Product Change Notification - SYST-19GIKP195 Date: 20 Feb 2019 **Product Category:** Microprocessors **Affected CPNs:** [2] #### **Notification subject:** ERRATA - SAMA5D2 Family Silicon Errata and Data Sheet Clarification #### **Notification text:** SYST-19GIKP195 Microchip has released a new DeviceDoc for the SAMA5D2 Family Silicon Errata and Data Sheet Clarification of devices. If you are using one of these devices please read the document located at SAMA5D2 Family Silicon Errata and Data Sheet Clarification. Notification Status: Final ## **Description of Change:** - 1) Added 12.1 Fault Protection to Hi-Z for PWMx output not functional - 2) Added 15.3 Sampling clock tuning procedure - 3) Updated 21. Data Sheet Clarifications. Impacts to Data Sheet: None Reason for Change: To Improve Productivity **Change Implementation Status:** Complete Date Document Changes Effective: 20 Feb 2019 **NOTE:** Please be advised that this is a change to the document only the product has not been changed. Markings to Distinguish Revised from Unrevised Devices: N/A Attachment(s): SAMA5D2 Family Silicon Errata and Data Sheet Clarification Please contact your local <u>Microchip sales office</u> with questions or concerns regarding this notification. ### **Terms and Conditions:** If you wish to <u>receive Microchip PCNs via email</u> please register for our PCN email service at our <u>PCN home page</u> select register then fill in the required fields. You will find instructions about registering for Microchips PCN email service in the <u>PCN FAQ</u> section. If you wish to <u>change your PCN profile</u>, <u>including opt out</u>, please go to the <u>PCN home page</u> select login and sign into your myMicrochip account. Select a profile option from the left navigation bar and make the applicable selections. # SAMA5D2 Family # SAMA5D2 Family Silicon Errata and Data Sheet Clarification # **SAMA5D2** Family The SAMA5D2 family devices that you have received conform functionally to the current Device Data Sheet (DS60001476), except for the anomalies described in this document. The silicon issues discussed in the following pages are for silicon revisions with the Device and Revision IDs listed in the following tables. The silicon issues are summarized in Silicon Issue Summary. **Note:** This document summarizes all silicon errata issues from all revisions of silicon, previous as well as current. Data Sheet clarifications and corrections (if applicable) are located in Data Sheet Clarifications, following the discussion of silicon issues. The Device and Revision ID values for the various SAMA5D2 family silicon revisions are shown in the following tables. Table 1. SAMA5D2X Silicon Device Identification | | | Device Identification | | | |----------------|------------------|-----------------------|-------------------|--| | Part Number | Silicon Revision | CHIPID_CIDR[31:0] | CHIPID_EXID[31:0] | | | ATSAMA5D22A-CU | А | 0x8A5C08C0 | 0x00000059 | | | ATSAMA5D24A-CU | А | 0x8A5C08C0 | 0x0000014 | | | ATSAMA5D27A-CU | А | 0x8A5C08C0 | 0x0000011 | | | ATSAMA5D28A-CU | А | 0x8A5C08C0 | 0x0000010 | | | ATSAMA5D21B-CU | В | 0x8A5C08C1 | 0x000005A | | | ATSAMA5D22B-CN | В | 0x8A5C08C1 | 0x00000069 | | | ATSAMA5D22B-CU | В | 0x8A5C08C1 | 0x00000059 | | | ATSAMA5D23B-CN | В | 0x8A5C08C1 | 0x00000068 | | | ATSAMA5D23B-CU | В | 0x8A5C08C1 | 0x00000058 | | | ATSAMA5D24B-CU | В | 0x8A5C08C1 | 0x0000014 | | | ATSAMA5D26B-CN | В | 0x8A5C08C1 | 0x00000022 | | | ATSAMA5D26B-CU | В | 0x8A5C08C1 | 0x00000012 | | | ATSAMA5D27B-CN | В | 0x8A5C08C1 | 0x00000021 | | | ATSAMA5D27B-CU | В | 0x8A5C08C1 | 0x0000011 | | | continued | | | | | | | | | | |----------------|------------------|-----------------------|-------------------|--|--|--|--|--|--| | | | Device Identification | | | | | | | | | Part Number | Silicon Revision | CHIPID_CIDR[31:0] | CHIPID_EXID[31:0] | | | | | | | | ATSAMA5D28B-CN | В | 0x8A5C08C1 | 0x00000020 | | | | | | | | ATSAMA5D28B-CU | В | 0x8A5C08C1 | 0x0000010 | | | | | | | | ATSAMA5D21C-CU | С | 0x8A5C08C2 | 0x000005A | | | | | | | | ATSAMA5D22C-CN | С | 0x8A5C08C2 | 0x0000069 | | | | | | | | ATSAMA5D22C-CU | С | 0x8A5C08C2 | 0x0000059 | | | | | | | | ATSAMA5D23C-CN | С | 0x8A5C08C2 | 0x0000068 | | | | | | | | ATSAMA5D23C-CU | С | 0x8A5C08C2 | 0x0000058 | | | | | | | | ATSAMA5D24C-CU | С | 0x8A5C08C2 | 0x0000014 | | | | | | | | ATSAMA5D26C-CN | С | 0x8A5C08C2 | 0x00000022 | | | | | | | | ATSAMA5D26C-CU | С | 0x8A5C08C2 | 0x00000012 | | | | | | | | ATSAMA5D27C-CN | С | 0x8A5C08C2 | 0x00000021 | | | | | | | | ATSAMA5D27C-CU | С | 0x8A5C08C2 | 0x00000011 | | | | | | | | ATSAMA5D28C-CN | С | 0x8A5C08C2 | 0x00000020 | | | | | | | | ATSAMA5D28C-CU | С | 0x8A5C08C2 | 0x0000010 | | | | | | | **Note:** Refer to the "Chip Identifier (CHIPID)" and "Product Identification System" sections in the current device data sheet (DS60001476) for detailed information on chip identification and version for your specific device. # **Table of Contents** | SA | MA5[| D2 Family | 1 | |-----|--------------|--|----| | 1. | Silico | on Issue Summary | 6 | | 2. | Anal
2.1. | og Comparator Controller (ACC)ACC output connection issue | | | 3. | Anal | og-to-Digital Converter (ADC) | 10 | | ٠. | 3.1. | ADC SleepWalking is not functional | | | | 3.2. | Last channel trigger limitation | | | | 3.3. | ADC trigger events RTCOUT0 and RTCOUT1 are not functional | 10 | | 4. | Audi | o Class D Amplifier (CLASSD) | 11 | | | 4.1. | Unexpected offset and noise level in Differential Output mode | 11 | | 5. | Audi | o PLL | 12 | | Ο. | 5.1. | Audio PLL output frequency range | | | ^ | 0 (| | | | 6. | | roller Area Network (MCAN) | | | | 6.1. | Flexible data rate feature does not support the ISO 16845-1:2016 CRC | | | | 6.2.
6.3. | Needless activation of interrupt MCAN_IR.MRAF Return of receiver from Bus Integration state after Protocol Exception Event | | | | 6.4. | Message RAM/RAM Arbiter not responding in time | | | | 6.5. | Data loss (payload) in case storage of a received frame has not completed until end of l | | | | | field is reached | | | | 6.6. | Edge filtering causes mis-synchronization when falling edge at Rx input pin coincides w | | | | 6.7 | of integration phase | | | | 6.7.
6.8. | Configuration of MCAN_NBTP.NTSEG2 = '0' not allowed Retransmission in DAR mode due to lost arbitration at the first two identifier bits | | | | 6.9. | Tx FIFO message sequence inversion | | | | 6.10. | Unexpected High Priority Message (HPM) interrupt | | | | 6.11. | Issue message transmitted with wrong arbitration and control fields | | | 7. | Ethe | rnet MAC (GMAC) | 21 | | • | 7.1. | Bad association of timestamps and PTP packets | | | 0 | Flavi | · | | | 8. | | ble Serial Communication Controller (FLEXCOM) | | | | 8.1. | FLEXCOM SMBUS alert signalling is not functional | 22 | | 9. | Inter | -IC Sound Controller (I ² SC) | 23 | | | 9.1. | I ² SC first sent data corrupted | 23 | | 10. | Multi | port DDR-SDRAM Controller (MPDDRC) | 24 | | | | t _{EAW} timing violation | 24 | | 11. | Powe | er Management Controller (PMC) | . 25 | |-----|---------|--|------| | | 11.1. | GCLK fields are reprogrammed unexpectedly | 25 | | | | PMC SleepWalking is not functional | 25 | | | 11.3. | Change of the field PMC_MCKR.PRES is not allowed if Master/Processor Clock Prescaler frequency is too high | 25 | | 12 | . Pulse | e Width Modulation Controller (PWM) | . 26 | | | | Fault Protection to Hi-Z for PWMx output not functional | | | 13 | . Qua | d Serial Peripheral Interface (QSPI) | . 27 | | | 13.1. | QSPI hangs with long DLYCS | 27 | | 14 | ROM | l Code | 28 | | | | Main external clock frequency support for SAM-BA Monitor limitation | | | | | Watchdog reset occurs when reenabling the watchdog | | | | | SPI frequency at bootup is not 11 MHz | | | | | SDMMC0 and SDMMC1 boot issue | | | 15 | Secu | re Digital MultiMedia Card Controller (SDMMC) | . 30 | | | | Software 'Reset For all' command is not guaranteed | | | | | Status flag INTCLKS may not work correctly | | | | 15.3. | Sampling clock tuning procedure | 30 | | 16 | Secu | re Fuse Controller (SFC) | . 31 | | | | The Partial Fuse Masking function does not work | | | | | The first two bits of each 32-bit block of the fuse matrix cannot be written | | | | 10.5. | Fuse matrix programming requires a main clock (MAINCK) frequency between 10 and 15 M | | | | 16.4. | Fuse matrix read requires a main clock (MAINCK) frequency below 28 MHz | | | 17 | Spec | sial Function Registers (SFR) | . 33 | | | 17.1. | The serial number stored in the SFR registers (SFR_SN0 and SFR_SN1) is not correct | 33 | | 18 | Sync | hronous Serial Controller (SSC) | . 34 | | | 18.1. | Unexpected delay on TD output | 34 | | 19 | .Two- | wire Interface (TWIHS) | . 35 | | | 19.1. | The TWI/TWIHS Clear command does not work | 35 | | 20 | USB | High-Speed Inter-Chip Port (HSIC) | .36 | | | 20.1. | At HSIC startup, the strobe default state is wrong | 36 | | 21 | Data | Sheet Clarifications | . 37 | | | 21.1. | Timer Counter (TC) | 37 | | 22 | Revi | sion History | 38 | | | 22.1. | Rev. B - 02/2019. | 38 | # **SAMA5D2** Family | 22.2. Rev. A - 10/2018 | 38 | |--|----| | The Microchip Web Site | 39 | | Customer Change Notification Service | 39 | | Customer Support | 39 | | Microchip Devices Code Protection Feature | 39 | | Legal Notice | 40 | | Trademarks | 40 | | Quality Management System Certified by DNV | 41 | | Worldwide Sales and Service | 42 | # 1. Silicon Issue Summary Table 1-1. Silicon Issue Summary | Module | ltem/Feature | Summary | Affected Silicon
Revisions | | | |-------------------|----------------------------------
--|-------------------------------|---|---| | | | | | В | С | | ACC | ACC output connection issue | The Analog Comparator (ACC) output is not connected to the PWM event line. | Х | | | | ADC | SleepWalking | ADC SleepWalking is not functional. | Х | | | | ADC | Last channel trigger | Last channel trigger limitation | Х | | | | ADC | Trigger events | ADC trigger events RTCOUT0 and RTCOUT1 are not functional. | Х | | | | CLASSD | Differential Output mode | Unexpected offset and noise level in Differential Output mode | Χ | | | | AUDIO PLL | Audio PLL output frequency range | Audio PLL output frequency range not compliant | Χ | | | | FLEXCOM | FLEXCOM SMBUS alert | XCOM SMBUS alert FLEXCOM SMBUS alert signalling is not functional | | Х | Х | | GMAC | Timestamps and PTP packets | Bad association of timestamps and PTP packets | | Х | Х | | HSIC | HSIC startup | At HSIC startup, the strobe default state is wrong | Х | | | | I ² SC | I ² SC sent data | I ² SC first sent data corrupted | Х | Х | Х | | MCAN | CRC | Flexible data rate feature does not support CRC | Х | Х | Х | | MCAN | MCAN_IR.MRAF interrupt | Needless activation of interrupt MCAN_IR.MRAF | Х | Х | X | | MCAN | Bus Integration state | Return of receiver from Bus Integration state after Protocol Exception Event | Х | Х | Х | | MCAN | Message RAM/RAM Arbiter | Message RAM/RAM Arbiter not responding in time | Х | Х | Х | | MCAN | Frame receiving | Data loss (payload) in case storage of a received frame has not completed until end of EOF field is reached | Х | Х | Х | | MCAN | Edge filtering | Edge filtering causes missynchronization when falling edge at Rx input pin coincides with end of integration phase | X | X | X | | contii | nued | | | | | |----------|--|--|-------------------|---|---| | Madala | Manager and an and | | ted Si
evisior | | | | Module | Item/Feature | Summary | A | В | С | | MCAN | MCAN_NBTP.NTSEG2 | Configuration of MCAN_NBTP.NTSEG2 = '0' not allowed | Х | Х | Х | | MCAN | DAR mode | Retransmission in DAR mode due to lost arbitration at the first two identifier bits | Х | Х | Х | | MCAN | Tx FIFO message | Tx FIFO message sequence inversion | Х | Х | Х | | MCAN | HPM interrupt | Unexpected High Priority Message (HPM) interrupt | Х | Х | Х | | MCAN | Transmitted message | Issue message transmitted with wrong arbitration and control fields | Х | Х | Х | | MPDDRC | t _{FAW} timing | t _{FAW} timing violation | Х | | | | PMC | GCLK fields | GCLK fields are reprogrammed unexpectedly | Х | | | | PMC | PMC SleepWalking | MC SleepWalking PMC SleepWalking is not functional | | | | | PMC | PMC_MCKR.PRES field | Change of the field PMC_MCKR.PRES is not allowed if Master/Processor Clock Prescaler frequency is too high | | Х | Х | | PWM | Fault Protection to Hi-Z for PWMx output | Fault Protection to Hi-Z for PWMx output is not functional | Х | Х | Х | | QSPI | DLYCS delay | QSPI hangs with long DLYCS | Х | Х | Х | | ROM Code | Frequency support for SAM-BA Monitor | Main external clock frequency support for SAM-BA® Monitor limitation | Х | | | | ROM Code | Watchdog | Watchdog reset occurs when reenabling the watchdog | Х | | | | ROM Code | SPI frequency | SPI frequency at bootup is not 11 MHz | Х | | | | ROM Code | JTAG_TCK | JTAG_TCK on IOSET 4 pin has a wrong configuration after boot | Х | Х | Х | | ROM Code | SDMMC0 and SDMMC1 boot | The card detect pin is not correctly sampled in the ROM code | | Х | | | SDMMC | Software 'Reset For all' command | Software 'Reset For all' command is not guaranteed | Х | Х | Х | | SDMMC | Status flag INTCLKS | Status flag INTCLKS may not work correctly | Х | | | | SDMMC | Sampling clock tuning procedure | Sampling clock tuning procedure may freeze | Х | Х | Х | # **SAMA5D2** Family # Silicon Issue Summary | contii | nued | | | | | |--------|-------------------------|--|-------------------------------|---|---| | Module | Item/Feature | Summary | Affected Silicon
Revisions | | | | | | | Α | В | С | | SFC | Partial Fuse Masking | The Partial Fuse Masking function does not work | X | | | | SFC | Fuse matrix first bits | The first two bits of each 32-bit block of the fuse matrix cannot be written | X | | | | SFC | Fuse matrix programming | Fuse matrix programming requires a main clock (MAINCK) frequency between 10 and 15 MHz | X | X | X | | SFC | Fuse matrix read | Fuse matrix read requires a main clock (MAINCK) frequency below 28 MHz | Х | Х | X | | SFR | Serial number | The serial number stored in the SFR registers (SFR_SN0 and SFR_SN1) is not correct | Х | | | | SSC | TD output | Unexpected delay on TD output | Х | Х | Х | | TWIHS | Clear command | The TWI/TWIHS Clear command does not work | Х | Х | X | # 2. Analog Comparator Controller (ACC) # 2.1 ACC output connection issue The Analog Comparator (ACC) output is not connected to the PWM event line. ### Work around None #### **Affected Silicon Revisions** | Α | В | С | | | | |---|---|---|--|--|--| | Χ | | | | | | # 3. Analog-to-Digital Converter (ADC) ### 3.1 ADC SleepWalking is not functional ### Work around None #### **Affected Silicon Revisions** | Α | В | С | | | | |---|---|---|--|--|--| | Χ | | | | | | ## 3.2 Last channel trigger limitation The last channel can be triggered at low speed but cannot be programmed by the OUT1 field of the RTC. Only the 1-Hz sampling period is available. #### Work around None #### **Affected Silicon Revisions** | Α | В | С | | | | |---|---|---|--|--|--| | X | | | | | | ### 3.3 ADC trigger events RTCOUT0 and RTCOUT1 are not functional RTCOUT0 issue leads to ADC Sleepwalking not functional. RTCOUT1 issue makes the last channel specific measurement trigger work at 1 Hz only. #### Work around None #### **Affected Silicon Revisions** | Α | В | С | | | | |---|---|---|--|--|--| | X | | | | | | # 4. Audio Class D Amplifier (CLASSD) # 4.1 Unexpected offset and noise level in Differential Output mode When the CLASSD peripheral is set to Differential Output mode (PWMTYP = 1), a significant output offset and an increased level of noise are observed on the audio outputs. The offset is systematic and is equal to 1/16 of the digital full scale. #### Work around To avoid the offset, add the opposite offset on the input signal of the CLASSD peripheral. #### **Affected Silicon Revisions** | Α | В | С | | | | |---|---|---|--|--|--| | X | | | | | | # 5. Audio PLL ### 5.1 Audio PLL output frequency range The frequency range of the AUDIOCORECLK signal (AUDIOPLL output) provided in table "Audio PLL Characteristics" (f_{CORE} parameter), in section Electrical Characteristics of the device data sheet (DS60001476), does not comply with the applicable specification. #### Work around The AUDIOCORECLK signal can be operated from 720 MHz to 790 MHz if the following restricted operating conditions are met: - Junction temperature (T_i) range: 0°C to +40°C - VDDCORE/VDDPLL supply range: 1.20V to 1.32V - Bits <29:28> in register PMC_AUDIO_PLL0 are set to (01)₂ #### **Affected Silicon Revisions** | Α | В | С | | | | |---|---|---|--|--|--| | X | | | | | | # 6. Controller Area Network (MCAN) ### 6.1 Flexible data rate feature does not support the ISO 16845-1:2016 CRC CAN-FD peripheral does not support the ISO 16845-1:2016 CRC scheme which includes the stuff bit count introduced by the ISO standardization committee. CAN 2.0 operation is not impacted. #### Work around None #### **Affected Silicon Revisions** | Α | В | С | | | | |---|---|---|--|--|--| | X | X | X | | | | ## 6.2 Needless activation of interrupt MCAN_IR.MRAF During frame reception while the MCAN is in Error Passive state and the Receive Error Counter has the value MCAN_ECR.REC = 127, it may happen that MCAN_IR.MRAF is set although there was no Message RAM access failure. If MCAN_IR.MRAF is enabled, an interrupt to the Host CPU is generated. #### Work around The Message RAM Access Failure interrupt routine needs to check whether MCAN_ECR.RP = '1' and MCAN_ECR.REC = 127. In this case, reset MCAN_IR.MRAF. No further action is required. #### **Affected Silicon Revisions** | Α | В | С | | | | |---|---|---|--|--|--| | Χ | X | X | | | | ## 6.3 Return of receiver from Bus Integration state after Protocol Exception Event In case a started transmission is aborted shortly before the transmission of the FDF bit, a receiver will detect a recessive FDF bit followed by a recessive res bit. In this case receiving MCANs with Protocol Exception Event Handling enabled will detect a protocol exception event and will enter Bus Integration state. These receivers are expected to leave Bus Integration state after 11 consecutive recessive bits. Instead of starting to count 11 recessive bits directly after entering Bus Integration state, the MCAN needs to see at least one dominant bit. #### Work around Disable Protocol Exception Event Handling (MCAN_CCCR.PXHD = '1'). | - | Affected Sili | con Revisio | ns | Affected Silicon Revisions | | | | | | | | | |---|---------------|-------------|----|----------------------------|--|--|--|--|--|--|--|--| | | А | В | С | | | | | | | | | | | | X | X | Х | | | | | | | | | | ## 6.4 Message RAM/RAM Arbiter not responding in time When the MCAN wants to store a received frame, and the Message RAM/RAM Arbiter does not respond in time, this message cannot be stored completely and it is discarded with the reception of the next message. Interrupt flag MCAN_IR.MRAF is set. It may happen that the next received message is stored incomplete. In this case, the respective Rx Buffer or Rx FIFO element holds inconsistent data. #### Work around Configure the RAM Watchdog to the maximum expected Message RAM access delay. In case the Message RAM / RAM Arbiter does
not respond within this time, the Watchdog Interrupt MCAN_IR.WDI is set. In this case discard the frame received after MCAN_IR.MRAF has been activated. #### **Affected Silicon Revisions** | Α | В | С | | | | |---|---|---|--|--|--| | X | X | X | | | | # 6.5 Data loss (payload) in case storage of a received frame has not completed until end of EOF field is reached This erratum is applicable only if the MCAN peripheral clock frequency is below 77 MHz. During frame reception, the Rx Handler needs access to the Message RAM for acceptance filtering (read access) and storage of accepted messages (write access). The time needed for acceptance filtering and storage of a received message depends on the MCAN peripheral clock frequency, the number of MCANs connected to a single Message RAM, the Message RAM arbitration scheme, and the number of configured filter elements. In case storage of a received message has not completed until the end of the received frame is reached, the following faulty behavior can be observed: - The last write to the Message RAM to complete storage of the received message is omitted, this data is lost. Applies for data frames with DLC > 0, worst case is DLC = 1. - Rx FIFO: FIFO put index MCAN_RXFnS.FnPI is updated although the last FIFO element holds corrupted data. - Rx Buffer: New Data flag MCAN NDATn.NDxx is set although the Rx Buffer holds corrupted data. - Interrupt flag MCAN_IR.MRAF is not set. #### Work around Reduce the maximum number of configured filter elements for the MCANs attached to the Message RAM until the calculated clock frequency is below the MCAN peripheral clock frequency used with the device. | • | Affected Sili | con Revisio | ns | | | | |---|---------------|-------------|----|--|--|--| | | А | В | С | | | | | | X | X | Х | | | | # 6.6 Edge filtering causes mis-synchronization when falling edge at Rx input pin coincides with end of integration phase When edge filtering is enabled (MCAN_CCCR.EFBI = '1') and when the end of the integration phase coincides with a falling edge at the Rx input pin, it may happen that the MCAN synchronizes itself wrongly and does not correctly receive the first bit of the frame. In this case the CRC will detect that the first bit was received incorrectly; it will rate the received FD frame as faulty and an error frame will be sent. The issue only occurs when there is a falling edge at the Rx input pin (CANRX) within the last time quantum (tq) before the end of the integration phase. The last time quantum of the integration phase is at the sample point of the 11th recessive bit of the integration phase. When the edge filtering is enabled, the bit timing logic of the MCAN sees the Rx input signal delayed by the edge filtering. When the integration phase ends, the edge filtering is automatically disabled. This affects the reset of the FD CRC registers at the beginning of the frame. The Classical CRC register are not affected, so this issue does not affect the reception of Classical frames. In CAN communication, the MCAN may enter integrating state (either by resetting MCAN_CCCR.INIT or by protocol exception event) while a frame is active on the bus. In this case the 11 recessive bits are counted between the acknowledge bit and the following start of frame. All nodes have synchronized at the beginning of the dominant acknowledge bit. This means that the edge of the following start of frame bit cannot fall on the sample point, so the issue does not occur. The issue occurs only when the MCAN is, by local errors, missynchronized with regard to the other nodes, or not synchronized at all. Glitch filtering as specified in ISO 11898-1:2015 is fully functional. Edge filtering was introduced for applications where the data bit time is at least two tq (of the nominal bit time) long. In that case, edge filtering requires at least two consecutive dominant time quanta before the counter counting the 11 recessive bits for idle detection is restarted. This means edge filtering covers the theoretical case of occasional 1-tq-long dominant spikes on the CAN bus that would delay idle detection. Repeated dominant spikes on the CAN bus would disturb all CAN communication, so the filtering to speed up idle detection would not help network performance. When this rare event occurs, the MCAN sends an error frame and the sender of the affected frame retransmits the frame. When the retransmitted frame is received, the MCAN has left the integration phase and the frame will be received correctly. Edge filtering is only applied during integration phase, it is never used during normal operation. As the integration phase is very short with respect to "active communication time", the impact on total error frame rate is negligible. The issue has no impact on data integrity. The MCAN enters integration phase under the following conditions: - when MCAN CCCR.INIT is set to '0' after start-up - after a protocol exception event (only when MCAN_CCCR.PXHD = '0') #### Work around Disable edge filtering or wait on retransmission in case this rare event happens. #### **Affected Silicon Revisions** | Α | В | С | | | | |---|---|---|--|--|--| | X | Х | X | | | | ## 6.7 Configuration of MCAN_NBTP.NTSEG2 = '0' not allowed When MCAN_NBTP.NTSEG2 is configured to zero (Phase_Seg2(N) = 1), and when there is a pending transmission request, a dominant third bit of Intermission may cause the MCAN to wrongly transmit the first identifier bit dominant instead of recessive, even if this bit was configured as '1' in the MCAN's Tx Buffer Element. A phase buffer segment 2 of length '1' (Phase_Seg2(N) = 1) is not sufficient to switch to the first identifier bit after the sample point in Intermission where the dominant bit was detected. The CAN protocol according to ISO 11898-1 defines that a dominant third bit of Intermission causes a pending transmission to be started immediately. The received dominant bit is handled as if the MCAN has transmitted a Start-of-Frame (SoF) bit. The ISO 11898-1 specifies the minimum configuration range for Phase_Seg2(N) to be 2..8 tq. Therefore excluding a Phase_Seg2(N) of '1' will not affect MCAN conformance. #### Work around Use the range 1..127 for MCAN NBTP.NTSEG2 instead of 0..127. #### **Affected Silicon Revisions** | А | В | С | | | | |---|---|---|--|--|--| | X | Х | Χ | | | | #### 6.8 Retransmission in DAR mode due to lost arbitration at the first two identifier bits When the MCAN is configured in DAR mode (MCAN_CCCR.DAR = '1') the Automatic Retransmission for transmitted messages that have been disturbed by an error or have lost arbitration is disabled. When the transmission attempt is not successful, the Tx Buffer's transmission request bit (MCAN_TXBRP.TRPxx) shall be cleared and its cancellation finished bit (MCAN_TXBCF.CFxx) shall be set. When the transmitted message loses arbitration at one of the first two identifier bits, it may happen that instead of the bits of the actually transmitted Tx Buffer, the MCAN_TXBRP.TRPxx and MCAN_TXBCF.CFxx bits of the previously started Tx Buffer (or Tx Buffer 0 if there is no previous transmission attempt) are written (MCAN_TXBRP.TRPxx = '0', MCAN_TXBCF.CFxx = '1'). If in this case the MCAN_TXBRP.TRPxx bit of the Tx Buffer that lost arbitration at the first two identifier bits has not been cleared, retransmission is attempted. When the MCAN loses arbitration again at the immediately following retransmission, then actually and previously transmitted Tx Buffers are the same and this Tx Buffer's MCAN_TXBRP.TRPxx bit is cleared and its MCAN_TXBCF.CFxx bit is set. #### Work around None #### **Affected Silicon Revisions** | Α | В | С | | | | |---|---|---|--|--|--| | X | X | X | | | | ### 6.9 Tx FIFO message sequence inversion Assume the case that there are two Tx FIFO messages in the output pipeline of the Tx Message Handler. Transmission of Tx FIFO message 1 is started: - Position 1: Tx FIFO message 1 (transmission ongoing) - Position 2: Tx FIFO message 2 - · Position 3: -- Now a non-Tx FIFO message with a higher CAN priority is requested. Due to its priority it will be inserted into the output pipeline. The TxMH performs so called "message scans" to keep the output pipeline up to date with the highest priority messages from the Message RAM. After the following two message scans, the output pipeline has the following content: - Position 1: Tx FIFO message 1 (transmission ongoing) - Position 2: non-Tx FIFO message with higher CAN priority - Position 3: Tx FIFO message 2 If the transmission of Tx FIFO message 1 is not successful (lost arbitration or CAN bus error) it is pushed from the output pipeline by the non-Tx FIFO message with higher CAN priority. The following scan reinserts Tx FIFO message 1 into the output pipeline at position 3: - Position 1: non-Tx FIFO message with higher CAN priority (transmission ongoing) - Position 2: Tx FIFO message 2 - Position 3: Tx FIFO message 1 Now Tx FIFO message 2 is in the output pipeline in front of Tx FIFO message 1 and they are transmitted in that order, resulting in a message sequence inversion. #### Work around #### 1. First Work Around Use two dedicated Tx Buffers, e.g. use Tx Buffers 4 and 5 instead of the Tx FIFO. The pseudo-code below replaces the function that fills the Tx FIFO. Write message to Tx Buffer 4. #### Transmit loop: - Request Tx Buffer 4 write MCAN TXBAR.A4 - Write message to Tx Buffer 5 - Wait until transmission of Tx Buffer 4 completed MCAN_IR.TC, read MCAN_TXBTO.TO4 - Request Tx Buffer 5 write MCAN_TXBAR.A5 - Write message to Tx Buffer 4 - Wait until transmission of Tx Buffer 5 is completed MCAN IR.TC, read MCAN TXBTO.TO5 #### 2. Second Work Around Make sure that only one Tx FIFO element is pending for transmission at any time. The Tx FIFO elements may be filled at any time with messages to be transmitted, but their transmission requests are handled separately. Each time a Tx FIFO transmission has completed and the Tx FIFO gets empty (MCAN IR.TFE = '1'), the next Tx FIFO
element is requested. #### 3. Third Work Around Use only a Tx FIFO. Send the message with the higher priority also from Tx FIFO. One drawback is that the higher priority message has to wait until the preceding messages in the Tx FIFO have been sent. #### **Affected Silicon Revisions** | Α | В | С | | | | |---|---|---|--|--|--| | X | Х | X | | | | ### 6.10 Unexpected High Priority Message (HPM) interrupt This issue occurs in two configurations: #### Configuration A: - At least one Standard Message ID Filter Element is configured with priority flag set (S0.SFEC = "100"/"101"/"110"). - No Extended Message ID Filter Element is configured. - Non-matching extended frames are accepted (MCAN_GFC.ANFE = "00"/"01"). The HPM interrupt flag MCAN_IR.HPM is set erroneously on reception of a non-high-priority extended message under the following conditions: - 1. A standard HPM frame is received, and accepted by a filter with priority flag set. Then, interrupt flag MCAN_IR.HPM is set as expected. - 2. Next, an extended frame is received and accepted due to the MCAN_GFC.ANFE configuration. Then, interrupt flag MCAN_IR.HPM is set erroneously. #### Configuration B: - At least one Extended Message ID Filter Element is configured with priority flag set (F0.EFEC = "100"/"101"/"110"). - No Standard Message ID Filter Element is configured. - Non-matching standard frames are accepted (MCAN_GFC.ANFS = "00"/"01"). The HPM interrupt flag MCAN_IR.HPM is set erroneously on reception of a non-high-priority standard message under the following conditions: - 1. An extended HPM frame is received, and accepted by a filter with priority flag set. Then, interrupt flag MCAN IR.HPM is set as expected. - 2. Next, a standard frame is received and accepted due to the MCAN_GFC.ANFS configuration. Then, interrupt flag MCAN_IR.HPM is set erroneously. #### Work around #### Configuration A: Set up an Extended Message ID Filter Element with the following configuration: - F0.EFEC = "001"/"010" select Rx FIFO for storage of extended frames - F0.EFID1 = any value value not relevant as all ID bits are masked out by F1.EFID2 - F1.EFT = "10" classic filter, F0.EFID1 = filter, F1.EFID2 = mask - F1.EFID2 = zero all bits of the received extended ID are masked out Now, all extended frames are stored in Rx FIFO 0 respectively Rx FIFO 1 depending on the configuration of F0.EFEC. #### Configuration B: Set up a Standard Message ID Filter Element with the following configuration: - S0.SFEC = "001"/"010" select Rx FIFO for storage of standard frames - S0.SFID1 = any value value not relevant as all ID bits are masked out by S0.SFID2 - S0.SFT = "10" classic filter, S0.SFID1 = filter, S0.SFID2 = mask - S0.SFID2 = zero all bits of the received standard ID are masked out Now, all standard frames are stored in Rx FIFO 0 respectively Rx FIFO 1 depending on the configuration of S0.SFEC. #### Affected Silicon Revisions | Α | В | С | | | | |---|---|---|--|--|--| | X | Х | X | | | | ### 6.11 Issue message transmitted with wrong arbitration and control fields When the following conditions are met, a message with wrong ID, format, and DLC is transmitted: - M CAN is in state "Receiver" (PSR.ACT = "10") and there is no pending transmission. - A new transmission is requested before the third Intermission bit is reached. - The CAN bus is sampled dominant at the third Intermission bit which is treated as SoF (see ISO11898-1:2015 Section 10.4.2.2). Then, it can happen that: - the Shift register is not loaded with the ID, format and DLC of the requested message, - the MCAN starts arbitration with wrong ID, format, and DLC on the next bit, - if the ID wins arbitration, a CAN message with valid CRC is transmitted, - if this message is acknowledged, the ID stored in the Tx Event FIFO is the ID of the requested Tx message, and not the ID of the message transmitted on the CAN bus, and no error is detected by the transmitting MCAN. #### Work around Request a new transmission only if another transmission is already pending or when the MCAN is not in "Receiver" state (when PSR.ACT ≠ "10"). To avoid activating the transmission request in the critical time window between the sample points of the second and third Intermission bits, the application software can evaluate the Rx Interrupt flags IR.DRX, IR.RF0N and IR.RF1N, which are set at the last EoF bit when a received and accepted message becomes valid. The last EoF bit is followed by three Intermission bits. Therefore, the critical time window has safely terminated three bit times after the Rx interrupt. Now a transmission can be requested by writing to TXBAR. # **SAMA5D2** Family # **Controller Area Network (MCAN)** After the interrupt, the application has to take care that the transmission request for the CAN Protocol Controller is activated before the critical window of the following reception is reached. A checksum covering the arbitration and control fields can be added to the data field of the message to be transmitted, to detect frames transmitted with wrong arbitration and control fields. #### **Affected Silicon Revisions** | Α | В | С | | | | |---|---|---|--|--|--| | X | X | X | | | | # 7. Ethernet MAC (GMAC) # 7.1 Bad association of timestamps and PTP packets An issue in the association mechanism between event registers and queued PTP packets may lead to timestamps incorrectly associated with these packets. Even if it is highly unlikely to queue consecutive packets of the same type, there is no way to know which frame the content of the PTP event registers refers to. #### Work around None #### **Affected Silicon Revisions** | А | В | С | | | | |---|---|---|--|--|--| | Х | X | X | | | | # 8. Flexible Serial Communication Controller (FLEXCOM) # 8.1 FLEXCOM SMBUS alert signalling is not functional The TWI function embedded in the FLEXCOM does not support SMBUS alert signal management. #### Work around If this signal is mandatory in the application, the user can use one of the standalone TWIs (TWIHS0, TWIHS1) supporting the SMBUS alert signaling. #### **Affected Silicon Revisions** | Α | В | С | | | | |---|---|---|--|--|--| | Х | Х | X | | | | # 9. Inter-IC Sound Controller (I²SC) # 9.1 I²SC first sent data corrupted Right after I²SC reset, the first data sent by I²SC controller on the I2SDO line is corrupted. The following data are not affected. #### Work around None #### **Affected Silicon Revisions** | Α | В | С | | | | |---|---|---|--|--|--| | Х | X | X | | | | # 10. Multiport DDR-SDRAM Controller (MPDDRC) # 10.1 t_{FAW} timing violation DDR2/LPDDR2 memory devices with 8 banks have an additional requirement for tFAW: no more than four Activate commands must be issued in any given t_{FAW} period. #### Work around Increase the value of $t_{\mbox{\scriptsize RRD}}$ to 3 to avoid the issue. #### **Affected Silicon Revisions** | Α | В | С | | | | |---|---|---|--|--|--| | Χ | | | | | | # 11. Power Management Controller (PMC) ## 11.1 GCLK fields are reprogrammed unexpectedly When configuring a peripheral featuring no GCLK, the GCLK fields (GCKEN, GCKCSS, GCKDIV) of FLEXCOM0 are reconfigured. No other parameter is modified. #### Work around When accessing a peripheral featuring no GCLK, fill GCLK fields with FLEXCOM0 GCLK configuration. #### **Affected Silicon Revisions** | Α | В | С | | | | |---|---|---|--|--|--| | X | | | | | | ## 11.2 PMC SleepWalking is not functional In Ultra-Low Power mode (ULP1) using simultaneously partial wakeup (SleepWalking) and full wakeup (PIOBU used as wakeup pins or internal events RTC, etc.) may not resume from ULP1. #### Work around None #### **Affected Silicon Revisions** | Α | В | С | | | | |---|---|---|--|--|--| | X | | | | | | # 11.3 Change of the field PMC_MCKR.PRES is not allowed if Master/Processor Clock Prescaler frequency is too high PMC_MCKR.PRES cannot be changed if the clock applied to the Master/Processor Clock Prescaler (see "Master Clock Controller" in section "Power Management Controller (PMC)" of the SAMA5D2 Series data sheet) is greater than 312 MHz (VDDCORE[1.1, 1.32]) and 394 MHz (VDDCORE[1.2, 1.32]). #### Work around - 1. Set PMC_MCKR.CSS to MAIN_CLK. - 2. Set PMC_MCKR.PRES to the required value. - 3. Change PMC MCKR.CSS to the new clock source (PLLA CLK, UPLLCK). #### **Affected Silicon Revisions** | А | В | С | | | | |---|---|---|--|--|--| | X | X | Χ | | | | # 12. Pulse Width Modulation Controller (PWM) # 12.1 Fault Protection to Hi-Z for PWMx output not functional While it is possible to force the output of PWMH and PWML to 0 or 1, the feature to set these outputs to Hi-Z by setting the corresponding field in PWM_FPV2 is not functional. The protection values for PWML and PWMH are by default set to '0'. #### Work around None #### **Affected Silicon Revisions** | Α | В | С | | | | |---|---|---|--|--|--| | X | X | X | | | | # 13. Quad Serial Peripheral Interface (QSPI) ### 13.1 QSPI hangs with long DLYCS QSPI hangs if a command is written to any QSPI register during the DLYCS delay. There is no status bit to flag the end of the delay. #### Work around The field DLYCS defines a minimum period for which Chip Select is de-asserted, required by some memories. This delay is generally < 60 ns and comprises internal execution time, arbitration and latencies. Thus, DLYCS must be configured to be slightly higher than the value specified for the slave device. The software must wait for this same period of time plus an additional delay before a command can be written to the QSPI. #### **Affected Silicon Revisions** | Α | В | С | | | | |---|---|---|--|--|--| | X | X | Х | | | | # 14. ROM Code ### 14.1 Main external clock frequency support for SAM-BA Monitor limitation ROM code v1.1 supports ONLY a 12 and 16 MHz external clock frequency to allow USB connection to be used for SAM-BA Monitor. #### Work around None #### **Affected Silicon Revisions** | Α | В | С | | | | |---|---|---|--|--|--| | X | | | | | | ### 14.2 Watchdog reset occurs when reenabling the watchdog When no bootable program is found in an
external memory, the watchdog is disabled just before the ROM Code runs SAM-BA Monitor. The ROM code sets the watchdog Timer Mode register (WDT_MR) to the value 0x00008000 and then clears the counter value. If a program loaded and executed using the SAM-BA Monitor Go command reenables the watchdog, a watchdog reset is immediately executed whatever the value of the watchdog counter. #### Work around To avoid any unexpected watchdog reset when reenabling the watchdog, the following sequence has to be performed: - 1. Write 0x00000000 in the WDT_MR. - 2. Wait for three slow clock cycles. - 3. Write the final value in the WDT_MR. #### **Affected Silicon Revisions** | Α | В | С | | | | |---|---|---|--|--|--| | X | | | | | | # 14.3 SPI frequency at bootup is not 11 MHz The SPI frequency at the boot of the device is set to 16 MHz instead of 11 MHz. A margin was applied to the SPI timings and make them compliant with a 16 MHz clock. The SPI boot remains functional. #### Work around None | Affected Sil | Affected Silicon Revisions | | | | | | | | | | |--------------|----------------------------|---|--|--|--|--|--|--|--|--| | А | В | С | | | | | | | | | | X | | | | | | | | | | | ## 14.4 JTAG TCK on IOSET 4 pin has a wrong configuration after boot The JTAG_TCK signal on IOSET 4 shares its pin (PA22) with the clock signal of the following boot memory interfaces: SDMMC1, SPI1 IOSET 2, QSPI 0 IOSET 3. If JTAG IOSET 4 is selected by the user as JTAG debug port in the Boot Configuration Word, and if the ROM Code boots, or tries to boot, on any of the external memory interfaces stated above, the JTAG clock pin (TCK) is reset at its default mode (PIO) at the end of the ROM Code execution. This occurs as soon as EXT_MEM_BOOT_ENABLE is set. #### Work around Do not select, or disable, external memory boot interface SDMMC1, SPI1 IOSET 2 or QSPI0 IOSET 3. However, if using one of these boot interfaces is required, reconfigure the PA22 pin in JTAG TCK IOSET 4 mode in the bootstrap or application. #### **Affected Silicon Revisions** | Α | В | С | | | | |---|---|---|--|--|--| | X | X | X | | | | #### 14.5 SDMMC0 and SDMMC1 boot issue The card detect pin is not correctly sampled in the ROM code, which leads to a nondeterministic boot ability on the SDMMC0/SDMMC1 interfaces (SDCard or eMMC). #### Work around Use another boot media (e.g., serial flash) for the first level boot, and either deactivate the boot on SDMMC0/1 in the Boot Configuration Word in the Fuse area or remove any bootable program stored in the eMMC or SDCard connected to the chip at startup. #### **Affected Silicon Revisions** | А | В | С | | | | |---|---|---|--|--|--| | | Χ | | | | | # 15. Secure Digital MultiMedia Card Controller (SDMMC) ### 15.1 Software 'Reset For all' command is not guaranteed The software 'Reset For All' command is not guaranteed, and some registers of the host controller may not properly reset. The setting of the different registers must be checked before reinitializing the SD card. #### Work around None #### Affected Silicon Revisions | Α | В | С | | | | |---|---|---|--|--|--| | Х | Х | X | | | | ### 15.2 Status flag INTCLKS may not work correctly When the SDMMC internal clock is disabled (SDMMC_CCR. INTCLKEN = 0) and reenabled after a few cycles (SDMMC_CCR. INTCLKEN = 1), the status flag INTCLKS may get stuck at 0. #### Work around A delay loop of 6 cycles minimum of the slowest clock (HCLOCK or BASECLK) must be inserted between SDMMC_CCR. INTCLKEN = 0 and SDMMC_CCR. INTCLKEN = 1. #### **Affected Silicon Revisions** | Α | В | С | | | | |---|---|---|--|--|--| | X | | | | | | # 15.3 Sampling clock tuning procedure The sampling clock tuning procedure described in the "SD Host Controller Simplified Specification V3.00" may freeze in the latest verification of the "Wait until Buffer Read Ready" condition. #### Work around The condition "Check Execute Tuning = 0" can be *OR'ed* to "Wait until Buffer Read Ready" condition in the loop issuing the *SEND_TUNING_BLOCK command (CMD19)*. #### **Affected Silicon Revisions** | А | В | С | | | | |---|---|---|--|--|--| | X | Χ | Χ | | | | # 16. Secure Fuse Controller (SFC) ### 16.1 The Partial Fuse Masking function does not work The fuse masking function described in section "Secure Fuse Controller (SFC)" does not work. If the ROM code is used in Secure mode, the overall fuses are masked by the ROM code even if some of them are not used. #### Work around None #### **Affected Silicon Revisions** | Α | В | С | | | | |---|---|---|--|--|--| | Χ | | | | | | #### 16.2 The first two bits of each 32-bit block of the fuse matrix cannot be written The first two bits of each 32-bit block of the fuse matrix cannot be written, so that any word (32 bits) written needs to set to 0 the first two bits of each word (32 bits) of the fuse matrix. #### Work around None #### **Affected Silicon Revisions** | Α | В | С | | | | |---|---|---|--|--|--| | X | | | | | | # 16.3 Fuse matrix programming requires a main clock (MAINCK) frequency between 10 and 15 MHz If the main clock is not within the range of 10 to 15 MHz while programming the fuse matrix, the correct fuse programming cannot be ensured. #### Work around - If the main clock is out of the 10 to 15 MHz range, then before programming the fuse matrix switches the main clock to the internal 12 MHz RC oscillator. - To program the fuses during ROM Code execution, SAM-BA/Secure and SAM-BA version 3.2.2 or higher must be used. #### **Affected Silicon Revisions** | А | В | С | | | | |---|---|---|--|--|--| | X | Χ | X | | | | # 16.4 Fuse matrix read requires a main clock (MAINCK) frequency below 28 MHz If the main clock is higher than 28 MHz, fuse matrix content read cannot be guaranteed. #### Work around Do not use the main oscillator in Bypass mode with a frequency higher than 28 MHz. #### **Affected Silicon Revisions** | Α | В | С | | | | |---|---|---|--|--|--| | Χ | X | Х | | | | # 17. Special Function Registers (SFR) # 17.1 The serial number stored in the SFR registers (SFR_SN0 and SFR_SN1) is not correct The serial number (SFR_SN0, SFR_SN1) has only 16 bits set. This serial number cannot be used as a 64-bit unique ID. #### Work around None #### **Affected Silicon Revisions** | Α | В | С | | | | |---|---|---|--|--|--| | X | | | | | | # 18. Synchronous Serial Controller (SSC) # 18.1 Unexpected delay on TD output When SSC is configured with the following conditions: - RCMR.START = Start on falling edge/Start on Rising edge/Start on any edge, - RFMR.FSOS = None (input), - TCMR.START = Receive Start, an unexpected delay of 2 or 3 system clock cycles is added to the TD output. #### Work around None #### **Affected Silicon Revisions** | А | В | С | | | | |---|---|---|--|--|--| | Х | X | X | | | | # 19. Two-wire Interface (TWIHS) #### 19.1 The TWI/TWIHS Clear command does not work Bus reset using the "CLEAR" bit of the TWI/TWIHS control register does not work correctly during a bus busy state. #### Work around When the TWI master detects the SDA line stuck in low state the procedure to recover is: - 1. Reconfigure the SDA/SCL lines as PIO. - 2. Try to assert a Logic 1 on the SDA line (PIO output = 1). - 3. Read the SDA line state. If the PIO state is a Logic 0, then generate a clock pulse on SCL (1-0-1 transition). - 4. Read the SDA line state. If the SDA line = 0, go to Step 3; if SDA = 1, go to Step 5. - 5. Generate a STOP condition. - 6. Reconfigure SDA/SCL PIOs as peripheral. #### **Affected Silicon Revisions** | Α | В | С | | | | |---|---|---|--|--|--| | X | Х | X | | | | # 20. USB High-Speed Inter-Chip Port (HSIC) ### 20.1 At HSIC startup, the strobe default state is wrong The strobe line should be at logic state 0 when HSIC is powered ON, and disabled. Currently, powering up the product sets the strobe line at logic state 1 before the HSIC is enabled. In this case, a connected device tries to connect before the HSIC is enabled. #### Work around Connect the device after the SAMA5D2 has been started. #### **Affected Silicon Revisions** | Α | В | С | | | | |---|---|---|--|--|--| | Χ | | | | | | # 21. Data Sheet Clarifications The following typographic corrections and clarifications are to be noted for the latest version of the device data sheet (DS60001476C): **Note:** Corrections in tables, registers, and text are shown in **bold**. Where possible, the original bold text formatting has been removed for clarity. No clarifications to report at this time. ## 21.1 Timer Counter (TC) In TC Extended Mode register (TC_EMRx), the description of field TRIGSRCB should be corrected as follows: - "For TC0 to TC10" should read "For TC0_CH0/1/2, TC1_CH3/4" - "For TC11" should read "For TC1_CH5" # 22. Revision History ### 22.1 Rev. B - 02/2019 #### Added - 12.1 Fault Protection to Hi-Z for PWMx output not functional - 15.3 Sampling clock tuning procedure Updated 21. Data Sheet Clarifications. ### 22.2 Rev. A - 10/2018 This is the initial released version of this document. # The Microchip Web Site Microchip provides online support via our web site at http://www.microchip.com/. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information: - Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software - General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing - Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives # **Customer Change Notification Service** Microchip's customer notification service helps keep customers current on Microchip products. Subscribers
will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest. To register, access the Microchip web site at http://www.microchip.com/. Under "Support", click on "Customer Change Notification" and follow the registration instructions. # **Customer Support** Users of Microchip products can receive assistance through several channels: - Distributor or Representative - Local Sales Office - Field Application Engineer (FAE) - Technical Support Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document. Technical support is available through the web site at: http://www.microchip.com/support # Microchip Devices Code Protection Feature Note the following details of the code protection feature on Microchip devices: - Microchip products meet the specification contained in their particular Microchip Data Sheet. - Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions. - There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property. - Microchip is willing to work with the customer who is concerned about the integrity of their code. Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable." Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act. # **Legal Notice** Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated. #### **Trademarks** The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq, Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, SAM-BA, SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A. Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, Anyln, AnyOut, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, memBrain, Mindi, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. SQTP is a service mark of Microchip Technology Incorporated in the U.S.A. Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries. GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries. All other trademarks mentioned herein are property of their respective companies. © 2019, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved. ISBN: 978-1-5224-4140-3 AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, µVision, Versatile are trademarks or registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. # **Quality Management System Certified by DNV** #### ISO/TS 16949 Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified. # **Worldwide Sales and Service** | AMERICAS | ASIA/PACIFIC | ASIA/PACIFIC | EUROPE | |---------------------------|-----------------------|-------------------------|-----------------------| | Corporate Office | Australia - Sydney | India - Bangalore | Austria - Wels | | 2355 West Chandler Blvd. | Tel: 61-2-9868-6733 | Tel: 91-80-3090-4444 | Tel: 43-7242-2244-39 | | Chandler, AZ 85224-6199 | China - Beijing | India - New Delhi | Fax: 43-7242-2244-393 | | Tel: 480-792-7200 | Tel: 86-10-8569-7000 | Tel: 91-11-4160-8631 | Denmark - Copenhagen | | Fax: 480-792-7277 | China - Chengdu | India - Pune | Tel: 45-4450-2828 | | Technical Support: | Tel: 86-28-8665-5511 | Tel: 91-20-4121-0141 | Fax: 45-4485-2829 | | http://www.microchip.com/ | China - Chongqing | Japan - Osaka | Finland - Espoo | | support | Tel: 86-23-8980-9588 | Tel: 81-6-6152-7160 | Tel: 358-9-4520-820 | | Web Address: | China - Dongguan | Japan - Tokyo | France - Paris | | www.microchip.com | Tel: 86-769-8702-9880 | Tel: 81-3-6880- 3770 | Tel: 33-1-69-53-63-20 | | Atlanta | China - Guangzhou | Korea - Daegu | Fax: 33-1-69-30-90-79 | | Duluth, GA | Tel: 86-20-8755-8029 | Tel: 82-53-744-4301 | Germany - Garching | | Tel: 678-957-9614 | China - Hangzhou | Korea - Seoul | Tel: 49-8931-9700 | | Fax: 678-957-1455 | Tel: 86-571-8792-8115 | Tel: 82-2-554-7200 | Germany - Haan | | Austin, TX | China - Hong Kong SAR | Malaysia - Kuala Lumpur | Tel: 49-2129-3766400 | | Tel: 512-257-3370 | Tel: 852-2943-5100 | Tel: 60-3-7651-7906 | Germany - Heilbronn | | Boston | China - Nanjing | Malaysia - Penang | Tel: 49-7131-67-3636 | | Westborough, MA | Tel: 86-25-8473-2460 | Tel: 60-4-227-8870 | Germany - Karlsruhe | | Tel: 774-760-0087 | China - Qingdao | Philippines - Manila | Tel: 49-721-625370 | | Fax: 774-760-0088 | Tel: 86-532-8502-7355 | Tel: 63-2-634-9065 | Germany - Munich | | Chicago | China - Shanghai | Singapore | Tel: 49-89-627-144-0 | | Itasca, IL | Tel: 86-21-3326-8000 | Tel: 65-6334-8870 | Fax: 49-89-627-144-44 | | Tel: 630-285-0071 | China - Shenyang | Taiwan - Hsin Chu | Germany - Rosenheim | | Fax: 630-285-0075 | Tel: 86-24-2334-2829 | Tel: 886-3-577-8366 | Tel: 49-8031-354-560 | | Dallas | China - Shenzhen | Taiwan - Kaohsiung | Israel - Ra'anana | | Addison, TX | Tel: 86-755-8864-2200 | Tel: 886-7-213-7830 | Tel: 972-9-744-7705 | | Tel: 972-818-7423 | China - Suzhou | Taiwan - Taipei | Italy - Milan | | Fax: 972-818-2924 | Tel: 86-186-6233-1526 | Tel: 886-2-2508-8600 | Tel: 39-0331-742611 | | Detroit | China - Wuhan | Thailand - Bangkok | Fax: 39-0331-466781 | | Novi, MI | Tel: 86-27-5980-5300 | Tel: 66-2-694-1351 | Italy - Padova | | Tel: 248-848-4000 | China - Xian | Vietnam - Ho Chi Minh | Tel: 39-049-7625286 | | Houston, TX | Tel: 86-29-8833-7252 | Tel: 84-28-5448-2100 | Netherlands - Drunen | | Tel: 281-894-5983 | China - Xiamen | | Tel: 31-416-690399 | | Indianapolis | Tel: 86-592-2388138 | | Fax: 31-416-690340 | | Noblesville, IN | China - Zhuhai | | Norway - Trondheim | | Tel: 317-773-8323 | Tel: 86-756-3210040 | | Tel: 47-72884388 | | Fax: 317-773-5453 | | | Poland - Warsaw | | Tel: 317-536-2380 | | | Tel: 48-22-3325737 | | Los Angeles | | | Romania - Bucharest | | Mission Viejo, CA | | | Tel: 40-21-407-87-50 | | Tel: 949-462-9523 | | | Spain - Madrid | | Fax: 949-462-9608 | | | Tel: 34-91-708-08-90 | | Tel: 951-273-7800 | | | Fax: 34-91-708-08-91 | | Raleigh, NC | | | Sweden - Gothenberg | | Tel: 919-844-7510 | | | Tel: 46-31-704-60-40 | | New York, NY | | | Sweden - Stockholm | | Tel: 631-435-6000 | | | Tel: 46-8-5090-4654 | | San Jose, CA | | | UK -
Wokingham | | Tel: 408-735-9110 | | | Tel: 44-118-921-5800 | | Tel: 408-436-4270 | | | Fax: 44-118-921-5820 | | Canada - Toronto | | | | | Tel: 905-695-1980 | | | | | Fax: 905-695-2078 | | | | #### SYST-19GIKP195 - ERRATA - SAMA5D2 Family Silicon Errata and Data Sheet Clarification #### Affected Catalog Part Numbers(CPN) ATSAMA5D21B-CU ATSAMA5D21B-CUR ATSAMA5D21C-CU ATSAMA5D21C-CUR ATSAMA5D225C-D1M-CU ATSAMA5D225C-D1M-CUR ATSAMA5D22A-CU ATSAMA5D22A-CUR ATSAMA5D22B-CN ATSAMA5D22B-CNR ATSAMA5D22B-CU ATSAMA5D22B-CUR ATSAMA5D22C-CN ATSAMA5D22C-CNR ATSAMA5D22C-CU ATSAMA5D22C-CUR ATSAMA5D23B-CN ATSAMA5D23B-CNR ATSAMA5D23B-CU ATSAMA5D23B-CUR ATSAMA5D23C-CN ATSAMA5D23C-CNR ATSAMA5D23C-CU ATSAMA5D23C-CUR ATSAMA5D24A-CU ATSAMA5D24A-CUR ATSAMA5D24B-CU ATSAMA5D24B-CUR ATSAMA5D24C-CU ATSAMA5D24C-CUF01 ATSAMA5D24C-CUR ATSAMA5D24C-CURF01 ATSAMA5D26B-CN ATSAMA5D26B-CNR ATSAMA5D26B-CU ATSAMA5D26B-CUR ATSAMA5D26C-CN ATSAMA5D26C-CNR ATSAMA5D26C-CU ATSAMA5D26C-CUR ATSAMA5D27-SOM1 ATSAMA5D27A-CU ATSAMA5D27A-CUR ATSAMA5D27B-CN ATSAMA5D27B-CNR ATSAMA5D27B-CU ATSAMA5D27B-CUR ATSAMA5D27C-CN ATSAMA5D27C-CNR ATSAMA5D27C-CNRVAO ATSAMA5D27C-CNVAO ATSAMA5D27C-CU ATSAMA5D27C-CUR ATSAMA5D27C-D1G-CU ATSAMA5D27C-D1G-CUR ATSAMA5D27C-D5M-CU ATSAMA5D27C-D5M-CUR ATSAMA5D27C-LD1G-CU ATSAMA5D27C-LD1G-CUR ATSAMA5D27C-LD2G-CU ATSAMA5D27C-LD2G-CUR ATSAMA5D28A-CU ATSAMA5D28B-CN ATSAMA5D28B-CNR ATSAMA5D28B-CU ATSAMA5D28B-CUR ATSAMA5D28C-CN ATSAMA5D28C-CNR ATSAMA5D28C-CU ATSAMA5D28C-CUR ATSAMA5D28C-D1G-CU ATSAMA5D28C-D1G-CUR ATSAMA5D28C-LD1G-CU ATSAMA5D28C-LD1G-CUR ATSAMA5D28C-LD2G-CU ATSAMA5D28C-LD2G-CUR