

Product Change Notification / SYST-16TKLM388

Date:

17-Nov-2022

Product Category:

8-bit Microcontrollers

PCN Type:

Document Change

Notification Subject:

ERRATA - PIC18F26/45/46Q10 Silicon Errata and Data Sheet Clarifications

Affected CPNs:

SYST-16TKLM388_Affected_CPN_11172022.pdf SYST-16TKLM388_Affected_CPN_11172022.csv

Notification Text:

SYST-16TKLM388

Microchip has released a new Errata for the PIC18F26/45/46Q10 Silicon Errata and Data Sheet Clarifications of devices. If you are using one of these devices please read the document located at PIC18F26/45/46Q10 Silicon Errata and Data Sheet Clarifications.

Notification Status: Final

Description of Change: Added silicon erratum item 1.10.1

Impacts to Data Sheet: None

Change Implementation Status: Complete

Date Document Changes Effective: 17 Nov 2022

NOTE: Please be advised that this is a change to the document only the product has not been changed.

Markings to Distinguish Revised from Unrevised Devices::N/A

Attachments:

PIC18F26/45/46Q10 Silicon Errata and Data Sheet Clarifications

Please contact your local Microchip sales office with questions or concerns regarding this notification.

Terms and Conditions:

If you wish to <u>receive Microchip PCNs via email</u> please register for our PCN email service at our PCN home page select register then fill in the required fields. You will find instructions about registering for Microchips PCN email service in the PCN FAQ section.

If you wish to <u>change your PCN profile, including opt out</u>, please go to the <u>PCN home page</u> select login and sign into your myMicrochip account. Select a profile option from the left navigation bar and make the applicable selections.

PIC18F26/45/46Q10

PIC18F26/45/46Q10 Silicon Errata and Data Sheet Clarifications

The PIC18F26/45/46Q10 devices you have received conform functionally to the current device data sheet (DS40001996D), except for the anomalies described in this document.

The silicon issues discussed in the following pages are for silicon revisions with the Device and Revision IDs listed in the table below.

The errata described in this document will be addressed in future revisions of the PIC18F26/45/46Q10 silicon.

Note: This document summarizes all silicon errata issues from all silicon revisions, previous and current.

Table 1. Silicon Device Identification

Part Number	Device ID		Revision ID	
Fait Nulliber	Device iD	A5	B0 B2	
PIC18F26Q10	0x7180	0xA045	0xA0C0	0xA0C2
PIC18F45Q10	0x7140	0xA045	0xA0C0	0xA0C2
PIC18F46Q10	0x7120	0xA045	0xA0C0	0xA0C2

Important: Refer to the Device/Revision ID section in the current "PIC18F2X/4XQ10 Memory Programming Specification" (DS40001874) for more detailed information on Device Identification and Revision IDs for your specific device.

Table 2. Silicon Issue Summary

Module	Facture			Affect	ed Rev	vision
Module	Feature	Item No.	Issue Summary	A5	B0	B2
Electrical Specifications	Sleep current	1.1.1.	Higher current after DFM write	х		
Resets	RMCLR flag	1.2.1.	POR may clear the RMCLR bit by mistake	Х	х	х
Resets	LPBOR	1.2.2.	Trip point rises with temperature		Х	
CWG	Auto-shutdown sources	1.3.1.	CLC2 and CLC6 not available	х		
ADCC	FVR reference	1.4.1.	Missing codes when using FVR as reference	х	х	x
ADCC	Burst average	1.4.2.	ADCNT may not increment	Х		
ADCC	ADCRC (FRC) oscillator	1.4.3.	Oscillator continues to run in Sleep mode after conversion	Х		
ADCC	Input slew rate	1.4.4.	Unreliable conversion results with fast falling slew rate	х	х	Х
WWDT	Window operation	1.5.1.	The window feature of WWDT does not operate correctly in Doze mode	х		
NVM	NVMERR	1.6.1.	The NVMERR bit is set by device Reset after being cleared by the software	х		
NVM	Self-writes	1.6.2.	Do not write above 85°C	Х		
MSSP	SPI	1.7.1.	SSPBUF may be corrupted by writes to other GPR/SFRs	х		
Oscillator	HFINTOSC	1.8.1.	5% variation over temperature range	Х		
Oscillator	XT mode	1.8.2.	Maximum clock frequency limited to 2 MHz for XT mode	Х	Х	
In-Circuit Debug	Software breakpoints	1.9.1.	Software breakpoints are not available	Х	Х	х
PFM-Program Flash Memory	Self-Write	1.10.1	The first instruction following a self- write instruction may not execute.	х	х	x

1. Silicon Errata Issues

CAUTION Notice: This document summarizes all silicon errata issues from all revisions of silicon, previous and current. Only the issues indicated by the bold font in the following tables apply to the current silicon revision.

1.1 Module: Electrical Specifications

1.1.1 Sleep Current - Higher Sleep Current After DFM Write Operation

The system clock will stay Active when performing a DFM write operation during Sleep mode once completing the write operation, meaning a higher Sleep current will be experienced when the device remains in this state.

Work around

Once completing the DFM write operation, wake the device up from Sleep mode and re-execute a new Sleep command.

Affected Silicon Revisions

1.2 Module: Resets

1.2.1 The RMCLR Flag in the PCON0 Register Cleared by Mistake

On an initial power-up of the device or when executing a software Reset, the RMCLR flag in the PCON0 register may be improperly cleared by a Power-on Reset (POR) or software Reset (RI), thereby indicating a false MCLR event.

Work around

None.

Affected Silicon Revisions

A5	В0	B2	
X	X	Х	

1.2.2 Low-Power Brown-out Reset (LPBOR) Mode

The Brown-out Reset trip level increases proportionally with temperature to a level where BOR is never released. LPBOR cannot be used reliably because the trip level relative to temperature is indeterminate.

Work around

Use the Normal-Power BOR mode.

Affected Silicon Revisions

A5 B0 B2

X

1.3 Module: Complementary Waveform Generator (CWG)

1.3.1 CWG Auto-Shutdown Sources

Shutdown sources AS6E (CLC2_out) and AS7E (CLC6_out) are unavailable.

Work around

Route the CLC output through PPS to an output pin, and use the AS0E source selection (the pin selected by CWGxPPS) and PPS controls to select the same pin as the shutdown source.

Affected Silicon Revisions

A5	В0	B2
Х		

1.4 Module: Analog-to-Digital Converter with Computation (ADCC)

1.4.1 Missing Codes with FVR Reference

Using the FVR as the positive voltage reference for the ADC can cause an increase in missing codes.

Work around Method 1:

Increase the bit conversion time, known as T_{AD} , to 8 µs or higher.

Method 2:

Use V_{DD} as the positive voltage reference to the ADC.

Affected Silicon Revisions

A5	В0	B2	
Х	Х	Х	

1.4.2 ADCC Burst Average Mode

When the ADCC is operated in Burst Average mode (ADMD = 0b011 in the ADCON2 register) while enabling noncontinuous operation and double-sampling (ADCONT = 0 in the ADCON0 register and ADDSEN = 1 in the ADCON1 register), the value in the ADCNT register does not increment beyond '0b1' toward the value in the ADRPT register.

Work around

When operating the ADCC in Burst Average mode with double-sampling, enable continuous module operation (ADCONT = 1 in the ADCON0 register) and set the Stop-on-Interrupt bit (the ADSOI bit in the ADCON3 register). After the interrupt occurs, perform appropriate threshold calculations in the software and retrigger ADCC as necessary.

Alternatively, if the CPU is in Low-Power Sleep mode, the ADCC in noncontinuous Burst Average mode can be operated with a single ADC conversion (ADDSEN = 0 in the ADCON1 register). Doing so compromises noise immunity for lower power consumption by preventing the device from waking up to perform threshold calculations in the software.

Affected Silicon Revisions

1.4.3 ADCRC (FRC) Oscillator Operation in Sleep Mode

If the part is in Sleep mode and the ADCRC (FRC) oscillator is used as clock source to the ADC, the oscillator continues to run after the conversion is complete, increasing the current consumption in Sleep mode. The oscillator will stop after the device exits Sleep mode and resumes normal code execution.

Work around

None.

Affected Silicon Revisions

A5	В0	B2
X		

1.4.4 Unreliable Conversion Results with Fast Falling Slew Rate

When the ADC input falls by greater than 3.2V, with a slew rate faster than -11 V/ μ s, the following ADC conversion will have the Most Significant bit (MSb) improperly set. This is likely to happen when the ADC input channel is switched from one with a high input level to another with a low input level.

Work around

When switching between input channels, discard the first conversion result after the switch. Subsequent conversions will not be affected.

Affected Silicon Revisions

A 4	В0	B2
X	Х	Х

1.5 Module: Windowed Watchdog Timer (WWDT)

1.5.1 Window Operation in Doze Mode

When enabling the Windowed operation mode in Doze mode, a window violation error is issued even though the window is open and armed. This condition occurs only when the window size is set to a value other than 100% open.

Work around

Method 1:

Use the Windowed operation mode in any mode other than Doze. If disabling the Doze mode is not an option, use the WWDT module without enabling the window.

Method 2:

If the device is in Doze mode, perform the arming process for the window in Normal mode and return to the Doze mode.

Method 3:

If there is an Interrupt Service Routine (ISR) in the application code, the arming within the window can be done inside the ISR with the ROI bit of the CPUDOZE register being set.

Affected Silicon Revisions

A5	B0	B2	
X			

1.6 Module: Nonvolatile Memory (NVM)

1.6.1 NVMERR

When a Reset is issued while an NVM high-voltage operation is in progress, the NVMERR bit in the NVMCON0 register is set as expected. After clearing the NVMERR bit, if a Reset reoccurs, the NVMERR bit is set again regardless of whether an NVM operation is in progress or not. A successful write operation will clear the NVMERR condition.

Work around

None.

Affected Silicon Revisions

1.6.2 PFM Writes Above 85° Celsius

Do not perform write operations on the Program Flash Memory (PFM) when the temperature exceeds 85°C.

Work around

Perform PFM writes below 85°C.

Affected Silicon Revisions

1.7 Module: Host Synchronous Serial Port (MSSP)

1.7.1 MSSP SPI Client Mode

When operating in SPI Client mode, if the incoming SCK clock signal arrives during any of the conditions below, the SSPBUF Transmit Shift Register (TSR) may become corrupted. The byte transmitted to the client cannot be ensured to be correct, and the state of the WCOL bit may or may not indicate a write collision.

These conditions include:

- · A write to an SFR
- A write to RAM following an SFR read
- A write to RAM before an SFR read

Work around

Method 1 (Interrupt based using SS):

- 1. Connect the \overline{SS} line to both the \overline{SS} input and either an INT or IOC input pin.
- 2. Enable INT or IOC interrupts (interrupt on falling edge if available, otherwise, check that $\overline{SS} == 0$ when the interrupt occurs).
- 3. Load SSPBUF with the data to be transmitted.

- 4. Continue program execution.
- 5. When invoking the Interrupt Service Routine (ISR), do either of the following:
 - a. Add a delay that ensures the first SCK clock will be complete, or
 - b. Poll SSPSTAT.BF (while(BF == 0)), and wait for the transmission/reception to complete.

Method 2 (Bit polling based using SS):

- 1. Load SSPBUF with the data to be transmitted.
- 2. Poll the \overline{SS} line and wait for the \overline{SS} to go active (while(!PORTx. $\overline{SS} == 0$)).
- 3. When \overline{SS} is active ($\overline{SS} == 0$), do either of the following:
 - a. Add a delay that ensures the first SCK clock will be complete, or
 - b. Poll SSPSTAT.BF (while(BF == 0)), and wait for the transmission/reception to complete.

Once one of these two methods is complete, it is safe to return to program execution.

Method 3 (SS not available):

- 1. Load SSPBUF with the data to be transmitted.
- 2. Poll SSPSTAT.BF (while(BF == 0)), and wait for the transmission/reception to complete.

Affected Silicon Revisions

A5	В0	B2
X		

1.8 Module: Oscillator

1.8.1 Internal HFINTOSC Oscillator Varies up to 5%

The internal HFINTOSC oscillator frequency varies up to 5% over the voltage and temperature range.

Work around

For systems requiring more precision, use an external crystal or ceramic resonator in one of the external oscillator modes.

Affected Silicon Revisions

1.8.2 Maximum Clock Frequency Limited to 2 MHz for XT Mode

The maximum clock frequency for the intermediate gain setting that supports quartz crystal and ceramic resonator operation (XT mode) is being reduced from 4 MHz to 2 MHz.

Work around

For crystal or resonator frequencies above 2 MHz, use HS mode.

Affected Silicon Revisions

1.9 Module: In-Circuit Debug

1.9.1 Software Breakpoints Are Not Available

When debugging code, software breakpoints will not be available.

Work around

None.

Affected Silicon Revisions

A5	В0	B2	
X	Х	X	

1.10 Module: Program Flash Memory (PFM)

1.10.1 The First Instruction Following a Self-Write Instruction May Not Execute

When performing a self-write operation to Program Flash Memory, the first instruction following a self-write instruction may not execute.

Work around

Add two all-zero NOP() macros immediately after the self-write instruction. The all-zero NOP() macros are included automatically when the #include <xc.h> directive is used in user software.

Affected Silicon Revisions

2. Data Sheet Clarifications

2.1 None

There are no known data sheet clarifications as of this publication date.

Doc Rev.	Date	Comments
н	11/2022	Added silicon erratum item 1.10.1
G	07/2021	Removed silicon erratum item 1.4.5. Minor editorial corrections.
F	02/2021	Added silicon erratum items 1.4.5 and 1.9.1
E	11/2020	Updated the Revision ID for silicon Rev B0
D	09/2020	Added new silicon Rev B2
С	05/2020	Added new silicon Rev B0. Added issue 1.2.2 and 1.8.2.
В	05/2019	Added oscillator drift erratum. Removed data sheet clarifications.
А	03/2019	Initial document release

3. Appendix A: Revision History

Microchip Information

The Microchip Website

Microchip provides online support via our website at www.microchip.com/. This website is used to make files and information easily available to customers. Some of the content available includes:

- **Product Support** Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- **General Technical Support** Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip design partner program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

Product Change Notification Service

Microchip's product change notification service helps keep customers current on Microchip products. Subscribers will receive email notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, go to www.microchip.com/pcn and follow the registration instructions.

Customer Support

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Embedded Solutions Engineer (ESE)
- Technical Support

Customers should contact their distributor, representative or ESE for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in this document.

Technical support is available through the website at: www.microchip.com/support

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip products:

- · Microchip products meet the specifications contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is secure when used in the intended manner, within operating specifications, and under normal conditions.
- Microchip values and aggressively protects its intellectual property rights. Attempts to breach the code protection features of Microchip product is strictly prohibited and may violate the Digital Millennium Copyright Act.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not mean that we are guaranteeing the product is "unbreakable". Code protection is constantly evolving. Microchip is committed to continuously improving the code protection features of our products.

Legal Notice

This publication and the information herein may be used only with Microchip products, including to design, test, and integrate Microchip products with your application. Use of this information in any other manner violates these terms. Information regarding device applications is provided only for your convenience and may be superseded

by updates. It is your responsibility to ensure that your application meets with your specifications. Contact your local Microchip sales office for additional support or, obtain additional support at www.microchip.com/en-us/support/design-help/client-support-services.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE, OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL, OR CONSEQUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION.

Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, CryptoMemory, CryptoRF, dsPIC, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, Flashtec, Hyper Speed Control, HyperLight Load, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet- Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, TrueTime, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, Augmented Switching, BlueSky, BodyCom, Clockstudio, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, GridTime, IdealBridge, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, IntelliMOS, Inter-Chip Connectivity, JitterBlocker, Knob-on-Display, KoD, maxCrypto, maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SmartHLS, SMART-I.S., storClad, SQI, SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, Trusted Time, TSHARC, USBCheck, VariSense, VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2019-2022, Microchip Technology Incorporated and its subsidiaries. All Rights Reserved.

ISBN: 978-1-5224-922-0

Quality Management System

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.

Worldwide Sales and Service

AMERICAS	ASIA/PACIFIC	ASIA/PACIFIC	EUROPE
orporate Office	Australia - Sydney	India - Bangalore	Austria - Wels
2355 West Chandler Blvd.	Tel: 61-2-9868-6733	Tel: 91-80-3090-4444	Tel: 43-7242-2244-39
Chandler, AZ 85224-6199	China - Beijing	India - New Delhi	Fax: 43-7242-2244-393
Fel: 480-792-7200	Tel: 86-10-8569-7000	Tel: 91-11-4160-8631	Denmark - Copenhagen
Fax: 480-792-7277	China - Chengdu	India - Pune	Tel: 45-4485-5910
Fechnical Support:	Tel: 86-28-8665-5511	Tel: 91-20-4121-0141	Fax: 45-4485-2829
www.microchip.com/support	China - Chongqing	Japan - Osaka	Finland - Espoo
Veb Address:	Tel: 86-23-8980-9588	Tel: 81-6-6152-7160	Tel: 358-9-4520-820
www.microchip.com	China - Dongguan	Japan - Tokyo	France - Paris
Atlanta	Tel: 86-769-8702-9880	Tel: 81-3-6880- 3770	Tel: 33-1-69-53-63-20
Duluth, GA	China - Guangzhou	Korea - Daegu	Fax: 33-1-69-30-90-79
Tel: 678-957-9614	Tel: 86-20-8755-8029	Tel: 82-53-744-4301	Germany - Garching
ax: 678-957-1455	China - Hangzhou	Korea - Seoul	Tel: 49-8931-9700
Austin, TX	Tel: 86-571-8792-8115	Tel: 82-2-554-7200	Germany - Haan
Fel: 512-257-3370	China - Hong Kong SAR	Malaysia - Kuala Lumpur	Tel: 49-2129-3766400
Boston	Tel: 852-2943-5100	Tel: 60-3-7651-7906	Germany - Heilbronn
Vestborough, MA	China - Nanjing	Malaysia - Penang	Tel: 49-7131-72400
el: 774-760-0087	Tel: 86-25-8473-2460	Tel: 60-4-227-8870	Germany - Karlsruhe
ax: 774-760-0088	China - Qingdao	Philippines - Manila	Tel: 49-721-625370
Chicago	Tel: 86-532-8502-7355	Tel: 63-2-634-9065	Germany - Munich
asca, IL	China - Shanghai	Singapore	Tel: 49-89-627-144-0
el: 630-285-0071	Tel: 86-21-3326-8000	Tel: 65-6334-8870	Fax: 49-89-627-144-44
ax: 630-285-0075	China - Shenyang	Taiwan - Hsin Chu	Germany - Rosenheim
allas	Tel: 86-24-2334-2829	Tel: 886-3-577-8366	Tel: 49-8031-354-560
ddison. TX	China - Shenzhen	Taiwan - Kaohsiung	Israel - Ra'anana
el: 972-818-7423	Tel: 86-755-8864-2200	Tel: 886-7-213-7830	Tel: 972-9-744-7705
ax: 972-818-2924	China - Suzhou	Taiwan - Taipei	Italy - Milan
etroit	Tel: 86-186-6233-1526	Tel: 886-2-2508-8600	Tel: 39-0331-742611
lovi, MI	China - Wuhan	Thailand - Bangkok	Fax: 39-0331-466781
el: 248-848-4000	Tel: 86-27-5980-5300	Tel: 66-2-694-1351	Italy - Padova
louston, TX	China - Xian	Vietnam - Ho Chi Minh	Tel: 39-049-7625286
el: 281-894-5983	Tel: 86-29-8833-7252	Tel: 84-28-5448-2100	Netherlands - Drunen
ndianapolis	China - Xiamen		Tel: 31-416-690399
loblesville, IN	Tel: 86-592-2388138		Fax: 31-416-690340
el: 317-773-8323	China - Zhuhai		Norway - Trondheim
ax: 317-773-5453	Tel: 86-756-3210040		Tel: 47-72884388
el: 317-536-2380			Poland - Warsaw
os Angeles			Tel: 48-22-3325737
lission Viejo, CA			Romania - Bucharest
el: 949-462-9523			Tel: 40-21-407-87-50
ax: 949-462-9608			Spain - Madrid
el: 951-273-7800			Tel: 34-91-708-08-90
aleigh, NC			Fax: 34-91-708-08-91
el: 919-844-7510			Sweden - Gothenberg
lew York, NY			Tel: 46-31-704-60-40
el: 631-435-6000			Sweden - Stockholm
an Jose, CA			Tel: 46-8-5090-4654
el: 408-735-9110			UK - Wokingham
el: 408-436-4270			Tel: 44-118-921-5800
Canada - Toronto			Fax: 44-118-921-5820
el: 905-695-1980			1 ax. ++-110-32 1-3020
ax: 905-695-2078			

Affected Catalog Part Numbers(CPN)

PIC18F26Q10-E/SP PIC18F26Q10-E/ML PIC18F26Q10-E/MLV02 PIC18F26Q10-E/MLVAO PIC18F26Q10-E/SS PIC18F26Q10-E/SSV03 PIC18F26Q10-E/SSVAO PIC18F26Q10-E/SO PIC18F26Q10-E/SOVAO PIC18F45Q10-E/MP PIC18F46Q10-E/MP PIC18F46Q10-E/MPVAO PIC18F45Q10-E/MPVAO PIC18F45Q10-E/P PIC18F46Q10-E/P PIC18F26Q10-E/STX PIC18F45Q10-E/PT PIC18F46Q10-E/PT PIC18F45Q10-E/PTVAO PIC18F46Q10-E/PTVAO PIC18F26Q10-I/SP PIC18F26Q10-I/ML PIC18F26Q10-I/SSC01 PIC18F26Q10-I/SS PIC18F26Q10-I/SSVAO PIC18F26Q10-I/SO PIC18F45Q10-I/MP PIC18F46Q10-I/MP PIC18F45Q10-I/P PIC18F46Q10-I/P PIC18F26Q10-I/STX PIC18F45Q10-I/PTC02 PIC18F45Q10-I/PT PIC18F46Q10-I/PT PIC18F45Q10-I/PTVAO PIC18F46Q10-I/PTVAO PIC18F26Q10T-I/ML PIC18F26Q10T-I/SS020 PIC18F26Q10T-I/SSC01 PIC18F26Q10T-I/SS PIC18F26Q10T-I/SSV01 PIC18F26Q10T-I/SSVAO

PIC18F26Q10T-I/SO PIC18F45Q10T-I/MP PIC18F46Q10T-I/MP PIC18F26Q10T-I/STX PIC18F45Q10T-I/PTC02 PIC18F45Q10T-I/PT PIC18F46Q10T-I/PT PIC18F46Q10T-I/PTVAO PIC18F46Q10T-E/MLVAO PIC18F45Q10T-E/MPVAO PIC18F45Q10T-E/MPVAO PIC18F46Q10T-E/MPVAO