

Product Change Notification - SYST-20CSDX683

Date:

26 Jul 2019

Product Category:

Clock and Timing - Clock and Data Distribution

Affected CPNs:

🏗 📳

Notification subject:

Data Sheet - SY58607U Data Sheet

Notification text:

SYST-20CSDX683

Microchip has released a new DeviceDoc for the SY58607U Data Sheet of devices. If you are using one of these devices please read the document located at <u>SY58607U Data Sheet</u>.

Notification Status: Final

Description of Change: 1) Converted Micrel document SY58607U to Microchip data sheet

template DS20006227A. 2) Minor text changes throughout.

Impacts to Data Sheet: None

Reason for Change: To Improve Manufacturability

Change Implementation Status: Complete

Date Document Changes Effective: 26 July 2019

NOTE: Please be advised that this is a change to the document only the product has not been

changed.

Markings to Distinguish Revised from Unrevised Devices: N/A

Attachment(s):

SY58607U Data Sheet

Please contact your local Microchip sales office with questions or concerns regarding this notification.

Terms and Conditions:

If you wish to receive Microchip PCNs via email please register for our PCN email service at our PCN home page select register then fill in the required fields. You will find instructions about registering for Microchips PCN email service in the PCN FAQ section.

If you wish to change your PCN profile, including opt out, please go to the PCN home page select login and sign into your myMicrochip account. Select a profile option from the left navigation bar and make the applicable selections.

3.2 Gbps Precision, 1:2 LVPECL Fanout Buffer with Internal Termination and Fail Safe Input

Features

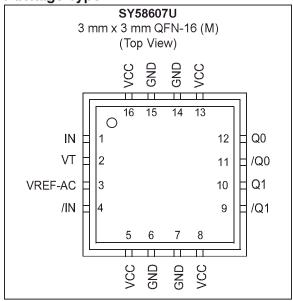
- · Precision 1:2, 800 mV LVPECL Fanout Buffer
- Guaranteed AC Performance over Temperature and Voltage:
 - DC-to >3.2 Gbps Throughput
 - <350 ps Propagation Delay (IN-to-Q)
 - <20 ps Within-Device Skew
 - <110 ps Rise/Fall Times
- · Fail Safe Input
 - Prevents Outputs From Oscillating When Input is Invalid
- · Ultra-Low Jitter Design
 - 41 fs Additive Phase Jitter
- · High-Speed LVPECL Outputs
- 2.5V ±5% or 3.3V ±10% Power Supply Operation
- Industrial Temperature Range: -40°C to +85°C
- Available in 16-lead (3 mm x 3 mm) QFN Package

Applications

- · All SONET Clock and Data Distribution
- · Fibre Channel Clock and Data Distribution
- · Gigabit Ethernet Clock And Data Distribution
- · Backplane Distribution

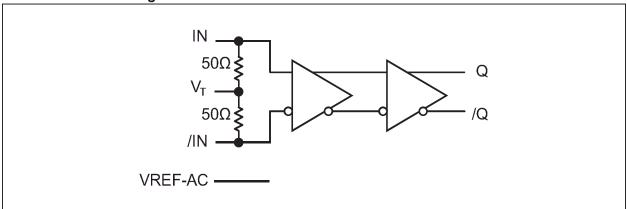
Markets

- · Storage
- ATE
- · Test and Measurement
- · Enterprise Networking Equipment
- · High-End Servers
- Access
- Metro Area Network Equipment


General Description

The SY58607U is a 2.5V/3.3V, high-speed, fully differential 1:2 LVPECL fanout buffer optimized to provide two identical output copies with less than 20 ps of skew. The SY58607U can process clock signals as fast as 2.5 GHz or data patterns up to 3.2 Gbps.

The differential input includes Microchip's unique, 3-lead input termination architecture that interfaces to LVPECL, LVDS, or CML differential signals, (AC- or DC-coupled) as small as 100 mV (200 mV_{PP}) without any level-shifting or termination resistor networks in the signal path. For AC-coupled input interface applications, an integrated voltage reference (VREF-AC) is provided to bias the VT pin. The outputs are 800 mV LVPECL, with extremely fast rise/fall times guaranteed to be less than 110 ps.


The SY58607U operates from a 2.5V $\pm 5\%$ supply or 3.3V $\pm 10\%$ supply and is guaranteed over the full industrial temperature range (-40° C to $+85^{\circ}$ C). For applications that require CML or LVDS outputs, consider Microchip's SY58606U and SY58608U, 1:2 fanout buffers with 400 mV and 325 mV output swings respectively. The SY58607U is part of Microchip's high-speed, Precision Edge® product line.

Package Type

United States Patent No. RE44,134

Functional Block Diagram

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

Supply Voltage (V _{CC}) Input Voltage (V _{IN})	0.5V to +4.0V 0.5V to V _{CC}
LVPECL Output Current (I _{OUT}) Continuous	50 mA
Surge	100 mA
Current (I_{VT})	
Source or Sink on VT Pin	±100 mA
Input Current	
Source or Sink Current on IN, /IN	±50 mA
Current (I _{RFF})	
Source or Sink Current on VREF-AC (Note 1)	±1.5 mA
Operating Ratings ††	
Supply Voltage (V _{CC})	+2.375V to +3.60V

[†] Notice: Permanent device damage may occur if absolute maximum ratings are exceeded. This is a stress rating only and functional operation is not implied at conditions other than those detailed in the operational sections of this data sheet. Exposure to absolute maximum ratings conditions for extended periods may affect device reliability.

^{††} Notice: The data sheet limits are not guaranteed if the device is operated beyond the operating ratings.

Note 1: Due to the limited drive capability, use for input of the same package only.

DC ELECTRICAL CHARACTERISTICS (Note 1)

Electrical Characteristics: $T_A = -40^{\circ}C$ to +85°C, unless otherwise stated.

Parameters	Sym.	Min.	Тур.	Max.	Units	Conditions
Power Supply Voltage	W	2.375	2.5	2.625	V	
Range	V _{CC}	3.0	3.3	3.6	V	
Power Supply Current	Icc	_	40	60	mΑ	No load, max. V _{CC}
Differential Input Resistance (IN-to-/IN)	R _{DIFF_IN}	90	100	110	Ω	_
Input HIGH Voltage (IN, /IN)	V _{IH}	V _{CC} – 1.6	_	V _{CC}	٧	IN, /IN, Note 2
Input LOW Voltage (IN, /IN)	V_{IL}	0	_	V _{IH} – 0.1	V	IN, /IN
Input Voltage Swing (IN, /IN)	V _{IN}	0.1	_	1.7	V	See Figure 5-5, Note 3
Differential Input Voltage Swing (IN - /IN)	V _{DIFF_IN}	0.2	_	ı	V	See Figure 5-6
Input Voltage Threshold that Triggers FSI	V _{IN_FSI}	_	30	100	mV	_
Output Reference Voltage	V _{REF-AC}	V _{CC} - 1.3	V _{CC} – 1.2	V _{CC} -1.1	V	_
Voltage from Input to VT	V_{T_IN}	_	_	1.28	٧	_

Note 1: The circuit is designed to meet the DC specifications shown in the above table after thermal equilibrium has been established.

- 2: V_{IH(MIN)} not lower than 1.2V.
- 3: V_{IN(MAX)} is specified when VT is floating.

LVPECL OUTPUTS DC ELECTRICAL CHARACTERISTICS (Note 1)

Electrical Characteristics: V_{CC} = +2.5V ±5% or +3.3V ±10%, R_L = 50 Ω to V_{CC} - 2V; T_A = -40°C to +85°C, unless otherwise stated.

Parameter	Symbol	Min.	Тур.	Max.	Units	Condition
Output High Voltage	V _{OH}	V _{CC} – 1.145	_	V _{CC} - 0.895	V	_
Output Low Voltage	V _{OL}	V _{CC} – 1.945	_	V _{CC} – 1.695	V	_
Output Voltage Swing	V _{OUT}	550	800	950	mV	See Figure 5-5
Differential Output Voltage Swing	V _{DIFF_OUT}	1100	1600	_	mV	See Figure 5-6

Note 1: The circuit is designed to meet the DC specifications shown in the above table after thermal equilibrium has been established.

AC ELECTRICAL CHARACTERISTICS

Electrical Characteristics: V_{CC} = +2.5V ±5% or +3.3V ±10%, R_L = 50 Ω to V_{CC} – 2V; Input t_r/t_f : \leq 300 ps; T_A = -40°C to +85°C, unless otherwise stated.

Parameter	Symbol	Min.	Тур.	Max.	Units	Condition	
Maximum Frequency	f _{MAX}	3.2	4.25	_	Gbps	NRZ (Data)	
I waxiinuiii i requelicy		2.5	3.0	_	GHz	V _{OUT} > 400 mV (Clock)	
Propagation Delay	t _{PD}	180	300	450	ps	V _{IN} : 100 mV - 200 mV	
IN-to-Q	ΨD	150	230	350	ps	V _{IN} : 200 mV - 800 mV	
Within Device Skew	t _{SKEW}	_	4	20	ps	Note 1	
Part-to-Part Skew	SKEW	_	_	135	ps	Note 2	
RMS Phase Jitter		_	47	_		622 MHz Integration Range: 12 kHz to 20 MHz	
	t _{UITTER}	_	159	_	fs	156.25 MHz Integration Range: 12 kHz to 20 MHz	
		_	290	_		100 MHz Integration Range: 12 kHz to 20 MHz	
		_	41	_	fs	622 MHz Integration Range: 12 kHz to 20 MHz	
Additive Phase Jitter			152			fs	156.25 MHz Integration Range: 12 kHz to 20 MHz
		_	282	_		100 MHz Integration Range: 12 kHz to 20 MHz	
Output Rise/Fall Time (20% to 80%)	t _{r,} t _f	40	75	110	ps	At full output swing	
Duty Cycle	_	47		53	%	Differential I/O	

Note 1: Within-Device skew is measured between two different outputs under identical input transitions.

^{2:} Part-to-Part skew is defined for two parts with identical power supply voltages at the same temperature and no skew at the edges at the respective inputs.

TEMPERATURE SPECIFICATIONS

Parameters	Sym.	Min.	Тур.	Max.	Units	Conditions		
Temperature Ranges								
Operating Ambient Temperature Range	T _A	-40	_	+85	°C	_		
Maximum Operating Junction Temperature	TJ	_	_	+125	°C	_		
Lead Temperature	_	_	_	+260	°C	Soldering, 20 sec.		
Storage Temperature Range	T _S	-65	_	+150	°C	_		
Package Thermal Resistances (Note 1)								
Thermal Resistance, 3x3 QFN-16Ld	θ_{JA}	_	60	_	°C/W	Still-air		
	ΨЈВ	_	33	_	°C/W	Junction-to-board		

Note 1: Package thermal resistance assumes exposed pad is soldered (or equivalent) to the device's most negative potential on the PCB. ψ_{JB} and θ_{JA} values are determined for a 4-layer board in still-air number, unless otherwise stated.

2.0 TYPICAL PERFORMANCE CURVES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

 V_{CC} = 3.3V, GND = 0V, R_L = 50 Ω to V_{CC} – 2V, T_A = +25°C, unless otherwise stated.

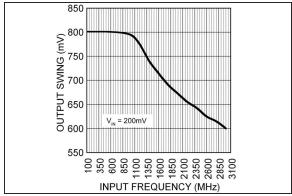


FIGURE 2-1: Frequency Response.

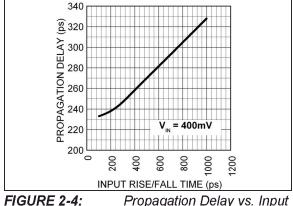


FIGURE 2-4: Propagation Delay vs. Input Rise/Fall Time.

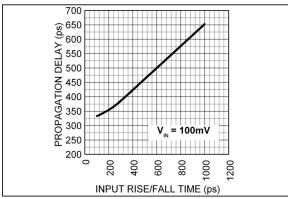


FIGURE 2-2: Propagation Delay vs. Input Rise/Fall Time.

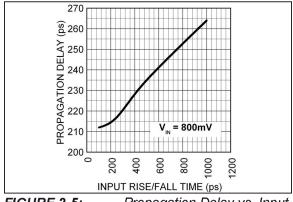


FIGURE 2-5: Propagation Delay vs. Input
Rise/Fall Time.

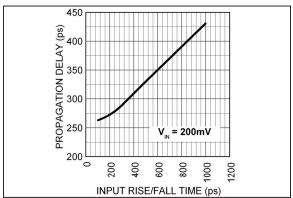


FIGURE 2-3: Propagation Delay vs. Input Rise/Fall Time.

 V_{CC} = 3.3V, GND = 0V, V_{IN} = 400 mV, Data Pattern: 2^{23} -1, R_L = 50Ω to V_{CC} – 2V, T_A = +25°C, unless otherwise stated.

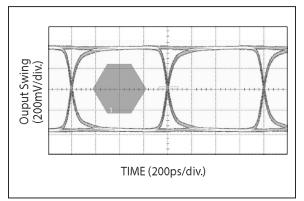


FIGURE 2-6: 1.25 Gbps Data.

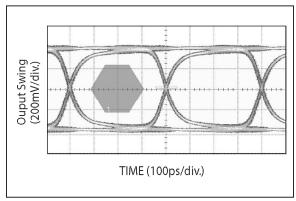


FIGURE 2-7: 2.5 Gbps Data.

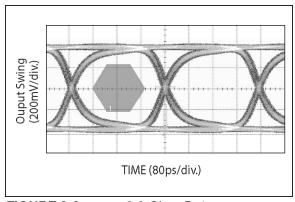


FIGURE 2-8: 3.2 Gbps Data.

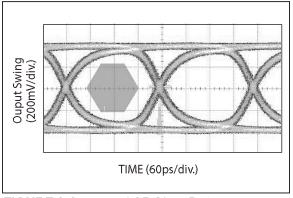


FIGURE 2-9: 4.25 Gbps Data.

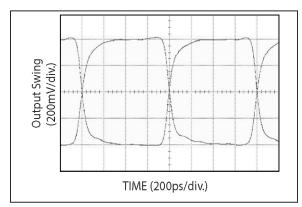
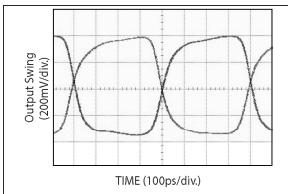



FIGURE 2-10: 625 MHz Clock.

FIGURE 2-11: 1.25 GHz Clock.

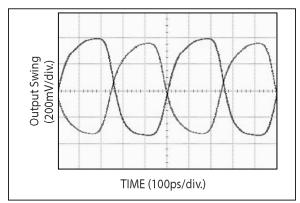


FIGURE 2-12: 2 GHz Clock.

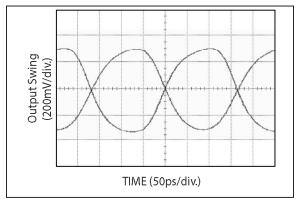


FIGURE 2-13: 3 GHz Clock.

3.0 PHASE NOISE PLOTS

 $V_{CC} = +3.3V$, $T_A = +25$ °C.

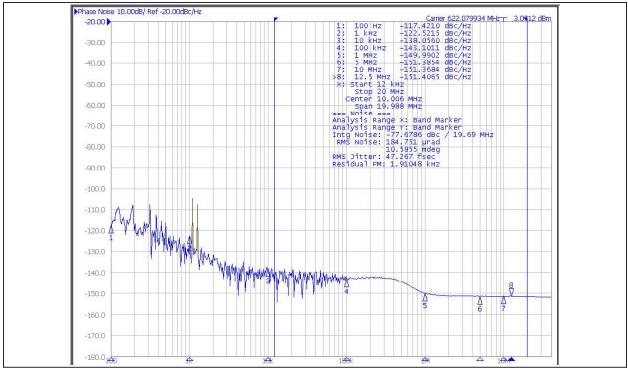


FIGURE 3-1: 622 MHz Phase Jitter, Device.

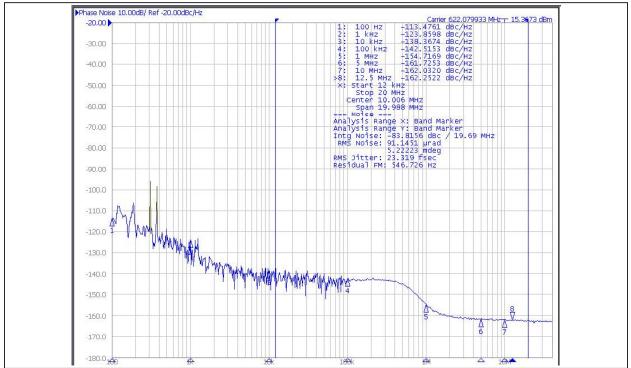


FIGURE 3-2: 622 MHz Phase Jitter, Source.

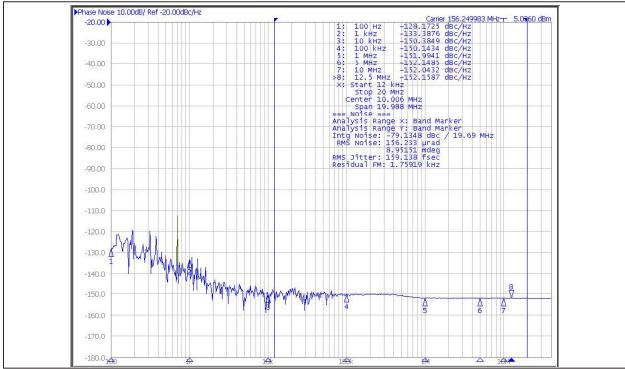


FIGURE 3-3: 156.25 MHz Phase Jitter, Device.

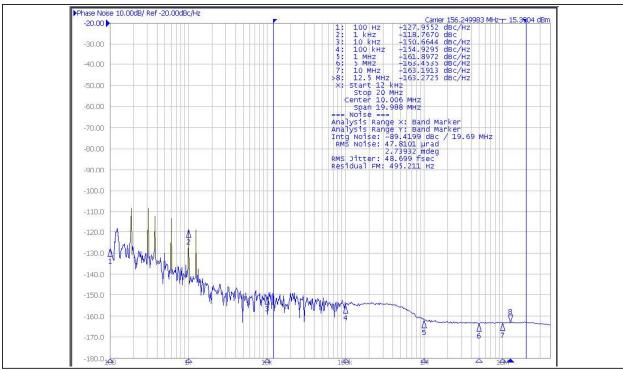


FIGURE 3-4: 156.25 MHz Phase Jitter, Source.

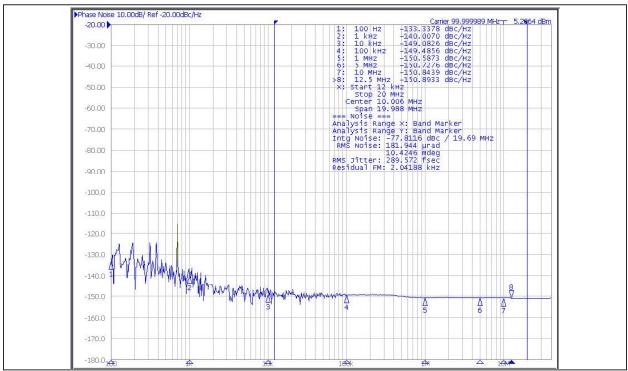


FIGURE 3-5: 100 MHz Phase Jitter, Device.

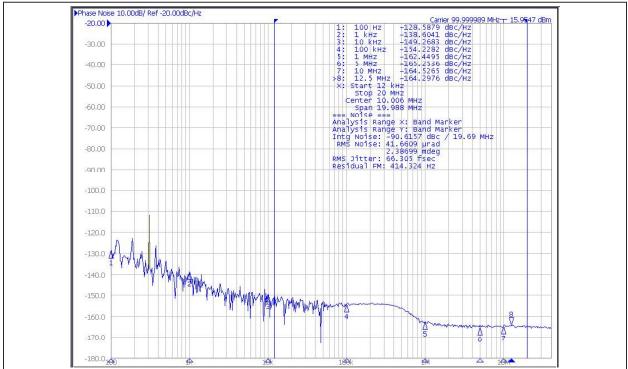


FIGURE 3-6: 100 MHz Phase Jitter, Source.

4.0 PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 4-1.

TABLE 4-1: PIN FUNCTION TABLE

Pin Number	Symbol	Description
1, 4	IN, /IN	Differential Input: This input pair is the differential signal input to the device. Input accepts DC-coupled differential signals as small as 100 mV (200 mV _{PP}). Each pin of this pair internally terminates with 50 Ω to the VT pin. If the input swing falls below a certain threshold (typical 30 mV), the Fail Safe Input (FSI) feature will guarantee a stable output by latching the output to its last valid state. See the Input Interface Applications section.
2	VT	Input Termination Center Tap: Each side of the differential input pair terminates to the VT pin. This pin provides a center-tap to a termination network for maximum interface flexibility. See the Input Interface Applications section.
3	VREF-AC	Reference Voltage: This output biases to V_{CC} – 1.2V. It is used for AC-coupling inputs IN and /IN. Connect VREF-AC directly to the VT pin. Bypass with 0.01 μ F low-ESR capacitor to VCC. Maximum sink/source current is ± 1.5 mA. See the Input Interface Applications section.
5, 8,13, 16	VCC	Positive Power Supply: Bypass with 0.1 µF//0.01 µF low-ESR capacitors as close to the VCC pins as possible.
6, 7, 14, 15	GND, Exposed pad	Ground: Exposed pad must be connected to a ground plane that is the same potential as the ground pins.
9, 10 11, 12	/Q1, Q1 /Q0, Q0	LVPECL Differential Output Pairs: Differential buffered copies of the input signal. The output swing is typically 800 mV. Unused output pair may be left floating with no impact on jitter. See the LVPECL Output Termination section.

5.0 FUNCTIONAL DESCRIPTION

5.1 Fail-Safe Input (FSI)

The input includes a special fail-safe circuit to sense the amplitude of the input signal and to latch the outputs when there is no input signal present or when the amplitude of the input signal drops sufficiently below 100 mV $_{PK}$ (200 mV $_{PP}$), typically 30 mV $_{PK}$. Maximum frequency of SY58607U is limited by the FSI function.

5.2 Input Clock Failure Case

If the input clock fails to a floating, static, or extremely low signal swing, the FSI function will eliminate a metastable condition and guarantee a stable output. No ringing and no undetermined state will occur at the output under these conditions.

Note that the FSI function will not prevent duty cycle distortion in case of a slowly deteriorating (but still toggling) input signal. Due to the FSI function, the propagation delay will depend on rise and fall time of the input signal and on its amplitude. Refer to the Typical Performance Curves section for detailed information.

Timing Diagrams

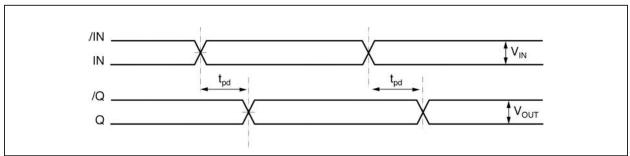


FIGURE 5-1: Propagation Delay.

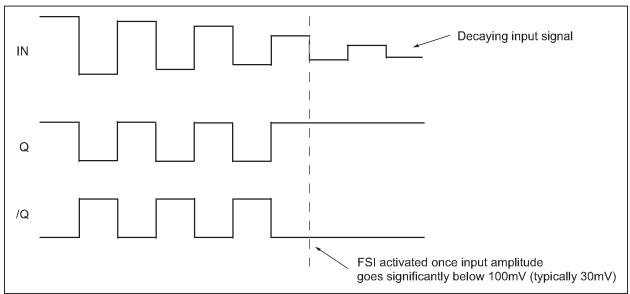


FIGURE 5-2: Fail Safe Feature.

Input and Output Stage

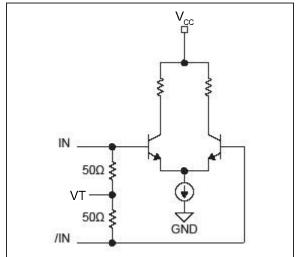


FIGURE 5-3: Simplified Differential Input Buffer.

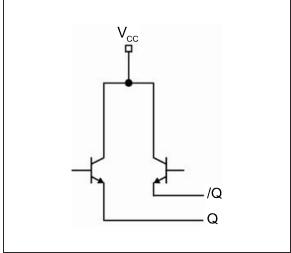


FIGURE 5-4: Simplified LVPECL Output Buffer.

Single-Ended and Differential Swings

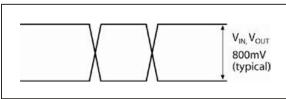


FIGURE 5-5: Single-Ended Swing.

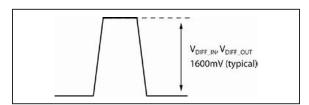


FIGURE 5-6: Differential Swing.

6.0 INPUT INTERFACE APPLICATIONS

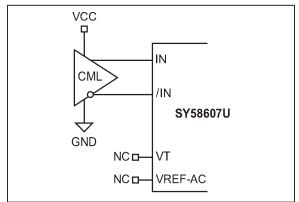


FIGURE 6-1: CML Interface (DC-Coupled) May connect VT to VCC.

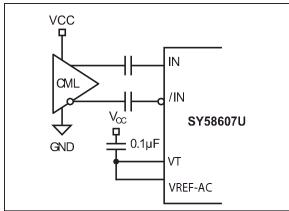
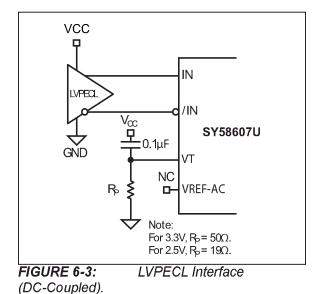



FIGURE 6-2: CML Interface (AC-Coupled).

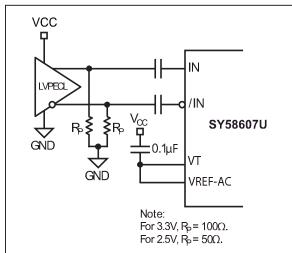


FIGURE 6-4: LVPECL Interface (AC-Coupled).

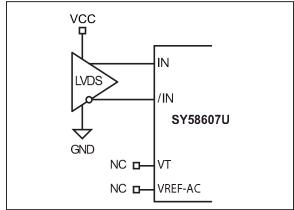


FIGURE 6-5: LVDS Interface (DC-Coupled).

7.0 LVPECL OUTPUT TERMINATION

LVPECL outputs have very low output impedance (open emitter), and small signal swing which results in low EMI. LVECL is ideal for driving 50Ω and 100Ω -controlled impedance transmission lines. There are several techniques in terminating the LVPECL output, as shown in Figure 7-1 and Figure 7-2.

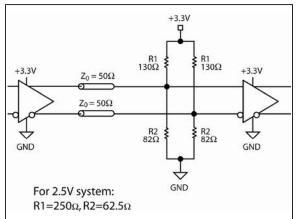


FIGURE 7-1: Parallel Termination: Thevenin Equivalent.

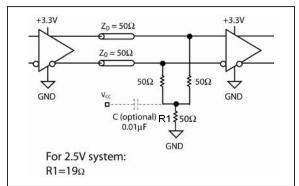


FIGURE 7-2: Three-Resistor "Y-Termination".

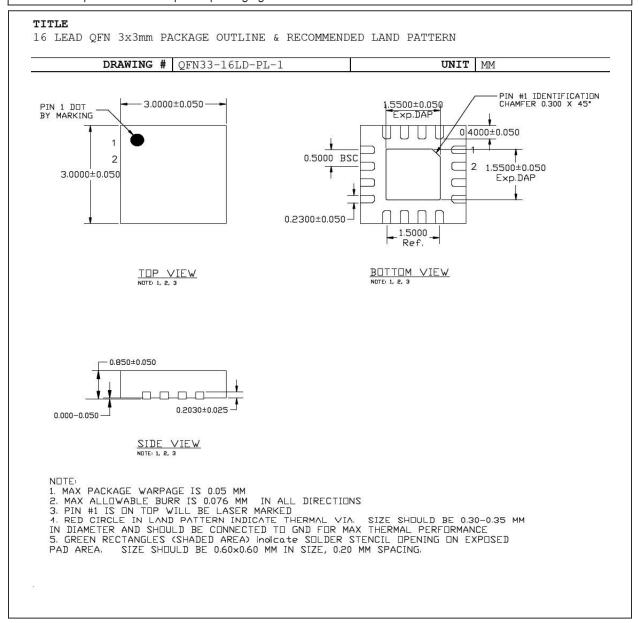
8.0 PACKAGING INFORMATION

8.1 Package Marking Information

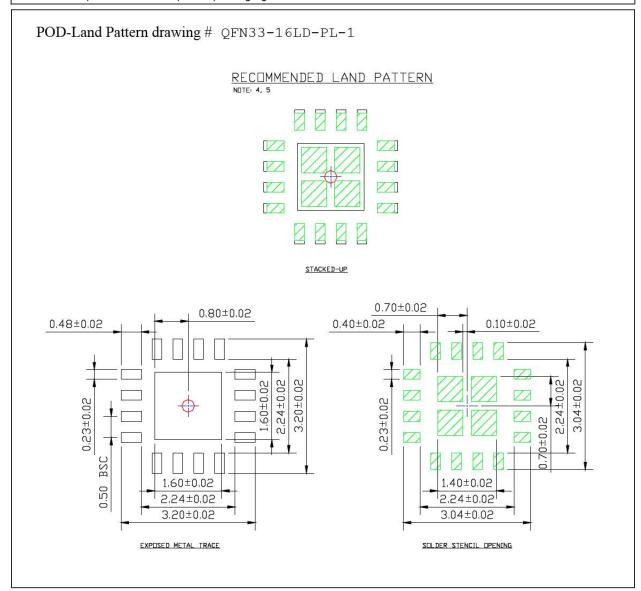
16-Lead QFN*

Example

Legend: XX...X Product code or customer-specific information
Y Year code (last digit of calendar year)
YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week '01')
NNN Alphanumeric traceability code


(e3 Pb-free JEDEC® designator for Matte Tin (Sn)
* This package is Pb-free. The Pb-free JEDEC designator (e3)
can be found on the outer packaging for this package.

•, ▲, ▼ Pin one index is identified by a dot, delta up, or delta down (triangle mark).


Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information. Package may or may not include the corporate logo.

Underbar (_) and/or Overbar (¯) symbol may not be to scale.

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

APPENDIX A: REVISION HISTORY

Revision A (July 2019)

- Converted Micrel document SY58607U to Microchip data sheet template DS20006227A.
- Minor text changes throughout.

NOTES:

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, contact your local Microchip representative or sales office.

PART NO.	X	v	Y	XX	Example	s:	
Device	T	↑ Package	Temperature Range	Tape and Reel	a) SY586	07UMG:	SY58607, 2.5V/3.3V Supply Voltage, 3 mm x 3 mm 16-Lead QFN, -40°C to +85°C Temperature Range, 100/Tube
Device:	SY58607		ps Precision, 1:2 LV ternal Termination a	/PECL Fanout Buffer and Fail Safe Input	b) SY586	07UMG-TR:	SY58607, 2.5V/3.3V Supply Voltage, 3 mm x 3 mm 16-Lead QFN, -40°C to +85°C Temperature Range,
Supply Voltage:	U =	= 2.5V/3.3	V				1,000/Reel
Package:	M =	= 3 mm x	3 mm QFN-16		Note 1:	catalog part n identifier is us	el identifier only appears in the number description. This sed for ordering purposes and
Temperature Range:	G =	= -40°C to	o 85°C (NiPdAu Lea	d-Free)		with your Mici	on the device package. Check rochip Sales Office for package th the Tape and Reel option.
Special Processing:	<blank> : TR =</blank>		-				

NOTES:

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
 knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data
 Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, chipKlT, chipKlT logo, CryptoMemory, CryptoRF, dsPlC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TempTrackr, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed Control, HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, Vite, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BlueSky, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

 $\ensuremath{\mathsf{SQTP}}$ is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2019, Microchip Technology Incorporated, All Rights Reserved.

ISBN: 978-1-5224-4822-8

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support:

http://www.microchip.com/ support

Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087

Tel: 774-760-0087 Fax: 774-760-0088 Chicago

Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI

Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270 Canada - Toronto

Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733

China - Beijing Tel: 86-10-8569-7000

China - Chengdu Tel: 86-28-8665-5511

China - Chongqing Tel: 86-23-8980-9588

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460

China - Qingdao Tel: 86-532-8502-7355

China - Shanghai Tel: 86-21-3326-8000

China - Shenyang Tel: 86-24-2334-2829

China - Shenzhen Tel: 86-755-8864-2200

China - Suzhou Tel: 86-186-6233-1526

China - Wuhan Tel: 86-27-5980-5300

China - Xian Tel: 86-29-8833-7252

China - Xiamen Tel: 86-592-2388138

China - Zhuhai Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444

India - New Delhi Tel: 91-11-4160-8631

India - Pune Tel: 91-20-4121-0141

Japan - Osaka Tel: 81-6-6152-7160

Japan - Tokyo Tel: 81-3-6880- 3770

Korea - Daegu Tel: 82-53-744-4301

Korea - Seoul Tel: 82-2-554-7200

Malaysia - Kuala Lumpur Tel: 60-3-7651-7906

Malaysia - Penang Tel: 60-4-227-8870

Philippines - Manila Tel: 63-2-634-9065

Singapore Tel: 65-6334-8870

Taiwan - Hsin Chu Tel: 886-3-577-8366

Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600

Thailand - Bangkok Tel: 66-2-694-1351

Vietnam - Ho Chi Minh Tel: 84-28-5448-2100

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

Finland - Espoo Tel: 358-9-4520-820

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Garching Tel: 49-8931-9700

Germany - Haan Tel: 49-2129-3766400

Germany - Heilbronn Tel: 49-7131-72400

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Rosenheim Tel: 49-8031-354-560

Israel - Ra'anana Tel: 972-9-744-7705

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Padova Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Norway - Trondheim Tel: 47-7288-4388

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

SYST-20CSDX683 - Data Sheet - SY58607U Data Shee	et		
Affacted Catalog Part Numbers (CDN)			
Affected Catalog Part Numbers (CPN)			
SY58607UMG			
SY58607UMG-TR			

Date: Thursday, July 25, 2019