Product Change Notification / SYST-28MDSQ101 | D | a | t | ρ | • | |---|---|---|---|---| | u | a | | C | • | 10-Aug-2020 ### **Product Category:** 16-Bit - Microcontrollers and Digital Signal Controllers ### **PCN Type:** Silicon Die Revision ### **Notification Subject:** ERRATA - dsPIC33CK64MP105 Family Silicon Errata and Data Sheet Clarification #### **Affected CPNs:** SYST-28MDSQ101_Affected_CPN_08102020.pdf SYST-28MDSQ101_Affected_CPN_08102020.csv #### **Notification Text:** SYST-28MDSQ101 Microchip has released a new Product Documents for the dsPIC33CK64MP105 Family Silicon Errata and Data Sheet Clarification of devices. If you are using one of these devices please read the document located at dsPIC33CK64MP105 Family Silicon Errata and Data Sheet Clarification. **Notification Status: Final** **Description of Change:**1) Added silicon revision A2. Impacts to Data Sheet: None Reason for Change: To Improve Productivity Change Implementation Status: Complete Estimated First Ship Date: 10 Aug 2020 NOTE: Please be advised that after the estimated first ship date customers may receive pre and post change parts. | Markings to Distinguish Revised from Unrevised Devices: Traceability Code | |---| | Attachments: | | dsPIC33CK64MP105 Family Silicon Errata and Data Sheet Clarification | | | | Please contact your local Microchip sales office with questions or concerns regarding this notification. | | Terms and Conditions: | | If you wish to <u>receive Microchip PCNs via email</u> please register for our PCN email service at our <u>PCN</u> home page select register then fill in the required fields. You will find instructions about registering for Microchips PCN email service in the <u>PCN FAQ</u> section. | | If you wish to change your PCN profile, including opt out, please go to the PCN home page select login and sign into your myMicrochip account. Select a profile option from the left navigation bar and make the applicable selections. | # dsPIC33CK64MP105 Family Silicon Errata and Data Sheet Clarification The dsPIC33CK64MP105 family devices that you have received conform functionally to the current Device Data Sheet (DS70005363**D**), except for the anomalies described in this document. The silicon issues discussed in the following pages are for silicon revisions with the Device and Revision IDs listed in Table 1. The silicon issues are summarized in Table 2. The errata described in this document will be addressed in future revisions of the dsPIC33CK64MP105 silicon. Note: This document summarizes all silicon errata issues from all revisions of silicon, previous as well as current. Only the issues indicated in the last column of Table 2 apply to the current silicon revision (A2). Data Sheet clarifications and corrections start on page 6, following the discussion of silicon issues. The silicon revision level can be identified using the current version of MPLAB® IDE and Microchip's programmers, debuggers, and emulation tools, which are available at the Microchip corporate website (www.microchip.com). For example, to identify the silicon revision level using MPLAB IDE in conjunction with a hardware debugger: - 1. Using the appropriate interface, connect the device to the hardware debugger. - 2. Open an MPLAB IDE project. - 3. Configure the MPLAB IDE project for the appropriate device and hardware debugger. - 4. Based on the version of MPLAB IDE you are using, do one of the following: - For MPLAB IDE 8, select <u>Programmer ></u> Reconnect. - b) For MPLAB X IDE, select <u>Window > Dashboard</u> and click the **Refresh Debug Tool Status** icon (). - Depending on the development tool used, the part number and Device Revision ID value appear in the **Output** window. **Note:** If you are unable to extract the silicon revision level, please contact your local Microchip sales office for assistance. The DEVREV values for the various dsPIC33CK64MP105 silicon revisions are shown in Table 1. TABLE 1: SILICON DEVREV VALUES | David Normalian | Device ID ⁽¹⁾ | Revision ID for Silicon Revision | | | | | |------------------|--------------------------|----------------------------------|--------|--|--|--| | Part Number | Device ID(*) | Α0 | A2 | | | | | dsPIC33CK32MP102 | 0x8E00 | | | | | | | dsPIC33CK32MP103 | 0x8E01 | | | | | | | dsPIC33CK32MP105 | 0x8E02 | 02000 | 0,000 | | | | | dsPIC33CK64MP102 | 0x8E10 | 0x0000 | 0x0002 | | | | | dsPIC33CK64MP103 | 0x8E11 | | | | | | | dsPIC33CK64MP105 | 0x8E12 | | | | | | **Note 1:** The Device IDs (DEVID and DEVREV) are located at the last two implemented addresses of configuration memory space. They are shown in hexadecimal in the format "DEVID DEVREV". #### TABLE 2: SILICON ISSUE SUMMARY | Module | Feature | Item | Issue Summary | | cted
sions | |------------------------------|-------------------------------------|--------|---|----|---------------| | | | Number | - | A0 | A2 | | I ² C | Interrupt | 1. | In Slave mode, an incorrect interrupt is generated when DHEN = 1. | Х | Х | | I ² C | Idle | 2. | Module SFR registers are reset in Idle mode. | Х | Х | | I ² C | SMBus 3.0 | 3. | When Configuration bit, SMB3EN (FDEVOPT[10]) = 1, the SMBus 3.0 VIH minimum specification may not be met. | Х | | | Oscillator | XT, HS | 4. | Removed. | | | | PWM | Dead Time | 5. | When feed-forward PCI is used for dead-time compensation (DTCMPSEL = 1), the PWMx outputs are overridden. | | Х | | UART | Frame Error | 6. | FERR bit will not get set if a Stop bit is received. | Х | Х | | UART | Sleep | 7. | SLPEN needs to be set when waking from Sleep with a UART reception. | Х | Х | | UART | Address Detect | 8. | When writing to UxP1 with UTXBRK = 1, the content of P1 will not get transmitted. | Х | Х | | UART | IrDA [®] | 9. | When the UART is operating in IrDA mode, the received data may be corrupted. | Х | Х | | 1/0 | POR | 10. | Spike on I/O at POR. | Χ | | | ICSP™ Flash
Write Inhibit | Flash Write Inhibit | 11. | Flash memory cannot be protected against reprogramming. | Χ | | | CPU | FLIM Instruction | 12. | When the operands are of different signs, the FLIM instruction may not force the correct data limit. | Х | Х | | CPU | DIV.SD Instruction | 13. | Overflow bit is not getting set when an overflow occurs. | Χ | Χ | | CPU | MAXAB/MINAB/
MINZAB Instructions | 14. | MAXAB, MINAB and MINZAB do not work for different sign operands. | Х | Х | | CPU | Byte Mode
Instructions | 15. | Upper byte of the destination register may not be persistent. | Х | Х | | DMA | ADC Triggers | 16. | DMA is triggered continuously from ADC. | Х | | | I ² C | I ² C | 17. | All instances of I ² C may exhibit errors and should not be used. | Х | | | Oscillator | | | Х | Х | | #### Silicon Errata Issues Note: This document summarizes all silicon errata issues from all revisions of silicon, previous as well as current. Only the issues indicated by the shaded column in the following tables apply to the current silicon revision (A2). #### 1. Module: I²C In Slave mode with DHEN = 1 (Data Hold Enable), if software sends a NACK, a Slave interrupt is asserted at the 9th falling edge of the clock. #### Work around Software should ignore the Slave interrupt that is asserted after sending a NACK. #### **Affected Silicon Revisions** | A0 | A2 | | | | |----|----|--|--|--| | Χ | Χ | | | | #### 2. Module: I²C In Slave mode, the SFRs are reset when the device is in Idle and the module is set for discontinue in Idle (I2CSIDL = 1). #### Work around None. #### **Affected Silicon Revisions** | A0 | A2 | | | | |----|----|--|--|--| | Х | Х | | | | #### 3. Module: I²C When selecting SMBus 3.0 operation using Configuration bit, SMB3EN (FDEVOPT[10]), the Voltage Input High (VIH) of the SMBus 3.0 specification minimum may not be met. #### Work around None. #### **Affected Silicon Revisions** | A0 | A2 | | | | |----|----|--|--|--| | Χ | | | | | #### 4. Module: Oscillator This errata is no longer applicable to any silicon revisions of this product. See **Section 2.5 External Oscillator Pins** in the current device data sheet for guidance on oscillator design to avoid start-up related issues. #### 5. Module: PWM When feed-forward PCI is used for dead-time compensation (DTCMPSEL = 1), the PWMx outputs are overridden. #### Work around Use Sync PCI (DTCMPSEL = 0) for dead-time compensation. #### **Affected Silicon Revisions** | A0 | A2 | | | | |----|----|--|--|--| | Χ | Χ | | | | #### 6. Module: UART When UART is operating with STSEL[1:0] = 2, (two Stop bits sent, two checked at receive) and STPMD = 0, the FERR bit will not get set if a Stop bit is received. #### Work around Use STPSEL = 3 instead of STSEL = 2. When operating with STSEL = 3 mode, the UART will be configured to send two Stop bits, but check one at receive. #### **Affected Silicon Revisions** | A |) | A2 | | | | |---|---|----|--|--|--| | Х | | Χ | | | | #### 7. Module: UART When waking from Sleep with a UART reception, SLPEN needs to be set in addition to WAKE = 1. #### Work around Set the SPLEN bit in addition to WAKE before entering Sleep. #### Affected Silicon Revisions | A0 | A2 | | | | |----|----|--|--|--| | Χ | Χ | | | | #### 8. Module: UART In UART Address Detect mode, writing to UxP1 with UTXBRK = 1 should cause a Break to be transmitted, followed by the content in P1, but the content of P1 will not get transmitted. #### Work around After writing to P1, wait for UTXBRK to get clear and then rewrite to P1. #### Affected Silicon Revisions | A0 | A2 | | | | |----|----|--|--|--| | Χ | Χ | | | | #### 9. Module: UART When the UART is operating in IrDA® mode, the received data may be corrupted. #### Work around None. #### Affected Silicon Revisions | A0 | A2 | | | | |----|----|--|--|--| | Χ | Χ | | | | #### 10. Module: I/O At device power-up, the I/O pins may drive a pulse up to 0.8V for a duration of up to 100 µSec. #### Work around It is recommended to ensure the circuitry that is connected to the pins can endure this pulse. Example applications affected may include complementary power switches, where a transient current shoot-through might occur. High-voltage applications with complementary switches should power the high-voltage 200 μ Sec later than powering the dsPIC DSC to avoid the issue. Behavior is specific to each part and not affected by aging. #### Affected Silicon Revisions | A0 | A2 | | | | |----|----|--|--|--| | Χ | | | | | #### 11. Module: ICSP™ Flash Write Inhibit The ICSP Write Inhibit feature does not prevent ICSP Flash erase and program operations, even if the lock values are written. #### Work around None. #### **Affected Silicon Revisions** | A0 | A2 | | | | |----|----|--|--|--| | Χ | | | | | #### 12. Module: CPU The FLIM instruction may incorrectly limit the data range when operating on signed operands of different sign values. If the operands are either all negative or all positive, the limit is correct. #### Work around None. #### Affected Silicon Revisions | A0 | A2 | | | | |----|----|--|--|--| | Χ | Χ | | | | #### 13. Module: CPU When using the Signed 32-by-16-bit Division instruction, DIV.SD, the Overflow bit may not always get set when an overflow occurs. #### Work around Test for and handle overflow conditions outside of the div.sd instruction. #### Affected Silicon Revisions | A0 | A2 | | | | |----|----|--|--|--| | Х | Χ | | | | #### 14. Module: CPU When operating on signed operands of different sign values, the output for MAXAB, MINAB and MINZAB instructions may be incorrect. If the operands are either all negative or all positive, the output is correct. #### Work around None. #### Affected Silicon Revisions | A0 | A2 | | | | |----|----|--|--|--| | Χ | Χ | | | | #### 15. Module: CPU When using Byte mode instructions, the upper byte of the destination register may not be persistent. #### Work around None. #### **Affected Silicon Revisions** | A0 | A2 | | | | |----|----|--|--|--| | Χ | Χ | | | | #### 16. Module: DMA The DMA receives multiple continuous triggers from ADC until the trigger event from ADC is cleared. The OVRUNIF flag (DMAINTn[3]) will be set. When the OVRUNIF bit changes state, from '0' to '1', a DMA interrupt is generated. #### Work around Ignore the OVRUNIF bit and the first DMA interrupt. Clear the ADC trigger source, ANXRDY, with a DMA read of the ADC buffer, ADCBUFX, for the corresponding ADC channel. #### **Affected Silicon Revisions** | A0 | A2 | | | | |----|----|--|--|--| | Χ | | | | | #### 17. Module: I²C All instances of I²C/SMBus may exhibit errors and should not be used. When operating I²C/SMBus in a noisy environment, the I²C module may exhibit various errors. These errors may include, but are not limited to, corrupted data, unintended interrupts or the I²C bus getting hung up due to injected noise. Examples of system noise include, but are not limited to, PWM outputs or other pins toggled at high speed adjacent to the I²C pins. Both Master and Slave I²C/SMBus modes may exhibit this issue. #### Work around If I²C is required, use a software I²C implementation. An example I²C software library is available from Microchip: www.microchip.com/dsPIC33C_I2C_SoftwareLibrary #### Affected Silicon Revisions | A0 | A2 | | | | |----|----|--|--|--| | Х | | | | | #### 18. Module: Oscillator At PLL start-up, the main and auxiliary PLL VCO dividers may occasionally halt and not provide a clock output. The VCO and AVCO dividers can be selected as clock sources for different peripheral modules, including the ADC, PWM, DAC, UART, etc. VCO and AVCO dividers, FvCO/2, FvCO/3, FvCO/4, FvCODIV, AFvCO/2, AFvCO/3, AFvCO/4 and AFvCODIV outputs, are affected. #### Work around - Use another clock source, such as the FOSC, PLL or APLL output (FPLLO and AFPLLO) instead of the VCO or AVCO dividers. - If the application requires the VCO or AVCO divider, test this clock source. System resources, such as a timer, I/O pin state or interrupts can be used to detect and verify peripheral activity for presence of the VCO divider clock output. Any type of Reset may recover the VCO divider clock (Software Reset, WDT, MCLR or POR). #### Affected Silicon Revisions | A0 | A2 | | | | |----|----|--|--|--| | Χ | Χ | | | | #### **Data Sheet Clarifications** The following typographic corrections and clarifications are to be noted for the latest version of the device data sheet (DS70005363**D**): **Note:** Corrections are shown in **bold**. Where possible, the original bold text formatting has been removed for clarity. That been fernieved for t None. ## APPENDIX A: DOCUMENT REVISION HISTORY Rev A Document (1/2019) Initial version of this document; issued for revision A0. Rev B Document (2/2019) Updated device data sheet revision from B to C. Rev C Document (3/2019) Added silicon issue 16 (DMA). Rev D Document (1/2020) Added silicon issue 17 (I²C). Rev E Document (6/2020) Added silicon issue 18 (Oscillator). Removed silicon issue 4 (Oscillator) since it is no longer applicable. Rev F Document (7/2020) Added silicon revision A2. **NOTES:** #### Note the following details of the code protection feature on Microchip devices: - · Microchip products meet the specification contained in their particular Microchip Data Sheet. - Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions. - There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property. - Microchip is willing to work with the customer who is concerned about the integrity of their code. - Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable." Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act. Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated. #### **Trademarks** The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TempTrackr, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed Control, HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, Vite, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A. Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BlueSky, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. SQTP is a service mark of Microchip Technology Incorporated in the U.S.A. The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries. GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries. All other trademarks mentioned herein are property of their respective companies. © 2019-2020, Microchip Technology Incorporated, All Rights Reserved. ISBN: 978-1-5224-6483-9 For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality. ### Worldwide Sales and Service #### **AMERICAS** Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455 Austin, TX Tel: 512-257-3370 Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088 Chicago Itasca, IL Tel: 630-285 Tel: 630-285-0071 Fax: 630-285-0075 **Dallas** Addison, TX Tel: 972-818-7423 Fax: 972-818-2924 **Detroit** Novi, MI Tel: 248-848-4000 Houston, TX Tel: 281-894-5983 Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380 Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800 **Raleigh, NC** Tel: 919-844-7510 New York, NY Tel: 631-435-6000 San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270 Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078 #### ASIA/PACIFIC Australia - Sydney Tel: 61-2-9868-6733 **China - Beijing** Tel: 86-10-8569-7000 **China - Chengdu** Tel: 86-28-8665-5511 **China - Chongqing** Tel: 86-23-8980-9588 **China - Dongguan** Tel: 86-769-8702-9880 China - Guangzhou Tel: 86-20-8755-8029 China - Hangzhou Tel: 86-571-8792-8115 China - Hong Kong SAR Tel: 852-2943-5100 China - Nanjing Tel: 86-25-8473-2460 China - Qingdao Tel: 86-532-8502-7355 China - Shanghai Tel: 86-21-3326-8000 China - Shenyang Tel: 86-24-2334-2829 **China - Shenzhen** Tel: 86-755-8864-2200 **China - Suzhou** Tel: 86-186-6233-1526 China - Wuhan Tel: 86-27-5980-5300 China - Xian Tel: 86-29-8833-7252 China - Xiamen Tel: 86-592-2388138 **China - Zhuhai** Tel: 86-756-3210040 #### ASIA/PACIFIC India - Bangalore Tel: 91-80-3090-4444 India - New Delhi Tel: 91-11-4160-8631 India - Pune Tel: 91-20-4121-0141 **Japan - Osaka** Tel: 81-6-6152-7160 **Japan - Tokyo** Tel: 81-3-6880- 3770 Korea - Daegu Tel: 82-53-744-4301 Korea - Seoul Tel: 82-2-554-7200 **Malaysia - Kuala Lumpur** Tel: 60-3-7651-7906 Malaysia - Penang Tel: 60-4-227-8870 Philippines - Manila Tel: 63-2-634-9065 **Singapore** Tel: 65-6334-8870 **Taiwan - Hsin Chu** Tel: 886-3-577-8366 Taiwan - Kaohsiung Tel: 886-7-213-7830 **Taiwan - Taipei** Tel: 886-2-2508-8600 Thailand - Bangkok Tel: 66-2-694-1351 Vietnam - Ho Chi Minh Tel: 84-28-5448-2100 #### **EUROPE** Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 **Denmark - Copenhagen** Tel: 45-4485-5910 Fax: 45-4485-2829 Finland - Espoo Tel: 358-9-4520-820 France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79 Germany - Garching Tel: 49-8931-9700 **Germany - Haan** Tel: 49-2129-3766400 Germany - Heilbronn Tel: 49-7131-72400 Germany - Karlsruhe Tel: 49-721-625370 **Germany - Munich** Tel: 49-89-627-144-0 Fax: 49-89-627-144-44 Germany - Rosenheim Tel: 49-8031-354-560 **Israel - Ra'anana** Tel: 972-9-744-7705 Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781 Italy - Padova Tel: 39-049-7625286 **Netherlands - Drunen** Tel: 31-416-690399 Fax: 31-416-690340 Norway - Trondheim Tel: 47-7288-4388 **Poland - Warsaw** Tel: 48-22-3325737 Spain - Madrid Romania - Bucharest Tel: 40-21-407-87-50 Tel: 34-91-708-08-90 Fax: 34-91-708-08-91 **Sweden - Gothenberg** Tel: 46-31-704-60-40 Sweden - Stockholm Tel: 46-8-5090-4654 **UK - Wokingham** Tel: 44-118-921-5800 Fax: 44-118-921-5820 #### Affected Catalog Part Numbers(CPN) DSPIC33CK32MP102-E/2N DSPIC33CK32MP102-E/M6 DSPIC33CK32MP102-E/SS DSPIC33CK32MP102-H/2N DSPIC33CK32MP102-H/M6 DSPIC33CK32MP102-H/SS DSPIC33CK32MP102-I/2N DSPIC33CK32MP102-I/M6 DSPIC33CK32MP102-I/SS DSPIC33CK32MP102T-E/2N DSPIC33CK32MP102T-E/M6 DSPIC33CK32MP102T-E/SS DSPIC33CK32MP102T-I/2N DSPIC33CK32MP102T-I/M6 DSPIC33CK32MP102T-I/SS DSPIC33CK32MP103-E/M5 DSPIC33CK32MP103-H/M5 DSPIC33CK32MP103-I/M5 DSPIC33CK32MP103T-E/M5 DSPIC33CK32MP103T-I/M5 DSPIC33CK32MP105-E/M4 DSPIC33CK32MP105-E/PT DSPIC33CK32MP105-H/M4 DSPIC33CK32MP105-H/PT DSPIC33CK32MP105-I/M4 DSPIC33CK32MP105-I/PT DSPIC33CK32MP105T-E/M4 DSPIC33CK32MP105T-E/PT DSPIC33CK32MP105T-I/M4 DSPIC33CK32MP105T-I/PT DSPIC33CK64MP102-E/2N DSPIC33CK64MP102-E/M6 DSPIC33CK64MP102-E/SS DSPIC33CK64MP102-E/SSVAO DSPIC33CK64MP102-H/2N DSPIC33CK64MP102-H/M6 DSPIC33CK64MP102-H/SS DSPIC33CK64MP102-I/2N DSPIC33CK64MP102-I/M6 DSPIC33CK64MP102-I/SS DSPIC33CK64MP102T-E/2N DSPIC33CK64MP102T-E/M6 DSPIC33CK64MP102T-E/SS DSPIC33CK64MP102T-I/2N DSPIC33CK64MP102T-I/M6 DSPIC33CK64MP102T-I/SS DSPIC33CK64MP103-E/M5 DSPIC33CK64MP103-H/M5 DSPIC33CK64MP103-I/M5 DSPIC33CK64MP103T-E/M5 DSPIC33CK64MP103T-I/M5 DSPIC33CK64MP105-E/M4 DSPIC33CK64MP105-E/PT DSPIC33CK64MP105-E/PTVAO DSPIC33CK64MP105-H/M4 DSPIC33CK64MP105-H/PT DSPIC33CK64MP105-I/M4 DSPIC33CK64MP105-I/PT DSPIC33CK64MP105T-E/M4 DSPIC33CK64MP105T-E/PT DSPIC33CK64MP105T-I/M4 DSPIC33CK64MP105T-I/PT