Mask

12 CAN_INTR_ENBL 0 CAN_INTR interrupt from the MSS CAN controller
block to fabric.
1: Enable

0: Mask

13 RTC_WAKEUP_INTR_ENBL 0 RTC_WAKEUP_INTR interrupt from the MSS RTC
block to fabric.
1: Enable

0: Mask

Fabric Interface Interrupt Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 748

...........continued
Bit
Number

Name Reset
Value

Description

14 WDOGWAKEUPINT_ENBL 0 WDOGWAKEUPINT interrupt from the MSS Watchdog
block to fabric.

• 1: Enable
• 0: Mask

The watchdog is refreshed by writing to the
WDOGREFRESH register. When the counter value is
greater than the value in the WDOGMVRP register
and SLEEPING input to the watchdog is asserted, the
WDOGWAKEUPINT interrupt is generated.

15 MSSDDR_PLL_LOCKLOST_INT
_ENBL

0 MSSDDR_PLL_LOCKLOST_INT interrupt from MPLL
to the fabric.
1: Enable

0: Mask

16 ENVM_INT0_ENBL 0 ENVM_INT0 interrupt from the MSS ENVM0 block to
fabric.
1: Enable

0: Mask

17 ENVM_INT1_ENBL 0 ENVM_INT1 interrupt from MSS ENVM1 block to
fabric.
1: Enable

0: Mask

18 I2C_SMBALERT0_ENBL 0 I2C_SMBALERT0 interrupt from MSS I2C_0 block to
fabric.
1: Enable

0: Mask

19 I2C_SMBSUS0_ENBL 0 I2C_SMBSUS0 interrupt from the MSS I2C_0 block to
fabric.
1: Enable

0: Mask

20 I2C_SMBALERT1_ENBL 0 I2C_SMBALERT1 interrupt from the MSS I2C_1 block
to fabric.
1: Enable

0: Mask

21 I2C_SMBSUS1_ENBL 0 I2C_SMBSUS1 interrupt from the MSS I2C_1 block to
fabric.
1: Enable

0: Mask

22 HPD_XFR_ERR_INT_ENBL 0 HPD_XFR_ERR_INT interrupt from the MSS HPDMA
block to fabric.
1: Enable

0: Mask

Fabric Interface Interrupt Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 749

...........continued
Bit
Number

Name Reset
Value

Description

23 MSSDDR_PLL_LOCK_INT_ENBL 0 MSSDDR_PLL_LOCK_INT interrupt from the MPLL
block to fabric.
1: Enable

0: Mask

24 SW_ERRORINTERRUPT_ENBL 0 SW_ERRORINTERRUPT interrupt from the SYSREG
block to fabric.
1: Enable

0: Mask

HRESP from AHB bus Matrix assertion to the master in
case of blocked fabric master or for the unimplemented
address space results in SW_ERRORINTERRUPT
signal.

In case of above error condition the following
signals are ORed together in SYSREG to create the
SW_ERRORINTERRUPT signal:

1. HRESP assertion being issued to the HPDMA.

2. HRESP assertion being issued to FIC_0.

3. HRESP assertion being issued to FIC_1.

4. HRESP assertion being issued to the Ethernet MAC.

5. HRESP assertion being issued to the peripheral
DMA engine.

6. HRESP assertion being issued to the USB.

7. HRESP assertion being issued to the system
controller.

25 DDRB_INTR_ENBL 0 MSS DDR bridge DDRB_INTR to fabric.
1: Enable

0: Mask

DDRB_INTR input indicates that any one of the
following interrupts are asserted from the MSS DDR
bridge:

DDRB_ERROR interrupts

DDRB_DISABLEDONE interrupts

DDRB_LOCKTIMEOUT interrupts

26 ECCINTR_ENBL 0 ECCINTR interrupt from ESRAM0, ESRAM1 CAN,
MDDR, and USB to fabric.

• 1: Enable
• 0: Mask

The ECCINTR interrupt is asserted when an SECDED
error has been detected in ESRAM0, ESRAM1, CAN,
MDDR, or USB memories.

Fabric Interface Interrupt Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 750

...........continued
Bit
Number

Name Reset
Value

Description

27 CACHE_ERRINTR_ENBL 0 CACHE_ERRINTR interrupt from the cache controller
block to fabric.
1: Enable

0: Mask

The CACHE_ERRINTR interrupt is generated in the
SYSREG block by ORing of the following interrupts
from the SmartFusion 2 SoC FPGA CACHE block:

CC_HRESPERRINT0

CC_HRESPERRINT1

CC_HRESPERRINT2

CC_HRESPERRINT3

CC_EDCERRINT

28 SOFTINTERRUPT_ENBL 0 SOFTINTERRUPT interrupt from the SYSREG block to
fabric.
1: Enable

0: Mask

SOFTINTERRUPT is set by the Cortex-M3 processor
firmware by writing to the soft interrupt SYSREG block
bits.

29 COMBLK_INTR_ENBL 0 COMBLK_INTR interrupt from the COMM_BLK block to
fabric.
1: Enable

0: Mask

30 USB_DMA_INT_ENBL 0 USB_DMA_INT interrupt from USB’s DMA controller to
fabric.
1: Enable

0: Mask

31 Reserved 0 Reserved

 

Table 22-8. INTERRUPT_ENABLE1

Bit
Number

Name Reset
Value

Description

0 Reserved 0 Reserved

1 Reserved 0 Reserved

2 Reserved 0 Reserved

3 MDDR_IO_CALIB_INT_ENBL 0 MDDR_IO_CALIB_INT interrupt from the MDDR block
to fabric.
1: Enable

0: Mask

Fabric Interface Interrupt Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 751

...........continued
Bit
Number

Name Reset
Value

Description

4 Reserved 0 Reserved

5 FAB_PLL_LOCK_INT_ENBL 0 FAB_PLL_LOCK_INT interrupt from FAB_PLL.
1: Enable

0: Mask

6 FAB_PLL_LOCKLOST_INT_ENBL 0 FAB_PLL_LOCKLOST_INT interrupt from FAB_PLL.
1: Enable

0: Mask

7 FIC64_INT_ENBL 0 FIC64_INT interrupt from the DDR_FIC block.
1: Enable

0: Mask

8-31 Reserved 0 Reserved

 

Table 22-9. INTERRUPT_REASON1

Bit
Number

Name Reset
Value

Description

0 Reserved 0 Reserved

1 Reserved 0 Reserved

2 Reserved 0 Reserved

3 MDDR_IO_CALIB_INT_STATUS 0 Set if the interrupt source for MDDR_IO_CALIB_INT
is asserted and the MDDR_IO_CALIB_INT_ENBL
interrupt enable bit in INTERRUPT_ENABLE1 is High.

4 Reserved 0 Reserved

5 FAB_PLL_LOCK_INT_STATUS 0 Set if the interrupt source for FAB_PLL_LOCK_INT
is asserted and the FAB_PLL_LOCK_INT_ENBL
interrupt enable bit in INTERRUPT_ENABLE1 is High.

6 FAB_PLL_LOCKLOST_INT_STATUS 0 Set if the interrupt source for
FAB_PLL_LOCKLOST_INT is asserted and the
FAB_PLL_LOCKLOST_INT_ENBL interrupt enable bit
in INTERRUPT_ENABLE1 is High.

7 FIC64_INT_STATUS 0 Set if the interrupt source for FIC64_INT is asserted
and the FIC64_INT_ENBL interrupt enable bit in
INTERRUPT_ENABLE1 is High.

8-31 Reserved 0 Reserved

 

Fabric Interface Interrupt Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 752

Table 22-10. INTERRUPT_REASON0

Bit
Number

Name Reset
Value

Description

0 SPIINT0_STATUS 0 Set if the interrupt source for SPIINT0 is
asserted and the SPIINT0_ENBL interrupt
enable bit in INTERRUPT_ENABLE0 is High.

1 SPIINT1_STATUS 0 Set if the interrupt source for SPIINT1 is
asserted and the SPIINT1_ENBL interrupt
enable bit in INTERRUPT_ENABLE0 is High.

2 I2C_INT0_STATUS 0 Set if the interrupt source for I2C_INT0 is
asserted and the I2C_INT0_ENBL interrupt
enable bit in INTERRUPT_ENABLE0 is High.

3 I2C_INT1_STATUS 0 Set if the interrupt source forI2C_INT1 is
asserted and the I2C_INT1_ENBL interrupt
enable bit in INTERRUPT_ENABLE0 is High.

4 MMUART0_INTR_STATUS 0 Set if the interrupt source for MMUART0_INTR
is asserted and the MMUART0_INTR_ENBL
interrupt enable bit in INTERRUPT_ENABLE0
is High.

5 MMUART1_INTR_STATUS 0 Set if the interrupt source for MMUART1_INTR
is asserted and the MMUART1_INTR_ENBL
interrupt enable bit in INTERRUPT_ENABLE0
is High.

6 MAC_INT_STATUS 0 Set if the interrupt source for MAC_INT is
asserted and the MAC_INT_ENBL interrupt
enable bit in INTERRUPT_ENABLE0 is High.

7 USB_MC_INT_STATUS 0 Set if the interrupt source for USB_MC_INT is
asserted and the USB_MC_INT_ENBL interrupt
enable bit in INTERRUPT_ENABLE0 is High.

8 PDMAINTERRUPT_STATUS 0 Set if the interrupt source for
PDMAINTERRUPT is asserted and the
PDMAINTERRUPT_ENBL interrupt enable bit
in INTERRUPT_ENABLE0 is High.

9 HPD_XFR_CMP_INT_STATUS 0 Set if the interrupt source for
HPD_XFR_CMP_INT is asserted and the
HPD_XFR_CMP_INT_ENBL interrupt enable bit
in INTERRUPT_ENABLE0 is High.

10 TIMER1_INTR_STATUS 0 Set if the interrupt source for TIMER1_INTR
is asserted and the TIMER1_INTR_ENBL
interrupt enable bit in INTERRUPT_ENABLE0
is High.

11 TIMER2_INTR_STATUS 0 Set if the interrupt source for TIMER2_INTR
is asserted and the TIMER2_INTR_ENBL
interrupt enable bit in INTERRUPT_ENABLE0
is High.

12 CAN_INTR_STATUS 0 Set if the interrupt source for CAN_INTR is
asserted and the CAN_INTR_ENBL interrupt
enable bit in INTERRUPT_ENABLE0 is High.

Fabric Interface Interrupt Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 753

...........continued
Bit
Number

Name Reset
Value

Description

13 RTC_WAKEUP_INTR_STATUS 0 Set if the interrupt source for
RTC_WAKEUP_INTR is asserted and the
RTC_WAKEUP_INTR_ENBL interrupt enable
bit in INTERRUPT_ENABLE0 is High.

14 WDOGWAKEUPINT_STATUS 0 Set if the interrupt source for
WDOGWAKEUPINT is asserted and the
WDOGWAKEUPINT_ENBL interrupt enable bit
in INTERRUPT_ENABLE0 is High.

15 MSSDDR_PLL_LOCKLOST_INT_STATU
S

0 Set if the interrupt source
for MSSDDR_PLL_LOCKLOST_INT
is asserted and the
MSSDDR_PLL_LOCKLOST_INT_ENBL
interrupt enable bit in INTERRUPT_ENABLE0
is High.

16 ENVM_INT0_STATUS 0 Set if the interrupt source for ENVM_INT0 is
asserted and the ENVM_INT0_ENBL interrupt
enable bit in INTERRUPT_ENABLE0 is High.

17 ENVM_INT1_STATUS 0 Set if the interrupt source for ENVM_INT1 is
asserted and the ENVM_INT1_ENBL interrupt
enable bit in INTERRUPT_ENABLE0 is High.

18 I2C_SMBALERT0_STATUS 0 Set if the interrupt source for I2C_SMBALERT0
is asserted and the I2C_SMBALERT0_ENBL
interrupt enable bit in INTERRUPT_ENABLE0
is High.

19 I2C_SMBSUS0_STATUS 0 Set if the interrupt source for I2C_SMBSUS0
is asserted and the I2C_SMBSUS0_ENBL
interrupt enable bit in INTERRUPT_ENABLE0
is High.

20 I2C_SMBALERT1_STATUS 0 Set if the interrupt source for I2C_SMBALERT1
is asserted and the I2C_SMBALERT1_ENBL
interrupt enable bit in INTERRUPT_ENABLE0
is High.

21 I2C_SMBSUS1_STATUS 0 Set if the interrupt source for I2C_SMBSUS1
is asserted and the I2C_SMBSUS1_ENBL
interrupt enable bit in INTERRUPT_ENABLE0
is High.

22 HPD_XFR_ERR_INT_STATUS 0 Set if the interrupt source for
HPD_XFR_ERR_INT is asserted and the
HPD_XFR_ERR_INT_ENBL interrupt enable bit
in INTERRUPT_ENABLE0 is High.

23 MSSDDR_PLL_LOCK_INT_STATUS 0 Set if the interrupt source for
MSSDDR_PLL_LOCK_INT is asserted and
the MSSDDR_PLL_LOCK_INT_ENBL interrupt
enable bit in INTERRUPT_ENABLE0 is High.
MSSDDR_PLL_LOCK_INT interrupt is asserted
when MPLL achieves lock.

Fabric Interface Interrupt Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 754

...........continued
Bit
Number

Name Reset
Value

Description

24 SW_ERRORINTERRUPT_STATUS 0 Set if the interrupt source for
SW_ERRORINTERRUPT is asserted and
the SW_ERRORINTERRUPT_ENBL interrupt
enable bit in INTERRUPT_ENABLE0 is High.

25 DDRB_INTR_STATUS 0 Set if the interrupt source for DDRB_INTR is
asserted and the DDRB_INTR_ENBL interrupt
enable bit in INTERRUPT_ENABLE0 is High.

26 ECCINTR_STATUS 0 Set if the interrupt source for ECCINTR is
asserted and the ECCINTR_ENBL interrupt
enable bit in INTERRUPT_ENABLE0 is High.

27 CACHE_ERRINTR_STATUS 0 Set if the interrupt source for
CACHE_ERRINTR is asserted and the
CACHE_ERRINTR_ENBL interrupt enable bit in
INTERRUPT_ENABLE0 is High.

28 SOFTINTERRUPT_STATUS 0 Set if the interrupt source for SOFTINTERRUPT
is asserted and the SOFTINTERRUPT_ENBL
interrupt enable bit inINTERRUPT_ENABLE0 is
High.

29 COMBLK_INTR_STATUS 0 Set if the interrupt source for COMBLK_INTR
is asserted and the COMBLK_INTR_ENBL
interrupt enable bit in INTERRUPT_ENABLE0
is High.

30 USB_DMA_INT_STATUS 0 Set if the interrupt source for USB_DMA_INT
is asserted and USB_DMA_INT_ENBL interrupt
enable bit in INTERRUPT_ENABLE0 is High.

31 Reserved 0 Reserved

Table 22-11. INTERRUPT_MODE

Bit
Number

Name Reset
Value

Description

0 SELECT_MODE 0 The following are the valid values for this bit:
0: Select group 0

1: Select group 1

31:1 Reserved 0 Reserved

Fabric Interface Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 755

23. Fabric Interface Controller
The fabric interface controller (FIC) enables connectivity between the fabric and the Microcontroller Subsystem
(MSS). The FIC is a part of the MSS and performs a bridging function for AHB-Lite to APB or AHB-Lite to AHB-Lite
between the AHB bus matrix and the FPGA fabric. The interface type is configurable. There are up to two, 32-bit
FICs in SmartFusion 2 devices, referred to as FIC_0 and FIC_1. Both FICs provide two bus interfaces between the
MSS and the fabric. The first is mastered by the MSS and has slaves in the fabric; the second is mastered by the
fabric and has slaves in the MSS.

The interfaces to the fabric can be 32-bit AHB-Lite or 32-bit APB. The address and data buses between the FIC
and the FPGA fabric are overlaid; hence, only one type of interface can be enabled at any time. However, separate
groups of signals are used for the AHB-Lite and APB control signals. In addition to the choice of AHBLite or APB
interfaces between the MSS and the fabric, a number of options related to relative clock frequencies and pipelining of
transactions are available. Each FIC block can operate on a different clock frequency, defined as a ratio of the MSS
main clock, M3_CLK.

The SmartFusion 2 architecture imposes a certain number of rules related to clocking domains between the fabric
interfaces and the FPGA fabric. This document provides guidance on how to properly construct such systems. The
following figure depicts the connectivity of FIC_0 and FIC_1 to the AHB bus matrix.

AHB-Lite master interface and AHB-Lite slave interface of FIC_0 are directly connected with mirrored master 4
(MM4) and mirrored slave 4 (MS4) on the AHB bus matrix. To reduce the load on the AHB bus matrix, FIC_1
AHB-Lite slave interface is connected through the synchronous AHB-to-AHB bridge with an address decoder which
inserts a one-cycle delay in each direction.

Fabric Interface Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 756

Figure 23-1. The FIC Connection to the AHB Bus Matrix

AHB Bus Matrix

eSRAM_0System
Controller

Cache
Controller

S D IC

Arm® Cortex®-M3
Processor

S D I

MSS DDR
Bridge

PDMA

MS6

MM3

AHB To AHB Bridge with Address Decoder
USB OTG

HPDMA

MDDR

APB_0SYSREGTriple Speed
Ethernet MAC

FIC_0

MM4 MS4

MS2 MS3 MS0

MS5

MS1

MM5 MM6

MM7

MM8

MM2 MM1 MM0 MM9

IDC
D/S eNVM_0 eNVM_1 eSRAM_1

FIC_2 (Peripheral
Initialization) APB_1

MMUART_0

SPI_0

I2C_0

PDMA
Configuration

WATCHDOG

FIIC

TIMERx2

MMUART_1

SPI_1

I2C_1

GPIO

CAN

RTC

COMM_BLK

FIC_1

M
SS

_F
IC

M
S6

_U
SB

MS5_MAC MS5_SR MS5_APB0 MS5_FIC2 MS5_APB1

The following table lists the number of FICs available for use in each device.

Table 23-1. Number of FICs Available for Use in Each Device

Device FIC Blocks

M2S005 11

M2S010

M2S025

M2S050 2

M2S060 1*

M2S090

M2S150 2

Note: 
1. Only FIC_0 is available.

Fabric Interface Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 757

23.1 Functional Description
The following sections provide a detailed description of the FIC subsystem.

Figure 23-2. Fabric Interface Controller Block Diagram

AHB Bus Matrix

AHB-Lite Master
Interface

AHB-Lite Master
Interface

AHB-Lite / APB
Slave Interface

AHB-Lite / APB
Master Interface

AHB-Lite / APB
Master Interface

AHB-Lite / APB
Slave Interface

AHB-LiteMSS AHB-Lite

AHB-Lite Slave
Interface

AHB-Lite Slave
Interface

Fabric Interface Controller

Fabric

The preceding figure shows a block diagram for the FIC. The FIC is a hard block; enabling or disabling it will not
consume any user logic. You can configure FIC_0 and FIC_1 independently from the Libero SoC MSS configurator.
The following configuration options are available:

• The MSS to the FPGA fabric interface
• Advanced AHB-Lite options
• The FPGA fabric Address Regions (MSS Master View)

23.1.1 MSS to the FPGA Fabric Interface
The FIC interface can be configured towards the fabric to support AHB-Lite or APB. The FIC configuration allows
you to implement AHB-Lite or APB slave user logic in the fabric that can expose the memory map of the Cortex-M3
processor and other masters on the AHB bus matrix. You can also implement an AHB-Lite or APB master in the
fabric that can access any slave on the AHB bus matrix. Since FIC_0 and FIC_1 have an AMBA interface towards
the fabric, user logic should implement the AMBA AHB-Lite or APB3 protocol in order to communicate with the FIC.

The following options are available for implementing peripherals in the fabric:

• If you are using a mix of AHB-Lite and APB peripherals, use CoreAHBLite, CoreAHB2APB3, and CoreAPB3 soft
IPs.

• If you are using APB (APB v3.0) peripherals (for example, CoreUARTAPB), use CoreAPB3 soft IP for
connecting to the fabric.

• If you are using AHB-Lite peripherals, use CoreAHBLite soft IP for connecting to the fabric interface.

23.1.2 Configure FIC for Master or Slave Interface
FIC_0 and FIC_1 are configured individually through the Libero SoC MSS configurator. There are two options:

• The MSS is the master and the fabric has the slave (HM – hard master).

Fabric Interface Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 758

• The fabric has the master and the MSS is the slave (FM – fabric master).

The MSS side of the FIC has two (master and slave) AHB-Lite interfaces to the AHB bus matrix, as shown in Figure
23-2. On the fabric side of the FIC, the master and slave interfaces can be AHB-Lite or APB. Both interfaces on the
fabric side always uses the same protocol, either AHB-Lite or APB. However, it is possible to have master and slave
at the same time.

23.2 Advanced AHB-Lite Options

23.2.1 Configure FIC in Bypass Mode or Synchronous Pipelined Mode
You can configure FIC_0 and FIC_1 individually through the Libero SoC MSS configurator. The AHB-Lite
configuration in the FIC configurator provides the Use Bypass Mode option to enable or disable the address and
data pipelining between FPGA fabric logic and the AHB bus matrix. In some scenarios, the FPGA fabric logic needs
to access the MSS peripherals (such as eSRAM or eNVM) with very high throughput. In such cases, the FPGA fabric
logic should be connected to the FIC using an AHB-Lite interface.

In bypass mode (non-pipelined mode / Use Bypass Mode option checked), it is possible to achieve zero-wait state
access between the FPGA master and a zero-wait state capable MSS slave, if there is no other master accessing
that slave. However, the setup time requirement of the FIC interface is a bigger, which may lower the overall
frequency of operation. The clock ratio between M3_CLK, FIC_0_CLK, and FIC_1_CLK must be set to 1:1 when
bypass mode is selected. This requirement is enforced in the MSS CCC configurator when bypass mode is selected.

In Pipelined mode (Use Bypass Mode option unchecked / default mode), the interface between the AHB bus matrix
and FPGA has registered signals that reduce setup requirements.This may improve overall system frequency, but
these registers introduce a bubble in the AHB transaction pipe. It results in inserting a wait-state for each transaction
even if the Master and Slave are capable of zero-wait state access. Relative clock frequency between the MSS clock,
M3_CLK, and the fabric clock for Synchronous Pipelined mode can be 1:1, 2:1, 4:1, 8:1, 16:1, or 32:1.

You have to analyze the critical paths between the FIC and the logic in the FPGA fabric, when Use Bypass Mode is
enabled. You need to make sure that all the timing requirements have been met between FIC and FPGA fabric logic.

FIC32_0_DIVISOR[2:0] and FIC32_1_DIVISOR[2:0] configuration inputs from the SYSREG block
MSSDDR_FACC1_CR configuration register, specify the ratio of clocks between the MSS system clock, M3_CLK,
and the fabric clock used by the soft IP interfacing with FIC_0 and FIC_1. The FAB0_AHB_BYPASS and
FAB1_AHB_BYPASS fields from the SYSREG block FAB_IF_CR register, configure FIC_0 and FIC_1 in Bypass
mode or Synchronous Pipelined mode.

23.2.2 Master Identity Port to the Fabric
The AHB bus matrix provides a 2-bit side band signal to the FPGA fabric (one 2-bit signal per FIC instance). The
side band signal indicates to the slave, which is implemented in the FPGA fabric, the identification of the master
performing the current transaction. These signals have the same timing as other AHB Lite master signals, such as
HTRANS, HMASTLOCK and so on. Table 23-2 provides the decoding of the master accessing the FPGA fabric slave
through the MSS AHB bus matrix.

The Libero SoC MSS configurator allows exposure of the master ID port; if the interface is selected to act as a master
of the FPGA fabric.

Table 23-2. Master Group Access to Fabric Slaves

FIC_X_MASTER_ID Accessing Master

00 IC-bus, D-bus, and SBus master

01 FIC_0, FIC_1

10 HPDMA, Ethernet MAC, PDMA, USB

11 System controller

Fabric Interface Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 759

23.2.3 Configure MSS Master View for the FPGA Fabric Address
There are six 256 MB regions defined as FIC Regions 0 to 5 in the MSS memory map. Each of these regions can be
allocated to the FIC_0 or FIC_1 slave interfaces in a mutually exclusive fashion. Libero SoC MSS configurator allows
you to configure the Memory Regions for the FIC interfaces. By default, fabric regions 0, 1, and 2 are accessible
through FIC_0, and regions 3, 4, and 5 are accessible through FIC_1. The following table lists the FIC memory
regions.

Table 23-3. FIC Memory Regions

FIC Region Start Address End Address

0 0x30000000 0x3FFFFFFF

1 0x50000000 0x5FFFFFFF

2 0x70000000 0x7FFFFFFF

3 0x80000000 0x8FFFFFFF

4 0x90000000 0x9FFFFFFF

5 0XF0000000 0xFFFFFFFF

23.3 FIC Interface Port List
There are two interfaces between the microcontroller subsystem (MSS) and the fabric. One interface allows an
AHB-Lite master in the MSS to communicate with AHB-Lite or APB slaves in the fabric.The second interface allows
AHB-Lite or APB masters, that are implemented in the fabric, to communicate with AHB-Lite slaves in the MSS, as
shown in the following figure. The bridge from the MSS master to the fabric slave, implements AHB-Lite to AHB-Lite
or APB translation; and the bridge from the fabric master to the MSS slave implements AHB-Lite or APB to AHB-Lite
translation.

Fabric Interface Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 760

Figure 23-3. Fabric Interface Controller Top-Level View

FIC_X

Bridge from
MSS Master to
Fabric Slave

Bridge from Fabric
Master to MSS Slave

AHB-Lite Signals from
AHB Bus Matrix Master
Interface to FIC_X

AHB-Lite Signals from
FIC_X to AHB Bus Matrix
Slave Interface

FIC_X_APB_M_PRDATA
FIC_X_APB_M_PADDR
FIC_X_APB_M_PREADY
FIC_X_APB_M_PSEL
FIC_X_APB_M_PWRITE
FIC_X_APB_M_PENABLE
FIC_X_APB_M_PWDATA
FIC_X_APB_M_PSLVERR

FIC_X_AHB_M_HRDATA
FIC_X_AHB_M_HADDR
FIC_X_AHB_M_HREADY
FIC_X_AHB_M_HWRITE
FIC_X_AHB_M_HSIZE
FIC_X_AHB_M_HWDATA
FIC_X_AHB_M_HRESP
FIC_X_AHB_M_HTRANS

FIC_X_MASTER_ID

FIC_X_APB_S_PRDATA
FIC_X_APB_S_PADDR
FIC_X_APB_S_PREADY
FIC_X_APB_S_PSEL
FIC_X_APB_S_PWRITE
FIC_X_APB_S_PENABLE
FIC_X_APB_S_PWDATA
FIC_X_APB_S_PSLVERR

FIC_X_AHB_S_HRDATA
FIC_X_AHB_S_HADDR
FIC_X_AHB_S_HREADY
FIC_X_AHB_S_HSEL
FIC_X_AHB_S_HWRITE
FIC_X_AHB_S_HSIZE
FIC_X_AHB_S_HWDATA
FIC_X_AHB_S_HRESP
FIC_X_AHB_S_HTRANS
FIC_X_AHB_S_HMASTER
FIC_X_AHB_S_HREADYOUT

The following table lists the FIC port list.

Table 23-4. Fabric Interface Controller Port List

Port Name Direction Description

FIC_X_MASTER_ID [1:0] Out Indicates the current master performing the transfer.
See Table 23-2.

FIC_X_APB_S_PRDATA [31:0] Out Indicates APB read data to the fabric master.

Fabric Interface Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 761

...........continued
Port Name Direction Description

FIC_X_APB_S_PADDR [31:0] In Indicates APB address initiated by the fabric master.

FIC_X_APB_S_PREADY Out Indicates APB ready signal to the fabric master.

FIC_X_APB_S_PSEL In Indicates APB slave select signal from the fabric master.

FIC_X_APB_S_PWRITE In Indicates APB write control signal from the fabric master.

FIC_X_APB_S_PENABLE In Indicates APB enable from the fabric master. The enable signal is
used to indicate the second cycle of an APB transfer.

FIC_X_APB_S_PWDATA [31:0] In Indicates APB write data from the fabric master.

FIC_X_APB_S_PSLVERR Out Indicates error condition on an APB transfer to the fabric master.

FIC_X_APB_M_PRDATA [31:0] In Indicates APB read data from the fabric slave.

FIC_X_APB_M_PADDR [31:0] Out Indicates APB address to the fabric slave.

FIC_X_APB_M_PREADY In Indicates APB ready signal from the fabric slave.

FIC_X_APB_M_PSEL Out Indicates APB slave select signal to the fabric slaves.

FIC_X_APB_M_PWRITE Out Indicates APB write control signal to the fabric slaves.

FIC_X_APB_M_PENABLE Out Indicates APB enable to the fabric slave. The enable signal is
used to indicate the second cycle of an APB transfer.

FIC_X_APB_M_PWDATA [31:0] Out Indicates APB write data to the fabric slave.

FIC_X_APB_M_PSLVERR In Indicates error condition on an APB transfer from the fabric slave.

FIC_X_AHB_S_HRDATA [31:0] Out Indicates AHB read data to the fabric master.

FIC_X_AHB_S_HADDR [31:0] In Indicates AHB address initiated by the fabric master.

FIC_X_AHB_S_HREADY In Indicates that a transfer has completed on the bus. The fabric
master can drive this signal Low to extend a transfer.

FIC_X_AHB_S_HWDATA [31:0] In Indicates AHB write data from the fabric master.

FIC_X_AHB_S_HWRITE In Indicates AHB write control signal from the fabric master.

FIC_X_AHB_S_HRESP Out Indicates AHB transfer response to the fabric master.

FIC_X_AHB_S_HSIZE [1:0] In Indicates AHB transfer size from the fabric master.

FIC_X_AHB_S_HTRANS [1:0] In Indicates AHB transfer type from the fabric master.

FIC_X_AHB_S_HMASTLOCK In Indicates AHB master lock signal from the fabric master.

FIC_X_AHB_S_HSEL In Indicates AHB slave select signal from the fabric master.

FIC_X_AHB_S_HREADYOUT Out Indicates that a transfer has completed on the bus. The signal is
asserted Low to extend a transfer. Input to the fabric master.

FIC_X_AHB_M_HWRITE Out Indicates AHB write control signal to the fabric slave.

FIC_X_AHB_M_HADDR [31:0] Out Indicates AHB address to the fabric slave.

FIC_X_AHB_M_HREADY In Indicates that a transfer has completed on the bus. The fabric
slave can drive this signal Low to extend a transfer.

FIC_X_AHB_M_HWDATA [31:0] Out Indicates AHB-Lite write data to the fabric slave.

FIC_X_AHB_M_HRDATA [31:0] In Indicates AHB-Lite read data from the fabric slave.

FIC_X_AHB_M_HRESP In Indicates AHB-Lite transfer response from the fabric slave.

Fabric Interface Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 762

...........continued
Port Name Direction Description

FIC_X_AHB_M_HSIZE [1:0] Out Indicates AHB-Lite transfer size to the fabric slave.

FIC_X_AHB_M_HTRANS [1:0] Out Indicates AHB-Lite transfer type to the fabric slave.

23.4 Timing Diagrams
The timing diagrams contained in this section show AHB-Lite non-sequential transfers with 32 bits as the transfer
size.

The following diagram shows the AHB-Lite bus signals from fabric interface controller to the fabric slave for a write
transaction in bypass mode.

Figure 23-4. AHB-Lite Bus Signals from FIC to the Fabric Slave for a Write Transaction in Bypass Mode
T1 T2 T3 T4 T5 T6 T7

A A + 4

00

00 00

00 00

0010

10

10

10

FIC_X_AHB_M_HCLK

FIC_X_AHB_M_HADDR[31:0]

FIC_X_AHB_M_HTRANS

FIC_X_AHB_M_HSIZE

FIC_X_AHB_M_HWRITE

FIC_X_AHB_M_HSEL

FIC_X_AHB_M_HWDATA[31:0]

FIC_X_AHB_M_HREADY

Data (A) Data (A+4)

The following diagram shows the AHB-Lite bus signals from the fabric interface controller to the fabric slave for a
read transaction in bypass mode.

Figure 23-5. AHB-Lite Bus Signals from FIC to the Fabric Slave for a Read Transaction in Bypass Mode
T1 T2 T3 T4 T5 T6 T7

A A + 4

00

00 00

00 00

0010

10

10

10

FIC_X_AHB_M_HCLK

FIC_X_AHB_M_HADDR[31:0]

FIC_X_AHB_M_HTRANS

FIC_X_AHB_M_HSIZE

FIC_X_AHB_M_HWRITE

FIC_X_AHB_M_HSEL

FIC_X_AHB_M_HRDATA[31:0]

FIC_X_AHB_M_HREADY

Data (A)

The following diagram shows the AHB-Lite bus signals from the fabric interface controller to the fabric slave for write
transaction in synchronous pipelined mode.

Fabric Interface Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 763

Figure 23-6. AHB-Lite Bus Signals from FIC to the Fabric Slave for a Write Transaction in Synchronous
Pipelined Mode

T1 T2 T3 T4 T5 T6 T7 T8

A A + 4

00

00 00

0010

10

10

10

FIC_X_AHB_M_HCLK

FIC_X_AHB_M_HADDR[31:0]

FIC_X_AHB_M_HTRANS

FIC_X_AHB_M_HSIZE

FIC_X_AHB_M_HWRITE

FIC_X_AHB_M_HSEL

FIC_X_AHB_M_HWDATA[31:0]

FIC_X_AHB_M_HREADY

Data (A) Data (A+4)

The following diagram shows the AHB-Lite bus signals from the fabric interface controller to the fabric slave for read
transaction in synchronous pipelined mode.

Figure 23-7. AHB-Lite Bus Signals from FIC to the Fabric Slave for a Read Transaction in Synchronous
Pipelined Mode

FIC_X_AHB_M_HCLK

FIC_X_AHB_M_HADDR[31:0]

FIC_X_AHB_M_HTRANS

FIC_X_AHB_M_HSIZE

FIC_X_AHB_M_HWRITE

FIC_X_AHB_M_HSEL

FIC_X_AHB_M_HRDATA[31:0]

FIC_X_AHB_M_HREADY

T1 T2 T3 T4 T5 T6 T7 T8

A A + 4

00

00 00

0010

10

10

10

Data (A)

The following diagram shows the AHB-Lite bus signals from the fabric master to the fabric interface controller for
write transactions in bypass mode. Generation of pipelined requests depends on the efficiency of the master in the
fabric to generate it.

Figure 23-8. AHB-Lite Bus Signals from Fabric Master to FIC for a Write Transaction in Bypass Mode
T1 T2 T3 T4 T5 T6 T7

A A + 4

00

00 10

10

10

10

FIC_X_AHB_S_HCLK

FIC_X_AHB_S_HADDR[31:0]

FIC_X_AHB_S_HTRANS

FIC_X_AHB_S_HSIZE

FIC_X_AHB_S_HWRITE

FIC_X_AHB_S_HSEL

FIC_X_AHB_S_HWDATA[31:0]

FIC_X_AHB_S_HREADY

Data (A) Data (A+4)

Fabric Interface Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 764

The following diagram shows the AHB-Lite bus signals from the fabric master to the fabric interface controller for read
transactions in bypass mode. Generation of pipelined requests depends on the efficiency of the master in the fabric
to generate it.

Figure 23-9. AHB-Lite Bus Signals from Fabric Master to FIC for a Read Transaction in Bypass Mode
T1 T2 T3 T4 T5 T6 T7

A A + 4

00

00 10

10

10

10

FIC_X_AHB_S_HCLK

FIC_X_AHB_S_HADDR[31:0]

FIC_X_AHB_S_HTRANS

FIC_X_AHB_S_HSIZE

FIC_X_AHB_S_HWRITE

FIC_X_AHB_S_HSEL

FIC_X_AHB_S_HRDATA[31:0]

FIC_X_AHB_S_HREADY

Data (A)

The following diagram shows the AHB-Lite bus signals from the fabric master to the fabric interface controller for
write transactions in synchronous pipelined mode. Generation of pipelined requests depends on the efficiency of the
master in the fabric to generate it.

Figure 23-10. AHB-Lite Bus Signals from Fabric Master to FIC for a Write Transaction in Synchronous
Pipelined Mode

T1 T2 T3 T4 T5 T6 T7 T8

A A + 4

00

00 10

10

10

10

FIC_X_AHB_S_HCLK

FIC_X_AHB_S_HADDR[31:0]

FIC_X_AHB_S_HTRANS

FIC_X_AHB_S_HSIZE

FIC_X_AHB_S_HWRITE

FIC_X_AHB_S_HSEL

FIC_X_AHB_S_HWDATA[31:0]

FIC_X_AHB_S_HREADY

Data (A) Data (A+4)

The following diagram shows the AHB-Lite bus signals from the fabric master to the fabric interface controller for
read transactions in synchronous pipelined mode. Generation of pipelined requests depends on the efficiency of the
master in the fabric to generate it.

Fabric Interface Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 765

Figure 23-11. AHB-Lite Bus Signals from Fabric Master to FIC for a Read Transaction in Synchronous
Pipelined Mode

T1 T2 T3 T4 T5 T6 T7 T8

A A + 4

00

00 10

10

10

10

FIC_X_AHB_S_HCLK

FIC_X_AHB_S_HADDR[31:0]

FIC_X_AHB_S_HTRANS

FIC_X_AHB_S_HSIZE

FIC_X_AHB_S_HWRITE

FIC_X_AHB_S_HSEL

FIC_X_AHB_S_HRDATA[31:0]

FIC_X_AHB_S_HREADY

Data (A)

Important: When the Fabric master accesses the MSS slave through the FIC_1 AHB-Lite slave interface,
the AHB-to-AHB bridge inserts a one-cycle delay in each direction. Since these timing diagrams are at FIC
interface level, the delay cannot be noticed.

23.5 Implementation Considerations
In AHB mode, the user may perform byte, half word and word accesses from the fabric to MSS. However, in APB16
mode, the user can only cause a word access to occur to an MSS slave. This is done by two accesses over the
APB16, one of which is to write a 16-bit holding register (in the case of writes) or to read a 16-bit holding register in
the case of reads.

23.6 Fabric Interface Clocks
The fabric alignment clock controller (FACC) block in the MSS DDR clock controller is responsible for the alignment
of fabric related clocks. The FACC is interfaced with MSS PLLs (MPLLs) in order to generate the various aligned
clocks required by the MSS peripherals and the DDR controller in the MSS (MDDR). The lowest frequency clock,
of the aligned clocks being used within the fabric, is fed to the MSS DDR clock controller and is referred to as
CLK_BASE. CLK_BASE is internally multiplied and divided within the ASIC blocks in the MSS to generate higher
frequency clocks that are aligned with CLK_BASE; the positive edges of CLK_BASE and derived clocks occur at the
same time.

Refer to the UG0449: SmartFusion2 and IGLOO2 Clocking Resources User Guide for more details on the alignment
of fabric clocks and derived clocks in the MSS.

23.7 How to Use FIC
This section describes how to use the FIC subsystem in the design.

23.7.1 FIC Configuration
The FIC_0 and FIC_1 are not configured by default in the MSS configurator, when the Libero SoC project is created.
To configure/create a FIC subsystem:

1. The MSS FIC has to be configured to expose the FIC interface.
2. The FPGA fabric FIC subsystem has to be created including instantiation / configuration / connectivity for:

– APB or AHB-Lite bus.

Fabric Interface Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 766

– APB and AHB-Lite compliant master and/or peripherals configuration and connection onto the bus, as
required by your application.

– Clocks and resets; refer to 23.7.2. Configuring the FIC Subsystem Clocks and 23.7.3. Configuring the
FIC Subsystem Reset.

These steps are described in detail below. FIC, Clocks, and Reset sub-blocks are outlined in red in Figure 23-3.

Figure 23-12. MSS Configurator

23.7.1.1 Step 1: Configure the MSS FIC Sub-Block
As shown in the following figure, the FIC configurator (applies to both FIC_0 and FIC_1) is organized as follows. In
the left panel, the following can be configured:

• The MSS to the FPGA fabric interface
• Advanced AHB-Lite options
• The FPGA fabric address regions (MSS master view) – available in FIC_0 configurator only

In the right panel, a dynamic picture displays the high level block diagram of the architecture chosen. The picture
changes when any option in the MSS to FPGA fabric interface group is configured.

Fabric Interface Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 767

Figure 23-13. FIC Configurator

23.7.1.1.1 MSS to the FPGA Fabric Interface
Interface Type: Use this option to select between the AMBA APB (AHB to APB bridge) and AHB-Lite (AHB to AHB
bridge) FIC modes (as shown in the following figure).

Use Master Interface: Use this option to expose the Master Bus Interface (BIF) port. When selected, the port is
automatically available on the MSS core.

Use Slave Interface: Use this option to expose the Slave Bus Interface (BIF) port. When selected, the port is
automatically available on the MSS core.

Figure 23-14. MSS to FPGA Fabric Interface Core

23.7.1.1.2 Advanced AHBLite Options
Use Bypass Mode: Use this option to enable the FIC bypass mode. This option is only active when the interface
type is AHB-Lite (as shown in the following figure). The clock ratio between M3_CLK, FIC_0_CLK, and FIC_1_CLK
must be set to 1:1 when bypass mode is selected. This requirement is enforced in the MSS CCC Configurator when
bypass is selected.

Fabric Interface Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 768

Figure 23-15. Advanced Options Configuration

Expose Master Identity Port: Use this option to expose a 2-bit side band signal to the FPGA fabric (one 2-bit signal
per FIC instance). This option is only active if you selected the interface to act as a master of the fabric.

23.7.1.1.3 FPGA Fabric Address Regions (MSS Master View)
Up to six different memory regions can be assigned to each FIC in the MSS memory map. By default, fabric regions
0, 1, and 2 are accessible through FIC_0, and regions 3, 4, and 5 are accessible through FIC_1 as shown in the
following figure.

Figure 23-16. FPGA Fabric Address Regions (MSS Master View)

Important: This option is available in FIC_0 configurator only. If memory regions are required to be
configured to FIC_1, the FIC_0 configurator needs to be opened.

23.7.1.2 Step 2: Create the FPGA Fabric FIC Subsystem
For each FIC interface—master and slave—exposed, a bus (CoreAHBLite or CoreAPB3) must be instantiated
that matches the type selected. Depending on the interface role (master/slave) and type (AHB-Lite/APB), the bus
configuration is described in the following sections.

23.7.1.2.1 Master/AHB-Lite
Instantiate and configure the CoreAHBLite bus as follows:

1. Select the Memory Space option that matches requirements:
– If less than 16 MB of address space is required for all peripherals, select the option as shown in the

following figure. This mode provides sixteen, 16 MB slots that can be used to connect up to sixteen
AHB-Lite slaves.

Fabric Interface Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 769

Figure 23-17. Master/AHB-Lite Memory Space Configuration – 16 MB per Slot

– If more than 16 MB and less than 256 MB of address space is required for any peripheral, select the
option shown in the following figure. This mode provides sixteen, 256 MB slots that can be used to
connect up to sixteen AHB-Lite slaves.
Figure 23-18. Master/AHB-Lite Memory Space Configuration – 256 MB per Slot

2. Enable the slots planned to be used for the application. The best practice is to use the M1 to slot accesses, as
shown in the following figure.
Figure 23-19. Master/AHB-Lite Master Access Configuration

Fabric Interface Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 770

Important: 
• Use M1 if you plan to create a multi-master subsystem where you have a master in the fabric

that requires the remap feature and thus needs to be connected to M0.
• If you have selected the 16 MB per slot option, there are no restrictions on which slots can be

used.
• If you have selected the 256 MB per slot option, only the slots compatible with the FIC instance

fabric memory address regions selection can be used. Each FIC memory address region is
256 MB in size. The six FIC memory regions are summarized in the following table.

Table 23-5. Address Regions and Compatible Slots for 256 MB per Slot Option

Memory Address Region Compatible Slots

30000000-3FFFFFFF 3

50000000-5FFFFFFF 5

70000000-7FFFFFFF 7

80000000-8FFFFFFF 8

90000000-9FFFFFFF 9

F0000000-FFFFFFFF 15

3. Instantiate and configure AHB-Lite compliant peripheral cores and/or custom AHB-Lite compliant components.
4. Connect the subsystem together; this can be done in two ways:

– Automatic Connection: Right-click in the top-level SmartDesign canvas and select the Auto Connect
option. This connects the FPGA fabric peripherals to the MSS FIC interfaces through the CoreAHBLite
bus and CoreAPB3 bus.

– Manual Connection:
• Connect the CoreAHBLite mirrored-master bus interface (BIF) port M1 to the MSS master BIF port

(FIC_0/1_AHB_MASTER), as shown in the following figure.
• Connect the AHB-Lite slaves to the proper slots as per your memory map requirement.
• Clocks and resets; refer to the 23.7.2. Configuring the FIC Subsystem Clocks and

23.7.3. Configuring the FIC Subsystem Reset.

Fabric Interface Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 771

Figure 23-20. FIC Master/AHB-Lite Subsystem

23.7.1.2.2 Master/APB
Instantiate and configure the CoreAPB3 bus as follows:

1. Select the Address Configuration options, as shown in the following figure. This mode provides sixteen, 16 MB
slots that can be used to connect up to sixteen APB compliant slaves. If you need slots with more memory,
you can combine multiple slaves to build a larger slot. For more information about this option, see CoreAPB3
User Guide.
Figure 23-21. Master/APB Address Configuration

2. Enable the slots that you are planning on using for your application, as shown in the following figure.

Fabric Interface Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 772

Figure 23-22. Master/APB Slave Slots Configuration

3. Instantiate and configure APB compliant peripheral cores and/or custom APB compliant components.
4. Connect the subsystem together. this can be done in two ways.

– Automatic Connection: Right-click in the top-level SmartDesign canvas and select the Auto Connect
option. This connects the FPGA fabric peripherals to the MSS FIC interfaces through the CoreAPB3 bus.

– Manual Connection:
• Connect the CoreAPB3 mirrored-master bus interface (BIF) port to the MSS master BIF port

(FIC_0/1_APB_MASTER), as shown in the following figure.
• Connect the APB slaves to the proper slots as per your memory map requirement.
• Clocks and resets; refer to the 23.7.2. Configuring the FIC Subsystem Clocks and

23.7.3. Configuring the FIC Subsystem Reset.

Fabric Interface Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 773

Figure 23-23. FIC Master/APB Subsystem

23.7.2 Configuring the FIC Subsystem Clocks
To create the proper clock configuration and connectivity you must:

• Configure the MSS CCC FIC clocks.
• Instantiate and configure an FPGA fabric CCC core.
• Connect the clock networks for each FIC subsystem.
• Connect the MSS CLK_BASE port to the correct FPGA fabric FIC subsystem clock network.

The SmartFusion 2 architecture imposes the following rules that must be followed for synchronous communication
between the MSS and the FPGA fabric FIC subsystems. The following figure illustrates these rules.

• Each FPGA fabric FIC subsystem must be driven by a clock whose frequency matches the frequency defined,
for that particular subsystem, in the MSS_CCC configurator.

• All the FPGA fabric FIC subsystem clocks must be precisely aligned; the clocks may be of different frequencies,
but the rising edges of the slower clocks must be aligned to the rising edges of the fastest clocks.

• The FPGA fabric FIC subsystem clock with the smallest frequency must drive the MSS CLK_BASE.
• If a fabric PLL is used, then the fabric PLL’s LOCK output must be connected to the

MSS_CCC_CLK_BASE_PLL_LOCK port, for fabric PLL lock monitoring.

Fabric Interface Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 774

Figure 23-24. Clocking Scheme for Synchronous Communication Between the MSS and the FPGA Fabric

The following steps describe how to configure the clock networks for all FIC subsystems.

23.7.2.1 Step 1: Configure the MSS CCC Sub-Block
For each FIC block (FIC_0 and FIC_1) used in your design, select the clock divisors in the MSS clock configurator
(MSS_CCC), as shown in the following figure.

Fabric Interface Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 775

Figure 23-25. MSS CCC FIC Clock Configuration

Note that the CLK_BASE field is non-editable. CLK_BASE frequency, as imposed by the SmartFusion 2 architecture,
must be the minimum frequency of all FIC clock frequencies and is automatically computed by the MSS CCC
configurator.

23.7.2.2 Step 2: Configure the FPGA Fabric FIC Clocks
Instantiate a CCC macro and configure it to satisfy the FIC subsystem clock rules, as described above.

Typically a global output (GLx) must be associated with each of the FIC clocks must be associated and a frequency
specified for each output matching the frequencies defined in the MSS_CCC configurator. Microchip recommends
generating all the global outputs from a fabric PLL to ensure the phase alignment (as shown in the following figure).

Important: If two FIC subsystems have the same frequencies, one fabric CCC global output is sufficient
for clocking both the FIC subsystems.

Fabric Interface Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 776

Figure 23-26. Fabric Clocks Configuration

23.7.2.3 Step 3: Connect the FPGA Fabric FIC Subsystems Clock Networks
Connect the configured fabric CCC global outputs (GLx) to the associated FIC subsystems.

23.7.2.4 Step 4: Connect the MSS CLK_BASE Port
Connect the slowest of the fabric CCC global outputs (GLx) to MSS CLK_BASE port.

23.7.2.5 Step 5: Connect the MSS MCCC_CLK_BASE_PLL_LOCK Port
Connect the fabric CCC/PLL LOCK output to MSS MCCC_CLK_BASE_PLL_LOCK port.

23.7.2.6 Step 6: Timing Analysis Requirements
Post-layout static timing analysis must be performed to make sure that the design meets the frequency requirements
defined in MSS_CCC and the fabric CCC configurator. M3_CLK may need to be changed or clock ratio between
M3_CLK and the FIC clocks increased to get a design that passes the static timing analysis.

23.7.3 Configuring the FIC Subsystem Reset
To configure the FIC subsystem reset:

1. Configure the MSS Reset sub-block to expose the MSS_RESET_N_M2F port, as shown in the following
figure.

Fabric Interface Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 777

Figure 23-27. Configure the MSS Reset Sub-Block

2. Connect the MSS_RESET_N_M2F port to all the FPGA fabric FIC subsystems reset ports.

23.7.4 Use Models
The FIC allows four possible communication scenarios that are described in the following sections.

Microchip provides numerous AHB and APB v 3.0 compliant cores in the Libero SoC IP catalog for easy instantiation
into the FPGA fabric. You must instantiate CoreAHBLite and CoreAPB3 soft IP into the fabric to allow further
instantiation of soft AHB-Lite and APB masters and slaves.

Important: The MSS Fabric Interface Controllers support full behavioral simulation models. Refer to
SmartFusion2 MSS BFM Simulation User Guide for information.

23.7.4.1 Use Model 1: Connecting an MSS Master to the Fabric AHB-Lite Slave Interface
The following figure shows a MSS master and fabric slave scenario. The MSS acts as an AHB-Lite master for
Registered or Bypass mode. The Cortex-M3 processor master, or any other master on the AHB bus matrix in the
MSS, can access the AHB-Lite slaves in the fabric through FIC_0 or FIC_1. CoreAHBLite gives the HREADY and
HSEL signals connectivity to the fabric AHB-Lite slaves. The MSS master AHB-Lite interface passes all incoming
AHB-Lite transactions to the fabric with no error checking. If an error has occurred during the transfer, the fabric
AHB-Lite slaves must signal the error condition to the master so that it is aware the transfer has been unsuccessful.

Fabric Interface Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 778

Figure 23-28. AHB-Lite Slaves in the FPGA Fabric Connected to the MSS Master

AHB-Lite Slave 0 AHB-Lite Slave 1 AHB-Lite Slave 15 …

FPGA Fabric

S0 S1 S15

M0

Cortex-M3
Processor

AHB Bus Matrix

FIC_X

MSS

Ethernet MAC PDMA HPDMAUSB

MM8 MM6 MM0MM1MM2 MM7 MM3

CoreAHBLite

The following tutorial describes this Use Model with a design example: TU0310: Interfacing User Logic with the
Microcontroller Subsystem - Libero SoC Design Flow Tutorial.

This tutorial describes how to interface and handle communication between the user logic in the FPGA fabric and the
MSS. The MSS is configured with FIC_0 and FIC_1 enabled. FIC_0 is configured for the AHBL master interface and
connected to CoreAHBLSRAM salve. FIC_1 is configured for the APB3 master interface and connected to CoreGPIO
slave.

23.7.4.2 Use Model 2: Connecting an MSS Master to the Fabric APB Slave Interface
The fabric interface allows the AHB-Lite masters in the MSS to communicate with a fabric APB v3.0 compliant slave,
as shown in the following figure. A Cortex-M3 processor master, or any other master on the AHB bus matrix in the
MSS, can access the APB slaves in the fabric through the fabric interface controller. CoreAHBLite gives HREADY
and HSEL connectivity to the fabric AHB-Lite slaves; CoreAPB3 gives PREADY and PSEL connectivity to the fabric
APB slaves.

Fabric Interface Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 779

Figure 23-29. APB Slaves in the FPGA Fabric Connected to the MSS

CoreAHBLite

AHB-Lite
Slave 0

…

FPGA Fabric

S0 S1 S14

M0

AHB-Lite to
APB Bridge

S15

CoreAPB3

APB Slave 1 APB Slave 2APB Slave 0

S1S0 S2

M0

MSS

AHB Bus Matrix

FIC_X

Cortex-M3
ProcessorEthernet MAC PDMA HPDMAUSB

MM8 MM6 MM0MM1MM2 MM7 MM3

AHB-Lite
Slave 1

AHB-Lite
Slave 14

The following application note describes this Use Model with a design example: AC392: SmartFusion2 SoC FPGA
SRAM Initialization from eNVM.

The design example describes a method of initializing the fabric SRAM blocks after power-up with the initialization
data from eNVM block using the Cortex-M3 processor as master. This design implements APB3 slave wrapper
interface on the SRAM block.

23.7.4.3 Use Model 3: Connecting a Fabric AHB-Lite Master to the MSS Slave
The following figure shows the fabric AHB-Lite master connectivity with the MSS slaves and the AHB-Lite slaves
implemented in the fabric. An AHB-Lite fabric master can access memory-mapped peripherals in the MSS and
AHB-Lite slaves in the fabric.

Fabric Interface Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 780

Figure 23-30. FPGA System with the MSS Slave and the Fabric Master

CoreAHBLite

AHB-Lite Slave 1 AHB-Lite Slave 15 …

AHB-Lite Master

FPGA Fabric

S0 S1 S15

M0

MSS

AHB Bus Matrix

FIC_X

ESRAM1ESRAM0 ENVM1ENVM0

USB SYSREGEthernet
MAC

APB
Configuration Bus

MS_APB0

MS_APB2

MS_APB1

MS0 MS1 MS2 MS3 MS6

MS_MAC MS_USB MS_SR

MSS APB
Peripherals

MSS APB
Peripherals

MSS DDR
Bridge

The following application note describes this Use Model with a design example: AC388: SmartFusion2 SoC FPGA
Dynamic Configuration of AHB Bus Matrix. The design example consists of two AHB masters in FPGA fabric that
write 32-bit data to the AHB bus matrix slave eSRAM1.

23.7.4.4 Use Model 4: Connecting a Fabric APB Master to the MSS Slave
The following figure shows APB v3.0 compliant fabric master connectivity with the MSS slaves. The APB fabric
master can access memory mapped peripherals in the MSS.

Fabric Interface Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 781

Figure 23-31. Fabric APB Master with MSS as Slave

AHB Bus Matrix

APB Configuration Bus ESRAM0 ESRAM1 ENVM0 ENVM1 MSS DDR Bridge

MSS APB
Peripherals

FIC_X

MSS APB
Peripherals Ethernet MAC USB SYSREG

APB Master

MSS

MS_APB2 MS0 MS1 MS2 MS3 MS6

MS_APB0 MS_APB1 MS_MAC MS_USB MS_SR

FPGA Fabric

23.8 Reference Documents
Refer to the following documents for information on how to create an AHB-Lite or APB wrapper on the custom logic
connect it to the MSS system through the FIC.

Connecting User Logic to the SmartFusion Microcontroller Subsystem Application Note: This application note
explains how to create an AHB-Lite or APB wrapper on custom logic.

Building an APB3 Core for SmartFusion cSoC FPGAs Application Note: This document describes how to create an
APB wrapper interface for the user logic or IP.

TU0310: Interfacing User Logic with the Microcontroller Subsystem Tutorial: This tutorial shows you how to interface
and handle communication between the user logic in the FPGA fabric and the MSS. It also explains the Libero SoC
design software tool flow used for designing applications for the SmartFusion 2 SoC FPGA family of devices.

AMBA 3 AHB-Lite Protocol Specification

AMBA 3 APB Protocol Specification

23.9 SYSREG Control Registers for FIC_0 and FIC_1
For a detailed description of each register and bit, see 21. System Register Block. The following table lists the
control registers for FIC_0 and FIC_1 from the SYSREG block.

Fabric Interface Controller

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 782

Table 23-6. FAB_IF Register in the SYSREG Block

Register name Registe
r Type

Flash
Write
Protect

Reset Source Description

21.5.21. Fabric Interface Control
(FIC) Register

RW-P Register SYSRESET_N Control register for fabric interface

21.5.19. Software Reset Control
Register

RW-P Bit SYSRESET_N Generates software control
interrupts to the MSS peripherals

21.5.38. MSS DDR Fabric
Alignment Clock Controller
(FACC) Configuration Register 1

RW-P Field CC_SYSRESET_N MSS DDR fabric alignment clock
controller 1 configuration register

21.5.87. MSS DDR Clock
Calibration Status

RO – SYSRESET_N MSS DDR clock calibration status
register

APB Configuration Interface

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 783

24. APB Configuration Interface
The SERDES interface (SERDESIF), fabric DDR system (FDDR), and microcontroller subsystem double data rate
(MDDR) controller has to be initialized properly during bootup. Each of these subsystems contains a large number
of internal registers for initialization and run-time operation. These registers are accessed through a dedicated
peripheral initialization bus often called APB configuration bus. The APB configuration interface is compliant with
AMBA APB3 protocol specification.

24.1 Functional Block Diagram Description
This section provides the detailed description of the FIC_2 (APB configuration bus) subsystem.

APB Configuration Interface

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 784

Figure 24-1. APB Configuration Interface and Subsystems Connectivity with MSS Master

AHB Bus Matrix

FIC_2

SERDESIF0

CoreSF2Config

FPGA Fabric

MSS

DDR IO

D
D

R
 IO

La
ne

 0

La
ne

 1

La
ne

 2

La
ne

 3

La
ne

 0

La
ne

 1

La
ne

 2

La
ne

 3

LPDDR

APBAPB
FDDR
APB

SmartFusion® 2 SoC FPGA

MDDR
APB

MSS DDR
Bridge

HPDMA

Cache
Controller

Cortex-M3
Processor

MSS_CCC

Reset
Controller

M3_CLK

FIC_2_APB_MASTER

FI
C

_2
_A

P
B

_M
_P

R
E

S
E

T_
N

M
D

D
R

_A
P

B
_S

LA
V

E

A
P

B
_S

_P
R

E
S

E
T_

N

A
P

B
_S

_P
C

LK

S
D

IF
0_

A
P

B
_S

LA
V

E

A
P

B
_S

_P
R

E
S

E
T_

N

A
P

B
_S

_P
C

LK

FD
D

R
_A

P
B

_S
LA

V
E

A
P

B
_S

_P
R

E
S

E
T_

N

A
P

B
_S

_P
C

LK

S
D

IF
1_

A
P

B
_S

LA
V

E

M
D

D
R

_A
P

B
_P

C
LK

M
D

D
R

_A
P

B
_S

_P
R

E
S

E
T_

N

FI
C

_2
_A

P
B

_M
_P

C
LK

/4

SERDESIF1

DDR 2
DDR 3

LPDDR
DDR 2

DDR 3

24.1.1  
Table 24-1. MDDR APB Slave Configuration Interface Port List

Port Name Direction Polarity Description

MDDR_APB_S_PSEL In High Indicates APB slave select

MDDR_APB_S_PENABLE In High Indicates APB enable

APB Configuration Interface

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 785

...........continued
Port Name Direction Polarity Description

MDDR_APB_S_PWRITE In High APB write-control signal. Indicates read when Low
and write when High.

MDDR_APB_S_PADDR [10:2] In Indicates APB address. Addresses are word-aligned.

MDDR_APB_S_PWDATA [15:0] In Indicates APB write data

MDDR_APB_S_PRDATA [15:0] Out Indicates APB read data

MDDR_APB_S_PREADY Out Indicates APB PREADY signal and used to extend
an APB transfer.

MDDR_APB_S_PSLVERR Out High Indicates a transfer failure

MDDR_APB_S_PCLK In Indicates APB clock

MDDR_APB_S_PRESET_N In Low Indicates APB active-low reset

24.1.2  
Table 24-2. SERDERIF APB Slave Configuration Interface Port List

Port Name Direction Polarity Description

APB_S_PSEL In High Indicates APB slave select

APB_S_PENABLE In High Indicates APB enable

APB_S_PWRITE In High Indicates APB write-control signal. Indicates read
when Low and write when High.

APB_S_PADDR [13:2] In Indicates APB address. Addresses are word-aligned.

APB_S_PWDATA [31:0] In Indicates APB write data

APB_S_PRDATA [31:0] Out Indicates APB read data

APB_S_PREADY Out Indicates APB PREADY signal and used to extend
an APB transfer.

APB_S_PSLVERR Out High Indicates a transfer failure

APB_S_PCLK In Indicates APB clock

APB_S_PRESET_N In Low Indicates APB active-low reset

Table 24-3. MSS APB Master Configuration Interface Port List

Port Name Direction Polarity Description

FIC_2_APB_M_PSEL Out High Indicates APB slave select

FIC_2_APB_M_PENABLE Out High Indicates APB enable

FIC_2_APB_M_PWRITE Out High APB write-control signal. Indicates read when Low
and write when High.

FIC_2_APB_M_PADDR [15:2] Out Indicates APB address. Addresses are word-
aligned.

FIC_2_APB_M_PWDATA [31:0] Out Indicates APB write data

FIC_2_APB_M_PRDATA [31:0] In Indicates APB read data

APB Configuration Interface

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 786

...........continued
Port Name Direction Polarity Description

FIC_2_APB_M_PREADY In Indicates APB PREADY signal and used to extend
an APB transfer.

FIC_2_APB_M_PSLVERR In High Indicates a transfer failure

FIC_2_APB_M_PCLK In Indicates APB clock

FIC_2_APB_M_PRESET_N In Low Indicates APB active-low reset

24.1.3 Architecture Overview
The preceding figure shows the APB configuration interfaces and SERDES and DDR subsystems connectivity with
the MSS master. The AHB bus matrix FIC_2 port routes the APB configuration interface to the FPGA fabric. The
SERDES and DDR subsystems are connected through CoreSF2Config soft IP. CoreSF2Config must be instantiated
(available in the Libero SoC IP Catalog) in the FPGA fabric to allow configuration of FDDR, SERDESIF, and MDDR.

The following tables list the APB configuration interface signals and descriptions.

The APB configuration space is divided into multiple partitions; each partition is reserved to one specific module or
type of functionality. The APB addresses are word-aligned.

The base address of FDDR, SERDESIF0, and SERDESIF1 configuration address space resides at 0x40020400 and
extends to address 0x4002FFFF in the memory map of the Cortex-M3 processor on the AHB bus matrix.

• Refer to the “Fabric Double Data Rate Subsystem” chapter in the UG0446: SmartFusion2 and IGLOO2 FPGA
High Speed DDR Interfaces User Guide for FDDR register map details and address space partition.

• Refer to the “Serializer/Deserializer” chapter in the UG0447: SmartFusion2 and IGLOO2 FPGA High Speed
Serial Interfaces User Guide for SERDES register map details and address space partition.
The base address of the MDDR configuration address space resides at 0x40020000 and extends to address
0x400203FF in the memory map of the Cortex-M3 processor on the AHB bus matrix.

• Refer to the “MSS DDR Subsystem” chapter in the UG0446: SmartFusion2 and IGLOO2 FPGA High Speed
DDR Interfaces User Guide for MDDR register map details and address space partition.

24.1.4 Port List
Table 24-4. FDDR APB Slave Configuration Interface Port List

Port Name Direction Polarity Description

APB_S_PSEL In High Indicates APB slave select

APB_S_PENABLE In High Indicates APB enable

APB_S_PWRITE In High APB write-control signal. Indicates read when Low
and write when High.

APB_S_PADDR [10:2] In Indicates APB address. Addresses are word-aligned.

APB_S_PWDATA [15:0] In Indicates APB write data

APB_S_PRDATA [15:0] Out Indicates APB read data

APB_S_PREADY Out Indicates APB PREADY signal and is used to extend
an APB transfer.

APB_S_PSLVERR Out High Indicates a transfer failure

APB_S_PCLK In Indicates APB clock

APB_S_PRESET_N In Low Indicates APB active-low reset

APB Configuration Interface

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 787

24.1.5 CoreSF2Config Soft IP
CoreSF2Config facilitates configuration of peripheral blocks (MDDR, FDDR, and SERDESIF blocks) in a
SmartFusion 2 device, as shown in Figure 24-2. CoreSF2Config has a mirrored master APB port and several
mirrored slave APB ports. The mirrored master port should be connected to the FIC_2_APB_MASTER port of the
MSS and the mirrored slave ports should be connected to the APB slave ports of the blocks to be configured.

CoreSF2Config soft IP is available in the Libero SoC IP Catalog. Refer to the CoreSF2Config Handbook for port lists
and their descriptions, design flows, memory maps, and Control and Status register details.

24.2 How to Use
This section describes how to use the FIC_2 (Peripheral Initialization) subsystem in the design.

24.2.1 Configuring FIC_2 (Peripheral Initialization) Using Libero SoC
This section describes the FIC_2 (Peripheral Initialization) configuration in Libero SoC and shows options available
for configuring FIC_2. The FIC_2 is not configured by default in the MSS configurator when the Libero SoC project is
created. The following steps are required.

24.2.1.1 Step 1
Instantiate the SmartFusion 2 MSS component into the Libero project and configure (enable/disable) the peripherals
using MSS configurator, as required.

24.2.1.2 Step 2
Double click FIC_2 (Peripheral Initialization) or right click FIC_2 and select Configure, as shown in the following
figure.

Figure 24-2. Configure FIC_2 in MSS Configurator

The following options are available in the APB configuration interfaces of SERDES and DDR subsystems:

APB Configuration Interface

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 788

• Initialize peripherals using Cortex-M3 processor
– MSS DDR
– Fabric DDR and/or SERDES Blocks

The following figure shows the FIC_2 configurator.

Figure 24-3. FIC_2 Configurator

24.2.1.3 Step 3
Select either or both check boxes as required. If MSS DDR is selected, the FIC_2 Configurator shows the graphical
illustration of the connectivity between the FIC_2 APB master and MSS DDR APB slave through CoreSF2Config, as
shown in the following figure.

APB Configuration Interface

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 789

Figure 24-4. FIC_2 Configuration for MSS DDR

CoreSF2Config must be instantiated in SmartDesign.connections made as illustrated in FIC_2 configurator. The
following figure shows the connectivity between APB configuration interfaces of the SERDES and DDR subsystems
(both are selected).

APB Configuration Interface

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 790

Figure 24-5. FIC_2 Configuration for MSS DDR, FDDR, and SERDES

If System Builder is used for creating the design, CoreSF2Config is instantiated and connections are made
automatically.

24.2.2 FIC_2 Use Models
This section explains the use models and provides directions for using FIC_2 in an application. The design is created
using the System Builder flow.

24.2.2.1 Use Model 1: Configuring MSS DDR
• Select Use System Builder while creating a new project from the Design Templates and Creators panel in Libero

SoC.
• Follow the steps in the System builder - Device Features GUI with default settings and generate the design. The

following figure shows the generated design when opened in SmartDesign.

APB Configuration Interface

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 791

Figure 24-6. MSS DDR Design with APB Configuration Interface

FIC_2 APB master signals are shown in the boxes outlined in red, while MSS DDR APB slave signal are shown in
the boxes outlined in blue. These signals are connected to CoreSF2Config. In addition to APB configuration signals,
CoreSF2Config has a few other signals (CONFIG_DONE, CLR_INIT_DONE, and INIT_DONE) that are connected
to CoreSF2Reset. CoreSF2Reset handles sequencing of reset signals in SmartFusion 2 devices. It is particularly
concerned with resets related to peripheral blocks (MDDR, FDDR, and SERDESIF blocks). CoreSF2Reset soft IP is
available in the Libero SoC IP catalog. See the CoreSF2Reset Handbook for port lists, port descriptions, and design
flow.

24.2.2.2 Use Model 2: Configuring SERDES
• Select Use System Builder while creating a new project from the Design Templates and Creators panel in Libero

SoC.
• Select SERDESIF_0 in the System builder - Device Features GUI. Follow the rest of the steps with default

settings and generate the design. The following figure shows the top-level components of the generated design.

APB Configuration Interface

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 792

Figure 24-7. Top-Level Components with APB Configuration Interface Signals

The signals in the boxes outlined in red show the CoreSF2Config mirrored APB slave port that should be connected
to the APB slave port of the SERDES block to be configured. If you open this component in SmartDesign, the canvas
shows a hierarchical view of the design components (for example, CoreSF2Config and CoreSF2Reset) with APB
configuration interfaces, as shown in Figure 24-6.

• Instantiate the High Speed Serial Interface (SERDES_IF) macro in SmartDesign and connect the
CoreSF2Config mirrored APB slave port with APB slave port of the SERDES_IF block, as shown in the following
figure.

Figure 24-8. Interfacing of CoreSF2Config Mirrored APB Slave with SERDES_IF Block

Error Detection and Correction Controllers

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 793

25. Error Detection and Correction Controllers
In SEU susceptible environments, which are increasingly more common at ground-level due to shrinking geometries,
storage elements such as RAMs and FIFOs in the microcontroller subsystem (MSS) are susceptible to transient
errors caused by heavy ions. Errors can be detected and corrected by employing error detection and correction
(EDAC). The EDAC controllers implemented in SmartFusion 2 devices support single error correction and double
error detection (SECDED).

SmartFusion 2 SOC memories such as eSRAM, eNVM, USB internal memory, internal FIFOs of the Ethernet MAC,
and the internal RAM of the controller area network (CAN) controller are protected by EDAC. Fabric SRAM blocks
are not protected by EDAC.

25.1 Functional Description
EDAC algorithms generate additional checksum bits for each data word to be stored. The checksum bits are
generated and written to the memory when the data bits are written, as shown in the following figure. When the word
is read, the checksum bits are utilized to determine whether one or more bits are in error. If the error is a single-bit
error, checksum bits determine which bit contains the error. EDAC algorithms implemented in SmartFusion 2 SOC
devices are designed to detect all two-bit errors and correct all single-bit errors within a single word.

Figure 25-1. EDAC in Write Mode

Syndrome
Generator

Data Out

Checksum
Bits Out

Data In

When data is written to a storage element in memory through EDAC, checksum bits are generated based on the
input data pattern. The checksum bits, along with the input data, are stored in the target memory. This permits the
data to propagate to the data storage element unchanged while the appropriate checksum bits are generated to be
stored along with the data.

Figure 25-2. EDAC in Read Mode (Reading From Memory)

Syndrome
Generator

Data OutData In

Correct

Checksum
Bits In

Data Bit
Correction

Err_detect

Err_multpl

For a read operation, the checksum bits are computed from the Data In inputs, and XORed with the Checksum Bits
In inputs to form the error syndrome. The error syndrome is internally generated and is not user-accessible.

If all bits of the error syndrome are 0, then there is no error. If one or more syndrome bits are 1, then an error is
detected as indicated by the output Err_detect = 1. If the error is not correctable (2 or more bits errored), then it is
indicated by the output Err_multpl = 1. The error syndrome indicates which bit is in error, or whether multiple bits are
in error, and is useful in systems where it is desirable to keep a log of which bits have been in error.

When a correctable error is detected (indicated by Err_detect = 1 and Err_multpl = 0), the data bit in error is corrected
as it passes from Data In to Data Out. If the error is not correctable (indicated by Err_multpl = 1), data passes
unchanged from Data In to Data Out.

Error Detection and Correction Controllers

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 794

There are interrupts associated with errors. These are covered in the chapter for each memory type.

25.1.1 EDAC Checksum Bits Width
The following table lists the data width ranges and the corresponding checksum bit widths.

Table 25-1. Minimum Number of Checksum Bits Required Data

Width Checksum Bits

27 to 57 7

58 to 64 8

25.2 Configuration
The EDAC architecture is implemented to protect different types of memories. The data and checksum bit widths of
the EDAC change according to the memory specifications.

Refer to the following chapters for EDAC configurations for specific types of memories:

• eSRAM: Embedded SRAM (eSRAM) Controllers
• Internal FIFOs of the Ethernet MAC: Ethernet MAC
• USB internal memory: Universal Serial Bus OTG Controller
• Internal RAM of the CAN controller: CAN Controller
• eNVM: Embedded Nonvolatile Memory (eNVM) Controllers

In the UG0446: SmartFusion2 and IGLOO2 FPGA High Speed DDR Interfaces User Guide, refer to the following
chapters:

• MDDR: MDDR Subsystem
• FDDR: Fabric DDR Subsystem

25.3 How to Use EDAC
EDAC can be configured using the SECDED configurator available in the SmartFusion 2 SoC, as shown in the
following figure. Using the SECDED configurator, EDAC options for the following memories can be configured:

• eSRAM (eSRAM0, eSRAM1)
• Ethernet MAC transmit and receive memory
• USB internal memory
• CAN internal memory
• MDDR

Error Detection and Correction Controllers

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 795

Figure 25-3. EDAC in Read Mode (Reading From Memory)

The following figure shows the SECDED configurator options GUI available in the MSS. The SECDED configurator
dialog box is organized as follows:

• EDAC_ERROR BUS: This is the EDAC_ERROR bus signal to the FPGA fabric. This signal can be used to
expose the error bus to the fabric for monitoring.

• EDAC_ENABLE: EDAC_ENABLE can be used to enable the EDAC functionality for each of the following
blocks: eSRAM0, eSRAM1, Ethernet MAC Tx and Rx RAMS, USB, CAN, and MDDR.

• Enable EDAC Interrupt(s): Enable EDAC Interrupt(s) can be used to enable the interrupts for each of the
following blocks: eSRAM0, eSRAM1, Ethernet MAC TX and RX RAMs, USB, and CAN. Selection options for
enable interrupts are available as follows:

– None
– 1-bit error
– 2-bit error
– 1-bit and 2-bit errors

• Enable MDDR ECC Interrupt: Enable MDDR ECC Interrupt can be used to enable the MSS DDR (MDDR) ECC
interrupts.

Error Detection and Correction Controllers

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 796

Figure 25-4. EDAC in Read Mode (Reading From Memory)

The values entered in the configurator are exported into the programming files for programming the Flash bits
that control the EDAC functionality. The Flash bits are loaded in the system registers at power-up (or when the
DEVRST_N external pad is asserted/deasserted).

Revision History

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 797

26. Revision History
The revision history describes the changes that were implemented in the document. The changes are listed by
revision, starting with the most current publication.

Table 26-1. Revision History

Revision Date Description

A 02/2023 • Remapping eNVM data from eNVM_1 memory
block to Cortex®-M3 Code space is not permitted
for SmartFusion® 2 M2S090/150 and IGLOO® 2
M2GL090/150 devices. For information about eNVM
remapping and limitation, see the note under Figure
4-28.

• Timing models for Fabric to MSS interrupts have been
updated with additional time delay. This changes the
timing arcs of nets and interface between Fabric to
MSS interrupts. For more information about the updated
timing arcs, see PCN 17005A.

• Updated 1.5.2.3. Embedded Trace Macrocell to include
information about timing arcs update from Fabric to
Embedded Trace Macrocell.

• Updated 10.5.1. SGMII Interface Configuration to
include information about timing arcs update from
SerDes to Fabric.

• Updated 22.3.1. Configuring the FIIC Using the Libero
SoC to include information about timing arcs update
from Fabric to MSS interrupts.

• The document was converted to Microchip template.
• The document number was changed to DS50003495

from UG0331.

16.0 — • Information about 3.2.3.3.1. Accessing I and D Buses
Concurrently was updated.

• Information about 19.2.3.3.1. WDOGTIMEOUTINT was
updated.

• Information about 19.3. How to Use the Watchdog
Timer was updated.

• Information about 20.2.6.3.2. PO_RESET_RCOSC_N
was updated.

15.0 — • 1.7.1. Configuration Through Libero Software and
Firmware updated.

• TESMAC Firmware Drivers information updated in Table
10-8, Table 10-9, Table 10-10, Table 10-11.

• Updated register information in Table 12-5, Table 21-17,
Table 21-44, Table 21-73, Table 21-74, Table 21-75,
Table 21-76, Table 21-77, and Table 21-78.

• Updated 9.2.2.1. ULPI (UTMI+ Low Pin Interface) I/O
Interface.

Revision History

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 798

...........continued
Revision Date Description

14.0 — • The power-up to functional time sequence information
was updated to include the POWER_ON_RESET_N
signal. For more information, see 20.1.2. Power-Up to
Functional Time Sequence.

• The test cases listed in Table 20-1 were updated
for consistency with IGLOO2 and SmartFusion2
Datasheet. The VDD power-up to functional time flow
diagram (Figure 20-8) was updated to include the
POWER_ON_RESET_N signal. For more information,
see 20.2.2. VDD Power-Up to Functional Time.

• The test cases listed in Table 20-2 were updated for
consistency with IGLOO2 and SmartFusion2 Datasheet.
The DEVRST_N power-up to functional time flow
diagram (Figure 20-10) was updated to include the
POWER_ON_RESET_N signal. For more information,
see 20.2.3. DEVRST_N Power-Up to Functional Time.

13.0 — • Updated 2.5.5. Power Management.
• Updated Table 2-66.
• Added 21.5.1. System Registers Behavior for

M2S005/010 Devices.
• Updated Table 21-89.
• Updated 21.5.19. Software Reset Control Register.
• Updated Figure 4-18, Figure 4-19, Figure 4-20, Figure

4-21, and Figure 4-22.
• Updated Table 4-21.

Revision History

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 799

...........continued
Revision Date Description

12.0 — • Updated Table 21-2.
• Updated bit name from MSS_IOMUXSEL4UPPER[N] to

MSS_IOMUXSEL4[N][2:0] in the Table 21-114.
• Added 21.3. Register Lock Bits Configuration.
• Updated Table 23-1.
• Updated 20.1.1. Power-On Reset Generation

Sequence.
• Updated Bit number [18:1] description in Table 21-10.
• Updated Register name CLRHINT[2:0] row in Table

4-20.
• Updated £ to ≤ in 1. Cortex-M3 Processor Overview

and Debug Features.
• Added Figure 4-21 (M2S060 device).
• Added clocking information to 10.2.1.5. SGMII Module.
• Added information regarding full behavioral simulation

model in the applicable chapters.
• Removed note from 11.3.1. Peripheral Signals

Assignment Table, and removed “System Clock
Frequency” section.

• Added 20.2. Power-Up to Functional Time Data.
• Added 25. Error Detection and Correction Controllers.
• Updated Figure 10-2, Figure 10-4, Figure 10-9, and

Figure 10-10.
• Added a note for 1.2. Functional Description

in 1. Cortex-M3 Processor Overview and Debug
Features.

• Updated Table 19-8 and Table 19-9.
• Updated Bit number 2 description in Table 21-44.

11.0 — • Updated Table 10-48 and Table 10-49.
• Updated 6.1.4.7. Locked Transactions.

10.0 — • Updated 20.1.2. Power-Up to Functional Time
Sequence.

• Updated Table 12-18.
• Updated 4.2. Functional Description chapter in

4. Embedded NVM (eNVM) Controllers chapter.
• Updated Table 21-92 and Table 4-18.
• Added Figure 4-18, Figure 4-19, Figure 4-20, and

Figure 4-22, and added 4.3.2. eNVM Pages for Special
Purpose Storage.

• Updated 13.3.2. SPI Use Models.
• Updated Table 4-12, Table 4-20, and Table 21-8.

9.0 — • Updated 20. Reset Controller.
• Updated Figure 20-22.
• Added a note to 20.2.5. System Reset.
• Updated FIC 23.5. Implementation Considerations.

Revision History

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 800

...........continued
Revision Date Description

8.0 — • Removed M2S100 devices list from 4.1. Features,
Table 4-1, Table 4-2, and Table 4-22.

• Updated Table 4-12 for NV_FREQRNG and replaced
FREQRNG with NV_FREQRNG throughout the
document.

• Updated 4.2.5.2. Page Program.
• Updated 21. System Register Block.
• Added a reference to SmartFusion 2 SoC FPGA

High Speed DDR Interfaces User Guide in the
7.3.2. HPDMA Use Models.

7.0 — • Updated 3.2.3.3. Cache Engine.

Revision History

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 801

...........continued
Revision Date Description

6.0 — • Added a note to 1.7.1.5. Trace Port Interface Unit
(TPIU) Configuration.

• Updated Table 1-3 and Table 1-4.
• Updated Table 1-4.
• Updated 2.5.2.2. Memory System Ordering of Memory

Accesses.
• Updated 2.5.5. Power Management.
• Changed S bus to SBUS in 3. Cache Controller.
• Added a note to 3.2.4. Cache Locked Mode.
• Added notes in 4.4. How to Use eNVM.
• Updated 4.2.5.4. Set Lock Bit and User Unlock

Commands.
• Added a note to 4.2.5.2. Page Program.
• Added 4.2.5.6. eNVM Program and Verify Operations

Timing Diagrams.
• Updated the HPDMA 7.2.3. Details of Operation.
• Updated 8.2.4.2. Posted APB Writes.
• Added a note to 9.2.1.6. PHY Interfaces and to

9.2.2.1. ULPI (UTMI+ Low Pin Interface) I/O Interface.
• Updated Table 10-4.
• Updated Table 10-2.
• Added 10.9. CoreMACFilter Overview.
• Updated Table 13-9 for TXRXDFCOUNT value.
• Updated 15.2. MSS GPIO Functional Description.
• Added a note to 15.4.5. GPIO Input Source Select

Control Register.
• Added a note to 20.1.1. Power-On Reset Generation

Sequence.
• Updated Table 21-114 for bit numbers.
• Updated Table 22-7.
• Updated the introductory content of 23. Fabric Interface

Controller, and added a note to Figure 23-11.
• Updated 4. Embedded NVM (eNVM) Controllers,

5. Embedded SRAM (eSRAM) Controllers, 6. AHB
Bus Matrix, 7. High Performance DMA Controller,
8. Peripheral DMA, 13. Serial Peripheral Interface
Controller, 16. Communication Block, 21. System
Register Block, 22. Fabric Interface Interrupt Controller,
and 23. Fabric Interface Controller chapters for FTC
comments.

5.0 — • Updated the document.
• Updated Figure 20-15 and Figure 20-16.
• Updated Figure 23-31.

Revision History

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 802

...........continued
Revision Date Description

4.0 — • Corrected all instances of baud rate.
• References to 1.0 v were removed.
• Updated 3.1. Features of 3. Cache Controller.
• Added a reference to the Remapping eNVM, eSRAM,

and DDR/SDR SDRAM Memories application note.
• Updated Figure 3-2.
• Updated eNVM 4.2.4. Theory of Operation.
• Updated Figure 6-12, Figure 6-13, and Figure 6-17,

Table 6-4, and Table 6-8.
• Updated the direction for ULPI_XCLK in Table 9-1.
• Updated Table 10-25.
• Updated Figure 15-1.
• Updated Table 17-11.
• Updated 20.2.4. Power-On Reset.
• Updated Table 21-2, Table 21-44, and Table 21-66.
• Updated details for CC_EDAC_EN in Table 21-20.
• Updated Table 21-86.
• Updated Table 21-114.
• Updated details for CC_EDAC_EN in Table 5-21.

3.0 — The following changes were made in revision 3.0 of this
document.

• Updated “Purpose” section.
• Updated Table 10-2.
• Updated links in 11. CAN Controller.
• Restructured 23. Fabric Interface Controller as per

inputs.

Revision History

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 803

...........continued
Revision Date Description

2.0 — The following changes were made in revision 2.0 of this
document.

• Modified the title of the user guide.
• Restructured 1. Cortex-M3 Processor Overview and

Debug Features.
• Restructured 3. Cache Controller.
• Restructured 4. Embedded NVM (eNVM) Controllers

and updated Table 4-4.
• Restructured 5. Embedded SRAM (eSRAM)

Controllers.
• Restructured 6. AHB Bus Matrix.
• Restructured 7. High Performance DMA Controller.
• Restructured 8. Peripheral DMA.
• Restructured 9. Universal Serial Bus On-The-Go

Controller.
• Restructured 10. Ethernet MAC.
• Restructured 11. CAN Controller.
• Restructured 12. MMUART Peripherals.
• Restructured 13. Serial Peripheral Interface Controller.
• Restructured 14. Inter-Integrated Circuit Peripherals.
• Restructured 15. MSS GPIO.
• Restructured 16. Communication Block.
• Restructured 17. RTC System.
• Restructured 18. System Timer.
• Restructured 19. Watchdog Timer.
• Restructured 20. Reset Controller and updated

20.1.2. Power-Up to Functional Time Sequence.
• Updated Figure 20-20.
• Restructured 21. System Register Block.
• Updated the “Flash Write ProtectSYSREG Block

Register Write Protection” section.
• Updated Table 21-9, Table 21-90, Table 21-115, and

Table 21-116.
• Restructured 22. Fabric Interface Interrupt Controller.
• Restructured 23. Fabric Interface Controller.
• Restructured 24. APB Configuration Interface.
• Updated 6.1.4.4. DDR Remap.
• Updated Table 23-3.

1.0 — Revision 1.0 was the first publication of this document.

• Updated 3. Cache Controller.
• Table 3-2, Figure 3-2, and Table 3-4.
• Added Figure 16-1.
• Added Figure 23-3 through Figure 23-11.

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 804

Microchip FPGA Support
Microchip FPGA products group backs its products with various support services, including Customer Service,
Customer Technical Support Center, a website, and worldwide sales offices. Customers are suggested to visit
Microchip online resources prior to contacting support as it is very likely that their queries have been already
answered.

Contact Technical Support Center through the website at www.microchip.com/support. Mention the FPGA Device
Part number, select appropriate case category, and upload design files while creating a technical support case.

Contact Customer Service for non-technical product support, such as product pricing, product upgrades, update
information, order status, and authorization.

• From North America, call 800.262.1060
• From the rest of the world, call 650.318.4460
• Fax, from anywhere in the world, 650.318.8044

Microchip Information

The Microchip Website
Microchip provides online support via our website at www.microchip.com/. This website is used to make files and
information easily available to customers. Some of the content available includes:

• Product Support – Data sheets and errata, application notes and sample programs, design resources, user’s
guides and hardware support documents, latest software releases and archived software

• General Technical Support – Frequently Asked Questions (FAQs), technical support requests, online
discussion groups, Microchip design partner program member listing

• Business of Microchip – Product selector and ordering guides, latest Microchip press releases, listing of
seminars and events, listings of Microchip sales offices, distributors and factory representatives

Product Change Notification Service
Microchip’s product change notification service helps keep customers current on Microchip products. Subscribers will
receive email notification whenever there are changes, updates, revisions or errata related to a specified product
family or development tool of interest.

To register, go to www.microchip.com/pcn and follow the registration instructions.

Customer Support
Users of Microchip products can receive assistance through several channels:

• Distributor or Representative
• Local Sales Office
• Embedded Solutions Engineer (ESE)
• Technical Support

Customers should contact their distributor, representative or ESE for support. Local sales offices are also available to
help customers. A listing of sales offices and locations is included in this document.

Technical support is available through the website at: www.microchip.com/support

Microchip Devices Code Protection Feature
Note the following details of the code protection feature on Microchip products:

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 805

• Microchip products meet the specifications contained in their particular Microchip Data Sheet.
• Microchip believes that its family of products is secure when used in the intended manner, within operating

specifications, and under normal conditions.
• Microchip values and aggressively protects its intellectual property rights. Attempts to breach the code

protection features of Microchip product is strictly prohibited and may violate the Digital Millennium Copyright
Act.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code
protection does not mean that we are guaranteeing the product is “unbreakable”. Code protection is constantly
evolving. Microchip is committed to continuously improving the code protection features of our products.

Legal Notice
This publication and the information herein may be used only with Microchip products, including to design, test,
and integrate Microchip products with your application. Use of this information in any other manner violates these
terms. Information regarding device applications is provided only for your convenience and may be superseded
by updates. It is your responsibility to ensure that your application meets with your specifications. Contact your
local Microchip sales office for additional support or, obtain additional support at www.microchip.com/en-us/support/
design-help/client-support-services.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS
OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY
OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE,
OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL, OR
CONSEQUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE
INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE
POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW,
MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE
WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR
THE INFORMATION.

Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees
to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting
from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights
unless otherwise stated.

Trademarks
The Microchip name and logo, the Microchip logo, Adaptec, AVR, AVR logo, AVR Freaks, BesTime, BitCloud,
CryptoMemory, CryptoRF, dsPIC, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD,
maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer,
PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST,
SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are
registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, Flashtec, Hyper Speed
Control, HyperLight Load, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus,
ProASIC Plus logo, Quiet- Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider,
TrueTime, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, Augmented Switching,
BlueSky, BodyCom, Clockstudio, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion,
CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S,
EtherGREEN, GridTime, IdealBridge, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, IntelliMOS,
Inter-Chip Connectivity, JitterBlocker, Knob-on-Display, KoD, maxCrypto, maxView, memBrain, Mindi, MiWi, MPASM,
MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM,
PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 806

ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SmartHLS, SMART-I.S., storClad, SQI, SuperSwitcher,
SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, Trusted Time, TSHARC, USBCheck, VariSense,
VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology
Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of
Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip
Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.
© 2023, Microchip Technology Incorporated and its subsidiaries. All Rights Reserved.

ISBN: 978-1-6683-2008-2

Quality Management System
For information regarding Microchip’s Quality Management Systems, please visit www.microchip.com/quality.

Worldwide Sales and Service

© 2023 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003495A-page 807

AMERICAS ASIA/PACIFIC ASIA/PACIFIC EUROPE
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
www.microchip.com/support
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Austin, TX
Tel: 512-257-3370
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Novi, MI
Tel: 248-848-4000
Houston, TX
Tel: 281-894-5983
Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800
Raleigh, NC
Tel: 919-844-7510
New York, NY
Tel: 631-435-6000
San Jose, CA
Tel: 408-735-9110
Tel: 408-436-4270
Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

Australia - Sydney
Tel: 61-2-9868-6733
China - Beijing
Tel: 86-10-8569-7000
China - Chengdu
Tel: 86-28-8665-5511
China - Chongqing
Tel: 86-23-8980-9588
China - Dongguan
Tel: 86-769-8702-9880
China - Guangzhou
Tel: 86-20-8755-8029
China - Hangzhou
Tel: 86-571-8792-8115
China - Hong Kong SAR
Tel: 852-2943-5100
China - Nanjing
Tel: 86-25-8473-2460
China - Qingdao
Tel: 86-532-8502-7355
China - Shanghai
Tel: 86-21-3326-8000
China - Shenyang
Tel: 86-24-2334-2829
China - Shenzhen
Tel: 86-755-8864-2200
China - Suzhou
Tel: 86-186-6233-1526
China - Wuhan
Tel: 86-27-5980-5300
China - Xian
Tel: 86-29-8833-7252
China - Xiamen
Tel: 86-592-2388138
China - Zhuhai
Tel: 86-756-3210040

India - Bangalore
Tel: 91-80-3090-4444
India - New Delhi
Tel: 91-11-4160-8631
India - Pune
Tel: 91-20-4121-0141
Japan - Osaka
Tel: 81-6-6152-7160
Japan - Tokyo
Tel: 81-3-6880- 3770
Korea - Daegu
Tel: 82-53-744-4301
Korea - Seoul
Tel: 82-2-554-7200
Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906
Malaysia - Penang
Tel: 60-4-227-8870
Philippines - Manila
Tel: 63-2-634-9065
Singapore
Tel: 65-6334-8870
Taiwan - Hsin Chu
Tel: 886-3-577-8366
Taiwan - Kaohsiung
Tel: 886-7-213-7830
Taiwan - Taipei
Tel: 886-2-2508-8600
Thailand - Bangkok
Tel: 66-2-694-1351
Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4485-5910
Fax: 45-4485-2829
Finland - Espoo
Tel: 358-9-4520-820
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Garching
Tel: 49-8931-9700
Germany - Haan
Tel: 49-2129-3766400
Germany - Heilbronn
Tel: 49-7131-72400
Germany - Karlsruhe
Tel: 49-721-625370
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Germany - Rosenheim
Tel: 49-8031-354-560
Israel - Ra’anana
Tel: 972-9-744-7705
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Padova
Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Norway - Trondheim
Tel: 47-72884388
Poland - Warsaw
Tel: 48-22-3325737
Romania - Bucharest
Tel: 40-21-407-87-50
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Gothenberg
Tel: 46-31-704-60-40
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820

