

Product Group: Vishay Siliconix/ November 17th, 2021 - APCN-SIL-5022021

SIC461-4 and SIC471-4 Datasheet Changes

DESCRIPTION OF CHANGE: Correction of the minimum VDRV Supply voltage from 5.1V to 4.75V, and Maximum VDRV current from 50mA to 30mA. Datasheets change on Page 4.

CLASSIFICATION OF CHANGE: Datasheet

REASON FOR CHANGE: Correction

EXPECTED INFLUENCE ON PERFORMANCE/QUALITY/RELIABILTY: There will be no effect on

performance, quality or reliability.

PRODUCT CATAGORY: ICs

PART NUMBERS AFFECTED: SIC461ED-T1-GE3, SIC462ED-T1-GE3, SIC463ED-T1-GE3, SIC464ED-T1-GE3, SIC471ED-T1-GE3, SIC472ED-T1-GE3, SIC473ED-T1-GE3, SIC474ED-T1-

GE3

VISHAY BRAND(s): Vishay-Siliconix

TIME SCHEDULE: Immediately, November 17, 2021

SAMPLE AVAILABILITY: Samples available immediately

QUALIFICATION DATA: See details in attachment

This APCN is for notification purposes only. Your response is not required. If you have any questions, please contact your local Vishay Sales Office.

ISSUED BY: Isabelle Ciacchella, Vishay Siliconix IC Product Marketing.

E-mail address: isabelle.ciacchella@Vishay.com

For further information, please contact your regional Vishay office.

The Americas Europe A
Vishay Americas Vishay Electronic GmbH V

2585 Junction Avenue Geheimrat-Rosenthal-Strasse 100
San Jose, CA 95134 D-95100

T: 408-970-8000 Selb, Germany F: 408-567-8942 T: 49-9287-71 0

business-americas@vishay.com <u>Europe@vishay.com</u>

Asia

Vishay Intertechnology Asia Pte. Ltd 25 Tampines Street 92 #02-00 Keppel Building

#02-00 Keppel Buildii Singapore 528877 T: 65-6788-6668

business-asia@vishay.com

Vishay Intertechnology, Inc.

Product Group: Vishay Siliconix/ November 17th, 2021 - APCN-SIL-5022021

SIC461/2/3/4 Datasheet – Doc#65124

Revision O – March 2021

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Power Supplies						
V _{DD} supply	V	$V_{IN} = V_{CIN} = 6 \text{ V to } 60 \text{ V}$ 4.75	5	5.25	V	
	V _{DD}	$V_{IN} = V_{CIN} = 5 \text{ V}$	4.7	5	-	V
V _{DD} dropout	V _{DD_DROPOUT}	$V_{IN} = V_{CIN} = 5 V$, $I_{VDD} = 1 mA$		70	-	mV
V _{DD} UVLO threshold, rising	V _{DD_UVLO}		4	4.25	4.5	V
V _{DD} UVLO hysteresis	V _{DD_UVLO_HYST}		-	225	-	mV
Maximum V _{DD} current	I _{DD}	$V_{IN} = V_{CIN} = 6 \text{ V to } 60 \text{ V}$	3	127	-	mA
V _{DRV} supply	V _{DRV}	$V_{IN} = V_{CIN} = 6 \text{ V to } 60 \text{ V}$	5.1	5.3	5.55	V
		$V_{IN} = V_{CIN} = 5 \text{ V}$	4.8	5	5.2	V
V _{DRV} dropout	V _{DRV_DROPOUT}	$V_{IN} = V_{CIN} = 5 \text{ V}, I_{VDD} = 10 \text{ mA}$	2	160	-	mV
Maximum V _{DRV} current	V _{DRV}	$V_{IN} = V_{CIN} = 6 \text{ V to } 60 \text{ V}$	50	275	(74)	mA
V _{DRV} UVLO threshold, rising	V _{DRV_UVLO}		4	4.25	4.5	V
V _{DRV} UVLO hysteresis	V _{DRV_UVLO_HYST}		-	295	-	mV
Input current	I _{VCIN}	Non-switching, V _{FB} > 0.8 V	-	235	325	
Shutdown current	IVCIN SHON	V _{FN} = 0 V	-	4	8	μА

Revision P – November 2021

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TVD	MAN	LIMIT
PARAMETER	SYMBOL	TEST CONDITIONS	WIIN.	TYP.	MAX.	UNIT
Power Supplies						
V _{DD} supply	V _{DD}	$V_{IN} = V_{CIN} = 6 \text{ V to } 60 \text{ V}$	4.75	5	5.25	V
		$V_{IN} = V_{CIN} = 5 \text{ V}$	4.7	5		V
V _{DD} dropout	V _{DD_DROPOUT}	$V_{IN} = V_{CIN} = 5 \text{ V}, I_{VDD} = 1 \text{ mA}$	(2)	70	=	mV
V _{DD} UVLO threshold, rising	V _{DD_UVLO}		4	4.25	4.5	V
V _{DD} UVLO hysteresis	V _{DD_UVLO_HYST}		1-1	225	-	mV
Maximum V _{DD} current	I _{DD}	$V_{IN} = V_{CIN} = 6 \text{ V to } 60 \text{ V}$	3	1177		mA
V _{DRV} supply	V _{DRV}	$V_{IN} = V_{CIN} = 6 \text{ V to } 60 \text{ V}$	4.75	5.3	5.55	V
		$V_{IN} = V_{CIN} = 5 \text{ V}$	4.8	5	5.2	V
V _{DRV} dropout	V _{DRV_DROPOUT}	$V_{IN} = V_{CIN} = 5 \text{ V}, I_{VDD} = 10 \text{ mA}$	-	160	-	mV
Maximum V _{DRV} current	V_{DRV}	$V_{IN} = V_{CIN} = 6 \text{ V to } 60 \text{ V}$	30	1377	75	mA
V _{DRV} UVLO threshold, rising	V _{DRV_UVLO}		4	4.25	4.5	V
V _{DRV} UVLO hysteresis	V _{DRV_UVLO_HYST}		180	295	-	mV
Input current	I _{VCIN}	Non-switching, V _{FB} > 0.8 V	-	235	325	μА
Shutdown current	I _{VCIN_SHDN}	$V_{FN} = 0 \text{ V}$	25	4	8	

Vishay Intertechnology, Inc.

Product Group: Vishay Siliconix/ November 17th, 2021 - APCN-SIL-5022021

SIC471/2/3/4 Datasheet – Doc#75786

Revision F – March 2021

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Power Supplies						
V _{DD} supply	V-	V _{IN} = V _{CIN} = 6 V to 55 V 4.75	5	5.25	V	
	V _{DD}	$V_{IN} = V_{CIN} = 5 V$	4.7	5	~	V
V _{DD} dropout	V _{DD_DROPOUT}	$V_{IN} = V_{CIN} = 5 \text{ V}, I_{VDD} = 1 \text{ mA}$	-	70	=	mV
V _{DD} UVLO threshold, rising	V _{DD_UVLO}		4	4.25	4.5	٧
V _{DD} UVLO hysteresis	V _{DD_UVLO_HYST}		2	225	2	mV
Maximum V _{DD} current	I _{DD}	$V_{IN} = V_{CIN} = 6 \text{ V to } 55 \text{ V}$	3	-	- 4	mA
V _{DRV} supply	V _{DRV}	$V_{IN} = V_{CIN} = 6 \text{ V to } 55 \text{ V}$	5.1	5.3	5.55	V
		$V_{IN} = V_{CIN} = 5 \text{ V}$	4.8	5	5.2	V
V _{DRV} dropout	V _{DRV_DROPOUT}	$V_{IN} = V_{CIN} = 5 \text{ V}, I_{VDD} = 10 \text{ mA}$	-	160	2	mV
Maximum V _{DRV} current	V _{DRV}	$V_{IN} = V_{CIN} = 6 \text{ V to } 55 \text{ V}$	50	- 4	14	mA
V _{DRV} UVLO threshold, rising	V _{DRV_UVLO}		4	4.25	4.5	V
V _{DRV} UVLO hysteresis	V _{DRV_UVLO_HYST}		-	295	2	mV
Input current	I _{VCIN}	Non-switching, V _{FB} > 0.8 V	-	235	325	200
Shutdown current	IVCIN SHDN	V _{EN} = 0 V	+	4	8	μA

Revision G – November 2021

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Power Supplies	-					
V _{DD} supply	V	$V_{IN} = V_{CIN} = 6 \text{ V to } 55 \text{ V}$	4.75 5	5.25	V	
	V _{DD}	$V_{IN} = V_{CIN} = 5 \text{ V}$	4.7	5	-	V
V _{DD} dropout	V _{DD_DROPOUT}	$V_{IN} = V_{CIN} = 5 \text{ V}, I_{VDD} = 1 \text{ mA}$	=	70	=	mV
V _{DD} UVLO threshold, rising	V _{DD_UVLO}		4	4.25	4.5	V
V _{DD} UVLO hysteresis	V _{DD_UVLO_HYST}		-	225	-	mV
Maximum V _{DD} current	I _{DD}	$V_{IN} = V_{CIN} = 6 \text{ V to } 55 \text{ V}$	3	-	-	mA
V _{DRV} supply	V _{DRV}	$V_{IN} = V_{CIN} = 6 \text{ V to } 55 \text{ V}$	4.75	5.3	5.55	V
		$V_{IN} = V_{CIN} = 5 V$	4.8	5	5.2	V
V _{DRV} dropout	V _{DRV_DROPOUT}	$V_{IN} = V_{CIN} = 5 \text{ V}, I_{VDD} = 10 \text{ mA}$	-	160	=	mV
Maximum V _{DHV} current	V _{DRV}	$V_{IN} = V_{CIN} = 6 V \text{ to } 55 V$	30	(5)	= =	mA
V _{DRV} UVLO threshold, rising	V _{DRV_UVLO}		4	4.25	4.5	٧
V _{DRV} UVLO hysteresis	V _{DRV_UVLO_HYST}		-	295	- 5	mV
Input current	I _{VCIN}	Non-switching, V _{FB} > 0.8 V	-	235	325	
Shutdown current	IVCIN SHDN	V _{EN} = 0 V	250	4	8	μΑ

Vishay Intertechnology, Inc.