

Product Change Notification / SYST-05QQMU831

Date:

07-Sep-2022

Product Category:

32-bit Microcontrollers

PCN Type:

Document Change

Notification Subject:

ERRATA - SAM L22 Family Silicon Errata and Data Sheet Clarificaiton

Affected CPNs:

SYST-05QQMU831_Affected_CPN_09072022.pdf SYST-05QQMU831_Affected_CPN_09072022.csv

Notification Text:

SYST-05QQMU831

Microchip has released a new Errata for the SAM L22 Family Silicon Errata and Data Sheet Clarification of devices. If you are using one of these devices please read the document located at SAM L22 Family Silicon Errata and Data Sheet Clarification.

Notification Status: Final

Description of Change: Rev. E Document (09/2022) The following Errata were added in this revision: • PORT: 1.6.2 PA24 and PA25 Pull-down Functionality • ADC: 1.11.7 SEQSTATE • BOD33: 1.19.1 Hysteresis

Impacts to Data Sheet: None

Change Implementation Status: Complete

Date Document Changes Effective: 06 Sep 2022

NOTE: Please be advised that this is a change to the document only the product has not been changed.

Markings to Distinguish Revised from Unrevised Devices: N/A

Attachments:

SAM L22 Family Silicon Errata and Data Sheet Clarificaiton

Please contact your local Microchip sales office with questions or concerns regarding this notification.

Terms and Conditions:

If you wish to <u>receive Microchip PCNs via email</u> please register for our PCN email service at our PCN home page select register then fill in the required fields. You will find instructions about registering for Microchips PCN email service in the PCN FAQ section.

If you wish to <u>change your PCN profile</u>, <u>including opt out</u>, please go to the <u>PCN home page</u> select login and sign into your myMicrochip account. Select a profile option from the left navigation bar and make the applicable selections. Affected Catalog Part Numbers (CPN)

ATSAML22G16A-AUT ATSAML22G16A-MUT ATSAML22G17A-AUT ATSAML22G17A-MUT ATSAML22G17A-UUT ATSAML22G17A-UUTA0 ATSAML22G17A-UUTA1 ATSAML22G17A-UUTA2 ATSAML22G18A-AUT ATSAML22G18A-MUT ATSAML22G18A-UUT ATSAML22J16A-AU ATSAML22J16A-AUT ATSAML22J16A-MUT ATSAML22J17A-AUT ATSAML22J17A-MUT ATSAML22J18A-AUT ATSAML22J18A-MUT ATSAML22N16A-AUT ATSAML22N16A-CFUT ATSAML22N17A-AUT ATSAML22N17A-CFUT ATSAML22N18A-AUT ATSAML22N18A-CFUT

SAM L22 Family Silicon Errata and Data Sheet Clarification

SAM L22 Family

The SAM L22 family of devices that you have received conform functionally to the current Device Data Sheet (DS60001465B), except for the anomalies described in this document.

The silicon issues discussed in the following pages are for silicon revisions with the Device and Revision IDs listed in the following table.

The errata described in this document will be addressed in future revisions of the SAM L22 family silicon.

Note: This document summarizes all silicon errata issues from all revisions of silicon, previous as well as current.

Data Sheet clarifications and corrections (if applicable) are located in 2. Data Sheet Clarifications, following the discussion of silicon issues.

Table 1. SAM L22 Silicon Device Identification

Part Number	Device Identification (DID[31:0])	Revision ID (DID	.REVISION[3:0])	
Fait Nulliper		А	В	
ATSAML22N18A	0x10820x00			
ATSAML22N17A	0x10820x01	-		
ATSAML22N16A	0x10820x02			
ATSAML22J18A	0x10820x05	-		
ATSAML22J17A	0x10820x06	0x0	0x1	
ATSAML22J16A	0x10820x07			
ATSAML22G18A	0x10820x0A			
ATSAML22G17A	0x10820x0B			
ATSAML22G16A	0x10820x0C			

Note: Refer to the "Device Services Unit" chapter in the current Device Data Sheet (DS60001465B) for detailed information on Device Identification and Revision IDs for your specific device.

Silicon Errata Summary

Table 2. Silicon Errata Summary

Module	Feature	Errata #	losuo Summary	Affected	Revisions
Module	reature	Effata #	Issue Summary	А	В
AC	AC0 with PA02 Input	1.1.1	After a Power-on Reset (POR), the capacitance on PA02 is offset by an amount that slowly decays during 5 seconds, making any touch-related measurements on this pin is unreliable.	x	x

				Affected Revisions		
Module	Feature	Errata #	Issue Summary	А	в	
РМ	Low-Power Configuration	1.2.1	If the PM.STDBYCFG.VREGSMOD field is set to 2 (low-power configuration), the oscillator source driving the GCLK_MAIN clock will still be running in Standby mode causing extra consumption.	х		
РМ	Regulator in Standby Mode	1.2.2	Writing PM.STDBYCFG.VREGSMOD to one does not set the main voltage regulator in Standby mode, the low-power regulator is still used in Standby mode.	х	x	
DFLL48M	Write Access to DFLL Register	1.3.1	The DFLL clock must be requested before being configured, otherwise a write access to a DFLL register can freeze the device.	х	x	
DFLL48M	Out of Bounds Interrupt	1.3.2	If the DFLL48M reaches the maximum or minimum COARSE or FINE calibration values during the locking sequence, an out of bounds interrupt will be generated.	х	x	
DFLL48M	DFLL Status Bit in USB Clock Recovery Mode	1.3.3	The DFLL status bits in the STATUS register during the USB Clock Recovery mode can be wrong after a USB suspend state.	х	х	
DMAC	Disable a Trigger From the Module	1.4.1	A write from DMAC to a register in a module to disable a trigger from the module to DMAC, does not work in Standby mode.	х		
DMAC	Linked Descriptor	1.4.2	When using many DMA channel and if one of these DMA channels has a linked descriptor, a fetch error can appear on this channel.	х	x	
DMAC	Linked Descriptors	1.4.3	When at least one channel using linked descriptors is already active, enabling another DMA channel (with or without linked descriptors) can result in a channel Fetch Error (FERR), or an incorrect descriptor fetch.	х	x	
FDPLL	FDPLL Jitter	1.5.1	Maximum FDPLL input reference clock frequency (fGCLK_DPLL) does not meet the published specification.	х		
FDPLL	DPLLRATIO Register	1.5.2	When FDPLL ratio value in DPLLRATIO register is changed on the fly, STATUS.DPLLLDRTO will not be set even though the ratio is updated.	х	x	
PORT	PORT Read/Write on Non- Implemented Register	1.6.1	PORT read/write attempts on non-implemented registers, including addresses beyond the last implemented register group (PA, PB), do not generate a PAC protection error.	х	x	
PORT	PA24 and PA25 Pull-down Functionality	1.6.2	Pull-down functionality is not available on GPIO pins, PA24 and PA25.	х	x	
SUPC	Buck Converter Mode	1.7.1	Digital Phase-Locked Loop (FDPLL96M) and Digital Frequency- Locked Loop (DFLL48M) PLL's cannot be used with main voltage regulator in Buck converter mode.	x	x	
SUPC	Buck Converter as a Main Voltage Regulator	1.7.2	When Buck converter is set as main voltage regulator (SUPC.VREG.SEL=1), the microcontroller can freeze when leaving Standby mode.	х	x	
Device	VBAT in Battery Back Up Mode	1.8.1	When VBAT>VDDANA, in battery Backup mode or in battery Forced mode (SUPC.BBPS.CONF=FORCED) an over consumption appears due to high voltage on PC00, PC01, PB00, PB01, PB02 pins.	х		
Device	Excess Current Consumption and SLCD	1.8.2	When LCD feature is enable and (VLCD - VDD) > 0.7V, an extra consumption occurs.	х		
Device	Excess Current Consumption	1.8.3	When ABS (VLCD - VDD) < 50 mV, an extra consumption can occur on VLCD (if VLCD generated externally) or on VDD (if VLCD generated internally).	х		
Device	Standby entry	1.8.4	Potential hard fault upon standby entry when Systick interrupt is enabled.	х	x	
PTC	PTC Lines Incorrect Mapping	1.9.1	Five PTC lines are mapped on PC00, PC01, PB00, PB01, PB02 instead of PC05, PC06, PA11, PA10, PA09.	х		

Madula	Factor	F		Affected	Affected Revisions		
Module	Feature	Errata #	Issue Summary	A	В		
ADC	ADC Result in Unipolar Mode	1.10.1	The LSB of ADC result is stuck at zero in Unipolar mode for 8-bit and 10-bit resolutions.	х	x		
ADC	Synchronized Event During ADC Conversion	1.10.2	If a synchronized event is received during an ADC conversion, the ADC will not acknowledge the event, causing a stall of the event channel.	х	x		
ADC	Free Running Mode	1.10.3	In Standby Sleep mode, when the ADC is in Free-Running mode (CTRLC.FREERUN=1) and the RUNSTDBY bit is set to 0 (CTRLA.RUNSTDBY=0), the ADC keeps requesting its generic clock.	х	x		
ADC	SYNCBUSY.SWTRIG Bit	1.10.4	ADC SYNCBUSY.SWTRIG get stuck to one after wake up from Standby Sleep mode.	х	x		
ADC	Effective Number of Bits	1.10.5	The ADC effective number of bits (ENOB) is 9.2 in this revision.	х			
ADC	Power Consumption	1.10.6	Power consumption for up to 1.6 seconds on VDDANA when the ADC is disabled manually or automatically.	х			
ADC	SEQSTATE	1.10.7	The SEQSTATUS synchronization is not managed properly when the system comes out of standby mode, leading to a wrong SEQSTATE value read in the first SEQSTATUS update of the sequence.	х	x		
тс	SYNCBUSY Flag	1.11.1	When clearing the STATUS.PERBUFV/STATUS.CCBUFVx flags, the SYNCBUSY.PER/SYNCBUSY.CCx flags are released before the PERBUF/CCBUFx registers are restored to their expected value.	х	x		
RTC	RTC Tamper Interrupt	1.12.1	When the tamper controller is configured for asynchronous detection, an RTC tamper interrupt can occur while the RTC is disabled.	х			
RTC	Tamper Interrupt and Timestamp	1.12.2	When the tamper controller is configured for time stamp capture, the RTC tamper interrupt occurs before the TIMESTAMP register is updated.	х			
RTC	Active Layer Mode and DMA	1.12.3	When the tamper controller is configured for ACTL, the mismatch signal used to qualify the DMA and interrupt triggers produces different results.	х			
RTC	Active Layer Mode and Timestamp	1.12.4	When the tamper controller is configured for Active Layer mode, the RTC tamper interrupt occurs before the TIMESTAMP register is updated.	х			
RTC	Active Layer Mode with Input 4 and Timestamp	1.12.5	When the tamper input 4 action is configured for Active Layer mode (TAMPCTRL.IN4ACT=3), the RTC tamper interrupt occurs before the TIMESTAMP register is updated.		x		
RTC	Active Layer Mode with Input 4 and DMA	1.12.6	When the tamper input 4 action is configured for Active Layer mode (TAMPCTRL.IN4ACT=3), the mismatch signal used to qualify the DMA and interrupt triggers produces different results.		x		
RTC	RTC with PB01 IO	1.12.7	If PB01 is multiplexed to RTC peripheral (RTC/IN2), the system will always see this input pin as logic '0' when Backup mode is entered. If the detection transition TAMPCTRL.TAMLVL2 = 0, it might falsely wake up the system.	х	x		
RTC	Tamper Detection When RTC Disabled	1.12.8	When the tamper controller is configured for CAPTURE while the RTC is disabled, there is a noisy pin.	х	x		
тсс	Advance Capture Mode	1.13.1	Advance capture mode (CAPTMIN CAPTMAX LOCMIN LOCMAX DERIV0) does not work if an upper channel is not in one of these modes, for example, when CC[0]=CAPTMIN, CC[1]=CAPTMAX, CC[2]=CAPTEN, and CC[3]=CAPTEN, CAPTMIN and CAPTMAX do not work.	x	x		
тсс	SYNCBUSY Flag	1.13.2	When clearing the STATUS.xxBUFV flag, the SYNCBUSY is released before the register is restored to its appropriate value.	х	x		

continued					
Module	Feature	Errata #	Issue Summary	Affected	Revisions
Module	Teature		issue Summary	A	В
тсс	MAX Capture Mode	1.13.3	In Capture mode using MAX Capture mode, timer set in up counting mode, if an input event occurred within 2 cycles before TOP, the value captured is zero instead of TOP.	х	×
тсс	Dithering Mode	1.13.4	Using TCC in Dithering mode with external retrigger events, can lead to unexpected stretch of right aligned pulses or shrink of left aligned pulses.	х	x
SERCOM	USART in Auto-baud Mode	1.14.1	In USART Auto-Baud mode, missing stop bits are not recognized as inconsistent sync (ISF) or framing (FERR) errors.	х	x
SERCOM	SERCOM Instances	1.14.2	SAML22G devices delivered before date code 1716 only have 3 SERCOMs available (0,1,2) instead of 4 (0,1,2,3).	х	x
SERCOM	Parity Error in ISO7816 T0 Mode	1.14.3	In ISO7816 T0 mode when start of frame detect is enabled (CTRLB.SFDE=1), if there is a parity error, receive start (INTFLAG.RXS) can be erroneously set.	х	×
SERCOM	SDA and SCL Fall Time	1.14.4	When configured in HS or FastMode+, SDA and SCL fall times are shorter than I ² C specification requirement and can lead to reflection.	х	x
SERCOM	SERCOM_USART: Overconsumption in Standby Mode	1.14.5	Unexpected over consumption in Standby mode	х	×
SERCOM	SERCOM_I ² C: Status Flag	1.14.6	The CLKHOLD Status bit is not read-only.	х	х
EIC	EIC_ASYNCH Register	1.15.1	Access to EIC_ASYNCH register in 8-bit or16-bit mode is not functional.	х	x
EIC	Low Level or Rising Edge or Both Edges	1.15.2	When the EIC is configured to generate an interrupt on a low level or rising edge or both edges (CONFIGn.SENSEx) with the filter enabled (CONFIGn.FILTENx), a spurious flag might appear for the dedicated pin on the INTFLAG.EXTINT[x] register as soon as the EIC is enabled using the CTRLA ENABLE bit.	x	x
EIC	NMI Configuration	1.15.3	Changing the NMI configuration (CONFIGn.SENSEx) on the fly may lead to a false NMI interrupt.	х	x
EIC	Asynchronous Edge Detection	1.15.4	When the asynchronous edge detection is enabled, and the system is in Standby mode, only the first edge will generate an event. The following edges won't generate events until the system wakes up.	x	x
TRNG	Power Consumption in Standby Mode	1.16.1	When TRNG is disabled, some internal logic could continue to operate causing an over consumption.	х	x
EVSYS	Synchronous Path	1.17.1	Using synchronous, spurious overrun can appear with generic clock for the channel always on.	х	x
EVSYS	Overrun Flag	1.17.2	The acknowledge between an event user and the EVSYS, clears the CHSTATUS.CHBUSYn bit before this information is fully propagated in the EVSYS one GCLK_EVSYS_CHANNEL_n clock cycle later.	x	x
BOD33	Hysteresis	1.18.1	Hysteresis could not work properly if a reset occurs when the power supply is in the hysteresis phase.	х	x

Table of Contents

0AI	M L22	Family	1
	Silico	n Errata Summary	1
1.	Silico	n Errata Issues	6
	1.1.	Analog Comparator (AC)	6
	1.2.	Power Manager	6
	1.3.	48 MHz Digital Frequency-Locked Loop (DFLL48M)	7
	1.4.	Direct Memory Access Controller (DMAC)	7
	1.5.	96 MHz Fractional Digital Phase Locked Loop (FDPLL)	8
	1.6.	PORT - I/O Pin Controller	9
	1.7.	Supply Controller (SUPC)	9
	1.8.	Device	. 10
	1.9.	Peripheral Touch Controller (PTC)	. 11
	1.10.	Analog-to-Digital Converter (ADC)	. 11
	1.11.	Timer/Counter (TC)	. 13
	1.12.	Real-Time Counter (RTC)	. 13
	1.13.	Timer/Counter for Control Applications (TCC)	
		Serial Communication Interface (SERCOM)	
		External Interrupt Controller (EIC)	
		True Random Number Generator (TRNG)	
		Event System (EVSYS)	
	1.18.	BOD33	.21
2.	Data	Sheet Clarifications	.22
	2.1.	Maximum Clock Frequencies	22
	Z.I.	Maximum Clock Trequencies	. 22
	2.1. 2.2.	Power Consumption	
		•	. 22
	2.2.	Power Consumption.	.22 .25
	2.2. 2.3.	Power Consumption Analog Characteristics	. 22 . 25 . 26
3.	2.2. 2.3. 2.4. 2.5.	Power Consumption Analog Characteristics Analog-to-Digital (ADC) Characteristics	. 22 . 25 . 26 . 28
	2.2. 2.3. 2.4. 2.5. Apper	Power Consumption Analog Characteristics Analog-to-Digital (ADC) Characteristics DETREF	. 22 . 25 . 26 . 28 . 29
The	2.2. 2.3. 2.4. 2.5. Apper	Power Consumption Analog Characteristics Analog-to-Digital (ADC) Characteristics DETREF ndix A: Revision History	. 22 . 25 . 26 . 28 . 29
The Cus	2.2. 2.3. 2.4. 2.5. Apper	Power Consumption Analog Characteristics Analog-to-Digital (ADC) Characteristics DETREF ndix A: Revision History chip Web Site	. 22 . 25 . 26 . 28 . 29 . 30 . 30
The Cus Cus	2.2. 2.3. 2.4. 2.5. Apper Microo	Power Consumption Analog Characteristics Analog-to-Digital (ADC) Characteristics DETREF ndix A: Revision History chip Web Site Change Notification Service	. 22 . 25 . 26 . 28 . 29 . 30 . 30 . 30
The Cus Cus Mic	2.2. 2.3. 2.4. 2.5. Apper Microo stomer stomer	Power Consumption Analog Characteristics Analog-to-Digital (ADC) Characteristics DETREF ndix A: Revision History chip Web Site Change Notification Service Support Devices Code Protection Feature	.22 .25 .26 .28 .29 .30 .30 .30 .30
The Cus Cus Mic Leg	 2.2. 2.3. 2.4. 2.5. Apper Microostomer stomer stomer stomer stomer al Noti 	Power Consumption Analog Characteristics Analog-to-Digital (ADC) Characteristics DETREF ndix A: Revision History chip Web Site Change Notification Service Support Devices Code Protection Feature ce	.22 .25 .26 .28 .29 .30 .30 .30 .30 .30
The Cus Cus Mic Leg Tra	2.2. 2.3. 2.4. 2.5. Apper Microostomer stomer rochip al Noti	Power Consumption Analog Characteristics Analog-to-Digital (ADC) Characteristics DETREF ndix A: Revision History chip Web Site Change Notification Service Support Devices Code Protection Feature ce	.22 .25 .26 .28 .29 .30 .30 .30 .30 .30 .31 .31
The Cus Mic Leg Tra	2.2. 2.3. 2.4. 2.5. Apper Microostomer stomer rochip al Noti demark	Power Consumption Analog Characteristics Analog-to-Digital (ADC) Characteristics DETREF ndix A: Revision History chip Web Site Change Notification Service Support Devices Code Protection Feature ce	.22 .25 .26 .28 .29 .30 .30 .30 .30 .30 .31 .31

1. Silicon Errata Issues

The following issues apply to the SAM L22 family of devices.

Note: The silicon errata listed in this document supersedes the Errata Chapter 49 in SAM L22 product data sheet (DS60001465B).

1.1 Analog Comparator (AC)

1.1.1 AC0 with PA02 Input

After a Power-on Reset (POR), the capacitance on PA02 is offset by an amount that slowly decays during 5 seconds, making any touch-related measurements on this pin is unreliable.

Workaround

To get rid of this offset, reconfigure the AC0 input muxes to use internal inputs instead of AC0 pin 0 (default reset value) before starting any touch-related measurements (COMPCTRL0.MUXPOS = 4,COMPCTRL0.MUXNEG = 5).

Affected Silicon Revisions

Α	В			
Х	Х			

1.2 Power Manager

1.2.1 Low-Power Configuration

If the PM.STDBYCFG.VREGSMOD field is set to 2 (low-power configuration), the oscillator source driving the GCLK_MAIN clock will still be running in Standby mode causing extra consumption.

Workaround

Before entering in Standby mode, switch the GCLK_MAIN to the OSCULP32K clock. After wake-up, switch back to the GCLK_MAIN clock.

Affected Silicon Revisions

Α	В			
Х				

1.2.2 Regulator in Standby Mode

Writing PM.STDBYCFG.VREGSMOD to one does not set the main voltage regulator in Standby mode, the low-power regulator is still used in Standby mode.

Workaround

Set SUPC.VREG.RUNSTDBY to one.

Affected Silicon Revisions

Α	В			
Х	X			

1.3 48 MHz Digital Frequency-Locked Loop (DFLL48M)

1.3.1 Write Access to DFLL Register

The DFLL clock must be requested before being configured, otherwise a write access to a DFLL register can freeze the device.

Workaround

Write a zero to the DFLL ONDEMAND bit in the DFLLCTRL register before configuring the DFLL module.

Affected Silicon Revisions

Α	В			
Х	Х			

1.3.2 Out of Bounds Interrupt

If the DFLL48M reaches the maximum or minimum COARSE or FINE calibration values during the locking sequence, an out of bounds interrupt will be generated. These interrupts will be generated even if the final calibration values at DFLL48M lock are not at maximum or minimum, and might therefore be false out of bounds interrupts.

Workaround

Check the lock bits, DFLLLCKC and DFLLLCKF, in the OSCCTRL Interrupt Flag Status and Clear register (INTFLAG) are both set before enabling the DFLLOOB interrupt.

Affected Silicon Revisions

Α	В			
Х	Х			

1.3.3 DFLL Status Bit in USB Clock Recovery Mode

The DFLL status bits in the STATUS register during the USB Clock Recovery mode can be wrong after a USB suspend state.

Workaround

Do not monitor the DFLL status bits in the STATUS register during the USB Clock Recovery mode.

Affected Silicon Revisions

A	В			
Х	Х			

1.4 Direct Memory Access Controller (DMAC)

1.4.1 Disable a Trigger From the Module

A write from DMAC to a register in a module to disable a trigger from the module to DMAC, does not work in Standby mode, for example, DAC, LCD, and SERCOM in transmission mode.

Workaround

If the module generating the trigger also generates event, use event interface instead of triggers with DMAC, for example, SLCD.

Affected Silicon Revisions

А	В			
Х				

1.4.2 Linked Descriptor

When using many DMA channel and if one of these DMA channels has a linked descriptor, a fetch error can appear on this channel.

Workaround

Do not use linked descriptors, instead make a software link.

- 1. Replace the channel which used linked descriptor by two channels DMA (with linked descriptor disabled) handled by two channels event system:
 - DMA channel 0 transfer completion can send a conditional event for DMA channel 1 (through event system with configuration of BTCTRL.EVOSEL= BLOCK for channel 0 and configuration CHCTRLB.EVACT = CBLOCK for channel 1)
 - On the transfer complete reception of the DMA channel 0, immediately re-enable the channel 0
 - Then DMA channel 1 transfer completion can send a conditional event for DMA channel 0 (through event system with configuration of BTCTRL.EVOSEL= BLOCK for channel 1 and configuration CHCTRLB.EVACT = CBLOCK for channel 0)
 - On the transfer complete reception of the DMA channel 1, immediately re-enable the channel 1
 - The mechanism can be launched by sending a software event on the DMA channel 0

Affected Silicon Revisions

Α	В			
Х	Х			

1.4.3 Linked Descriptors

When at least one channel using linked descriptors is already active, enabling another DMA channel (with or without linked descriptors) can result in a channel Fetch Error (FERR), or an incorrect descriptor fetch.

Workaround

This happens if the channel number of the channels being enabled is lower than the channels already active.

When enabling a DMA channel while other channels using linked descriptors are already active, the channel number of the new channel enabled must be greater than the other channel numbers.

Affected Silicon Revisions

Α	В			
Х	Х			

1.5 96 MHz Fractional Digital Phase Locked Loop (FDPLL)

1.5.1 FDPLL Jitter

Maximum FDPLL input reference clock frequency (fGCLK_DPLL) does not meet the published specification. The maximum supported input reference clock is 1 MHz.

Workaround

None.

Silicon Errata Issues

Affected Silicon Revisions

А	В			
Х				

1.5.2 DPLLRATIO Register

When FDPLL ratio value in DPLLRATIO register is changed on the fly, STATUS.DPLLLDRTO will not be set even though the ratio is updated.

Workaround

Monitor the INTFLAG.DPLLLDRTO instead of STATUS.DPLLLDRTO to get the status for DPLLRATIO update.

Affected Silicon Revisions

Α	В			
Х	Х			

1.6 PORT - I/O Pin Controller

1.6.1 PORT Read/Write on Non-Implemented Register

PORT read/write attempts on non-implemented registers, including addresses beyond the last implemented register group (PA, PB, PC), do not generate a PAC protection error.

Workaround

None.

Affected Silicon Revisions

Α	В			
Х	Х			

1.6.2 PA24 and PA25 Pull-Down Functionality

The pull-down functionality is not available on these GPIO pins: PA24 and PA25.

Workaround

None.

Affected Silicon Revisions

Α	В			
Х	Х			

1.7 Supply Controller (SUPC)

1.7.1 Buck Converter Mode

Buck Converter mode is not supported when using Digital Phase-Locked Loop (FDPLL96M) and Digital Frequency-Locked Loop (DFLL48M). As a result, Table 45-7 "Active Current Consumption - Active Mode" data for Buck Converter mode with FDPLL96M configuration is not valid and must be disregarded.

Use the LDO Regulator mode when using FDPLL and DFLL.

Affected Silicon Revisions

A	В			
Х	Х			

1.7.2 Buck Converter as a Main Voltage Regulator

When Buck converter is set as main voltage regulator (SUPC.VREG.SEL= 1), the microcontroller can freeze when leaving Standby mode.

Workaround

Enable the main voltage regulator in Standby mode (SUPC.VREG.RUNSTDBY = 1) and set the Standby in PL0 bit to one (SUPC.VREG.STDBYPL0 = 1).

Note: When SUPC.VREG.STDBYPL0 = 1, In Standby mode, the voltage regulator is used in PL0.

Affected Silicon Revisions

А	В			
Х	Х			

1.8 Device

1.8.1 VBAT in Battery Back Up Mode

When VBAT > VDDANA, in battery Backup mode or in battery Forced mode (SUPC.BBPS.CONF = FORCED) an over consumption appears due to high voltage on the PC00, PC01, PB00, PB01, and PB02 pins.

Workaround

The PC00, PC01, PB00, PB01, and PB02 pins should be tied to GND.

Affected Silicon Revisions

Α	В			
Х				

1.8.2 Excess Current Consumption and SLCD

When LCD feature is enable and (VLCD - VDD) > 0.7V, an extra consumption occurs. If VLCD internally generated, the VLCD voltage will be out of specification.

Workaround

The LCD feature must be used only when (VLCD - VDD) < 0.7V.

Affected Silicon Revisions

Α	В			
Х				

1.8.3 Excess Current Consumption

When ABS (VLCD - VDD) < 50 mV, an extra consumption can occur on VLCD (if VLCD generated externally) or on VDD (if VLCD generated internally).

ABS (VLCD - VDD) should be greater than 50 mV.

Affected Silicon Revisions

А	В			
Х				

1.8.4 Standby Entry

When the Systick interrupt is enabled and the standby back-bias option is set (STDBYCFG.BBIAS = 1), a hard fault can occur when the Systick interrupt coincides with the standby entry.

Workaround

Disable the Systick interrupt before entering standby and re-enable it after wake up.

Affected Silicon Revisions

Α	В			
Х	Х			

1.9 Peripheral Touch Controller (PTC)

1.9.1 PTC Lines Incorrect Mapping

Five PTC lines are mapped on PC00, PC01, PB00, PB01, PB02 instead of PC05, PC06, PA11, PA10, and PA09.

Workaround

None.

Affected Silicon Revisions

Α	В			
Х				

1.10 Analog-to-Digital Converter (ADC)

1.10.1 ADC Result in Unipolar Mode

The LSB of ADC result is stuck at zero in Unipolar mode for 8-bit and 10-bit resolutions.

Workaround

Use 12-bit resolution and take only least 8 bits or 10 bits, if necessary.

Affected Silicon Revisions

А	В			
Х	Х			

1.10.2 Synchronized Event During ADC Conversion

If a synchronized event is received during an ADC conversion, the ADC will not acknowledge the event, causing a stall of the event channel.

When using events with the ADC, only the asynchronous path from the event system must be used.

Affected Silicon Revisions

A	В			
Х	Х			

1.10.3 Free Running Mode

In Standby mode, when the ADC is in Free-Running mode (CTRLC.FREERUN = 1) and the RUNSTDBY bit is set to 0 (CTRLA.RUNSTDBY = 0), the ADC keeps requesting its generic clock.

Workaround

Stop the free-running mode (CTRLC.FREERUN = 0) before entering Standby mode

Affected Silicon Revisions

A	В			
Х	X			

1.10.4 SYNCBUSY.SWTRIG Bit

ADC SYNCBUSY.SWTRIG get stuck to one after wake up from Standby mode.

Workaround

Ignore ADC SYNCBUSY.SWTRIG status when waking up from Standby mode. ADC result can be read after INTFLAG.RESRDY is set. To start the next conversion, write a '1' to SWTRIG.START.

Affected Silicon Revisions

Α	В			
Х	Х			

1.10.5 Effective Number of Bits

The ADC effective number of bits (ENOB) is 9.2 in this revision.

Workaround

None.

Affected Silicon Revisions

Α	В			
Х				

1.10.6 Power Consumption

Power consumption for up to 1.6 seconds on VDDANA when the ADC is disabled manually or automatically.

Workaround

None.

Silicon Errata Issues

Affected Silicon Revisions

А	В			
Х				

1.10.7 SEQSTATE

In the ADC, the SEQSTATUS synchronization is not managed properly when the system comes out of Standby mode, leading to a wrong SEQSTATE value read in the first SEQSTATUS update of the sequence. This happens when the ADC is in SleepWalking mode and the conversion sequence is launched before a full wake up from Standby mode.

Workaround

Trigger the wake up of the chip before the conversion sequence is launched rather than when its result is ready.

Affected Silicon Revisions

Α	В			
х	Х			

1.11 Timer/Counter (TC)

1.11.1 SYNCBUSY Flag, TMR100-12

When clearing the STATUS.PERBUFV/STATUS.CCBUFVx flags, the SYNCBUSY.PER/SYNCBUSY.CCx flags are released before the PERBUF/CCBUFx registers are restored to their expected value.

Workaround

Successively clear the STATUS.PERBUFV/STATUS.CCBUFVx flags twice to ensure that the PERBUF/CCBUFx registers value is restored before updating it.

Affected Silicon Revisions

Α	В			
Х	Х			

1.12 Real-Time Counter (RTC)

1.12.1 RTC Tamper Interrupt

When the tamper controller is configured for asynchronous detection, an RTC tamper interrupt can occur while the RTC is disabled.

Workaround

Set the tamper interrupt enable only when the RTC is enabled.

- Program INTEN.TAMPER = 1 after setting the CTRLA.ENABLE register and clearing the INTFLAG.TAMPER register.
- Program INTEN.TAMPER = 0 before clearing the CTRLA.ENABLE register.

Silicon Errata Issues

Affected Silicon Revisions

Α	В			
Х				

1.12.2 Tamper Interrupt and Timestamp

When the tamper controller is configured for time stamp capture, the RTC tamper interrupt occurs before the TIMESTAMP register is updated.

Workaround

Two workarounds are available:

- 1. Use the DMA trigger to determine when the TIMESTAMP value is registered. The DMA trigger sets after the TIMESTAMP register update.
- 2. Implement a wait loop to create a delay when the tamper interrupt handler routine begins to when the TIMESTAMP register is read. The delay must be long enough to wait for 3x CLK_RTC period. For example,
 - If CLK_RTC frequency is 1 kHz, the delay must be at least 3 ms.
 - If CLK_RTC frequency is 32 kHz, the delay must be at least 92 us.

Affected Silicon Revisions

Α	В			
Х				

1.12.3 Active Layer Mode and DMA

When the tamper controller is configured for ACTL, the mismatch signal used to qualify the DMA and interrupt triggers produces different results. The DMA implements a level-detection whereas the interrupt implements an edge-detection. The result is that the DMA may trigger frequently from the same mismatch compared to the interrupt which will only trigger once.

Workaround

If no other tamper configurations are implemented (that is, other TAMPCTRL.INxACT! = WAKE/CAPTURE and EVCTRL.EVEI = 0), do not enable the DMA if possible to prevent performance degradation.

Affected Silicon Revisions

Α	В			
Х				

1.12.4 Active Layer Mode and Timestamp

When the tamper controller is configured for Active Layer mode, the RTC tamper interrupt occurs before the TIMESTAMP register is updated.

Workaround

Two workarounds are available:

- 1. Use the DMA trigger to determine when the TIMESTAMP value is registered. The DMA trigger sets after the TIMESTAMP register update.
- 2. Implement a wait loop to create a delay when the tamper interrupt handler routine begins to when the TIMESTAMP register is read. The delay must be long enough to wait for 3x CLK_RTC period. For example,
 - If CLK_RTC frequency is 1 kHz, the delay must be at least 3 ms.
 - If CLK_RTC frequency is 32 kHz, the delay must be at least 92 us.

Affected Silicon Revisions

Α	В			
Х				

1.12.5 Active Layer Mode with Input 4 and Timestamp

When the tamper input 4 action is configured for Active Layer mode (TAMPCTRL.IN4ACT = 3), the RTC tamper interrupt occurs before the TIMESTAMP register is updated.

Workaround

The following two workarounds are available:

- 1. Use the DMA trigger to determine when the TIMESTAMP value is registered. The DMA trigger sets after the TIMESTAMP register update. Refer Errata 1.13.6.
- 2. Implement a wait loop to create a delay, when the tamper interrupt handler routine begins, to when the TIMESTAMP register is read. The delay must be long enough to wait for 3x CLK_RTC period.

For example,

- If CLK_RTC frequency is 1 kHz, the delay must be at least 3 ms.
- If CLK_RTC frequency is 32 kHz, the delay must be at least 92 us.

Affected Silicon Revisions

Α	В				
	Х				

1.12.6 Active Layer Mode with Input 4 and DMA

When the tamper input 4 action is configured for Active Layer mode (TAMPCTRL.IN4ACT = 3), the mismatch signal used to qualify the DMA and interrupt triggers produces different results. The DMA implements a level-detection whereas the interrupt implements an edge-detection. The result is that the DMA may trigger frequently from the same mismatch compared to the interrupt which will only trigger once.

Workaround

The following three workarounds are available:

- 1. Tamper inputs 0, 1, 2 and 3 can be configured for active layer with DMA.
- 2. Tamper input 4 can be configured with DMA for any mode other than active layer.
- 3. If Tamper input 4 is to be used in active layer, do not enable the DMA, to prevent performance degradation.

Affected Silicon Revisions

Α	В				
	Х				

1.12.7 RTC with PB01 IO

If PB01 is multiplexed to RTC peripheral (RTC/IN2), the system will always see this input pin as logic '0' when Backup mode is entered. If the detection transition TAMPCTRL.TAMLVL2 = 0, it might falsely wake up the system.

Workaround

If the system is expected to enter Backup mode, use other tamper pins (IN0/IN1/IN3/IN4) for tamper detection.

Silicon Errata Issues

Affected Silicon Revisions

A	В			
Х	Х			

1.12.8 Tamper Detection When RTC Disabled

When the tamper controller is configured for CAPTURE while the RTC is disabled, a noisy pin can trigger the following once the RTC is enabled:

- The timestamp capture
- · The tamper interrupt if enabled
- The DMA trigger if enabled

Workaround

- 1. Set the tamper interrupt enable only when the RTC is enabled:
 - Clear the tamper interrupt flags and ID registers (INTFLAG.TAMPER & TAMPID.TAMPIDx registers).
 - Enable RTC (CTRLA.ENABLE = 1).
 - Enable the tamper interrupt (INTEN.TAMPER = 1).

To disable the RTC, disable the Tamper interrupts before disabling the RTC.

- Disable Tamper interrupts (INTEN.TAMPER = 0).
- Disable the RTC (CTRLA.ENABLE = 0).
- 2. Issue a CPU read of the TIMESTAMP register immediately after the RTC is enabled. This releases the register lock allowing the capture of the next and valid tamper. This releases the DMA trigger of the erroneous capture tamper.

Affected Silicon Revisions

А	В			
Х	Х			

1.13 Timer/Counter for Control Applications (TCC)

1.13.1 Advance Capture Mode

Advance capture mode (CAPTMIN CAPTMAX LOCMIN LOCMAX DERIV0) does not work if an upper channel is not in one of these modes, for example, when CC[0] = CAPTMIN, CC[1] = CAPTMAX, CC[2] = CAPTEN, and CC[3] = CAPTEN, CAPTMIN and CAPTMAX do not work.

Workaround

Basic Capture mode must be set in lower channel, and advance Capture mode in upper channel, for example, CC[0] = CAPTEN, CC[1] = CAPTEN, CC[2] = CAPTMIN, CC[3] = CAPTMAX.

All capture will be done as expected.

Affected Silicon Revisions

Α	В			
Х	Х			

1.13.2 SYNCBUSY Flag

When clearing the STATUS.xxBUFV flag, the SYNCBUSY is released before the register is restored to its appropriate value.

To ensure that the register value is restored before updating this same register through xx or xxBUF with a new value, the STATUS.xxBUFV flag must be cleared twice.

Affected Silicon Revisions

Α	В			
Х	Х			

1.13.3 MAX Capture Mode

In Capture mode using MAX Capture mode, timer set in up counting mode, if an input event occurred within 2 cycles before TOP, the value captured is zero instead of TOP.

Workaround

Two possible options are as follows:

- If event is controllable, capture event should not occur when counter is within 2 cycles before TOP value.
- Use timer in down Counter mode and capture MIN value instead of MAX.

Affected Silicon Revisions

Α	В			
Х	Х			

1.13.4 Dithering Mode

Using TCC in Dithering mode with external retrigger events, can lead to unexpected stretch of right aligned pulses or shrink of left aligned pulses.

Workaround

Do not use retrigger events or actions when TCC is configured in Dithering mode.

Affected Silicon Revisions

А	В			
Х	Х			

1.14 Serial Communication Interface (SERCOM)

1.14.1 USART in Auto-baud Mode

In USART Auto-Baud mode, missing stop bits are not recognized as inconsistent sync (ISF) or framing (FERR) errors.

Workaround

None.

Affected Silicon Revisions

Α	В			
Х	Х			

1.14.2 SERCOM Instances

The SAML22G devices delivered before date code 1716 only have 3 sercoms available (0,1,2) instead of 4 (0,1,2,3).

Workaround

None.

Affected Silicon Revisions

Α	В			
Х	Х			

1.14.3 Parity Error in ISO7816 T0 Mode

In ISO7816 T0 mode when start of frame detect is enabled (CTRLB.SFDE = 1), if there is a parity error, receive start (INTFLAG.RXS) can be erroneously set. This is because the transmitted parity low is also seen by the receiver and looks like a start of frame.

Workaround

Clear INTFLAG.RXS when received on parity error.

Affected Silicon Revisions

Α	В			
Х	Х			

1.14.4 SDA and SCL Fall Time

When configured in HS or FastMode+, SDA and SCL fall times are shorter than I²C specification requirement and can lead to reflection.

Workaround

When reflection is observed a 100 ohms serial resistor can be added on the impacted line.

Affected Silicon Revisions

А	В			
Х	Х			

1.14.5 SERCOM-USART: Overconsumption in Standby Mode

When SERCOM USART CTRLA.RUNSTDBY = 0 and the Receiver is disabled (CTRLB.RXEN = 0), the clock request to the GCLK generator feeding the SERCOM will stay asserted during Standby mode, leading to unexpected over consumption.

Workaround

Configure CTRLA.RXPO and CTRLA.TXPO to use the same SERCOM PAD for RX and TX, or add an external pull-up on the RX pin.

Affected Silicon Revisions

A	В			
Х	Х			

1.14.6 SERCOM I²C: Status Flag

The STATUS.CLKHOLD bit in Host mode and Client mode can be written whereas it is a read-only status bit.

Do not clear the STATUS.CLKHOLD bit to preserve the current clock hold state.

Affected Silicon Revisions

A	В			
Х	Х			

1.15 External Interrupt Controller (EIC)

1.15.1 EIC_ASYNCH Register

Access to the EIC_ASYNCH register in 8-bit or16-bit mode is not functional.

- Writing in 8-bit mode will also write this byte in all bytes of the 32-bit word
- · Writing higher 16-bits will also write the lower 16-bits
- · Writing lower 16-bits will also write the higher 16-bits

Workaround

Two workarounds are available:

- Use 32-bit write mode
- Write only lower 16-bits (This will write upper 16-bits also, but does not impact the application)

Affected Silicon Revisions

Α	В			
Х	Х			

1.15.2 Low Level or Rising Edge or Both Edges

When the EIC is configured to generate an interrupt on a low level or rising edge or both edges (CONFIGn.SENSEx) with the filter enabled (CONFIGn.FILTENx), a spurious flag might appear for the dedicated pin on the INTFLAG.EXTINT[x] register as soon as the EIC is enabled using the CTRLA ENABLE bit.

Workaround

Clear the INTFLAG bit once the EIC is enabled and before enabling the interrupts.

Affected Silicon Revisions

Α	В			
Х	Х			

1.15.3 NMI Configuration

Changing the NMI configuration (CONFIGn.SENSEx) on the fly may lead to a false NMI interrupt.

Workaround

Clear the NMIFLAG bit once the NMI has been modified.

Affected Silicon Revisions

А	В			
Х	Х			

1.15.4 Asynchronous Edge Detection

When the asynchronous edge detection is enabled, and the system is in Standby mode, only the first edge will generate an event. The following edges won't generate events until the system wakes up.

Workaround

Asynchronous edge detection doesn't work, instead use the synchronous edge detection (ASYNCH.ASYNCH[x] = 0). To reduce power consumption when using synchronous edge detection, either set the GCLK_EIC frequency as low as possible or select the ULP32K clock (EIC CTRLA.CKSEL= 1).

Affected Silicon Revisions

Α	В			
Х	Х			

1.16 True Random Number Generator (TRNG)

1.16.1 Power Consumption in Standby Mode , MATH100-7

When TRNG is disabled, some internal logic could continue to operate causing an over consumption.

Workaround

Disable the TRNG module twice:

- TRNG -> CTRLA.reg = 0;
- TRNG -> CTRLA.reg = 0;

Affected Silicon Revisions

А	В			
Х	Х			

1.17 Event System (EVSYS)

1.17.1 Synchronous Path

Using synchronous, spurious overrun can appear with generic clock for the channel always on.

Workaround

- Request the generic clock on demand by setting the CHANNEL.ONDEMAND bit to 1.
- No penalty is introduced.

Affected Silicon Revisions

Α	В			
Х	Х			

1.17.2 Overrun Flag

The acknowledge between an event user and the EVSYS, clears the CHSTATUS.CHBUSYn bit before this information is fully propagated in the EVSYS one GCLK_EVSYS_CHANNEL_n clock cycle later. As a consequence, any generator event occurring on that channel before that extra GCLK_EVSYS_CHANNEL_n clock cycle will trigger the overrun flag.

For applications using event generators other than the software event, monitor the OVR flag.

For applications using the software event generator, wait one GCLK_EVSYS_CHANNEL_n clock cycle after the CHSTATUS.CHBUSYn bit is cleared before issuing a software event.

Affected Silicon Revisions

A	В			
Х	Х			

1.18 BOD33

1.18.1 Hysteresis

The BOD33 hysteresis does not work if either an external reset or watchdog reset occurs when the supply voltage is between VBOD(min.) and VBOD(max.). If one of those resets occurs, the device will start operating if the supply voltage is below VBOD(max.) but above VBOD(min.) and the reset condition is lifted.

Workaround

Disable the BOD33/BODVDD hysteresis (BOD33.HYST = 0 or BODVDD.HYST = 0) and create a virtual hysteresis by configuring:

- The BOD33 threshold level at power-on (BOD_LEVEL) in the NVM User Row as the upper BOD threshold (VBOD(max.)).
- The SUPC BOD33.LEVEL/BODVDD.LEVEL bit field as the lower BOD threshold (VBOD(min.)).

Affected Silicon Revisions

Α	В			
Х	Х			

2. Data Sheet Clarifications

The following typographic corrections and clarifications are to be noted for the latest version of the device data sheet (DS60001465B).

Note: Corrections in tables, registers, and text are shown in **bold**. Where possible, the original bold text formatting has been removed for clarity.

2.1 Maximum Clock Frequencies

The Table 44-6. Maximum Peripheral Clock Frequencies was updated with the following items, just the updated areas are shown:

Symbol	Description	м	ax	Units
Symbol	Description	PL0	PL2	Units
FGCLK_DFLL48M_REF	DFLL48M Reference clock frequency	NA	33	kHz
fGCLK_FDPLL96M	FDPLL96M Reference clock frequency	2	2	MHz
fGCLK_FDPLL96M_32K	FDPLL96M 32k Reference clock frequency	32	32	kHz

2.2 Power Consumption

Table 44-7. Active Current Consumption was updated with the following information:

Mode	Conditions	Regulator	PL	Clock	V _{DD}	Та	Тур.	Max.	Units
				OSC 8MHz	1.8V		85	126	
			PL0	030 00012	3.3V		90	131	
			F LU	OSC 4MHz	1.8V		94	181	
		LDO Mode		030 411112	3.3V		90 131 94 181 100 188 101 149 106 151 87 100 103 116		
		LDO Mode		OSC 12MHz	1.8V		101	149	
			PL2		3.3V		106	106 151	
		FDPLL 32MHz 1.8V 3.3V Max. at		87	100				
ACTIVE	Coremark				3.3V	Max. at 85°C Typ. at 25°C	103	116	µA/MHz
ACTIVE	Coremark			OSC 8MHz	1.8V		55	81	
			PL0		3.3V		41	57	
			F LU	OSC 4MHz	1.8V		62	116	
		BUCK Mode		030 411112	3.3V		49	84	
		DOCK Mode		OSC 12MHz	1.8V		79	110	
			PL2		3.3V		52	76	
			FLZ	FDPLL 32MHz	1.8V		63	75	
					3.3V		46	53	

Data Sheet Clarifications

continue	d																			
Mode	Conditions	Regulator	PL	Clock	VDD	Та	Тур.	Max.	Units											
				OSC 8MHz	1.8V		69	111												
			PL0		3.3V	_	71	113												
				OSC 4MHz	1.8V		78	166												
		LDO Mode			3.3V		81	170												
				OSC 12MHz	1.8V		85	130												
			PL2		3.3V		87	132												
				FDPLL 32MHz	1.8V		83	96												
ACTIVE	FIBO			-	3.3V	Max. at 85°C	83	96	µA/MHz											
				OSC 8MHz	1.8V	Typ. at 25°C	44	71	F											
		PL0 3.3V		31	49															
				OSC 4MHz	1.8V		52	107												
		BUCK Mode 3.3V	3.3V		39	76														
			OSC 12MHz	1.8V		66	103													
		PL2		3.3V	_	42	63													
				FDPLL 32MHz	1.8V		60	71												
					3.3V		35	42												
				OSC 8MHz	1.8V		51	95												
			PL0		3.3V		53	97												
															OSC 4MHz	1.8V		60	151	
		LDO Mode														3.3V		_	62	154
				OSC 12MHz	OSC 12MHz	1.8V		60	109											
				PI 2	PL2	PL2	PL2		3.3V		62	111								
				FDPLL 32MHz	1.8V		56	75												
ACTIVE	While 1				3.3V	Max. at 85°C	59	75	µA/MHz											
				OSC 8MHz	1.8V	Typ. at 25°C	33	61												
			PL0		3.3V		25	43												
				OSC 4MHz	1.8V		41	97												
		BUCK Mode			3.3V		33	70												
				OSC 12MHz	1.8V		47	84												
			PL2		3.3V		31	54												
				FDPLL 32MHz	1.8V		43	55												
					3.3V		25	34												
IDLE2		BUCK	PL0	OSC 8MHz	1.8V	Max. at 85°C	14	31	µA/MHz											
					3.3V	Typ. at 25°C	12	23	•											

Data Sheet Clarifications

Table 44-9.	Current Consumption -	BACKUP and OF	F Mode was updated:
	Gan one Gon Gan paon	Differter and of	i modo mao apaatoa.

Mode	conditions	VDD	Та	Тур.	Max.	Units
		4.01/	25°C	0.47	0.79	
		1.8V	85°C	4.4	8.6	
	powered by VDDIO, VDDANA+VDDIO consumption	2.21/	25°C	0.55	0.9	
Mode ACKUP BACKUP BACKU		3.3V	85°C	5.7	9.9	
	h 1 1 2 0 0 powered by VDDIO. VDDANA+VDDIO consumption 3 2 0.55 0 3 1 1 2 0.00 0 powered by VDDIO. VBAT consumption 1 1 2 0.000 0 3 1 1 2 0 0 0 powered by VDDIO. VBAT consumption 1 2 0 0 0 powered by VDDIO. VBAT consumption 1 2 0 0 0 powered by VDDIO. with RTC running on OSCULP32K, VDDANA+VDDIO consumption 1 2 0 0 0 powered by VDDIO with RTC running on OSCULP32K, VBAT consumption 1 1 2 0 0 0 powered by VDDIO with RTC running on OSCULP32K, VBAT consumption 1 2 0 0 0 1 2 0 0 0 0 0 0 powered by VBAT. VDDAN+VDDIO consumption 1 1 0 0 0 0	0.00				
		1.0 V	85°C	25°C0.470.799B5°C4.48.625°C0.550.9B5°C5.79.925°C0.0000.000B5°C0.0130.00925°C0.0000.001B5°C0.0260.01825°C0.550.8825°C0.6331.025°C0.631.025°C0.0000.00025°C0.0380.00925°C0.0380.00925°C0.0000.00125°C0.0000.00125°C0.0150.01825°C0.0160.00925°C0.0180.00925°C0.0380.09925°C0.140.225°C0.380.69925°C0.380.69925°C0.410.7325°C0.140.1125°C0.140.1125°C0.440.1125°C0.440.4125°C0.440.7725°C0.440.7725°C0.440.7725°C0.440.7725°C0.440.7725°C0.440.7725°C0.440.7725°C0.440.7425°C0.440.7725°C0.440.7725°C0.440.7425°C0.440.7425°C0.440.7425°C0.440.74		
	powered by vDDIO, vBAT consumption	2 21/	25°C			
BACKUB		3.3V	85°C			
BACKUP		1 0\/	25°C	0.55	4 8.6 0.9 7 9.9 000 0.000 013 0.009 014 0.018 015 0.88 016 0.018 017 10.0 018 0.009 019 0.001 010 0.001 010 0.001 010 0.001 010 0.001 010 0.018 011 0.22 012 3.5 038 0.699 03 6.3 04 0.22 05 3.5 05 0.63 04 0.13 05 0.77 04 0.11 05 6.6 05 6.6 05 6.6 05 6.6	μA
		1.0V	85°C	No.000 No.799 S ^N C 0.44 8.6 S ^N C 0.55 0.9 S ^N C 5.7 9.9 S ^N C 0.000 0.000 S ^N C 0.013 0.009 S ^N C 0.026 0.018 S ^N C 0.026 0.018 S ^N C 0.633 1.0 S ^N C 0.633 1.0 S ^N C 0.000 0.001 S ^N C 0.001 0.001 S ^N C 0.001 0.001 S ^N C 0.013 0.009 S ^N C 0.014 0.2 S ^N C 0.144 0.2 S ^N C 0.38 0.699 S ^N C 0.41 0.73 S ^N C 0.41 0.73 S ^N C 0.41 0.73 S ^N C 0.14 0.1 S ^N C 0.46 0.77 S ^N C 0.46 0.77 S ^N C 0.49 0.81 <td></td>		
	powered by VDDIO with KTC fullning on OSCOLP32K, VDDANA+VDDIO consumption	2 2)/	25°C	0.470.794.48.60.550.95.79.90.0010.0010.0130.0090.0200.0180.550.884.48.70.550.884.48.70.631.05.710.00.020.0010.030.0010.040.0010.050.0180.050.0180.040.220.140.230.323.50.340.692.36.30.410.730.423.50.430.140.440.143.23.50.440.140.453.60.460.772.46.40.490.810.410.180.430.430.440.180.456.60.450.180.460.73		
		3.3V	85°C	5.7	0.79 0.79 8.6 0.9 9.9 0 0.000 0.000 0.000 0.000 0.0018 0.0018 0.001 0.011 0.011 0.011 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11	
		1 0\/	25°C	0.000	0.00	
	powered by Versio with PTC running on OSCI II P32K. Version	1.0 V	85°C	0.008	0.470.794.48.60.550.95.79.90.0010.0090.0130.0090.0260.0180.550.884.48.70.631.05.710.00.0010.0010.030.0090.030.0090.040.0090.050.0180.030.0090.040.0180.050.0180.050.0180.040.220.140.230.340.692.36.30.440.113.23.50.140.113.23.50.140.113.23.50.140.131.140.140.156.60.100.182.36.30.140.131.140.131.151.16	
		3 31/	25°C	0.555 0.9.9 0.77 9.9 0.000 0.000 0.013 0.009 0.026 0.018 0.026 0.018 0.025 0.88 0.55 0.88 0.44 8.7 0.63 1.0 0.77 10.0 0.000 0.001 0.001 0.001 0.002 0.001 0.003 0.001 0.004 0.001 0.015 0.014 0.026 0.23 0.141 0.73 0.38 0.69 2.3 6.3 0.41 0.73 0.41 0.73 1.4 1.1 0.41 0.14 0.14 0.14 0.41 0.14 0.41 0.14 0.41 0.14 0.41 0.14 0.41 0.14 0.41 0.41		
		3.3V	85°C	0.015	5.7 10.0 5.7 10.0 000 0.00 008 0.009 001 0.018 0.08 0.09 0.08 0.09 2.0 2.2 1.14 0.2 3.2 3.5 .38 0.69 2.3 6.3 .41 0.73	
		1.8\/	25°C	0.08	000 0.000 015 0.018 08 0.09 1.0 2.2 1.4 0.2 2.2 3.5	
	powered by VRAT, VDDANA+VDDIO consumption	1.0 V	85°C	2.0	2.2	
	powered by VBAL, VDDANA, VDDIO consumption	$\begin{array}{c c} 25^{\circ}\text{C} & 0.08 & 0.09 \\ \hline 1.8V & 85^{\circ}\text{C} & 2.0 & 2.2 \\ \hline 3.3V & 25^{\circ}\text{C} & 0.14 & 0.2 \\ \hline 85^{\circ}\text{C} & 3.2 & 3.5 \end{array}$				
		0.00	85°C	3.2	0.79 8.6 0.99 0.000 0.000 0.000 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.001 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 <tr< td=""><td></td></tr<>	
		1.8\/	25°C	0.38		
	powered by Ve AT Ve AT consumption	1.0 V	85°C	2.3		
	powered by VBAT, VBAT consumption	0.01/	25°C	0.41		
BACKUP		0.00	85°C	2.4		μA
DAGROI		1.8\/	25°C	0.08		μΛ
	nowered by Vip AT with RTC running on OSCI II P32K Vipp ANA +Vipp to consumption	1.0 V	25° C 0.000 0.001 85° C 0.015 0.018 85° C 0.08 0.09 85° C 2.0 2.2 85° C 0.14 0.2 85° C 3.2 3.5 85° C 2.3 6.3 85° C 2.4 6.4 85° C 2.4 5.4 85° C 2.4 5.4 85° C 2.4 5.4 85° C 2.1 2.3 85° C 2.4 5.4 85° C 2.4 5.4 85° C 2.1 2.3 85° C 2.4 5.4 85° C 2.4 5.4 85° C 2.1 2.3 85° C 0.08 0.09 85° C 2.1 2.3 85° C 0.14 0.1			
		3 3\/	25°C	0.14	0.1	
		5.5 V	85°C	3.2	3.5	
		1.8\/	25°C	0.46	000 0.000 013 0.009 013 0.009 020 0.001 020 0.001 020 0.018 020 0.888 0.4 8.7 033 1.0 040 0.009 050 0.009 050 0.009 050 0.018 050 0.018 051 0.018 052 3.5 053 0.63 054 0.73 055 3.5 054 0.01 055 3.5 054 0.1 055 3.5 054 0.73 055 3.5 054 0.01 055 3.5 056 0.77 057 6.6 058 6.6 059 6.6 050 6.6 050 6.6	
	powered by Vp at with RTC running on OSCI II P32K. Vp at consumption	$ \begin{array}{c c c c c c c } 85^{\circ} C & 2.0 & 2.2 \\ \hline 85^{\circ} C & 0.14 & 0.2 \\ \hline 3.3 V & 25^{\circ} C & 0.3 & 0.69 \\ \hline 85^{\circ} C & 2.3 & 6.3 \\ \hline 1.8 V & 25^{\circ} C & 0.41 & 0.73 \\ \hline 3.3 V & 25^{\circ} C & 0.41 & 0.73 \\ \hline 3.3 V & 25^{\circ} C & 0.08 & 0.09 \\ \hline 85^{\circ} C & 2.1 & 2.3 \\ \hline 3.3 V & 25^{\circ} C & 0.14 & 0.1 \\ \hline 3.3 V & 25^{\circ} C & 0.14 & 0.1 \\ \hline 85^{\circ} C & 3.2 & 3.5 \\ \hline 1.8 V & 25^{\circ} C & 0.46 & 0.77 \\ \hline 1.8 V & 25^{\circ} C & 0.49 & 0.81 \\ \end{array} $				
		3 3\/	25°C	0.49	0.81	
		0.00	85°C	2.5	6.6	
		1.8\/	25°C	0.10	0.18	
OFF		1.0 V	85°C	2.3	4.5	
011		3.3V	25°C	0.18	0.39	μA
		0.0 v	85°C	0.55 0 5.7 9 0.000 0. 0.013 0.0 0.004 0. 0.005 0.0 0.026 0.0 0.55 0. 0.55 0. 0.026 0.0 0.55 0. 4.4 8 0.63 1 5.7 10 0.008 0. 0.008 0. 0.015 0.0 0.015 0.0 0.032 2. 0.14 0 3.2 3 0.32 3 0.44 0 3.2 3 0.44 0 3.2 3 0.44 0 3.2 3 0.4 0 0.4 0 0.4 0 0.4 0 0.4 0 0.4 0<	7.5	

2.3 Analog Characteristics

2.3.1 Voltage Regulator Characteristics

Table 44-16. External Components requirements in switching mode was updated with the information shown in **bold**:

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
CIN	Input regulator capacitor	Tantalum or electrolytic dielectric	-	10	-	μF
CIN		Ceramic dielectric X7R	-	100	-	nF
Court	Output regulator conseitor	Tantalum or electrolytic dielectric	0.8	1	1.2	μF
COUT	Output regulator capacitor	Ceramic dielectric X7R	-	100	-	nF
LEXT	External Inductance	Murata LQH3NPN100MJ0				
RSAT_LEXT	ESR of LEXT	-	-	-	0.7	Ω
ISAT_LEXT	Saturation current	-	275	-	-	mA

Table 44-18. External Components requirements in linear mode was updated with the information shown in **bold**:

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
Cini	Input regulator capacitor	Tantalum or electrolytic dielectric	-	10	-	μF
CIN		Ceramic dielectric X7R	-	100	-) - 1.2	nF
Court		Tantalum or electrolytic dielectric	0.8	1	1.2	μF
COUT	Output regulator capacitor	Ceramic dielectric X7R	-	100	- - 1.2 -	nF
ESR COUT	External Series Resistance of COUT	-	-	-	0.5	Ω

Table 44-19. Automatic Power Switch Characteristics was updated with the information shown in **bold**:

Symbol	Parameters	Тур.	Unit
CD	Decoupling capacitor on VDDIN	10	μF
THUP	VDD threshold	1.84	V
THDWN		1.75	V
THHYS	VDD hysteresis	90	mV

2.4 Analog-to-Digital (ADC) Characteristics

Table 44-25. Differential Mode was updated with the information shown in **bold**, just the updated areas are shown:

Symbol	Parameters	Conditions	Min	Тур.	Мах	Unit
		V _{DDANA} =3.0V / V _{ref} =2.0V	9.6	10.5	10.6	
	Effective Number of hits (With gain compensation)	VDDANA=1.6V/3.6V, Vref=1.0V	8.9	9.7	9.9	bits
LINOD	NOB Effective Number of bits (With gain compensation TUE Total Unadjusted Error INL Integral Non Linearity DNL Differential Non Linearity Gain Error Gain Error FERR Gain Error FERR Spurious Free Dynamic Range INAD Signal to Noise ratio	VDDANA=V _{ref} =1.6V	10	10.5	11.1	DILS
		VDDANA=V _{ref} =3.6V	10.5	10.9	11.0	
TUE	Total Unadjusted Error	VDDANA=3.0V, Vref=2.0V	-	7.5	11	LSB
INL	Integral Non Linearity	VDDANA=3.0V, Vref=2.0V	-	+/-1.5	+/-2.1	LSB
DNL	Differential Non Linearity	VDDANA=3.0V, Vref=2.0V	-	+/-0.8	+1.1/-1.0	LSB
		External Reference voltage 1.0V	-	+/-0.7	+/-1.5	
		External Reference voltage 3.0V		+/-0.2	0.5	
0500		Internal Reference INTREF=1.024V (SUPC.VREF.SEL=0x0)	-	+/-0.4	+/-4.4	%
GERR	Gain Enoi	VDDANA		+/-0.1	0.4	%
		VDDANA/2	- +	+/-0.4	+/-1.3	
		VDDANA/1.6	-	Initial Initial 10.5 11.1 10.9 11.0 7.5 11 11.0 11.0 11.0		
		External Reference voltage 1.0V	-	+/-1.1	9.9 11.1 11.0 11 +/-2.1 +/-2.1 +/-1.5 0.5 +/-4.4 0.4 +/-1.3 +/-0.9 +/-2.4 3 +/-2.4 3 +/-2.4 3 +/-2.4 3 +/-2.4 3 +/-2.4 3 +/-2.4 3 +/-2.4 3 +/-2.4 3 +/-2.4 3 +/-2.4 3 +/-2.4 3 +/-2.4 3 +/-2.4 3 +/-2.4 3 +/-2.4 3 +/-2.4 3 +/-2.4 - -2.6 - -7.7 - -2.6 - -7.7 - -66 - -67 - - -67 - - -7 	
		External Reference voltage 3.0V		+/-1.1	3	
0500	0#+++ 5	Internal Reference INTREF=1.024V (SUPC.VREF.SEL=0x0)	-	+/-2.3	+/-7.5	
UERR	Offset Error	VDDANA		+/-0.9	2.9	mV
		VDDANA/2	-	+/-1	+/-2.6	
		VDDANA/1.6	-	+/-1	+/-2.9	
SFDR	Spurious Free Dynamic Range		68	75	77	
SINAD	Signal to Noise and Distortion ratio	F _s =1MHz / F _{in} =13 kHz / Full range Input signal V _{DDANA} =3.0V,		65	66	
SNR	Signal to Noise ratio	V _{ref} =2.0V	61	66	67	dB
THD	Total Harmonic Distortion		-74	-73	-67	
	Noise RMS	External Reference voltage	-	1.0	2.5	mV

SAM L22 Family Data Sheet Clarifications

Table 11-26 Single-Ended Mode was u	odated with the information shown in bold ,	just the undated areas are shown.
Table 44-20. Olligie-Ended Mode was u	buated with the information shown in bold ,	

Symbol	Parameters	Conditions	Min	Тур.	Max	Unit
		VDDANA=3.0V / Vref =2.0V	8.5	9.5	9.8	
		V _{DDANA} =1.6V/3.6V, V _{ref} =1.0V	7.5	8.7	8.9	h:4-
ENOB	Effective Number of bits (With gain compensation)	VDDANA=Vref=1.6V	9.0	9.5	9.8	bits
		VDDANA=Vref=3.6V	9.2	3 9.5 9.5 5 9.5 $9.$ 5 8.7 $8.$ 0 9.5 $9.$ 2 9.8 $9.$ -1 17.4 3^{-1} -17.4 3^{-1} -17.4 3^{-1} -17.4 3^{-1} -17.4 3^{-1} -17.4 4^{-1} -17.4 4^{-1} $+/-0.8$ $+/-0.4$ $+/-1.4$ $+/-0.4$ $+/-1.4$ $+/-1.4$ $+/-1.4$ $+/-1.4$ $+/-1.4$ $+/-1.4$ $+/-1.4$ $+/-1.4$ <t< td=""><td>9.9</td><td></td></t<>	9.9	
TUE	Total Unadjusted Error	VDDANA=3.0V, Vref=2.0V	-	17.4	31	LSB
INL	Integral Non Linearity	VDDANA=3.0V, Vref=2.0V	-	+/-2.2	+/-10.1	LSB
DNL	Differential Non Linearity	VDDANA=3.0V, Vref=2.0V	-	+/-0.8	+/-0.9	LSB
		External Reference voltage 1.0V	-	+/-1	+/-1.3	
		External Reference voltage 3.0V		+/-0.3	+/-0.6	
	Gain Error	Internal Reference INTREF=1.024V (SUPC.VREF.SEL=0x0)	-	+/-0.4	+/-3.2	
GERR		VDDANA		+/-0.1	+/-0.3	%
		VDDANA/2	-	+/-0.6	+/-1.4	
		VDDANA/1.6	-	+/-0.1 +/-0.3 +/-0.6 +/-1.4 +/-0.4 +/-1 +/-3.35 +/-13	_	
		External Reference voltage 1.0V	-	+/-3.35	+/-13	
		External Reference voltage 3.0V		+/-3.6	+/-23.7	_
0500		Internal Reference INTREF=1.024V (SUPC.VREF.SEL=0x0)	-	+/-1	+/-14.4	
OERR	Offset Error	VDDANA		+/-4.2	+/-24.8	mV
		VDDANA/2	-	+/-5.7	+/-10.1	
		VDDANA/1.6	-	+/-6.3	+/-13	
SFDR	Spurious Free Dynamic Range		65	71	78	
SINAD	Signal to Noise and Distortion ratio	F _s =1MHz / F _{in} =13 kHz / Full range Input signal V _{DDANA} =3.0V,	53	59	61	-10
SNR	Signal to Noise ratio	V _{ref} =2.0V	53	59	61	dB
THD	Total Harmonic Distortion		-76	-70	64	
	Noise RMS	External Reference voltage	-	2.0	7.0	mV

The t_{SAMPLEHOLD} equation at the end of the chapter 44.10.5 Analog-to-Digital (ADC) Characteristics was removed.

2.5 DETREF

The 44.10.7 Voltage Reference chapter name was updated to 44.10.7 DETREF.

The Table 44-29. Reference Voltage Characteristics was updated with the information shown in **bold**, just the updated areas are shown:

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
		nom. 1.0V, V _{DDANA} =3.0V, T= 25°C	0.967	1.0	1.017	V
		nom. 1.1V, V _{DDANA} =3.0V, T= 25°C	1.069	1.1	1.120	V
		nom. 1.2V, V _{DDANA} =3.0V, T= 25°C	1.167	1.2	1.227	V
	ADC internal reference	nom. 1.25V, V _{DDANA} =3.0V, T= 25°C	1.214	1.3	1.280	V
	ADC Internal relefence	nom. 2.0V, V _{DDANA} =3.0V, T= 25°C	1.935	2.0	2.032	V
ADC Ref		nom. 2.2V, V _{DDANA} =3.0V, T= 25°C	2.134	2.2	2.242	V
		nom. 2.4V, V _{DDANA} =3.0V, T= 25°C	2.328	2.4	2.458	V
		nom. 2.5V, V _{DDANA} =3.0V, T= 25°C	2.420	2.5	2.565	V
	Def Temperature coefficient	drift over [-40, +85]°C	-	[-0.01:+0.015]	-	%/°C
	Ref Temperature coefficient	drift over [25, +85]°C	-	[-0.01:+0.005]	-	%/°C
	Ref Supply coefficient	drift over [1.6, 3.6]V	-	[-0.35:+0.35]	-	%/V
	AC Ref Accuracy	V _{DDANA} =3.0V, T= 25°C	1.073	1.1	1.123	V
AC Ref / Bandgap	Ref Temperature coefficient	drift over [-40, +85]°C	-	[-0.01:+0.01]	-	%/°C
AC Rei / Banugap	Rei Temperature coefficient	drift over [25, +85]°C	-	[-0.005:+0.001]	-	
	Ref Supply coefficient	drift over[1.6, 3.6]V	-	[-0.35:+0.35]	-	%/V

3. Appendix A: Revision History

Rev. E Document (09/2022)

The following Errata were added in this revision:

- PORT: 1.6.2 PA24 and PA25 Pull-down Functionality
- ADC: 1.11.7 SEQSTATE
- BOD33: 1.19.1 Hysteresis

Rev. D Document (07/2021)

Terminology for "Master" and "Slave" was updated to "Host" and "Client" respectively. This change may not be reflected in all associated Microchip Documentation. For additional information, contact a Microchip support and sales representative.

The following Errata were added in this revision:

SERCOM I2C: Status Flag

The following Data Sheet Clarifications were added:

- Maximum Clock Frequencies
- Power Consumption
- Analog Characteristics:
 - Voltage Regulator Characteristics
 - Analog-to-Digital (ADC) Characteristics
 - DETREF

Rev. C Document (01/2021)

The following errata were added in this revision:

- DEVICE: 1.8.4 Standby Entry
- SERCOM-USART: 1.15.5 Overconsumption in Standby mode

Rev. B Document (05/2019)

The following Errata have been updated:

- SUPC: Buck Converter Mode
- SYNCBUSY Flag
- Power Consumption in Standby Mode

ADC errata 1.16.1 and 1.16.2 were moved to 1.11.5 and 1.11.6 respectively for document clarity. This resulted in errata listed afterward to shift down by one in their number specification from the previous released document version.

Rev. A Document (08/2018)

- This is the initial released version of this document that lists the silicon errata issues which were documented in the SAM L22 product data sheet DS60001465A (Chapter 49)
- Added silicon errata: FDPLL Jitter
- Added silicon errata: Buck Converter Mode
- Added silicon errata: MAX Capture Mode

The Microchip Web Site

Microchip provides online support via our web site at www.microchip.com/. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- **Product Support** Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- **General Technical Support** Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- **Business of Microchip** Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

Customer Change Notification Service

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com/. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

Customer Support

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: www.microchip.com/support

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- · Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Legal Notice

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BeaconThings, BitCloud, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq, KeeLoq logo, Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, RightTouch, SAM-BA, SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, chipKIT, chipKIT logo, CodeGuard, CryptoAuthentication, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, Mindi, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, QMatrix, RightTouch logo, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2017, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-6683-1194-3

Quality Management System Certified by DNV

ISO/TS 16949

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC[®] MCUs and dsPIC[®] DSCs, KEELOQ[®] code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

Worldwide Sales and Service

MERICAS	ASIA/PACIFIC	ASIA/PACIFIC	EUROPE
Corporate Office	Asia Pacific Office	China - Xiamen	Austria - Wels
355 West Chandler Blvd.	Suites 3707-14, 37th Floor	Tel: 86-592-2388138	Tel: 43-7242-2244-39
handler, AZ 85224-6199	Tower 6, The Gateway	Fax: 86-592-2388130	Fax: 43-7242-2244-393
el: 480-792-7200	Harbour City, Kowloon	China - Zhuhai	Denmark - Copenhager
ax: 480-792-7277	Hong Kong	Tel: 86-756-3210040	Tel: 45-4450-2828
echnical Support:	Tel: 852-2943-5100	Fax: 86-756-3210049	Fax: 45-4485-2829
ttp://www.microchip.com/	Fax: 852-2401-3431	India - Bangalore	Finland - Espoo
upport	Australia - Sydney	Tel: 91-80-3090-4444	Tel: 358-9-4520-820
Veb Address:	Tel: 61-2-9868-6733	Fax: 91-80-3090-4123	France - Paris
/ww.microchip.com	Fax: 61-2-9868-6755	India - New Delhi	Tel: 33-1-69-53-63-20
tlanta	China - Beijing	Tel: 91-11-4160-8631	Fax: 33-1-69-30-90-79
uluth, GA	Tel: 86-10-8569-7000	Fax: 91-11-4160-8632	France - Saint Cloud
el: 678-957-9614	Fax: 86-10-8528-2104	India - Pune	Tel: 33-1-30-60-70-00
ax: 678-957-1455	China - Chengdu	Tel: 91-20-3019-1500	Germany - Garching
ustin, TX	Tel: 86-28-8665-5511	Japan - Osaka	Tel: 49-8931-9700
el: 512-257-3370	Fax: 86-28-8665-7889	Tel: 81-6-6152-7160	Germany - Haan
loston	China - Chongging	Fax: 81-6-6152-9310	Tel: 49-2129-3766400
Vestborough, MA	Tel: 86-23-8980-9588	Japan - Tokyo	Germany - Heilbronn
el: 774-760-0087	Fax: 86-23-8980-9500	Tel: 81-3-6880- 3770	Tel: 49-7131-67-3636
ax: 774-760-0088	China - Dongguan	Fax: 81-3-6880-3771	Germany - Karlsruhe
chicago	Tel: 86-769-8702-9880	Korea - Daegu	Tel: 49-721-625370
asca, IL	China - Guangzhou	Tel: 82-53-744-4301	Germany - Munich
el: 630-285-0071	Tel: 86-20-8755-8029	Fax: 82-53-744-4302	Tel: 49-89-627-144-0
ax: 630-285-0075	China - Hangzhou	Korea - Seoul	Fax: 49-89-627-144-44
allas	Tel: 86-571-8792-8115	Tel: 82-2-554-7200	Germany - Rosenheim
ddison, TX	Fax: 86-571-8792-8116	Fax: 82-2-558-5932 or	Tel: 49-8031-354-560
el: 972-818-7423	China - Hong Kong SAR	82-2-558-5934	Israel - Ra'anana
ax: 972-818-2924	Tel: 852-2943-5100	Malaysia - Kuala Lumpur	Tel: 972-9-744-7705
etroit	Fax: 852-2401-3431	Tel: 60-3-6201-9857	Italy - Milan
ovi, MI	China - Nanjing	Fax: 60-3-6201-9859	Tel: 39-0331-742611
el: 248-848-4000	Tel: 86-25-8473-2460	Malaysia - Penang	Fax: 39-0331-466781
louston, TX	Fax: 86-25-8473-2470	Tel: 60-4-227-8870	Italy - Padova
el: 281-894-5983	China - Qingdao	Fax: 60-4-227-4068	Tel: 39-049-7625286
ndianapolis	Tel: 86-532-8502-7355	Philippines - Manila	Netherlands - Drunen
loblesville, IN	Fax: 86-532-8502-7205	Tel: 63-2-634-9065	Tel: 31-416-690399
el: 317-773-8323	China - Shanghai	Fax: 63-2-634-9069	Fax: 31-416-690340
ax: 317-773-5453	Tel: 86-21-3326-8000	Singapore	Norway - Trondheim
el: 317-536-2380	Fax: 86-21-3326-8021	Tel: 65-6334-8870	Tel: 47-7289-7561
os Angeles	China - Shenyang	Fax: 65-6334-8850	Poland - Warsaw
lission Viejo, CA	Tel: 86-24-2334-2829	Taiwan - Hsin Chu	Tel: 48-22-3325737
el: 949-462-9523	Fax: 86-24-2334-2393	Tel: 886-3-5778-366	Romania - Bucharest
ax: 949-462-9608	China - Shenzhen	Fax: 886-3-5770-955	Tel: 40-21-407-87-50
el: 951-273-7800	Tel: 86-755-8864-2200	Taiwan - Kaohsiung	Spain - Madrid
aleigh, NC	Fax: 86-755-8203-1760	Tel: 886-7-213-7830	Tel: 34-91-708-08-90
el: 919-844-7510	China - Wuhan	Taiwan - Taipei	Fax: 34-91-708-08-91
lew York, NY	Tel: 86-27-5980-5300	Tel: 886-2-2508-8600	Sweden - Gothenberg
el: 631-435-6000	Fax: 86-27-5980-5118	Fax: 886-2-2508-0102	Tel: 46-31-704-60-40
an Jose, CA	China - Xian	Thailand - Bangkok	Sweden - Stockholm
el: 408-735-9110	Tel: 86-29-8833-7252	Tel: 66-2-694-1351	Tel: 46-8-5090-4654
el: 408-436-4270	Fax: 86-29-8833-7256	Fax: 66-2-694-1350	UK - Wokingham
anada - Toronto	1 dx. 00-20-0000-1200	1 un. 00-2-00 1 -1000	Tel: 44-118-921-5800
el: 905-695-1980			Fax: 44-118-921-5820
ax: 905-695-2078			1 u