From: Jennifer Romero < Jennifer_Romero@Kingston.com>

Sent: Tuesday, January 24, 2023 2:57 PM

To: Pcn System <Pcn.System@FutureElectronics.com>

Subject: Retraction letter / confirmation: PLEASE REMOVE PCN FROM SYSTEM: PCN 94615. Kingston PCN PCN221128-01

Hello Future,

Please disregard this PCN. This was not supposed to be sent out as an "official PCN".

We are still supporting the "Affected Kingston" part numbers and will send an official PCN when it's ready.

At this time, you may disregard the attached.

Thank you!

Jennifer Romero Embedded (eMMC) Inside Sales Kingston Technology Company, Inc.

PCN221128-01

Affected Part Number(s):

EMMC16G-TB28-xxxx

EMMC16G-TB29-xxxx

Date Issued:

28 November 2022

Change Description:

Kingston's eMMC devices based on Kioxia's third generation of 128Gb 3D NAND flash will be going End of Life (EOL) due to Kioxia's discontinuation of this NAND flash die. Specific parts that are EOL, along with recommended replacement parts are identified in Table 1.

This recommended replacement eMMC device will maintain similar performance, power consumption and endurance along with features of the prior generation.

The recommended replacement devices should function as a drop-in replacement. Contact your Kingston representative for further information and support.

Replacement Part and Last Time Buy:

Affected Part Numbers	Recommended Replacement PN	Sample Available Date	Last Time Buy (LTB) Date (1)(2)(3)(4)	Last Time Ship (LTS) date ⁽¹⁾
EMMC16G-TB28-A01U	EMMC16G-PJ30-02C21	Nov 28 th ,2022	May 31 st , 2023	Aug 31 st , 2023
EMMC16G-TB28-A20	EMMC16G-PJ30-02C21	Nov 28 th ,2022	May 31 st , 2023	Aug 31 st , 2023
EMMC16G-TB29-70H01	EMMC32G-PJ30-02C11	Nov 28 th ,2022	May 31st , 2023	Aug 31 st , 2023
EMMC16G-TB29-90F01	EMMC16G-PJ30-02C21	Nov 28 th ,2022	May 31st , 2023	Aug 31 st , 2023
EMMC16G-TB29-90F01-R	EMMC16G-PJ30-02C21-R	Nov 28 th ,2022	May 31 st , 2023	Aug 31 st , 2023
EMMC16G-TB29-90F02	EMMC32G-PJ30-02C02	Nov 28 th ,2022	May 31st , 2023	Aug 31 st , 2023
EMMC16G-TB29-PA70	EMMC32G-PJ30-02C11	Nov 28 th ,2022	May 31st , 2023	Aug 31st, 2023
EMMC16G-TB29-PE90	EMMC32G-PJ30-02C02	Nov 28 th ,2022	May 31 st , 2023	Aug 31 st , 2023
EMMC16G-TB29-PE90-R	EMMC32G-PJ30-02C02-R	Nov 28 th ,2022	May 31st , 2023	Aug 31st, 2023
EMMC16G-TB29-PZ90	EMMC16G-PJ30-02C21	Nov 28 th ,2022	May 31st , 2023	Aug 31st, 2023
EMMC16G-TB29-PZ90R	EMMC16G-PJ30-02C21-R	Nov 28 th ,2022	May 31 st , 2023	Aug 31 st , 2023

Notes

- (1) Last time ship date can be arranged within 3 months of the LTB order date. All LTB orders are NCNR.
- (2) An increase in demand may cause the LTB date to be pulled in. Please contact your Kingston representative to forecast and to assist with replacement part sampling.
- (3) A mutually agreed upon forecast between Kingston and the customer for the LTB quantity is needed 3 months prior to the LTB date in order to secure LTB quantity.
- (4) LTB availability is on a first-come, first-served basis.

Embedded Multi-Media Card

(*e*•MMC[™] 5.1)

EMMC16G-PJ30-02C21

v1.0

Kingston Digital Inc.

Product Features

- Packaged managed NAND flash memory with e•MMC[™] 5.1 interface
- Backward compatible with all prior e•MMCTM specification revisions
- 153-ball JEDEC FBGA RoHS Compliant package
- Operating voltage range:
 - \circ VCCQ = 1.8 V/3.3 V
 - \circ VCC = 3.3 V
- Operating Temperature 25C to +85C
- Storage Temperature -40C to +85C
- Compliant with e•MMC[™] 5.1 JEDEC Standard Number JESD84-B51

e•MMCTM Specific Feature Support

- High-speed *e*•MMC[™] protocol
- Variable clock frequencies of 0-200MHz
- Ten-wire bus interface (clock, 1 bit command, 8 bit data bus) with an optional hardware reset
- Supports three different data bus widths: 1 bit(default), 4 bits, 8 bits
- Bus Modes:
 - O Single data transfer rate: up to 52MB/s (using 8 parallel data lines at 52MHz)
 - O Dual data rate mode (DDR-104): up to 104MB/s @ 52MHz
 - o High speed, single data rate mode (HS-200): up to 200MB/s @ 200MHz
 - o High speed, dual data rate mode (HS-400): up to 400MB/s @ 200MHz
- Supports alternate boot operation mode to provide a simple boot sequence method
 - Supports SLEEP/AWAKE (CMD5)
 - o Host initiated explicit sleep mode for power saving
- Enhanced write protection with permanent and partial protection options
- Multiple user data partition with enhanced attribute for increased reliability
- Error free memory access
 - o Cyclic Redundancy Code (CRC) for reliable command and data communication
 - o Internal error correction code (ECC) for improved data storage integrity
 - o Internal enhanced data management algorithm
 - O Data protection for sudden power failure during program operations
- Security
 - Secure bad block erase commands
 - o Enhanced write protection with permanent and partial protection options
- Power off notification for sleep
- Field firmware update (FFU)
- Production state awareness
- Device health report
- Command queuing
- Enhanced strobe
- Cache flushing report
- Cache barrier

- Background operation control & High Priority Interrupt (HPI)
- RPMB throughput improvement
- Secure write protection
- Pre EOL information
- Optimal size

Product Description

Kingston's e•MMCTM products conform to the JEDEC e•MMCTM 5.1 standard. These devices are an ideal universal storage solution for many commercial and industrial applications. In a single integrated packaged device, e•MMCTM combines triple-level cell (TLC) NAND flash memory with an onboard e•MMCTM controller, providing an industry standard interface to the host system. The integrated e•MMCTM controller directly manages NAND flash media which relieves the host processor of these tasks, including flash media error control, wear-leveling, NAND flash management and performance optimization. Future revision to the JEDEC e•MMCTM standard will always maintain backward compatibility. The industry standard interface to the host processor ensures compatibility across future NAND flash generations as well, easing product sustainment throughout the product life cycle.

Configurations

Kingston's e•MMCTM products support a variety of configurations that allow the e•MMCTM device to be tailored to your specific application needs. The most popular configurations described below are each offered under standard part numbers.

Standard TLC – By default the e•MMCTM device is configured with the NAND flash in a standard TLC mode. This configuration provides reasonable performance and reliability for many applications.

Pseudo Single Level Cell (pSLC) – The TLC NAND flash in the Kingston e•MMC[™] device can be configured to further improve device endurance, data retention, reliability and performance over the standard TLC configuration. This is done by converting the NAND TLC cells to a pseudo single level cell (SLC) configuration. In this configuration, along with the performance and reliability gains, the device capacity is reduced by 2/3 of the capacity. This one-time configuration is achieved by setting the e•MMC[™] enhanced attribute for the hardware partition.

Kingston e•MMCTM can be ordered preconfigured with the option of *reliable write* or *pSLC* at no additional cost. Standard TLC devices can also be one-time configured in-field by following the procedures outlined in the JEDEC e•MMCTM specification. The JEDEC e•MMCTM specification allows for many additional configurations such as up to 4 additional general purpose (GPn) hardware partitions each with the option to support pSLC and *reliable write*. Additionally, Kingston provides a content loading service that can streamline your product assembly while reducing production costs. For more information, contact your Kingston representative.

Kingston e•MMCTM devices are fully compliant with the JEDEC Standard Specification No. JESD84-B51. This datasheet provides technical specifications for Kingston's family of e•MMCTM devices. Refer to the JEDEC e•MMCTM standard for specific information related to e•MMCTM device function and operation. See: http://www.jedec.org/sites/default/files/docs/JESD84-B51.pdf

e•MMCTM Mode and Controller

TLC mode using SM2730 - Leading edge 3D NAND flash technology in TLC mode rated to 3,000 endurance cycles.

- Strong data protection with LDPC Error control
- Improved data integrity with end-to-end data protection.

pSLC mode using SM2730 - Leading edge 3D NAND flash technology in pSLC mode rated to 40,000 endurance cycles.

- Strong data protection with LDPC Error control
- Improved data integrity with end-to-end data protection.

Part Numbering

Figure 1 – Part Number Format

EMMC	16G	-	PJ30	-	02C21
A	В		С		D

Part Number Fields

A: Product Family: EMMC

B: Device Capacity: Available capacities of 16GB

C: Hardware Revision and Configuration

D: Device Firmware Revision and Configuration

Table 1 - Device Summary

Product Part Number	NAND Density	Package	Operating voltage		
EMMC16G-PJ30-02C21	16 GB	FBGA153	V_{CC} =3.3V, V_{CCQ} =1.8V/3.3V		

Device Performance

Table 2 below provides sequential read and write speeds for all capacities. Performance numbers can vary under different operating conditions. Values are given at HS400 bus mode. Contact your Kingston Representative for performance numbers using other bus modes.

Table 2 - Sequential Read / Write Performance

Does does 4	Transfer Rate (MB/s)					
Product	Sequential Read	Sequential Write				
EMMC16G-PJ30-02C21	290	30				

Power Consumption

Device current consumption for various device configurations is defined in the power class fields of the EXT_CSD register. Power consumption values are summarized in Table 3 below.

Table 3 - Device Power Consumption

Product	Read ((mA)	Write	Standby	
rioduct	VCCQ = 1.8V	VCC=3.3V	VCCQ = 1.8V	VCC = 3.3V	(mA)
EMMC16G-PJ30-02C21	141.68	138.53	71.57	56.92	0.11

Note: Measurement operating conditions were conducted at HS400 bus mode, VCC = $3.3V\pm5\%$, VCCQ = $1.8V\pm5\%$. Standby current measured at 8-bit bus, VCC = $3.3V\pm5\%$, with clock idle.

Device and Partition Capacity

The device NAND flash capacity is divided across two boot partitions (4096 KB) each, a Replay Protected Memory Block (RPMB) partition (4096 KB), and the main user storage area. Four additional general purpose storage partitions can be created from the user partition. These partitions can be factory preconfigured or configured in-field by following the procedure outlined in section 6.2 of the JEDEC e•MMCTM specification JESD84-B51. A small portion of the NAND storage capacity is used for the storage of the onboard controller firmware and mapping tables. Additionally, several NAND blocks are held in reserve to boost performance and extend the life of the e•MMCTM device. Table 4 identifies the specific capacity of each partition. This information is reported in the device EXT_CSD register. The contents of this register are also listed in the Appendix.

Table 4 - Partition Capacity

Dayt Numbou	Partition							
Part Number	User	Boot 1	Boot 2	RPMB				
EMMC16G-PJ30-02C21	15,678,308,352 B	4096 KB	4096 KB	4096 KB				

Table 5 - e•MMCTM Operating Voltage

			0			
Parameter	Symbol	Min	Nom	Max	Unit	
Supply voltage (NAND)	$ m V_{CC}$	2.7	3.3	3.6	V	
Supply weltage (I/O)	$V_{CCO}^{(1)}$	2.7	3.3	3.6	V	
Supply voltage (I/O)	V CCQ \	1.7	1.8	1.95	V	
Supply power-up for 3.3 V	$t_{ ext{PRUH}}$			35	ms	
Supply power-up for 1.8V	t prul			25	ms	
Note $1 : V_{CCO}(I/O)3.3$ volt range is i	not supported whi	ile operating	in HS200 &	tHS400mo	odes	

e•MMCTM Bus Modes

Kingston e•MMCTM devices support all bus modes defined in the JEDEC e•MMCTM 5.1 specification. These modes are summarized in Table 6 below.

Table 6 - e•MMCTM Bus Modes

Mode	Data Rate IO Voltage Bu		Bus Width	CLK Frequency	Maximum Data Bus Throughput
Legacy MMC	Single	3.3V / 1.8V	1, 4, 8	0 – 26 MHz	26 MB/s
High Speed SDR	Single	3.3V / 1.8V	4, 8	0 – 52 MHz	52 MB/s
High Speed DDR	Dual	3.3V / 1.8V	4, 8	0 – 52 MHz	104 MB/s
HS200	Single	1.8V	4, 8	0 – 200 MHz	200 MB/s
HS400	Dual	1.8V	8	0 – 200 MHz	400 MB/s

Signal Description

Table 7 - e•MMCTM Signals

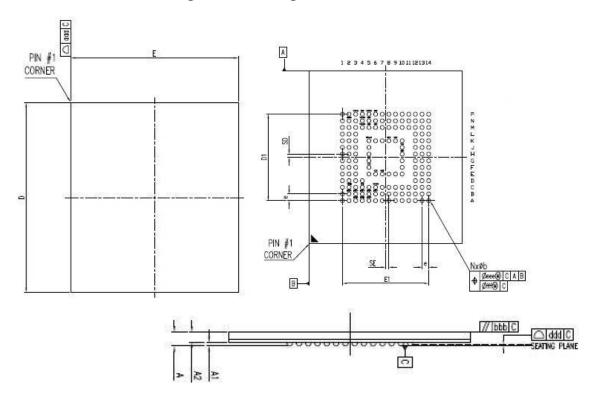
Name	Туре	Table 7 - e•MMC ^{IM} Signals Description
CLK	I	Clock: Each cycle of this signal directs a one bit transfer on the command and either a one bit (1x) or a two bits transfer (2x) on all the data lines. The frequency may vary between zero and the maximum clock frequency.
DAT[7:0]	I/O/PP	Data: These are bidirectional data channels. The DAT signals operate in push-pull mode. These bidirectional signals are driven by either the e•MMC TM device or the host controller. By default, after power up or reset, only DAT0 is used for data transfer. A wider data bus can be configured for data transfer, using either DAT0-DAT3 or DAT0-DAT7, by the e•MMC TM host controller. The e•MMC TM device includes internal pull-ups for data lines DAT1-DAT7. Immediately after entering the 4-bit mode, the device disconnects the internal pull ups of lines DAT1, DAT2, and DAT3. Correspondingly, immediately after entering to the 8-bit mode, the device disconnects the internal pull-ups of lines DAT1-DAT7.
СМД	I/O/PP/OD	Command: This signal is a bidirectional command channel used for device initialization and transfer of commands. The CMD signal has two operation modes: open-drain for initialization mode, and push-pull for fast command transfer. Commands are sent from the e•MMC TM host controller to the e•MMC TM device and responses are sent from the device to the host.
DS	O	This signal is generated by the device and used for output in HS400 mode. The frequency of this signal follows the frequency of CLK. For data output each cycle of this signal directs two bits transfer(2x) on the data - one bit for positive edge and the other bit for negative edge. For CRC status response output and CMD response output (enabled only HS400 enhanced strobe mode), the CRC status and CMD Response are latched on the positive edge only, and don't care on the negative edge.
RST_n	I	Hardware Reset: By default, hardware reset is disabled and must be enabled in the EXT_CSD register if used. Otherwise, it can be left un-connected.
RFU	-	Reserved for future use: These pins are not internally connected. Leave floating
NC	-	Not Connected: These pins are not internally connected. Signals can be routed through these balls to ease printed circuit board design. See Kingston's Design Guidelines for further details.
VSF	-	Vendor Specific Function: These pins are not internally connected
Vddi	-	Internal Voltage Node: Note that this is not a power supply input. This pin provides access to the output of an internal voltage regulator to a llow for the connection of an external Creg capacitor. See Kingston's Design Guidelines for further details.
Vcc	S	Supply voltage for core
Note: I=Input; O=	Ouput; PP=Push	-Pull; OD=Open_Drain; NC=Not Connected(or logical high); S=Power Supply

Signal Description Continued

Table 8 - e•MMCTM Signals Continued

Name	Type	Description					
Vecq	S	Supply voltage for I/O					
Vss	S	Supply groundfor core					
Vssq	S	Supply groundfor I/O					
Note: I=Input; O=	Note: I=Input; O=Ouput; PP=Push-Pull; OD=Open_Drain; NC=Not Connected(or logical high); S=Power Supply						

Design Guidelines


Design guidelines are outlined in a separate document. Contact your Kingston Representative for more information.

Package Dimensions

11.5 x 13.0 x (Max 0.8mm)

Figure 2 – Package Dimensions

SYMBOL	DIME	NSION II	MM /	DIMENSION IN INCH				
SAWROL	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.		
Α	100-201		0.80			0.031		
A1	0.18			0.007				
A2		_141_0	0.57			0.022		
b	0.27	0.30	0.33	0.011	0.012	0.013		
D	12.90	13.00	13.10	0.508 0.512		0.516		
E	11.40	11.50	11.60	0.449	0.453	0.457		
е	0.50 BSC. 0.020 BS							
JEDEC		N	MO-276(REF.)/MI	М			
aaa			0.0)58				
bbb			0.	10				
ddd			0.	08				
eee			0.	12				
fff			0.	05	(1)			
N	SE (m	m) SI) (mm)	E1 (mr	n) D	1 (mm)		
153L	0.25 B	SC. 0.	25 BSC.	6.50 BS	SC. 6.	6.50 BSC.		

Ball Assignment (153 ball)

Table 9 – Ball Assignment, Top View (HS400)

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
Α	NC	NC	DAT0	DAT1	DAT2	Vss	RFU	NC	NC	NC	NC	NC	NC	NC	Α
В	NC	DAT3	DAT4	DAT5	DAT6	DAT7	NC	NC	NC	NC	NC	NC	NC	NC	В
С	NC	Vddi	NC	Vssq	NC	Vccq	NC	NC	NC	NC	NC	NC	NC	NC	С
D	NC	NC	NC	NC								NC	NC	NC	D
E	NC	NC	NC		RFU	Vcc	Vss	VSF	VSF	VSF		NC	NC	NC	Е
F	NC	NC	NC		Vcc					VSF		NC	NC	NC	F
G	NC	NC	RFU		Vss					VSF		NC	NC	NC	G
Н	NC	NC	NC		DS					Vss		NC	NC	NC	Н
J	NC	NC	NC		Vss					Vcc		NC	NC	NC	J
K	NC	NC	NC		RST_n	RFU	RFU	Vss	Vcc	VSF		NC	NC	NC	K
L	NC	NC	NC									NC	NC	NC	L
M	NC	NC	NC	Vccq	CMD	CLK	NC	NC	NC	NC	NC	NC	NC	NC	М
N	NC	Vssq	NC	Vccq	Vssq	NC	NC	NC	NC	NC	NC	NC	NC	NC	N
Р	NC	NC	Vccq	Vssq	Vccq	Vssq	RFU	NC	NC	RFU	NC	NC	NC	NC	Р
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	

Note: VSF, RFU and NC balls are not electrically connected. RFU balls may be defined with functionality by the Joint Electron Device Engineering Council (JEDEC) in future revisions of the e^{\bullet} MMCTM standard. Plea se refer to Kingston's design guidelines for more info.

Device Marking

Figure 4 - EMMC Package Marking

Line 1: Kingston logo

Line 2: 240xxxx-xxx.xxxx-x: Internal control number

Line 3: YYWW: Date code (YY-Last 2 digital of year, WW-Work week)

PPPPPPPPPPPPPInternal control number (within 12 digits)

Line 4: Part Number: xxxxxxx-xxxxxxx

Line 5: xxxxxxxxxxx Internal control number (within 12 digits)

Line 6: Country of Origin (CoO): TAIWAN or CHINA

Card Identification Register (CID)

The Card Identification (CID) register is a 128-bit register that contains device identification information used during the $e^{\bullet}MMC^{TM}$ protocol device identification phase. Refer to JEDEC Standard Specification No.JESD84-B51 for details.

Field	Bits	Value
MID	[127:120]	0x70
reserved	[119:114]	0x00
CBX	[113:112]	0x01
OID	[111:104]	0x00
PNM	[103:56]	PJ3016
PRV	[55:48]	0x02
PSN	[47:16]	Random
MDT	[15:8]	month, year
CRC	[7:1]	Follows JEDEC Standard
reserved	[0:0]	0x00

Card Specific Data Register [CSD]

The Card-Specific Data (CSD) register provides information on how to access the contents stored in $e^{\bullet}MMC^{TM}$. The CSD registers are used to define the error correction type, maximum data access time, data transfer speed, data format... etc. For details, refer to section 7.3 of the JEDEC Standard Specification No.JESD84-B51.

Field	Bits	Value
CSD_Structure	[127:126]	0x03 (V2.0)
SPEC_VER	[125:122]	0x04 (V4.0~4.2)
reserved	[121:120]	0x00
TAAC	[119:112]	0x4F (40ms)
NSAC	[111:104]	0x01
TRAN_SPEED	[103:96]	0x32 (26Mbit/s)
CCC	[95:84]	0x8F5
READ_BL_LEN	[83:80]	0x09 (512 Bytes)
READ_BL_PARTIAL	[79:79]	0x00
WRITE_BLK_MISALIGN	[78:78]	0x00
READ_BLK_MISALIGN	[77:77]	0x00
DSR_IMP	[76:76]	0x00
reserved	[75:74]	0x00
C_SIZE	[73:62]	0xFFF
VDD_R_CURR_MIN	[61:59]	0x07 (100mA)
VDD_R_CURR_MAX	[58:56]	0x07 (200mA)
VDD_W_CURR_MIN	[55:53]	0x07 (100mA)
VDD_W_CURR_MAX	[52:50]	0x07 (200mA)
C_SIZE_MULT	[49:47]	0x07 (512 Bytes)
ERASE_GRP_SIZE	[46:42]	0x1F
ERASE_GRP_MULT	[41:37]	0x1F
WP_GRP_SIZE	[36:32]	0x0F
WP_GRP_ENABLE	[31:31]	0x01
DEFAULT_ECC	[30:29]	0x00
R2W_FACTOR	[28:26]	0x02
WRITE_BL_LEN	[25:22]	0x09 (512 Bytes)
WRITE_BL_PARTIAL	[21:21]	0x00
reserved	[20:17]	0x00
CONTENT_PROT_APP	[16:16]	0x00
FILE_FORMAT_GRP	[15:15]	0x00
COPY	[14:14]	0x00
PERM_WRITE_PROTECT	[13:13]	0x00
TMP_WRITE_PROTECT	[12:12]	0x00
FILE_FORMAT	[11:10]	0x00

Field	Bits	Value
ECC	[9:8]	0x00
CRC	[7:1]	Follow JEDEC Standard
reserved	[0:0]	0x01

Extended Card Specific Data Register [EXT_CSD]

The Extended CSD register defines the Device properties and selected modes. It is 512 bytes long. The most significant 320 bytes are the Properties segment, which defines the Device capabilities and cannot be modified by the host. The lower 192 bytes are the Modes segment, which defines the configuration the Device is working in. These modes can be changed by the host by means of the SWITCH command. For details, refer to section 7.4 of the JEDEC Standard Specification No.JESD84-B51.

Field	Byte	Value
Reserved	[511:506]	0
EXT_SECURITY_ERR	[505:505]	0x00
S_CMD_SET	[504:504]	0x01
HPI_FEATURES	[503:503]	0x01
BKOPS_SUPPORT	[502:502]	0x01
MAX_PACKED_READS	[501:501]	0x20
MAX_PACKED_WRITES	[500:500]	0x20
DATA_TAG_SUPPORT	[499:499]	0x01
TAG_UNIT_SIZE	[498:498]	0x00
TAG_RES_SIZE	[497:497]	0x00
CONTEXT_CAPABILITIES	[496:496]	0x78
LARGE_UNIT_SIZE_M1	[495:495]	0x01
EXT_SUPPORT	[494:494]	0x03
SUPPORTED_MODES	[493:493]	0x01
FFU_FEATURES	[492:492]	0x00
OPERATION_CODE_TIMEOUT	[491:491]	0x17
FFU_ARG	[490:487]	4294639600
BARRIER_SUPPORT	[486:486]	0x01
Reserved	[485:309]	0
CMDQ_SUPPORT	[308:308]	0x01
CMDQ_DEPTH	[307:307]	0x1F
Reserved	[306:306]	0x00
NUMBER_OF_FW_SECTORS_CORRECTLY_PROGRAMMED	[305:302]	0
VENDOR_PROPRIETARY_HEALTH_REPORT	[301:270]	0
DEVICE_LIFE_TIME_EST_TYP_B	[269:269]	0x01
DEVICE_LIFE_TIME_EST_TYP_A	[268:268]	0x01
PRE_EOL_INFO	[267:267]	0x01
OPTIMAL_READ_SIZE	[266:266]	0x40
OPTIMAL_WRITE_SIZE	[265:265]	0x40
OPTIMAL_TRIM_UNIT_SIZE	[264:264]	0x07
DEVICE_VERSION	[263:262]	17925
FIRMWARE_VERSION	[261:254]	0x02

Field	Byte	Value
PWR_CL_DDR_200_360	[253:253]	0x00
CACHE_SIZE	[252:249]	1024
GENERIC_CMD6_TIME	[248:248]	0x05
POWER OFF LONG TIME	[247:247]	0x64
BKOPS STATUS	[246:246]	0x00
CORRECTLY PRG SECTORS NUM	[245:242]	0
INI TIMEOUT AP	[241:241]	0x0A
CACHE FLUSH POLICY	[240:240]	0x01
PWR CL DDR 52 360	[239:239]	0x00
PWR CL DDR 52 195	[238:238]	0x00
PWR CL 200 195	[237:237]	0x00
PWR CL 200 130	[236:236]	0x00
MIN PERF DDR W 8 52	[235:235]	0x00
MIN PERF DDR R 8 52	[234:234]	0x00
Reserved	[233:233]	0x00
TRIM MULT	[232:232]	0x02
SEC FEATURE SUPPORT	[231:231]	0x55
SEC ERASE MULT	[230:230]	0x19
SEC TRIM MULT	[229:229]	0x0 A
BOOT INFO	[228:228]	0x07
Reserved	[227:227]	0x00
BOOT SIZE MULT	[226:226]	0x20
ACC SIZE	[225:225]	0x06
HC ERASE GRP SIZE	[224:224]	0x01
ERASE TIMEOUT MULT	[223:223]	0x02
REL WR SEC C	[222:222]	0x01
HC WP GRP SIZE	[221:221]	0x10
S C VCC	[220:220]	0x07
S C VCCQ	[219:219]	0x07
PRODUCTION STATE AWARENESS TIMEOUT	[218:218]	0x17
S A TIMEOUT	[217:217]	0x12
SLEEP_NOTIFICATION_TIME	[216:216]	0x0 C
SEC COUNT	[215:212]	30621696
SECURE_WP_INFO	[211:211]	0x01
MIN PERF W 8 52	[210:210]	0x00
MIN_PERF_R_8_52	[209:209]	0x00
MIN_PERF_W_8_26_4_52	[208:208]	0x00
MIN_PERF_R_8_26_4_52	[207:207]	0x00
MIN_PERF_W_4_26	[206:206]	0x00
MIN_PERF_R_4_26	[205:205]	0x00
Reserved	[204:204]	0x00

Field	Byte	Value
PWR_CL_26_360	[203:203]	0x00
PWR_CL_52_360	[202:202]	0x00
PWR CL 26 195	[201:201]	0x00
PWR CL 52 195	[200:200]	0x00
PARTITION SWITCH TIME	[199:199]	0x04
OUT OF INTERRUPT TIME	[198:198]	0x0 A
DRIVER STRENGTH	[197:197]	0x1F
DEVICE_TYPE	[196:196]	0x57
Reserved	[195:195]	0x00
CSD_STRUCTURE	[194:194]	0x02
Reserved	[193:193]	0x00
EXT CSD REV	[192:192]	0x08
CMD_SET	[191:191]	0x00
Reserved	[190:190]	0x00
CMD_SET_REV	[189:189]	0x00
Reserved	[188:188]	0x00
POWER_CLASS	[187:187]	0x00
Reserved	[186:186]	0x00
HS_TIMING	[185:185]	0x01
STROBE_SUPPORT	[184:184]	0x01
BUS_WIDTH	[183:183]	0x02
Reserved	[182:182]	0x00
ERASED_MEM_CONT	[181:181]	0x00
Reserved	[180:180]	0x00
PARTITION_CONFIG	[179:179]	0x00
BOOT_CONFIG_PROT	[178:178]	0x00
BOOT_BUS_CONDITIONS	[177:177]	0x00
Reserved	[176:176]	0x00
ERASE_GROUP_DEF	[175:175]	0x00
BOOT_WP_STATUS	[174:174]	0x00
BOOT_WP	[173:173]	0x00
Reserved	[172:172]	0x00
USER_WP	[171:171]	0x00
Reserved	[170:170]	0x00
FW_CONFIG	[169:169]	0x00
RPMB_SIZE_MULT	[168:168]	0x20
WR_REL_SET	[167:167]	0x00
WR_REL_PARAM	[166:166]	0x15
SANITIZE_START	[165:165]	0x00
BKOPS_START	[164:164]	0x00
BKOPS_EN	[163:163]	0x02

Field	Byte	Value
RST_n FUNCTION	[162:162]	0x00
HPI_MGMT	[161:161]	0x00
PARTITIONING SUPPORT	[160:160]	0x07
MAX ENH SIZE MULT	[159:157]	623
PARTITIONS ATTRIBUTE	[156:156]	0x00
PARTITION SETTING COMPLETED	[155:155]	0x00
GP SIZE MULT 4	[154:152]	0
GP_SIZE_MULT_3	[151:149]	0
GP SIZE MULT 2	[148:146]	0
GP_SIZE_MULT_1	[145:143]	0
ENH SIZE MULT	[142:140]	0
ENH START ADDR	[139:136]	0
Reserved	[135:135]	0x00
SEC BAD BLK MGMNT	[134:134]	0x00
PRODUCTION_STATE_AWARENESS	[133:133]	0x00
TCASE_SUPPORT	[132:132]	0x00
PERIODIC_WAKEUP	[131:131]	0x00
PROGRAM _CID _CSD _DDR _SUPPORT	[130:130]	0x01
Reserved	[129:128]	0
VENDOR_SPECIFIC_FIELD	[127:67]	N/A
ERROR_CODE	[66:65]	0
ERROR_TYPE	[64:64]	0xC8
NATIVE_SECTOR_SIZE	[63:63]	0x01
USE_NATIVE_SECTOR	[62:62]	0x00
DATA_SECTOR_SIZE	[61:61]	0x00
INI_TIMEOUT_EMU	[60:60]	0x0A
CLASS_6_CTRL	[59:59]	0x00
DYNCAP_NEEDED	[58:58]	0x00
EXCEPTION_EVENTS_CTRL	[57:56]	0
EXCEPTION_EVENTS_STATUS	[55:54]	0
EXT_PARTITIONS_ATTRIBUTE	[53:52]	0
CONTEXT_CONF	[51:37]	0
PACKED_COMMAND_STATUS	[36:36]	0x00
PACKED_FAILURE_INDEX	[35:35]	0x00
POWER_OFF_NOTIFICATION	[34:34]	0x00
CACHE_CTRL	[33:33]	0x00
FLUSH_CACHE	[32:32]	0x00
BARRIER_CTRL	[31:31]	0x00
MODE_CONFIG	[30:30]	0x00
MODE_OPERATION_CODES	[29:29]	0x00
Reserved	[28:27]	0

Field	Byte	Value
FFU_STATUS	[26:26]	0x00
PRE_LOADING_DATA_SIZE	[25:22]	0
MAX_PRE_LOADING_DATA_SIZE	[21:18]	10207232
PRODUCT_STATE_AWARENESS_ENABLEMENT	[17:17]	0x01
SECURE_REMOVAL_TYPE	[16:16]	0x09
CMDQ_MODE_EN	[15:15]	0x00
Reserved	[14:0]	0

History

Revision	History	Date
v1.0	Initial Release	10 / 2022