

Product Change Notification / SYST-30NUWE247

Date:

31-Mar-2021

Product Category:

Linear Regulators

PCN Type:

Document Change

Notification Subject:

Data Sheet - MIC94325/45/55 Data Sheet

Affected CPNs:

SYST-30NUWE247_Affected_CPN_03312021.pdf SYST-30NUWE247_Affected_CPN_03312021.csv

Notification Text:

SYST-30NUWE247

Microchip has released a new Product Documents for the MIC94325/45/55 Data Sheet of devices. If you are using one of these devices please read the document located at MIC94325/45/55 Data Sheet.

Notification Status: Final

Description of Change: 1) Converted Micrel document MIC94325/45/55 to Microchip data sheet template DS20006524A.

- 2) Minor grammatical text changes throughout.
- 3) Removed reference to the 6-Ball CSP package option.

4) All schematic and BOM references removed as they are found in the User's Guide for these parts Impacts to Data Sheet: None
 Reason for Change: To Improve Manufacturability
 Change Implementation Status: Complete

Date Document Changes Effective: 31 Mar 2021 **NOTE:** Please be advised that this is a change to the document only the product has not been changed. **Markings to Distinguish Revised from Unrevised Devices:** N/A

Attachments:

MIC94325/45/55 Data Sheet

Please contact your local Microchip sales office with questions or concerns regarding this notification.

Terms and Conditions:

If you wish to <u>receive Microchip PCNs via email</u> please register for our PCN email service at our PCN home page select register then fill in the required fields. You will find instructions about registering for Microchips PCN email service in the PCN FAQ section.

If you wish to <u>change your PCN profile, including opt out</u>, please go to the <u>PCN home page</u> select login and sign into your myMicrochip account. Select a profile option from the left navigation bar and make the applicable selections.

MIC94325/45/55

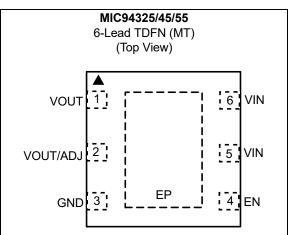
500 mA LDO with Ripple Blocker Technology

Features

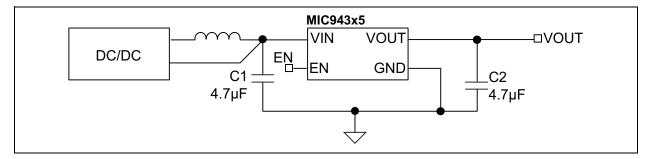
- 1.8V to 3.6V Input Voltage Range
- Active Noise Rejection over a Wide Frequency Band
- >50dB from 10 Hz to 5 MHz at 500 mA Load
- Rated to 500 mA Output Current
- Fixed and Adjustable Output Voltages
- Optional Output Auto-Discharge when Disabled
- Current-Limit and Thermal-Limit Protection
- 1.6 mm x 1.6 mm, 6-Pin Thin DFN
- Logic-Controlled Enable Pin
- -40°C to +125°C Junction Temperature Range

Applications

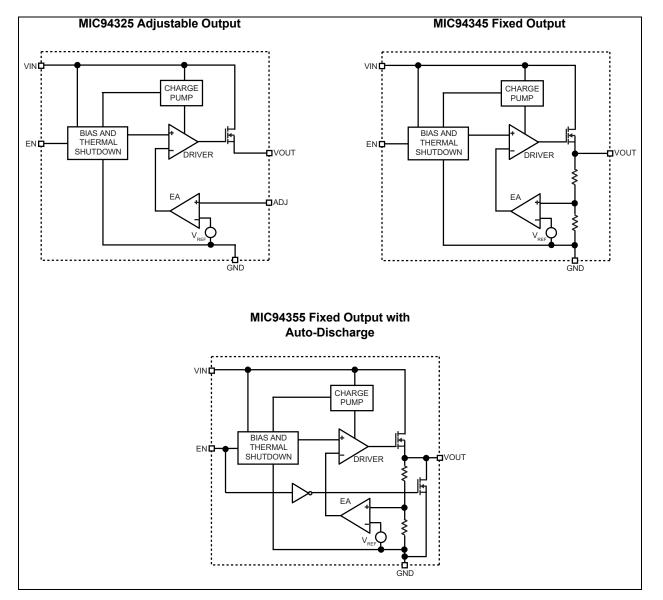
- Smart Phones
- Tablet PC/Notebooks and Webcams
- · Digital Still and Video Cameras
- Global Positioning Systems
- Mobile Computing
- Automotive and Industrial Applications


General Description

The MIC94325, MIC94345, and MIC94355 Ripple Blocker[™] devices are monolithic integrated circuits that provide low-frequency ripple attenuation (switching noise rejection) to a regulated output voltage. This is important for applications where a DC/DC switching converter is required to lower or raise a battery voltage, but where switching noise cannot be tolerated by sensitive downstream circuits such as in RF applications. The MIC94325/45/55 maintain high power supply ripple rejection (PSRR) with input voltages operating near the output voltage level to improve overall system efficiency. A low-voltage logic enable pin facilitates ON/OFF control at typical GPIO voltage levels.


The MIC94325/45/55 operate from an input voltage of 1.8V to 3.6V. Options include fixed (MIC94345/55) or adjustable (MIC94325) output voltages. The MIC94355 version offers an auto-discharge to discharge the output capacitor when the part is disabled.

Packaged in a 6-pin 1.6 mm x 1.6 mm Thin DFN, the MIC94325/45/55 have a junction operating temperature range of -40° C to $+125^{\circ}$ C.


Package Type

Typical Application Circuit

Functional Block Diagrams

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

Input Voltage (V _{IN})	-0.3V to +4V
Output Voltage (V _{OUT})	
Enable Voltage (V _{EN})	
ESD Rating (Note 1)	

Operating Ratings ††

Input Voltage (V _{IN})+1.8	V to +3.6V
Enable Voltage (V _{EN})	0V to V _{IN}

† Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational sections of this specification is not intended. Exposure to maximum rating conditions for extended periods may affect device reliability.

†† Notice: The device is not guaranteed to function outside its operating ratings.

Note 1: Devices are ESD sensitive. Handling precautions recommended. Human body model, $1.5 \text{ k}\Omega$ in series with 100 pF.

ELECTRICAL CHARACTERISTICS

Electrical Characteristics: $V_{IN} = V_{EN} = V_{OUT} + 500 \text{ mV} (V_{IN} = V_{EN} = 3.6 \text{V for } V_{OUT} \ge 3.1 \text{V})$; $I_{OUT} = 1 \text{ mA}$; $C_{OUT} = 4.7 \text{ }\mu\text{F}$; $T_A = +25^{\circ}\text{C}$, **bold** values are valid for $-40^{\circ}\text{C} \le T_J \le +125^{\circ}\text{C}$, unless noted. Note 1

Parameter	Symbol	Min.	Тур.	Max.	Units	Conditions
Input Voltage	V _{IN}	1.8	—	3.6	V	—
Output Voltage Range	V _{OUT}	1.2	—	3.4	V	MIC94325
Output Voltage Accuracy	—	-3	±1	+3	%	Variation from nominal V _{OUT}
Adjust Reference	V _{ADJ}	_	1.1		V	MIC94325
Dropout		—	10		mV	V _{IN} to V _{OUT} dropout at 50 mA output current
Dropout Voltage	V _{DROP}	—	100	200	mv	V _{IN} to V _{OUT} dropout at 500 mA output current
Load Regulation	ΔV _{OUT}	_	10	_	mV	1 mA to 500 mA
Line Regulation	(ΔV _{OUT} /V _{OUT)} x 100%/ΔV _{IN}	_	0.1	1	%/V	V _{IN} = V _{OUT} + 500 mV to 3.6V, I _{OUT} = 100 mA
Ground Current	I _{GND}		170	250	μA	Ι _{ΟUT} = 100 μΑ
Shutdown Current	I _{EN}	—	0.2	5	μA	V _{EN} = 0V
			85			f = 100 Hz
		_	85	_	1	f = 1 kHz
V _{IN} Ripple Rejection	PSRR		57	_	dB	f = 100 kHz
		_	60	_	1	f = 1 MHz
		_	50	_]	f = 5 MHz
Current Limit	I _{LIMIT}	530	800	1100	mA	V _{OUT} = 0V
Total Output Noise	e _N	_	83	_	μV _{RMS}	10 Hz to 100 kHz
Turn-On Time	t _{ON}	_	100	150	μs	_

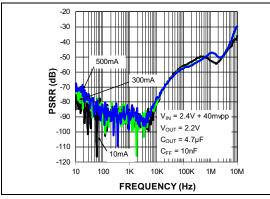
Note 1: Specification for packaged product only.

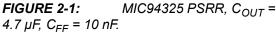
ELECTRICAL CHARACTERISTICS (CONTINUED)

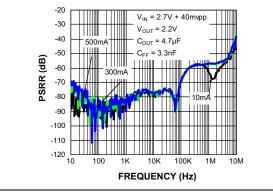
Electrical Characteristics: $V_{IN} = V_{EN} = V_{OUT} + 500 \text{ mV} (V_{IN} = V_{EN} = 3.6 \text{V for } V_{OUT} \ge 3.1 \text{V})$; $I_{OUT} = 1 \text{ mA}$; $C_{OUT} = 4.7 \text{ }\mu\text{F}$; $T_A = +25^{\circ}\text{C}$, **bold** values are valid for $-40^{\circ}\text{C} \le T_J \le +125^{\circ}\text{C}$, unless noted. Note 1

Parameter	Symbol	Min.	Тур.	Max.	Units	Conditions		
Auto Discharge NFET Resistance	R _{DS}	_	50	_	Ω	V _{IN} = 3.6V, V _{EN} = 0V, I _{OUT} = –3 mA MIC94355 Only		
Enable	Enable							
Input Logic Low	V _{EN-LOW}	_	_	0.35	V	_		
Input Logic High	V _{EN_HIGH}	1.0	_	-	V	_		
Input Current	I _{IN}		0.01	1	μA	_		

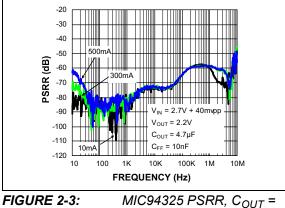
Note 1: Specification for packaged product only.

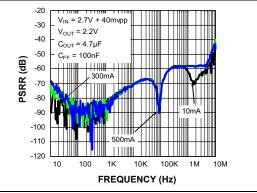

TEMPERATURE SPECIFICATIONS

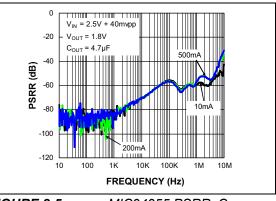

Parameters		Min.	Тур.	Max.	Units	Conditions	
Temperature Ranges							
Junction Temperature Range	TJ	-40		+125	°C	—	
Storage Temperature Range	Τ _S	-65		+150	°C	—	
Lead Temperature	—			+260	°C	Soldering, 10 sec.	
Package Thermal Resistances							
Thermal Resistance, TDFN 6-Ld	θ_{JA}	_	92	—	°C/W	—	

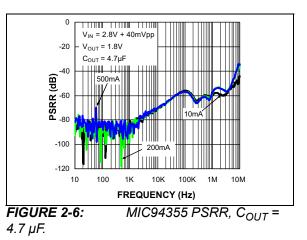

Note 1: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature and the thermal resistance from junction to air (i.e., T_A, T_J, θ_{JA}). Exceeding the maximum allowable power dissipation will cause the device operating junction temperature to exceed the maximum +125°C rating. Sustained junction temperatures above +125°C can impact the device reliability.

2.0 TYPICAL PERFORMANCE CURVES


Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.




FIGURE 2-2: MIC94325 PSRR, C_{OUT} = 4.7 μF, C_{FF} = 3.3 nF.


4.7 μ F, C_{FF} = 10 nF.

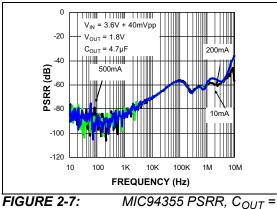


FIGURE 2-4: MIC94325 PSRR, C_{OUT} = 4.7 μ F, C_{FF} = 100 nF.

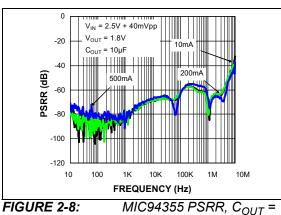
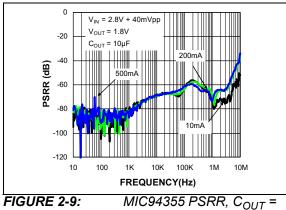
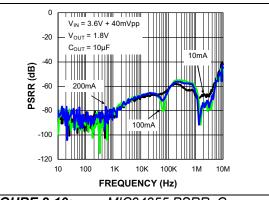


FIGURE 2-5: MIC94355 PSRR, C_{OUT} = 4.7 μF.




4.7 μF.

10 µF.

10 µF.

FIGURE 2-10: MIC94355 PSRR, C_{OUT} = 10 μF.

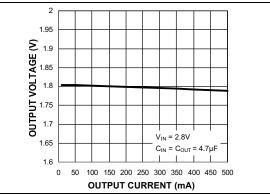


FIGURE 2-11: Output Voltage vs. Output Current.

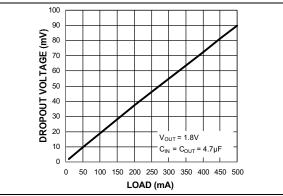
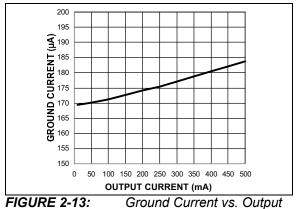
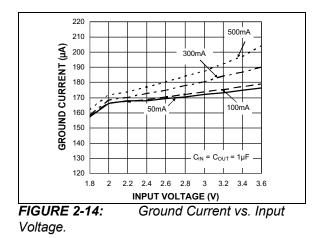
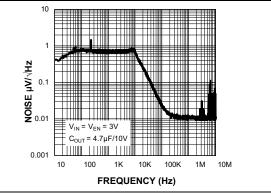
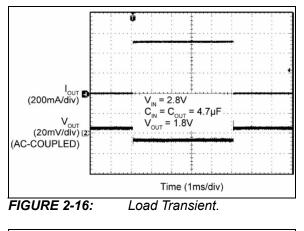
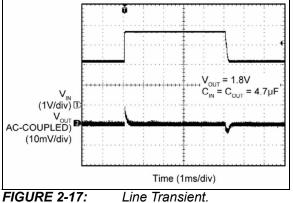
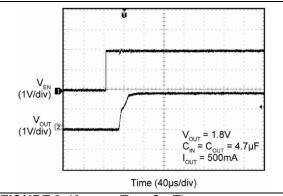
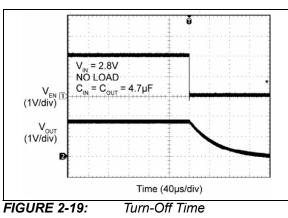




FIGURE 2-12: Dropout Voltage vs. Load.

Current.


FIGURE 2-15: MIC94355YMT Output Noise Spectral Density.

(Auto-Discharge).

3.0 PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 3-1.

Pin Number TDFN, Fixed	Pin Number TDFN, Adj.	Pin Name	Description			
1, 2	1	VOUT	Power Switch Output.			
_	2	ADJ	Adjust input. Connect to resistive divider at VOUT to set the output voltage. Do not leave floating.			
3	3	GND	Ground.			
4	4	EN	Enable Input. A logic HIGH signal on this pin enables the part. Logic LOW disables the part. Do not leave floating.			
5, 6	5, 6	VIN	Power Switch Input and Chip Supply.			
EP	EP	ePAD	Exposed Heatsink Pad. Connect to Ground plane for best thermal performance.			

TABLE 3-1: PIN FUNCTION TABLE

4.0 APPLICATION INFORMATION

The MIC943x5 family of products are very high PSRR, fixed-output, 500 mA LDOs that use Ripple Blocker™ technology. The MIC943x5 are fully protected from damage due to fault conditions, offering linear current limiting and thermal shutdown.

4.1 Input Capacitor

The MIC943x5 are high-performance, high-bandwidth devices. An input capacitor of 4.7 μ F is required from the input to ground to provide stability. Low-ESR ceramic capacitors provide optimal performance at a minimum of space. Additional high-frequency capacitors, such as small-valued NPO dielectric-type capacitors, help filter out high-frequency noise and are good practice in any RF-based circuit. X5R or X7R dielectrics are recommended for the input capacitor. Y5V dielectrics lose most of their capacitance over temperature and are therefore, not recommended.

4.2 Output Capacitor

In order to maintain stability, the MIC943x5 require an output capacitor of 4.7 μ F or greater. For optimal input voltage ripple rejection performance a 4.7 μ F capacitor is recommended. The design is optimized for use with low-ESR ceramic chip capacitors. High-ESR capacitors are not recommended because they may cause high-frequency oscillation. The output capacitor can be increased, but performance has been optimized for a 4.7 μ F ceramic output capacitor and does not improve significantly with larger capacitance.

X7R/X5R dielectric type ceramic capacitors are recommended because of their temperature performance. X7R type capacitors change capacitance by 15% over their operating temperature range and are the most stable type of ceramic capacitors. Z5U and Y5V dielectric capacitors change their value by as much as 50% and 60%, respectively, over their operating temperature ranges. To use a ceramic chip capacitor with the Y5V dielectric, the value must be much higher than an X7R ceramic capacitor to ensure the same minimum capacitance over the equivalent operating temperature range.

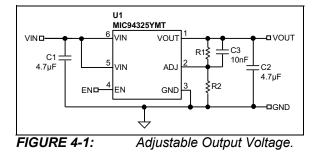
4.3 No Load Stability

The MIC943x5 will remain stable and in regulation with no load. This is especially important in CMOS RAM keep-alive applications.

4.4 Enable/Shutdown

Forcing the enable (EN) pin low disables the MIC943x5 and sends it into a "zero" off mode current state. In this state, current consumed by the MIC943x5 goes nearly to zero. Forcing EN high enables the output voltage. The EN pin uses CMOS technology and cannot be left floating as it could cause an indeterminate state on the output.

For the MIC94325 adjustable part, the turn-on time is affected by the selection of the external feedback resistors and feed-forward capacitor. The relationship is approximately $2.2 \times R2 \times C_{FF}$, where R2 is the bottom resistor (connected from ADJ to GND) and C_{FF} is the capacitor connected across R1 (from VOUT to ADJ). For stability, the feed-forward capacitor must be greater than 1 nF. 10 nF is recommended for best performance.


When disabled, the MIC94355 switches a 50Ω (typical) load on the regulator output to discharge the external capacitors.

4.5 Adjustable Regulator Application

The MIC94325 output voltage can be adjusted by using two external resistors (Figure 4-1). The resistors set the output voltage based on the following equation:

EQUATION 4-1:

$$V_{OUT} = V_{ADJ} \left(1 + \frac{R1}{R2} \right)$$
$$V_{ADJ} = 1.1 V$$

4.6 **Thermal Considerations**

The MIC943x5 are designed to provide 500 mA of continuous current in a very small package. Maximum ambient operating temperature can be calculated based on the output current and the voltage drop across the part. For example if the input voltage is 2.5V, the output voltage is 1.8V, and the output current is 500 mA. The actual power dissipation of the Ripple Blocker[™] can be determined using the equation:

EQUATION 4-2:

$$P_D = (V_{IN} - V_{OUT1}) \times I_{OUT} + V_{IN} \times I_{GND}$$

Because this device is CMOS and the ground current is typically <170 µA over the load range, the power dissipation contributed by the ground current is <1% and can be ignored for this calculation.

EQUATION 4-3:

$$P_D = (2.5V - 1.8V) \times 500mA = 0.35W$$

To determine the maximum ambient operating of temperature the package, use the junction-to-ambient thermal resistance of the device and the following basic equation:

EQUATION 4-4:

$$P_{D(MAX)} = \frac{T_{J(MAX)} - T_A}{\theta_{JA}}$$

Where:
T_{J(MAX)} = 125°C
 θ_{11} = Thermal resistance 92°C/W for the TDE

TDFN Thermal resistance. 92°C/W JA package.

Substituting P_D for $P_{D(MAX)}$ and solving for the ambient operating temperature will give the maximum operating conditions for the regulator circuit.

The maximum power dissipation must not be exceeded for proper operation.

For example, when operating the MIC94325-GYMT at an input voltage of 2.5V and 500 mA load with a minimum footprint layout, the maximum ambient operating temperature T_A can be determined as follows:

EQUATION 4-5:

$$0.35W = (125^{\circ}C - T_A)/(92^{\circ}C/W)$$

$$T_A = 92 °C$$

Therefore, the maximum ambient operating temperature allowed in a 1.6 mm x 1.6 mm Thin DFN package is 92°C. For a full discussion of heat sinking and thermal effects on voltage regulators, refer to the "Regulator Thermals" section of Microchip's Designing with Low-Dropout Voltage Regulators handbook.


5.0 PACKAGING INFORMATION

5.1 Package Marking Information

Legend	Y YY WW NNN @3 *	Product code or customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC [®] designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator (€3) can be found on the outer packaging for this package.
Note:	be carried characters the corpor	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available s for customer-specific information. Package may or may not include rate logo. (_) and/or Overbar () symbol may not be to scale.

Part Number	Marking Code	Output Voltage	Auto-Discharge
MIC94325YMT	2R	Adjustable	No
MIC94345-4YMT	4L	1.2V	No
MIC94345-FYMT	FL	1.5V	No
MIC94345-GYMT	1X	1.8V	No
MIC94345-MYMT	2X	2.8V	No
MIC94345-SYMT	3X	3.3V	No
MIC94355-4YMT	9G	1.2V	Yes
MIC94355-FYMT	0G	1.5V	Yes
MIC94355-GYMT	2G	1.8V	Yes
MIC94355-MYMT	7G	2.8V	Yes
MIC94355-SYMT	8G	3.3V	Yes

APPENDIX A: REVISION HISTORY

Revision A (March 2021)

- Converted Micrel document MIC94325/45/55 to Microchip data sheet template DS20006524A.
- Minor grammatical text changes throughout.
- Removed reference to the 6-Ball CSP package option.
- All schematic and BOM references removed as they are found in the User's Guide for these parts.

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, contact your local Microchip representative or sales office.

					Example	es:	
Device Part No.	- <u>X</u> Output Voltage	<u>X</u> Junction Temp. Range	<u>XX</u> Package	- <u>XX</u> Media Type	a) MIC94	325YMT-TR:	MIC94325, Adjustable Outpu Voltage, –40°C to +125°C Temperature Range, 6-Lead TDFN, 5,000/Reel
Device:	MIC94325 MIC94345 MIC94355	ogy and Ad 5: 500 mA LD ogy and Fix	justable Output O with Ripple B ced Output Volta	locker Technol-	b) MIC94	345-FYMT-T5:	MIC94345, 1.5V Output Voltage, –40°C to +125°C Temperature Range, 6-Lead TDFN, 500/Reel
	<blank> =</blank>		Output Voltage,		c) MIC94	355-SYMT-TR:	MIC94355, 3.3V Output Voltage, –40°C to +125°C Temperature Range, 6-Lead TDFN, 5,000/Reel
Output Voltage:	4 = 1.2V F = 1.5V G = 1.8V M = 2.8V S = 3.3V				d) MIC94	325YMT-T5:	MIC94325, Adjustable Outpu Voltage, –40°C to +125°C Temperature Range, 6-Lead TDFN, 500/Reel
Junction Temperature Range:	Y =	–40°C to +125°C			e) MIC94	345-4YMT-TR:	MIC94345, 1.2V Output Voltage, –40°C to +125°C Temperature Range, 6-Lead TDFN, 5,000/Reel
Package:	MT =	6-Lead 1.6 mm x	1.6 mm TDFN		f) MIC943	355-MYMT-T5:	MIC94355, 2.8V Output Voltage, –40°C to +125°C Temperature Range, 6-Lead TDFN, 500/Reel
Media Type:	TR = T5 =	5,000/Reel 500/Reel			Note 1: Tape and Reel identifier only apper catalog part number description. T used for ordering purposes and is the device package. Check with y Sales Office for package availabilit Tape and Reel option.		ber description. This identifier is g purposes and is not printed on age. Check with your Microchip package availability with the

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specifications contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is secure when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods being used in attempts to breach the code protection features of the Microchip devices. We believe that these methods require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Attempts to breach these code protection features, most likely, cannot be accomplished without violating Microchip's intellectual property rights.
- Microchip is willing to work with any customer who is concerned about the integrity of its code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not
 mean that we are guaranteeing the product is "unbreakable." Code protection is constantly evolving. We at Microchip are
 committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection
 feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or
 other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication is provided for the sole purpose of designing with and using Microchip products. Information regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WAR-RANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDI-RECT, SPECIAL, PUNITIVE, INCIDENTAL OR CONSEQUEN-TIAL LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed Control, HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, Augmented Switching, BlueSky, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, IdealBridge, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, Inter-Chip Connectivity, JitterBlocker, maxCrypto, maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SMART-I.S., storClad, SQI, SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, TSHARC, USBCheck, VariSense, VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2021, Microchip Technology Incorporated, All Rights Reserved.

ISBN: 978-1-5224-7984-0

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 **Technical Support:** http://www.microchip.com/ support

Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733

China - Beijing Tel: 86-10-8569-7000 China - Chengdu

Tel: 86-28-8665-5511 China - Chongqing Tel: 86-23-8980-9588

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460

China - Qingdao Tel: 86-532-8502-7355

China - Shanghai Tel: 86-21-3326-8000

China - Shenyang Tel: 86-24-2334-2829

China - Shenzhen Tel: 86-755-8864-2200

China - Suzhou Tel: 86-186-6233-1526

China - Wuhan Tel: 86-27-5980-5300

China - Xian Tel: 86-29-8833-7252

China - Xiamen Tel: 86-592-2388138 China - Zhuhai

Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444

India - New Delhi Tel: 91-11-4160-8631 India - Pune

Tel: 91-20-4121-0141 Japan - Osaka

Tel: 81-6-6152-7160

Tel: 81-3-6880- 3770

Tel: 82-53-744-4301

Tel: 82-2-554-7200

Tel: 60-3-7651-7906

Tel: 60-4-227-8870

Tel: 63-2-634-9065

Taiwan - Kaohsiung

Thailand - Bangkok

Vietnam - Ho Chi Minh Tel: 84-28-5448-2100

Tel: 31-416-690399 Fax: 31-416-690340

EUROPE

Austria - Wels

Tel: 43-7242-2244-39

Tel: 45-4485-5910

Fax: 45-4485-2829

Tel: 358-9-4520-820

Tel: 33-1-69-53-63-20

Fax: 33-1-69-30-90-79

Germany - Garching

Tel: 49-2129-3766400

Germany - Heilbronn

Germany - Karlsruhe

Tel: 49-7131-72400

Tel: 49-721-625370

Germany - Munich

Tel: 49-89-627-144-0

Fax: 49-89-627-144-44

Germany - Rosenheim

Tel: 49-8031-354-560

Israel - Ra'anana

Italy - Milan

Italy - Padova

Tel: 972-9-744-7705

Tel: 39-0331-742611

Fax: 39-0331-466781

Tel: 39-049-7625286

Netherlands - Drunen

Tel: 49-8931-9700

Germany - Haan

Finland - Espoo

France - Paris

Fax: 43-7242-2244-393

Denmark - Copenhagen

Norway - Trondheim Tel: 47-7288-4388

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

Japan - Tokyo Korea - Daegu

Korea - Seoul

Malaysia - Kuala Lumpur

Malaysia - Penang

Philippines - Manila

Singapore Tel: 65-6334-8870

Taiwan - Hsin Chu Tel: 886-3-577-8366

Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600

Tel: 66-2-694-1351

Affected Catalog Part Numbers(CPN)

MIC94325YMT-T5 MIC94325YMT-TR MIC94345-4YMT-T5 MIC94345-4YMT-TR MIC94345-FYMT-T5 MIC94345-FYMT-TR MIC94345-GYMT-T5 MIC94345-GYMT-TR MIC94345-MYMT-T5 MIC94345-MYMT-TR MIC94345-PYCS-TR MIC94345-SYMT-T5 MIC94345-SYMT-TR MIC94355-4YMT-T5 MIC94355-4YMT-TR MIC94355-FYMT-T5 MIC94355-FYMT-TR MIC94355-GYMT-T5 MIC94355-GYMT-TR MIC94355-MYMT-T5 MIC94355-MYMT-TR MIC94355-OYMT-T5 MIC94355-OYMT-TR MIC94355-SYMT-T5 MIC94355-SYMT-TR