

Product Change Notification / SYST-13RHMM178

Date:

19-Apr-2022

Product Category:

8-bit Microcontrollers

PCN Type:

Document Change

Notification Subject:

ERRATA - PIC18F06/16Q41 Silicon Errata and Data Sheet Clarifications Revision

Affected CPNs:

SYST-13RHMM178_Affected_CPN_04192022.pdf SYST-13RHMM178_Affected_CPN_04192022.csv

Notification Text:

SYST-13RHMM178

Microchip has released a new Product Documents for the PIC18F06/16Q41 Silicon Errata and Data Sheet Clarifications of devices. If you are using one of these devices please read the document located at PIC18F06/16Q41 Silicon Errata and Data Sheet Clarifications.

Notification Status: Final

Description of Change:1. Updating the flash memory cell endurance specification datasheet clarification. Adding silicon erratum item 1.7.1

Impacts to Data Sheet: None

Reason for Change: To Improve Productivity

Change Implementation Status: Complete

Date Document Changes Effective: 19 April 2022

NOTE: Please be advised that this is a change to the document only the product has not been changed.

Markings to Distinguish Revised from Unrevised Devices: N/A

Attachments:

PIC18F06/16Q41 Silicon Errata and Data Sheet Clarifications

Please contact your local Microchip sales office with questions or concerns regarding this notification.

Terms and Conditions:

If you wish to <u>receive Microchip PCNs via email</u> please register for our PCN email service at our PCN home page select register then fill in the required fields. You will find instructions about registering for Microchips PCN email service in the PCN FAQ section.

If you wish to <u>change your PCN profile</u>, <u>including opt out</u>, please go to the <u>PCN home page</u> select login and sign into your myMicrochip account. Select a profile option from the left navigation bar and make the applicable selections. Affected Catalog Part Numbers (CPN)

PIC18F06Q41-E/SL PIC18F06Q41-E/ST PIC18F06Q41-I/SL PIC18F06Q41-I/ST PIC18F06Q41T-I/SL PIC18F06Q41T-I/ST PIC18F16Q41-E/SS PIC18F16Q41-E/SO PIC18F16Q41-E/P PIC18F16Q41-E/REB PIC18F16Q41-I/SS PIC18F16Q41-I/SO PIC18F16Q41-I/P PIC18F16Q41-I/REB PIC18F16Q41T-I/SS PIC18F16Q41T-I/SO

PIC18F06/16Q41

PIC18F06/16Q41 Silicon Errata and Data Sheet Clarifications

The PIC18F06/16Q41 devices you have received conform functionally to the current device data sheet (DS40002214**E**), except for the anomalies described in this document.

The silicon issues discussed in the following pages are for silicon revisions with the Device and Revision IDs listed in the table below.

The errata described in this document will be addressed in future revisions of the PIC18F06/16Q41 silicon.

Note: This document summarizes all silicon errata issues from all revisions of silicon, previous as well as current.

Table 1. Silicon Device Identification

Part Number	Device ID		Revision ID	
Fait Nulliper	Device iD	A4	A5	A6
PIC18F06Q41	0x7580	0xA004	0xA005	0xA006
PIC18F16Q41	0x7560	0xA004	0xA005	0xA006

Important: Refer to the **Device/Revision ID** section in the current "**PIC18-Q41 Family Programming Specification**" (DS40002143) for more detailed information on Device Identification and Revision IDs for a specific device.

Table 2. Silicon Issue Summary

BA - Juli	F a starra	14 a see 181 a	Issue	A	ffected Revisior	ıs
Module	Feature	Item No.	Summary	A4	A5	A6
Analog-to- Digital Converter with Computation	ADCC	1.1.1.	ADC cannot operate in certain low- power conditions	Х		
		1.1.2.	Double Sample Conversions	Х	Х	Х
	XT mode	1.2.1.	Maximum clock frequency limited to 2 MHz for XT mode	Х		
Oscillator	Fail-Safe Clock Monitor	1.2.2.	Enabling the FOSC Fail- Safe Clock Monitor alongside the Primary or Secondary Oscillator Clock Monitor causes issues in Sleep	X		
	EC mode	1.2.3.	Maximum clock frequency for EC mode is 32 MHz for V _{DD} < 2.0V	Х		
I ² C I ² C	1.3.1.	I2CxADR0/1/2/ 3 registers have incorrect Reset value	Х			
		1.3.2.	I ² C Start and/or Stop Flags May be Set When I ² C is Enabled	Х	Х	

continued			Affected Revisions		าร	
Module	Feature	Item No.	Summary	A4	A5	A6
Operational Amplifier	OPA	1.4.1.	Charge Pump On Control (CPON) bit is reserved	Х		
	OPA	1.4.2.	Internal resistor ladder does not disconnect in Unity Gain mode	Х		
Universal Asynchronous Receiver Transmitter	UART	1.5.1.	UART TXDE signal may go low before the STOP bit has been entirely transmitted.	Х	X	Х
		1.5.2.	Asynchronous 9-bit UART Address Mode Address Mismatch	Х	X	Х
Signal Measurement TImer	SMT	1.6.1.	Reset Bit	Х	Х	Х
PIC18 CPU	FSR Shadow Registers	1.7.1.	FSR Shadow Registers are not Writable	Х	X	Х

1. Silicon Errata Issues

CAUTION Notice: This document summarizes all silicon errata issues from all revisions of silicon, previous as well as current. Only the issues indicated by the bold font in the following tables apply to the current silicon revision.

1.1 Module: Analog-to-Digital Converter with Computation (ADCC)

1.1.1 ADC Cannot Operate in Certain Low-Power Conditions

The ADC will not function when all of the following conditions exist: When the MCU system clock is sourced from LFINTOSC or SOSC and when both the BOR and FVR features are disabled.

Work around

- Method 1: Use a system clock other than LFINTOSC or SOSC.
- Method 2: Enable the BOR feature.
- Method 3: Enable the FVR feature.

Affected Silicon Revisions

A4	A5	A6
X		

1.1.2 Double Sample Conversions

When enabling a Double Sample Conversion (DSEN = 1), with no Precharge time (ADPRE = 0) and no Acquisition time (ADACQ = 0), the maximum number of cycles of acquisition time is inserted prior to the second conversion. The first conversion will be performed as expected with no Precharge time and no Acquisition time. It is only between the first and second conversions where a maximum number of cycles of Acquisition time is performed unexpectedly.

Work around

- Method 1: Disable Double Sample Conversion (DSEN = 0) and perform two single conversions back to back.
- Method 2: If adding acquisition time is acceptable, then select no Precharge time, along with the desired Acquisition time.

Affected Silicon Revisions

A4	A5	A6
X	Х	Х

1.2 Module: Oscillator

1.2.1 Maximum Clock Frequency Limited to 2 MHz for XT Mode

The maximum clock frequency for the intermediate gain setting that supports quartz crystal and ceramic resonator operation (XT mode) is being reduced from 4 MHz to 2 MHz.

Work around

For crystal or resonator frequencies above 2 MHz, use HS mode.

PIC18F06/16Q41

Silicon Errata Issues

Affected Silicon Revisions

A4	A5	A6
X		

1.2.2 Enabling the FOSC Fail-Safe Clock Monitor Alongside the Primary or Secondary Oscillator Clock Monitor Causes Issues with Sleep

When the FOSC Fail-Safe Clock Monitor is enabled (FCMEN Configuration bit = 1) and either the Primary or Secondary Fail-Safe Clock Monitor is also enabled (FCMENS and/or FCMENP = 1), putting the device to Sleep will cause a Fail-Safe condition to trigger. This has the effect of erroneously triggering Fail-Safe interrupts when there has not been a clock interruption. This can also cause the Watchdog Timer to not properly wake up the part from Sleep.

Work around

If proper functionality in Sleep is required, do not enable the Primary or Secondary Fail-Safe Clock Monitor while the FOSC Fail-Safe Clock Monitor is enabled. If Primary or Secondary Clock Monitoring in Sleep is desired, disable the FOSC Fail-Safe Clock Monitor before the device goes to Sleep.

Affected Silicon Revisions

A4	A5	A6
X		

1.2.3 Maximum Clock Frequency for EC Mode Is 32 MHz for V_{DD} < 2.0V

When configured in External Clock High-Power (ECH) mode and operating at V_{DD} < 2.0V, the maximum input clock frequency is 32 MHz.

Work around

To obtain a system clock frequency of 64 MHz in ECH mode at V_{DD} < 2.0V, use a 16 MHz external clock in conjunction with the 4x Phase-Locked Loop (PLL) circuit (i.e., either RSTOSC Configuration bits = 0b010 or OSCCON1bits.NOSC = 0b010).

Affected Silicon Revisions

A4	A5	A6
X		

1.3 Module: I²C

1.3.1 The I2CxADR0/1/2/3 Registers Have Incorrect Reset Value

The I2CxADR0/2 registers reset to $0 \times FF$ when the I2CxMD is enabled instead of 0×00 . The I2CxADR1/3 registers reset to $0 \times FE$ when the I2CxMD is enabled instead of 0×00 .

Work around

None.

Affected Silicon Revisions

A4	A5	A6
X		

1.3.2 The I²C Start and/or Stop Flags May Be Set When I²C Is Enabled

When I²C is enabled, erroneous Start and/or Stop conditions may be detected. This can generate erroneous I²C interrupts if enabled.

Work around

Use the following procedure to correctly detect the Start and Stop conditions:

- 1. Disable the Start and Stop conditions interrupt functions.
- 2. Enable the I²C module.
- 3. Wait 250 ns + six instructions cycles (F_{OSC}/4).
- 4. Clear the Start and Stop conditions interrupt flags.
- 5. Enable the Start and Stop conditions interrupt functions if used.

```
T2CxPTEbits.SCTE = 0:
                             // Disable Start conditoin interrupt
I2CxPIEbits.PCIE = 0;
                                Disable Stop condition interrupt
                             11
I2CxCONObits.EN = 1;
                             // Enable I2C
                             // Wait for 250nS + 6 instruction cycles (FOSC/4)
Delay();
I2CxPIRbits.SCIF = 0;
                             // Clear the Start condition interrupt flags
I2CxPIRbits.PCIF = 0;
                             // Clear the Stop condition interrupt flags
I2CxPIEbits.SCIE = 1;
                             // Enable Start condition interrupt if used
I2CxPIEbits.PCIE = 1;
                             // Enable Stop condition interrupt if used
```

Affected Silicon Revisions

A4	A5	A6
x	Х	

1.4 Module: Operational Amplifier

1.4.1 The Charge Pump On Control (CPON) Bit Is Reserved

When not operating the OPA near the rails, the Charge Pump On Control (CPON) bit can be used to disable the charge pump in order to save on current consumption. This feature is currently not available, and the charge pump is always enabled whenever the OPA module is in operation.

Work around

None.

Affected Silicon Revisions

A4	A5	A6
X		

1.4.2 Internal Resistor Ladder Does Not Disconnect in Unity Gain Mode

When using the OPA module in a unity gain configuration, the internal resistor ladder will not automatically disconnect from the operational amplifier, which may adversely affect the gain of the circuit. This applies when the peripheral has been configured to operate in Unity Gain mode in software by setting the UG bit, or in hardware using the hardware controlled override feature.

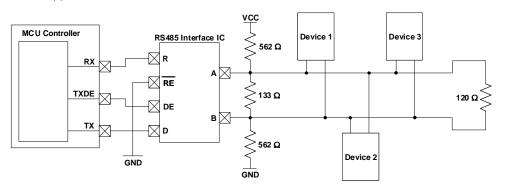
Work around

Disconnect the internal resistor ladder from the operational amplifier by writing to the Inverting Input Channel Selection (NCH) bits. All signals can be disconnected from the operational amplifier by writing 0b000 to the NCH bits.

PIC18F06/16Q41 Silicon Errata Issues

Affected Silicon Revisions

A4	A5	A6
x		


1.5 Module: Universal Asynchronous Receiver Transmitter

1.5.1 UART TXDE Signal May go Low Before The STOP Bit Has Been Entirely Transmitted.

The UART Transmit Drive Enable (TXDE) signal could potentially transition into a low state before the UART STOP bit has been entirely transmitted due to the effects of parasitic capacitance on the TX line. In some applications, this could result in communication being prematurely terminated due to the TXDE bit going low before the STOP bit has had enough time to settle.

Work around

In order to ensure that the STOP bit settles into its final logic state before the TXDE signal transitions low, a biasing circuit can be implemented. A biasing circuit allows the TX line to either be driven high or low, rather than being left in a floating tri-state mode where prolonged rise or fall times could lead to communication being disrupted. This bias circuit should only be implemented on one end of the serial bus, and a termination resistor should be used on the other end. The figure below show an example of a bias circuit that can be used to achieve this. Please note that the resistor values used in this circuit are recommendations, and that the actual resistor values required may vary based on the application.

Affected Silicon Revisions

A4	A5	A6
x	Х	X

1.5.2 Asynchronous 9-bit UART Address Mode Address Mismatch

In Asynchronous 9-bit UART Address mode there is the possibility that a false address mismatch may occur even when the address of both devices match, or that a false address match may occur when there is an address mismatch between the devices.

Work around

None. Do not use the UART modules in Asynchronous 9-bit Address Mode

Affected Silicon Revisions

A4	A5	A6
X	Х	Х

1.6 Module: SMT

1.6.1 Reset Bit

If the SMT clock prescaler is set to any value other than '00', setting the RST bit will cause the module to stop working. The RST bit will remain at the value '1', the counter will not increment, and no interrupts will be generated. The problem is cleared by turning the module off and on, or by a device reset.

Work around

- Method 1: Do not set the RST bit; manual reset is usually not required for typical operation because the measurement logic will reset the counter automatically.
- Method 2: Write zero to the counter manually. The module enable or the clock should be disabled during this.
- Method 3: Use 1:1 prescaler (PS = 00).
- Method 4: Use the CLKREF subsystem to provide a prescaled clock and set PS = 00.

Affected Silicon Revisions

A4	A5	A6
x	Х	X

1.7 Module: PIC18 Core

1.7.1 FSR Shadow Registers are not Writable

Writing to the FSR Shadow Registers does not result in accurate values being stored in the registers. Consequently, reading the FSR Shadow Registers after they have been written will return inaccurate data.

Work around

Writes to the FSR shadow registers can be performed safely using the following steps:

- 1. Save regular FSR2 value into RAM
- 2. Write the regular FSR2 with the targeted value minus the computed offset (IR[6:0] + 1, see below)
- 3. Write the shadow FSRxL (data doesn't matter), this will clock the shadow FSR with the FSR computed offset value.
- 4. Decrement FSR2 value by 1 since FSRxH increments the address by 1 (IR[6:0])
- 5. Write FSRxH
- 6. Restore the regular FSR2 from the stored RAM value.

The FSR shadow should have the value desired and the regular FSR should have the original value.

Affected Silicon Revisions

A4	A5	A6
X	Х	X

2. Data Sheet Clarifications

The following typographic corrections and clarifications are to be noted for the latest version of the device data sheet (DS40002214**E**):

Note:

Corrections are shown in **bold**. Where possible, the original bold text formatting has been removed for clarity.

2.1 Memory Programming Specifications

The flash memory cell endurance specification is reduced to 1k minimum. The corresponding parameter (E_P) will be updated in the next revision of datasheet (DS40002214F).

Table 2-1. Memory Programming

Derem Sym Device Characteristics Min Typt Max Units Conditions								
Param No.	Sym.	Device Characteristics	Min.	Тур†	Max.	Units	Conditions	
Data EE	PROM M	emory Specifications						
MEM20	ED	DataEE Byte Endurance	100k		_	E/W	$-40^{\circ}C \le T_A \le +85^{\circ}C$	
MEM21	T _{D_RET}	Characteristic Retention	_	40	_	Year	Provided no other specifications are violated	
MEM22	N _{D_REF}	Total Erase/Write Cycles before Refresh	1M	4M	_	E/W	-40°C ≤ T _A ≤ +85°C	
MEM23	V _{D_RW}	V_{DD} for Read or Erase/Write operation	V _{DDMIN}	_	V _{DDMAX}	V		
MEM24	T _{D_BEW}	Byte Erase and Write Cycle Time	_		11	ms		
Progran	n Flash M	lemory Specifications					1	
MEM30	E _P	Flash Memory Cell Endurance	1k			E/W	-40°C ≤ T _A ≤ +85°C (Note 1)	
MEM32	T _{P_RET}	Characteristic Retention	_	40	_	Year	Provided no other specifications are violated	
MEM33	V _{P_RD}	V _{DD} for Read operation	VDDMIN	_	VDDMAX	V		
MEM34	V _{P_REW}	V_{DD} for Row Erase or Write operation	V _{DDMIN}	_	V _{DDMAX}	V		
MEM35	T _{P_REW}	Self-Timed Page Write	_		10	ms		
MEM36	T _{SE}	Self-Timed Page Erase	_	_	11	ms		
MEM37	T _{P_WRD}	Self-Timed Word Write			75	μs		

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note:

1. Flash Memory Cell Endurance for the Flash memory is defined as: One Row Erase operation and one Self-Timed Write.

2.2 UART Baud Rate Equation

The UART Baud Rate equation in the UxBRG register contains a typo and will provide the incorrect UART Baud Rate. The correct equation is shown below. The correction to this equation is shown in bold.

UART Baud Rate = [Fosc*(1+(BRGS*3)]/[(16*(BRG+1))]

2.3 Power-Down Current (I_{PD}) Specifications

The Power-Down current (I_{PD}) electrical specifications for FVR Buffer 2, I_{PD} Base when VREGPM = 01, and the Operational Amplifier have been modified. The corresponding parameters ($I_{PD_FVR_BUF2}$, I_{PD} , and I_{PD_OPA}) will be updated in the next revision of the datasheet (DS40002214F).

Standar	d Operating C	onditions (unless	otherw	/ise stat	ed)					
Param.	Sym.	Device	Min.	Typ.†		Max. +125°C	Units	Conditions		
No.		Characteristics			+85°C			V _{DD}	VREGPM	Note
D200	I _{PD}	I _{PD} Base	_	1.1	3.3	4.6	μA	3.0V	'b11	
				0.9	12.1	33.3	μA	3.0V	'b10	
			—	38.0	54.0	78.0	μA	3.0V	b01'	
			_	152	190	198.5	μA	3.0V	00d'	
D201	I _{PD_WDT}	Low-Frequency Internal Oscillator/WDT		1.5	3.8	5.1	μA	3.0V	'b11	
D202	I _{PD_SOSC}	Secondary Oscillator (S _{OSC})	_	2.1	4.6	7.9	μA	3.0V	'b11	
D203	I _{PD_LPBOR}	Low-Power Brown-out Reset (LPBOR)		1.3	3.5	4.8	μA	3.0V	'b11	
D204	IPD_FVR_BUF1	FVR Buffer 1 (ADC)	_	174.7	249.7	255.4	μA	3.0V	'b11	
D204A	IPD_FVR_BUF2	FVR Buffer 2 (DAC/CMP)	_	60.0	85.0	101.0	μA	3.0V	bx1 or' 104	
D205	I _{PD_BOR}	Brown-out Reset (BOR)	_	16.6	20.4	20.8	μA	3.0V	'b11	
D206	I _{PD_HLVD}	High/Low Voltage Detect (HLVD)		16.9	20.8	22.5	μA	3.0V	`b11	
D207	I _{PD_ADCA}	ADC - Active		483	789	790	μA	3.0V	'bx1 or 'b10	ADC is converting (Note 4)
D208	IPD_CMP	Comparator	_	52.5	84.2	105	μA	3.0V	'b11	

Table 2-2. Power-Down Current (IPD)^(1,2)

co	continued									
Standard Operating Conditions (unless otherwise stated)										
Param.	Sym.		Min.	in. Typ.†		Max.	Units	Conditions		
No.		Characteristics			+85°C	+125°C		V _{DD}	VREGPM	Note
D209	I _{PD_OPA}	Operational Amplifier		1.10	1.67	1.73	mA	3.0V	'b01	Charge Pump On; V _{ICM} = V _{DD} /2
			_	800	1160	1220	μΑ	3.0V	b01 [،]	Charge Pump Off; V _{ICM} = V _{DD} /2

* These parameters are characterized but not tested.

† Data in "Typ." column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Notes:

- 1. The peripheral current is the sum of the base I_{DD} and the additional current consumed when this peripheral is enabled. The peripheral Δ current can be determined by subtracting the base I_{DD} or I_{PD} current from this limit. Max. values must be used when calculating total current consumption.
- 2. The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode with all I/O pins in high-impedance state and tied to V_{SS}.
- 3. All peripheral currents listed are on a per-peripheral basis if more than one instance of a peripheral is available.
- 4. ADC clock source is ADCRC.

3. Appendix A: Revision History

Doc Rev.	Date	Comments
E	04/2022	Updating the flash memory cell endurance specification datasheet clarification. Adding silicon erratum item 1.7.1
D	02/2022	Adding silicon revision A6. Adding silicon erratum items 1.1.2, 1.3.2, 1.5.1 and 1.6.1
С	11/2020	Adding silicon revision A5.
В	08/2020	Adding silicon erratum item 1.5.1.
A	06/2020	Initial document release.

Microchip Information

The Microchip Website

Microchip provides online support via our website at www.microchip.com/. This website is used to make files and information easily available to customers. Some of the content available includes:

- **Product Support** Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- **General Technical Support** Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip design partner program member listing
- **Business of Microchip** Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

Product Change Notification Service

Microchip's product change notification service helps keep customers current on Microchip products. Subscribers will receive email notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, go to www.microchip.com/pcn and follow the registration instructions.

Customer Support

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Embedded Solutions Engineer (ESE)
- Technical Support

Customers should contact their distributor, representative or ESE for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in this document.

Technical support is available through the website at: www.microchip.com/support

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip products:

- · Microchip products meet the specifications contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is secure when used in the intended manner, within operating specifications, and under normal conditions.
- Microchip values and aggressively protects its intellectual property rights. Attempts to breach the code protection features of Microchip product is strictly prohibited and may violate the Digital Millennium Copyright Act.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not mean that we are guaranteeing the product is "unbreakable". Code protection is constantly evolving. Microchip is committed to continuously improving the code protection features of our products.

Legal Notice

This publication and the information herein may be used only with Microchip products, including to design, test, and integrate Microchip products with your application. Use of this information in any other manner violates these terms. Information regarding device applications is provided only for your convenience and may be superseded

by updates. It is your responsibility to ensure that your application meets with your specifications. Contact your local Microchip sales office for additional support or, obtain additional support at www.microchip.com/en-us/support/design-help/client-support-services.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE, OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL, OR CONSEQUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION.

Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, CryptoMemory, CryptoRF, dsPIC, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, Flashtec, Hyper Speed Control, HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet- Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, TrueTime, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, Augmented Switching, BlueSky, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, GridTime, IdealBridge, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, Inter-Chip Connectivity, JitterBlocker, Knob-on-Display, maxCrypto, maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, NVM Express, NVMe, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SmartHLS, SMART-I.S., storClad, SQI, SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, TSHARC, USBCheck, VariSense, VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, Symmcom, and Trusted Time are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2020-2022, Microchip Technology Incorporated and its subsidiaries. All Rights Reserved.

ISBN: 978-1-6683-0168-5

Quality Management System

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.

Worldwide Sales and Service

AMERICAS	ASIA/PACIFIC	ASIA/PACIFIC	EUROPE
Corporate Office	Australia - Sydney	India - Bangalore	Austria - Wels
2355 West Chandler Blvd	Tel: 61-2-9868-6733	Tel: 91-80-3090-4444	Tel: 43-7242-2244-39
Chandler, AZ 85224-6199	China - Beijing	India - New Delhi	Fax: 43-7242-2244-393
Tel: 480-792-7200	Tel: 86-10-8569-7000	Tel: 91-11-4160-8631	Denmark - Copenhagen
Fax: 480-792-7277	China - Chengdu	India - Pune	Tel: 45-4485-5910
Technical Support:	Tel: 86-28-8665-5511	Tel: 91-20-4121-0141	Fax: 45-4485-2829
www.microchip.com/support	China - Chongging	Japan - Osaka	Finland - Espoo
Web Address:	Tel: 86-23-8980-9588	Tel: 81-6-6152-7160	Tel: 358-9-4520-820
www.microchip.com	China - Dongguan	Japan - Tokyo	France - Paris
Atlanta	Tel: 86-769-8702-9880	Tel: 81-3-6880- 3770	Tel: 33-1-69-53-63-20
Duluth, GA	China - Guangzhou	Korea - Daegu	Fax: 33-1-69-30-90-79
Tel: 678-957-9614	Tel: 86-20-8755-8029	Tel: 82-53-744-4301	Germany - Garching
Fax: 678-957-1455	China - Hangzhou	Korea - Seoul	Tel: 49-8931-9700
Austin, TX	Tel: 86-571-8792-8115	Tel: 82-2-554-7200	Germany - Haan
Tel: 512-257-3370	China - Hong Kong SAR	Malaysia - Kuala Lumpur	Tel: 49-2129-3766400
Boston	Tel: 852-2943-5100	Tel: 60-3-7651-7906	Germany - Heilbronn
Westborough, MA	China - Nanjing	Malaysia - Penang	Tel: 49-7131-72400
Tel: 774-760-0087	Tel: 86-25-8473-2460	Tel: 60-4-227-8870	Germany - Karlsruhe
Fax: 774-760-0088	China - Qingdao	Philippines - Manila	Tel: 49-721-625370
Chicago	Tel: 86-532-8502-7355	Tel: 63-2-634-9065	Germany - Munich
Itasca, IL	China - Shanghai	Singapore	Tel: 49-89-627-144-0
Tel: 630-285-0071	Tel: 86-21-3326-8000	Tel: 65-6334-8870	Fax: 49-89-627-144-44
Fax: 630-285-0075	China - Shenyang	Taiwan - Hsin Chu	Germany - Rosenheim
Dallas	Tel: 86-24-2334-2829	Tel: 886-3-577-8366	Tel: 49-8031-354-560
Addison, TX	China - Shenzhen	Taiwan - Kaohsiung	Israel - Ra'anana
Tel: 972-818-7423	Tel: 86-755-8864-2200	Tel: 886-7-213-7830	Tel: 972-9-744-7705
Fax: 972-818-2924	China - Suzhou	Taiwan - Taipei	Italy - Milan
Detroit	Tel: 86-186-6233-1526	Tel: 886-2-2508-8600	Tel: 39-0331-742611
Novi, MI	China - Wuhan	Thailand - Bangkok	Fax: 39-0331-466781
Tel: 248-848-4000	Tel: 86-27-5980-5300	Tel: 66-2-694-1351	Italy - Padova
Houston, TX	China - Xian	Vietnam - Ho Chi Minh	Tel: 39-049-7625286
	Tel: 86-29-8833-7252		
Tel: 281-894-5983	China - Xiamen	Tel: 84-28-5448-2100	Netherlands - Drunen
Indianapolis			Tel: 31-416-690399
Noblesville, IN	Tel: 86-592-2388138		Fax: 31-416-690340
Tel: 317-773-8323	China - Zhuhai		Norway - Trondheim
Fax: 317-773-5453	Tel: 86-756-3210040		Tel: 47-72884388
Tel: 317-536-2380			Poland - Warsaw
Los Angeles			Tel: 48-22-3325737
Mission Viejo, CA			Romania - Bucharest
Tel: 949-462-9523			Tel: 40-21-407-87-50
Fax: 949-462-9608			Spain - Madrid
Tel: 951-273-7800			Tel: 34-91-708-08-90
Raleigh, NC			Fax: 34-91-708-08-91
Tel: 919-844-7510			Sweden - Gothenberg
New York, NY			Tel: 46-31-704-60-40
Tel: 631-435-6000			Sweden - Stockholm
San Jose, CA			Tel: 46-8-5090-4654
Tel: 408-735-9110			UK - Wokingham
Tel: 408-436-4270			Tel: 44-118-921-5800
Canada - Toronto			Fax: 44-118-921-5820
Tel: 905-695-1980			
Fax: 905-695-2078			